1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on.  It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/MemoryBuiltins.h"
24 #include "llvm/Analysis/PHITransAddr.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/PredIteratorCache.h"
33 #include "llvm/Support/Debug.h"
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "memdep"
37 
38 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
39 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
40 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
41 
42 STATISTIC(NumCacheNonLocalPtr,
43           "Number of fully cached non-local ptr responses");
44 STATISTIC(NumCacheDirtyNonLocalPtr,
45           "Number of cached, but dirty, non-local ptr responses");
46 STATISTIC(NumUncacheNonLocalPtr,
47           "Number of uncached non-local ptr responses");
48 STATISTIC(NumCacheCompleteNonLocalPtr,
49           "Number of block queries that were completely cached");
50 
51 // Limit for the number of instructions to scan in a block.
52 static const unsigned int BlockScanLimit = 100;
53 
54 // Limit on the number of memdep results to process.
55 static const unsigned int NumResultsLimit = 100;
56 
57 char MemoryDependenceAnalysis::ID = 0;
58 
59 // Register this pass...
60 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
61                 "Memory Dependence Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)62 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
63 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
64 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
65                       "Memory Dependence Analysis", false, true)
66 
67 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
68     : FunctionPass(ID), PredCache() {
69   initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
70 }
~MemoryDependenceAnalysis()71 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
72 }
73 
74 /// Clean up memory in between runs
releaseMemory()75 void MemoryDependenceAnalysis::releaseMemory() {
76   LocalDeps.clear();
77   NonLocalDeps.clear();
78   NonLocalPointerDeps.clear();
79   ReverseLocalDeps.clear();
80   ReverseNonLocalDeps.clear();
81   ReverseNonLocalPtrDeps.clear();
82   PredCache->clear();
83 }
84 
85 /// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
86 ///
getAnalysisUsage(AnalysisUsage & AU) const87 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
88   AU.setPreservesAll();
89   AU.addRequired<AssumptionCacheTracker>();
90   AU.addRequiredTransitive<AliasAnalysis>();
91 }
92 
runOnFunction(Function & F)93 bool MemoryDependenceAnalysis::runOnFunction(Function &F) {
94   AA = &getAnalysis<AliasAnalysis>();
95   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
96   DominatorTreeWrapperPass *DTWP =
97       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
98   DT = DTWP ? &DTWP->getDomTree() : nullptr;
99   if (!PredCache)
100     PredCache.reset(new PredIteratorCache());
101   return false;
102 }
103 
104 /// RemoveFromReverseMap - This is a helper function that removes Val from
105 /// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
106 template <typename KeyTy>
RemoveFromReverseMap(DenseMap<Instruction *,SmallPtrSet<KeyTy,4>> & ReverseMap,Instruction * Inst,KeyTy Val)107 static void RemoveFromReverseMap(DenseMap<Instruction*,
108                                  SmallPtrSet<KeyTy, 4> > &ReverseMap,
109                                  Instruction *Inst, KeyTy Val) {
110   typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
111   InstIt = ReverseMap.find(Inst);
112   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
113   bool Found = InstIt->second.erase(Val);
114   assert(Found && "Invalid reverse map!"); (void)Found;
115   if (InstIt->second.empty())
116     ReverseMap.erase(InstIt);
117 }
118 
119 /// GetLocation - If the given instruction references a specific memory
120 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
121 /// Return a ModRefInfo value describing the general behavior of the
122 /// instruction.
123 static
GetLocation(const Instruction * Inst,AliasAnalysis::Location & Loc,AliasAnalysis * AA)124 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
125                                         AliasAnalysis::Location &Loc,
126                                         AliasAnalysis *AA) {
127   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
128     if (LI->isUnordered()) {
129       Loc = AA->getLocation(LI);
130       return AliasAnalysis::Ref;
131     }
132     if (LI->getOrdering() == Monotonic) {
133       Loc = AA->getLocation(LI);
134       return AliasAnalysis::ModRef;
135     }
136     Loc = AliasAnalysis::Location();
137     return AliasAnalysis::ModRef;
138   }
139 
140   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
141     if (SI->isUnordered()) {
142       Loc = AA->getLocation(SI);
143       return AliasAnalysis::Mod;
144     }
145     if (SI->getOrdering() == Monotonic) {
146       Loc = AA->getLocation(SI);
147       return AliasAnalysis::ModRef;
148     }
149     Loc = AliasAnalysis::Location();
150     return AliasAnalysis::ModRef;
151   }
152 
153   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
154     Loc = AA->getLocation(V);
155     return AliasAnalysis::ModRef;
156   }
157 
158   if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) {
159     // calls to free() deallocate the entire structure
160     Loc = AliasAnalysis::Location(CI->getArgOperand(0));
161     return AliasAnalysis::Mod;
162   }
163 
164   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
165     AAMDNodes AAInfo;
166 
167     switch (II->getIntrinsicID()) {
168     case Intrinsic::lifetime_start:
169     case Intrinsic::lifetime_end:
170     case Intrinsic::invariant_start:
171       II->getAAMetadata(AAInfo);
172       Loc = AliasAnalysis::Location(II->getArgOperand(1),
173                                     cast<ConstantInt>(II->getArgOperand(0))
174                                       ->getZExtValue(), AAInfo);
175       // These intrinsics don't really modify the memory, but returning Mod
176       // will allow them to be handled conservatively.
177       return AliasAnalysis::Mod;
178     case Intrinsic::invariant_end:
179       II->getAAMetadata(AAInfo);
180       Loc = AliasAnalysis::Location(II->getArgOperand(2),
181                                     cast<ConstantInt>(II->getArgOperand(1))
182                                       ->getZExtValue(), AAInfo);
183       // These intrinsics don't really modify the memory, but returning Mod
184       // will allow them to be handled conservatively.
185       return AliasAnalysis::Mod;
186     default:
187       break;
188     }
189   }
190 
191   // Otherwise, just do the coarse-grained thing that always works.
192   if (Inst->mayWriteToMemory())
193     return AliasAnalysis::ModRef;
194   if (Inst->mayReadFromMemory())
195     return AliasAnalysis::Ref;
196   return AliasAnalysis::NoModRef;
197 }
198 
199 /// getCallSiteDependencyFrom - Private helper for finding the local
200 /// dependencies of a call site.
201 MemDepResult MemoryDependenceAnalysis::
getCallSiteDependencyFrom(CallSite CS,bool isReadOnlyCall,BasicBlock::iterator ScanIt,BasicBlock * BB)202 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
203                           BasicBlock::iterator ScanIt, BasicBlock *BB) {
204   unsigned Limit = BlockScanLimit;
205 
206   // Walk backwards through the block, looking for dependencies
207   while (ScanIt != BB->begin()) {
208     // Limit the amount of scanning we do so we don't end up with quadratic
209     // running time on extreme testcases.
210     --Limit;
211     if (!Limit)
212       return MemDepResult::getUnknown();
213 
214     Instruction *Inst = --ScanIt;
215 
216     // If this inst is a memory op, get the pointer it accessed
217     AliasAnalysis::Location Loc;
218     AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
219     if (Loc.Ptr) {
220       // A simple instruction.
221       if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
222         return MemDepResult::getClobber(Inst);
223       continue;
224     }
225 
226     if (auto InstCS = CallSite(Inst)) {
227       // Debug intrinsics don't cause dependences.
228       if (isa<DbgInfoIntrinsic>(Inst)) continue;
229       // If these two calls do not interfere, look past it.
230       switch (AA->getModRefInfo(CS, InstCS)) {
231       case AliasAnalysis::NoModRef:
232         // If the two calls are the same, return InstCS as a Def, so that
233         // CS can be found redundant and eliminated.
234         if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
235             CS.getInstruction()->isIdenticalToWhenDefined(Inst))
236           return MemDepResult::getDef(Inst);
237 
238         // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
239         // keep scanning.
240         continue;
241       default:
242         return MemDepResult::getClobber(Inst);
243       }
244     }
245 
246     // If we could not obtain a pointer for the instruction and the instruction
247     // touches memory then assume that this is a dependency.
248     if (MR != AliasAnalysis::NoModRef)
249       return MemDepResult::getClobber(Inst);
250   }
251 
252   // No dependence found.  If this is the entry block of the function, it is
253   // unknown, otherwise it is non-local.
254   if (BB != &BB->getParent()->getEntryBlock())
255     return MemDepResult::getNonLocal();
256   return MemDepResult::getNonFuncLocal();
257 }
258 
259 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
260 /// would fully overlap MemLoc if done as a wider legal integer load.
261 ///
262 /// MemLocBase, MemLocOffset are lazily computed here the first time the
263 /// base/offs of memloc is needed.
isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location & MemLoc,const Value * & MemLocBase,int64_t & MemLocOffs,const LoadInst * LI)264 static bool isLoadLoadClobberIfExtendedToFullWidth(
265     const AliasAnalysis::Location &MemLoc, const Value *&MemLocBase,
266     int64_t &MemLocOffs, const LoadInst *LI) {
267   const DataLayout &DL = LI->getModule()->getDataLayout();
268 
269   // If we haven't already computed the base/offset of MemLoc, do so now.
270   if (!MemLocBase)
271     MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL);
272 
273   unsigned Size = MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
274       MemLocBase, MemLocOffs, MemLoc.Size, LI);
275   return Size != 0;
276 }
277 
278 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
279 /// looks at a memory location for a load (specified by MemLocBase, Offs,
280 /// and Size) and compares it against a load.  If the specified load could
281 /// be safely widened to a larger integer load that is 1) still efficient,
282 /// 2) safe for the target, and 3) would provide the specified memory
283 /// location value, then this function returns the size in bytes of the
284 /// load width to use.  If not, this returns zero.
getLoadLoadClobberFullWidthSize(const Value * MemLocBase,int64_t MemLocOffs,unsigned MemLocSize,const LoadInst * LI)285 unsigned MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
286     const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize,
287     const LoadInst *LI) {
288   // We can only extend simple integer loads.
289   if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
290 
291   // Load widening is hostile to ThreadSanitizer: it may cause false positives
292   // or make the reports more cryptic (access sizes are wrong).
293   if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
294     return 0;
295 
296   const DataLayout &DL = LI->getModule()->getDataLayout();
297 
298   // Get the base of this load.
299   int64_t LIOffs = 0;
300   const Value *LIBase =
301       GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
302 
303   // If the two pointers are not based on the same pointer, we can't tell that
304   // they are related.
305   if (LIBase != MemLocBase) return 0;
306 
307   // Okay, the two values are based on the same pointer, but returned as
308   // no-alias.  This happens when we have things like two byte loads at "P+1"
309   // and "P+3".  Check to see if increasing the size of the "LI" load up to its
310   // alignment (or the largest native integer type) will allow us to load all
311   // the bits required by MemLoc.
312 
313   // If MemLoc is before LI, then no widening of LI will help us out.
314   if (MemLocOffs < LIOffs) return 0;
315 
316   // Get the alignment of the load in bytes.  We assume that it is safe to load
317   // any legal integer up to this size without a problem.  For example, if we're
318   // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
319   // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
320   // to i16.
321   unsigned LoadAlign = LI->getAlignment();
322 
323   int64_t MemLocEnd = MemLocOffs+MemLocSize;
324 
325   // If no amount of rounding up will let MemLoc fit into LI, then bail out.
326   if (LIOffs+LoadAlign < MemLocEnd) return 0;
327 
328   // This is the size of the load to try.  Start with the next larger power of
329   // two.
330   unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
331   NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
332 
333   while (1) {
334     // If this load size is bigger than our known alignment or would not fit
335     // into a native integer register, then we fail.
336     if (NewLoadByteSize > LoadAlign ||
337         !DL.fitsInLegalInteger(NewLoadByteSize*8))
338       return 0;
339 
340     if (LIOffs + NewLoadByteSize > MemLocEnd &&
341         LI->getParent()->getParent()->hasFnAttribute(
342             Attribute::SanitizeAddress))
343       // We will be reading past the location accessed by the original program.
344       // While this is safe in a regular build, Address Safety analysis tools
345       // may start reporting false warnings. So, don't do widening.
346       return 0;
347 
348     // If a load of this width would include all of MemLoc, then we succeed.
349     if (LIOffs+NewLoadByteSize >= MemLocEnd)
350       return NewLoadByteSize;
351 
352     NewLoadByteSize <<= 1;
353   }
354 }
355 
isVolatile(Instruction * Inst)356 static bool isVolatile(Instruction *Inst) {
357   if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
358     return LI->isVolatile();
359   else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
360     return SI->isVolatile();
361   else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
362     return AI->isVolatile();
363   return false;
364 }
365 
366 
367 /// getPointerDependencyFrom - Return the instruction on which a memory
368 /// location depends.  If isLoad is true, this routine ignores may-aliases with
369 /// read-only operations.  If isLoad is false, this routine ignores may-aliases
370 /// with reads from read-only locations.  If possible, pass the query
371 /// instruction as well; this function may take advantage of the metadata
372 /// annotated to the query instruction to refine the result.
373 MemDepResult MemoryDependenceAnalysis::
getPointerDependencyFrom(const AliasAnalysis::Location & MemLoc,bool isLoad,BasicBlock::iterator ScanIt,BasicBlock * BB,Instruction * QueryInst)374 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
375                          BasicBlock::iterator ScanIt, BasicBlock *BB,
376                          Instruction *QueryInst) {
377 
378   const Value *MemLocBase = nullptr;
379   int64_t MemLocOffset = 0;
380   unsigned Limit = BlockScanLimit;
381   bool isInvariantLoad = false;
382 
383   // We must be careful with atomic accesses, as they may allow another thread
384   //   to touch this location, cloberring it. We are conservative: if the
385   //   QueryInst is not a simple (non-atomic) memory access, we automatically
386   //   return getClobber.
387   // If it is simple, we know based on the results of
388   // "Compiler testing via a theory of sound optimisations in the C11/C++11
389   //   memory model" in PLDI 2013, that a non-atomic location can only be
390   //   clobbered between a pair of a release and an acquire action, with no
391   //   access to the location in between.
392   // Here is an example for giving the general intuition behind this rule.
393   // In the following code:
394   //   store x 0;
395   //   release action; [1]
396   //   acquire action; [4]
397   //   %val = load x;
398   // It is unsafe to replace %val by 0 because another thread may be running:
399   //   acquire action; [2]
400   //   store x 42;
401   //   release action; [3]
402   // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
403   // being 42. A key property of this program however is that if either
404   // 1 or 4 were missing, there would be a race between the store of 42
405   // either the store of 0 or the load (making the whole progam racy).
406   // The paper mentionned above shows that the same property is respected
407   // by every program that can detect any optimisation of that kind: either
408   // it is racy (undefined) or there is a release followed by an acquire
409   // between the pair of accesses under consideration.
410 
411   // If the load is invariant, we "know" that it doesn't alias *any* write. We
412   // do want to respect mustalias results since defs are useful for value
413   // forwarding, but any mayalias write can be assumed to be noalias.
414   // Arguably, this logic should be pushed inside AliasAnalysis itself.
415   if (isLoad && QueryInst) {
416     LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
417     if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
418       isInvariantLoad = true;
419   }
420 
421   const DataLayout &DL = BB->getModule()->getDataLayout();
422 
423   // Walk backwards through the basic block, looking for dependencies.
424   while (ScanIt != BB->begin()) {
425     Instruction *Inst = --ScanIt;
426 
427     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
428       // Debug intrinsics don't (and can't) cause dependencies.
429       if (isa<DbgInfoIntrinsic>(II)) continue;
430 
431     // Limit the amount of scanning we do so we don't end up with quadratic
432     // running time on extreme testcases.
433     --Limit;
434     if (!Limit)
435       return MemDepResult::getUnknown();
436 
437     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
438       // If we reach a lifetime begin or end marker, then the query ends here
439       // because the value is undefined.
440       if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
441         // FIXME: This only considers queries directly on the invariant-tagged
442         // pointer, not on query pointers that are indexed off of them.  It'd
443         // be nice to handle that at some point (the right approach is to use
444         // GetPointerBaseWithConstantOffset).
445         if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
446                             MemLoc))
447           return MemDepResult::getDef(II);
448         continue;
449       }
450     }
451 
452     // Values depend on loads if the pointers are must aliased.  This means that
453     // a load depends on another must aliased load from the same value.
454     // One exception is atomic loads: a value can depend on an atomic load that it
455     // does not alias with when this atomic load indicates that another thread may
456     // be accessing the location.
457     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
458 
459       // While volatile access cannot be eliminated, they do not have to clobber
460       // non-aliasing locations, as normal accesses, for example, can be safely
461       // reordered with volatile accesses.
462       if (LI->isVolatile()) {
463         if (!QueryInst)
464           // Original QueryInst *may* be volatile
465           return MemDepResult::getClobber(LI);
466         if (isVolatile(QueryInst))
467           // Ordering required if QueryInst is itself volatile
468           return MemDepResult::getClobber(LI);
469         // Otherwise, volatile doesn't imply any special ordering
470       }
471 
472       // Atomic loads have complications involved.
473       // A Monotonic (or higher) load is OK if the query inst is itself not atomic.
474       // FIXME: This is overly conservative.
475       if (LI->isAtomic() && LI->getOrdering() > Unordered) {
476         if (!QueryInst)
477           return MemDepResult::getClobber(LI);
478         if (LI->getOrdering() != Monotonic)
479           return MemDepResult::getClobber(LI);
480         if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) {
481           if (!QueryLI->isSimple())
482             return MemDepResult::getClobber(LI);
483         } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) {
484           if (!QuerySI->isSimple())
485             return MemDepResult::getClobber(LI);
486         } else if (QueryInst->mayReadOrWriteMemory()) {
487           return MemDepResult::getClobber(LI);
488         }
489       }
490 
491       AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
492 
493       // If we found a pointer, check if it could be the same as our pointer.
494       AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
495 
496       if (isLoad) {
497         if (R == AliasAnalysis::NoAlias) {
498           // If this is an over-aligned integer load (for example,
499           // "load i8* %P, align 4") see if it would obviously overlap with the
500           // queried location if widened to a larger load (e.g. if the queried
501           // location is 1 byte at P+1).  If so, return it as a load/load
502           // clobber result, allowing the client to decide to widen the load if
503           // it wants to.
504           if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
505             if (LI->getAlignment() * 8 > ITy->getPrimitiveSizeInBits() &&
506                 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
507                                                        MemLocOffset, LI))
508               return MemDepResult::getClobber(Inst);
509           }
510           continue;
511         }
512 
513         // Must aliased loads are defs of each other.
514         if (R == AliasAnalysis::MustAlias)
515           return MemDepResult::getDef(Inst);
516 
517 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
518       // in terms of clobbering loads, but since it does this by looking
519       // at the clobbering load directly, it doesn't know about any
520       // phi translation that may have happened along the way.
521 
522         // If we have a partial alias, then return this as a clobber for the
523         // client to handle.
524         if (R == AliasAnalysis::PartialAlias)
525           return MemDepResult::getClobber(Inst);
526 #endif
527 
528         // Random may-alias loads don't depend on each other without a
529         // dependence.
530         continue;
531       }
532 
533       // Stores don't depend on other no-aliased accesses.
534       if (R == AliasAnalysis::NoAlias)
535         continue;
536 
537       // Stores don't alias loads from read-only memory.
538       if (AA->pointsToConstantMemory(LoadLoc))
539         continue;
540 
541       // Stores depend on may/must aliased loads.
542       return MemDepResult::getDef(Inst);
543     }
544 
545     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
546       // Atomic stores have complications involved.
547       // A Monotonic store is OK if the query inst is itself not atomic.
548       // FIXME: This is overly conservative.
549       if (!SI->isUnordered()) {
550         if (!QueryInst)
551           return MemDepResult::getClobber(SI);
552         if (SI->getOrdering() != Monotonic)
553           return MemDepResult::getClobber(SI);
554         if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) {
555           if (!QueryLI->isSimple())
556             return MemDepResult::getClobber(SI);
557         } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) {
558           if (!QuerySI->isSimple())
559             return MemDepResult::getClobber(SI);
560         } else if (QueryInst->mayReadOrWriteMemory()) {
561           return MemDepResult::getClobber(SI);
562         }
563       }
564 
565       // FIXME: this is overly conservative.
566       // While volatile access cannot be eliminated, they do not have to clobber
567       // non-aliasing locations, as normal accesses can for example be reordered
568       // with volatile accesses.
569       if (SI->isVolatile())
570         return MemDepResult::getClobber(SI);
571 
572       // If alias analysis can tell that this store is guaranteed to not modify
573       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
574       // the query pointer points to constant memory etc.
575       if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
576         continue;
577 
578       // Ok, this store might clobber the query pointer.  Check to see if it is
579       // a must alias: in this case, we want to return this as a def.
580       AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
581 
582       // If we found a pointer, check if it could be the same as our pointer.
583       AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
584 
585       if (R == AliasAnalysis::NoAlias)
586         continue;
587       if (R == AliasAnalysis::MustAlias)
588         return MemDepResult::getDef(Inst);
589       if (isInvariantLoad)
590        continue;
591       return MemDepResult::getClobber(Inst);
592     }
593 
594     // If this is an allocation, and if we know that the accessed pointer is to
595     // the allocation, return Def.  This means that there is no dependence and
596     // the access can be optimized based on that.  For example, a load could
597     // turn into undef.
598     // Note: Only determine this to be a malloc if Inst is the malloc call, not
599     // a subsequent bitcast of the malloc call result.  There can be stores to
600     // the malloced memory between the malloc call and its bitcast uses, and we
601     // need to continue scanning until the malloc call.
602     const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo();
603     if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) {
604       const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
605 
606       if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
607         return MemDepResult::getDef(Inst);
608       if (isInvariantLoad)
609         continue;
610       // Be conservative if the accessed pointer may alias the allocation.
611       if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias)
612         return MemDepResult::getClobber(Inst);
613       // If the allocation is not aliased and does not read memory (like
614       // strdup), it is safe to ignore.
615       if (isa<AllocaInst>(Inst) ||
616           isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI))
617         continue;
618     }
619 
620     if (isInvariantLoad)
621        continue;
622 
623     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
624     AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc);
625     // If necessary, perform additional analysis.
626     if (MR == AliasAnalysis::ModRef)
627       MR = AA->callCapturesBefore(Inst, MemLoc, DT);
628     switch (MR) {
629     case AliasAnalysis::NoModRef:
630       // If the call has no effect on the queried pointer, just ignore it.
631       continue;
632     case AliasAnalysis::Mod:
633       return MemDepResult::getClobber(Inst);
634     case AliasAnalysis::Ref:
635       // If the call is known to never store to the pointer, and if this is a
636       // load query, we can safely ignore it (scan past it).
637       if (isLoad)
638         continue;
639     default:
640       // Otherwise, there is a potential dependence.  Return a clobber.
641       return MemDepResult::getClobber(Inst);
642     }
643   }
644 
645   // No dependence found.  If this is the entry block of the function, it is
646   // unknown, otherwise it is non-local.
647   if (BB != &BB->getParent()->getEntryBlock())
648     return MemDepResult::getNonLocal();
649   return MemDepResult::getNonFuncLocal();
650 }
651 
652 /// getDependency - Return the instruction on which a memory operation
653 /// depends.
getDependency(Instruction * QueryInst)654 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
655   Instruction *ScanPos = QueryInst;
656 
657   // Check for a cached result
658   MemDepResult &LocalCache = LocalDeps[QueryInst];
659 
660   // If the cached entry is non-dirty, just return it.  Note that this depends
661   // on MemDepResult's default constructing to 'dirty'.
662   if (!LocalCache.isDirty())
663     return LocalCache;
664 
665   // Otherwise, if we have a dirty entry, we know we can start the scan at that
666   // instruction, which may save us some work.
667   if (Instruction *Inst = LocalCache.getInst()) {
668     ScanPos = Inst;
669 
670     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
671   }
672 
673   BasicBlock *QueryParent = QueryInst->getParent();
674 
675   // Do the scan.
676   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
677     // No dependence found.  If this is the entry block of the function, it is
678     // unknown, otherwise it is non-local.
679     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
680       LocalCache = MemDepResult::getNonLocal();
681     else
682       LocalCache = MemDepResult::getNonFuncLocal();
683   } else {
684     AliasAnalysis::Location MemLoc;
685     AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
686     if (MemLoc.Ptr) {
687       // If we can do a pointer scan, make it happen.
688       bool isLoad = !(MR & AliasAnalysis::Mod);
689       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
690         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
691 
692       LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
693                                             QueryParent, QueryInst);
694     } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
695       CallSite QueryCS(QueryInst);
696       bool isReadOnly = AA->onlyReadsMemory(QueryCS);
697       LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
698                                              QueryParent);
699     } else
700       // Non-memory instruction.
701       LocalCache = MemDepResult::getUnknown();
702   }
703 
704   // Remember the result!
705   if (Instruction *I = LocalCache.getInst())
706     ReverseLocalDeps[I].insert(QueryInst);
707 
708   return LocalCache;
709 }
710 
711 #ifndef NDEBUG
712 /// AssertSorted - This method is used when -debug is specified to verify that
713 /// cache arrays are properly kept sorted.
AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo & Cache,int Count=-1)714 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
715                          int Count = -1) {
716   if (Count == -1) Count = Cache.size();
717   if (Count == 0) return;
718 
719   for (unsigned i = 1; i != unsigned(Count); ++i)
720     assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
721 }
722 #endif
723 
724 /// getNonLocalCallDependency - Perform a full dependency query for the
725 /// specified call, returning the set of blocks that the value is
726 /// potentially live across.  The returned set of results will include a
727 /// "NonLocal" result for all blocks where the value is live across.
728 ///
729 /// This method assumes the instruction returns a "NonLocal" dependency
730 /// within its own block.
731 ///
732 /// This returns a reference to an internal data structure that may be
733 /// invalidated on the next non-local query or when an instruction is
734 /// removed.  Clients must copy this data if they want it around longer than
735 /// that.
736 const MemoryDependenceAnalysis::NonLocalDepInfo &
getNonLocalCallDependency(CallSite QueryCS)737 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
738   assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
739  "getNonLocalCallDependency should only be used on calls with non-local deps!");
740   PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
741   NonLocalDepInfo &Cache = CacheP.first;
742 
743   /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
744   /// the cached case, this can happen due to instructions being deleted etc. In
745   /// the uncached case, this starts out as the set of predecessors we care
746   /// about.
747   SmallVector<BasicBlock*, 32> DirtyBlocks;
748 
749   if (!Cache.empty()) {
750     // Okay, we have a cache entry.  If we know it is not dirty, just return it
751     // with no computation.
752     if (!CacheP.second) {
753       ++NumCacheNonLocal;
754       return Cache;
755     }
756 
757     // If we already have a partially computed set of results, scan them to
758     // determine what is dirty, seeding our initial DirtyBlocks worklist.
759     for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
760        I != E; ++I)
761       if (I->getResult().isDirty())
762         DirtyBlocks.push_back(I->getBB());
763 
764     // Sort the cache so that we can do fast binary search lookups below.
765     std::sort(Cache.begin(), Cache.end());
766 
767     ++NumCacheDirtyNonLocal;
768     //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
769     //     << Cache.size() << " cached: " << *QueryInst;
770   } else {
771     // Seed DirtyBlocks with each of the preds of QueryInst's block.
772     BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
773     for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
774       DirtyBlocks.push_back(*PI);
775     ++NumUncacheNonLocal;
776   }
777 
778   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
779   bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
780 
781   SmallPtrSet<BasicBlock*, 64> Visited;
782 
783   unsigned NumSortedEntries = Cache.size();
784   DEBUG(AssertSorted(Cache));
785 
786   // Iterate while we still have blocks to update.
787   while (!DirtyBlocks.empty()) {
788     BasicBlock *DirtyBB = DirtyBlocks.back();
789     DirtyBlocks.pop_back();
790 
791     // Already processed this block?
792     if (!Visited.insert(DirtyBB).second)
793       continue;
794 
795     // Do a binary search to see if we already have an entry for this block in
796     // the cache set.  If so, find it.
797     DEBUG(AssertSorted(Cache, NumSortedEntries));
798     NonLocalDepInfo::iterator Entry =
799       std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
800                        NonLocalDepEntry(DirtyBB));
801     if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
802       --Entry;
803 
804     NonLocalDepEntry *ExistingResult = nullptr;
805     if (Entry != Cache.begin()+NumSortedEntries &&
806         Entry->getBB() == DirtyBB) {
807       // If we already have an entry, and if it isn't already dirty, the block
808       // is done.
809       if (!Entry->getResult().isDirty())
810         continue;
811 
812       // Otherwise, remember this slot so we can update the value.
813       ExistingResult = &*Entry;
814     }
815 
816     // If the dirty entry has a pointer, start scanning from it so we don't have
817     // to rescan the entire block.
818     BasicBlock::iterator ScanPos = DirtyBB->end();
819     if (ExistingResult) {
820       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
821         ScanPos = Inst;
822         // We're removing QueryInst's use of Inst.
823         RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
824                              QueryCS.getInstruction());
825       }
826     }
827 
828     // Find out if this block has a local dependency for QueryInst.
829     MemDepResult Dep;
830 
831     if (ScanPos != DirtyBB->begin()) {
832       Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
833     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
834       // No dependence found.  If this is the entry block of the function, it is
835       // a clobber, otherwise it is unknown.
836       Dep = MemDepResult::getNonLocal();
837     } else {
838       Dep = MemDepResult::getNonFuncLocal();
839     }
840 
841     // If we had a dirty entry for the block, update it.  Otherwise, just add
842     // a new entry.
843     if (ExistingResult)
844       ExistingResult->setResult(Dep);
845     else
846       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
847 
848     // If the block has a dependency (i.e. it isn't completely transparent to
849     // the value), remember the association!
850     if (!Dep.isNonLocal()) {
851       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
852       // update this when we remove instructions.
853       if (Instruction *Inst = Dep.getInst())
854         ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
855     } else {
856 
857       // If the block *is* completely transparent to the load, we need to check
858       // the predecessors of this block.  Add them to our worklist.
859       for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
860         DirtyBlocks.push_back(*PI);
861     }
862   }
863 
864   return Cache;
865 }
866 
867 /// getNonLocalPointerDependency - Perform a full dependency query for an
868 /// access to the specified (non-volatile) memory location, returning the
869 /// set of instructions that either define or clobber the value.
870 ///
871 /// This method assumes the pointer has a "NonLocal" dependency within its
872 /// own block.
873 ///
874 void MemoryDependenceAnalysis::
getNonLocalPointerDependency(Instruction * QueryInst,SmallVectorImpl<NonLocalDepResult> & Result)875 getNonLocalPointerDependency(Instruction *QueryInst,
876                              SmallVectorImpl<NonLocalDepResult> &Result) {
877   const AliasAnalysis::Location Loc = AA->getLocation(QueryInst);
878   bool isLoad = isa<LoadInst>(QueryInst);
879   BasicBlock *FromBB = QueryInst->getParent();
880   assert(FromBB);
881 
882   assert(Loc.Ptr->getType()->isPointerTy() &&
883          "Can't get pointer deps of a non-pointer!");
884   Result.clear();
885 
886   // This routine does not expect to deal with volatile instructions.
887   // Doing so would require piping through the QueryInst all the way through.
888   // TODO: volatiles can't be elided, but they can be reordered with other
889   // non-volatile accesses.
890 
891   // We currently give up on any instruction which is ordered, but we do handle
892   // atomic instructions which are unordered.
893   // TODO: Handle ordered instructions
894   auto isOrdered = [](Instruction *Inst) {
895     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
896       return !LI->isUnordered();
897     } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
898       return !SI->isUnordered();
899     }
900     return false;
901   };
902   if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
903     Result.push_back(NonLocalDepResult(FromBB,
904                                        MemDepResult::getUnknown(),
905                                        const_cast<Value *>(Loc.Ptr)));
906     return;
907   }
908   const DataLayout &DL = FromBB->getModule()->getDataLayout();
909   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AC);
910 
911   // This is the set of blocks we've inspected, and the pointer we consider in
912   // each block.  Because of critical edges, we currently bail out if querying
913   // a block with multiple different pointers.  This can happen during PHI
914   // translation.
915   DenseMap<BasicBlock*, Value*> Visited;
916   if (!getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
917                                    Result, Visited, true))
918     return;
919   Result.clear();
920   Result.push_back(NonLocalDepResult(FromBB,
921                                      MemDepResult::getUnknown(),
922                                      const_cast<Value *>(Loc.Ptr)));
923 }
924 
925 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
926 /// Pointer/PointeeSize using either cached information in Cache or by doing a
927 /// lookup (which may use dirty cache info if available).  If we do a lookup,
928 /// add the result to the cache.
929 MemDepResult MemoryDependenceAnalysis::
GetNonLocalInfoForBlock(Instruction * QueryInst,const AliasAnalysis::Location & Loc,bool isLoad,BasicBlock * BB,NonLocalDepInfo * Cache,unsigned NumSortedEntries)930 GetNonLocalInfoForBlock(Instruction *QueryInst,
931                         const AliasAnalysis::Location &Loc,
932                         bool isLoad, BasicBlock *BB,
933                         NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
934 
935   // Do a binary search to see if we already have an entry for this block in
936   // the cache set.  If so, find it.
937   NonLocalDepInfo::iterator Entry =
938     std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
939                      NonLocalDepEntry(BB));
940   if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
941     --Entry;
942 
943   NonLocalDepEntry *ExistingResult = nullptr;
944   if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
945     ExistingResult = &*Entry;
946 
947   // If we have a cached entry, and it is non-dirty, use it as the value for
948   // this dependency.
949   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
950     ++NumCacheNonLocalPtr;
951     return ExistingResult->getResult();
952   }
953 
954   // Otherwise, we have to scan for the value.  If we have a dirty cache
955   // entry, start scanning from its position, otherwise we scan from the end
956   // of the block.
957   BasicBlock::iterator ScanPos = BB->end();
958   if (ExistingResult && ExistingResult->getResult().getInst()) {
959     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
960            "Instruction invalidated?");
961     ++NumCacheDirtyNonLocalPtr;
962     ScanPos = ExistingResult->getResult().getInst();
963 
964     // Eliminating the dirty entry from 'Cache', so update the reverse info.
965     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
966     RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
967   } else {
968     ++NumUncacheNonLocalPtr;
969   }
970 
971   // Scan the block for the dependency.
972   MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB,
973                                               QueryInst);
974 
975   // If we had a dirty entry for the block, update it.  Otherwise, just add
976   // a new entry.
977   if (ExistingResult)
978     ExistingResult->setResult(Dep);
979   else
980     Cache->push_back(NonLocalDepEntry(BB, Dep));
981 
982   // If the block has a dependency (i.e. it isn't completely transparent to
983   // the value), remember the reverse association because we just added it
984   // to Cache!
985   if (!Dep.isDef() && !Dep.isClobber())
986     return Dep;
987 
988   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
989   // update MemDep when we remove instructions.
990   Instruction *Inst = Dep.getInst();
991   assert(Inst && "Didn't depend on anything?");
992   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
993   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
994   return Dep;
995 }
996 
997 /// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain
998 /// number of elements in the array that are already properly ordered.  This is
999 /// optimized for the case when only a few entries are added.
1000 static void
SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo & Cache,unsigned NumSortedEntries)1001 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
1002                          unsigned NumSortedEntries) {
1003   switch (Cache.size() - NumSortedEntries) {
1004   case 0:
1005     // done, no new entries.
1006     break;
1007   case 2: {
1008     // Two new entries, insert the last one into place.
1009     NonLocalDepEntry Val = Cache.back();
1010     Cache.pop_back();
1011     MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
1012       std::upper_bound(Cache.begin(), Cache.end()-1, Val);
1013     Cache.insert(Entry, Val);
1014     // FALL THROUGH.
1015   }
1016   case 1:
1017     // One new entry, Just insert the new value at the appropriate position.
1018     if (Cache.size() != 1) {
1019       NonLocalDepEntry Val = Cache.back();
1020       Cache.pop_back();
1021       MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
1022         std::upper_bound(Cache.begin(), Cache.end(), Val);
1023       Cache.insert(Entry, Val);
1024     }
1025     break;
1026   default:
1027     // Added many values, do a full scale sort.
1028     std::sort(Cache.begin(), Cache.end());
1029     break;
1030   }
1031 }
1032 
1033 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
1034 /// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
1035 /// results to the results vector and keep track of which blocks are visited in
1036 /// 'Visited'.
1037 ///
1038 /// This has special behavior for the first block queries (when SkipFirstBlock
1039 /// is true).  In this special case, it ignores the contents of the specified
1040 /// block and starts returning dependence info for its predecessors.
1041 ///
1042 /// This function returns false on success, or true to indicate that it could
1043 /// not compute dependence information for some reason.  This should be treated
1044 /// as a clobber dependence on the first instruction in the predecessor block.
1045 bool MemoryDependenceAnalysis::
getNonLocalPointerDepFromBB(Instruction * QueryInst,const PHITransAddr & Pointer,const AliasAnalysis::Location & Loc,bool isLoad,BasicBlock * StartBB,SmallVectorImpl<NonLocalDepResult> & Result,DenseMap<BasicBlock *,Value * > & Visited,bool SkipFirstBlock)1046 getNonLocalPointerDepFromBB(Instruction *QueryInst,
1047                             const PHITransAddr &Pointer,
1048                             const AliasAnalysis::Location &Loc,
1049                             bool isLoad, BasicBlock *StartBB,
1050                             SmallVectorImpl<NonLocalDepResult> &Result,
1051                             DenseMap<BasicBlock*, Value*> &Visited,
1052                             bool SkipFirstBlock) {
1053   // Look up the cached info for Pointer.
1054   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1055 
1056   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1057   // CacheKey, this value will be inserted as the associated value. Otherwise,
1058   // it'll be ignored, and we'll have to check to see if the cached size and
1059   // aa tags are consistent with the current query.
1060   NonLocalPointerInfo InitialNLPI;
1061   InitialNLPI.Size = Loc.Size;
1062   InitialNLPI.AATags = Loc.AATags;
1063 
1064   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1065   // already have one.
1066   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1067     NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1068   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1069 
1070   // If we already have a cache entry for this CacheKey, we may need to do some
1071   // work to reconcile the cache entry and the current query.
1072   if (!Pair.second) {
1073     if (CacheInfo->Size < Loc.Size) {
1074       // The query's Size is greater than the cached one. Throw out the
1075       // cached data and proceed with the query at the greater size.
1076       CacheInfo->Pair = BBSkipFirstBlockPair();
1077       CacheInfo->Size = Loc.Size;
1078       for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
1079            DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
1080         if (Instruction *Inst = DI->getResult().getInst())
1081           RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1082       CacheInfo->NonLocalDeps.clear();
1083     } else if (CacheInfo->Size > Loc.Size) {
1084       // This query's Size is less than the cached one. Conservatively restart
1085       // the query using the greater size.
1086       return getNonLocalPointerDepFromBB(QueryInst, Pointer,
1087                                          Loc.getWithNewSize(CacheInfo->Size),
1088                                          isLoad, StartBB, Result, Visited,
1089                                          SkipFirstBlock);
1090     }
1091 
1092     // If the query's AATags are inconsistent with the cached one,
1093     // conservatively throw out the cached data and restart the query with
1094     // no tag if needed.
1095     if (CacheInfo->AATags != Loc.AATags) {
1096       if (CacheInfo->AATags) {
1097         CacheInfo->Pair = BBSkipFirstBlockPair();
1098         CacheInfo->AATags = AAMDNodes();
1099         for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
1100              DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
1101           if (Instruction *Inst = DI->getResult().getInst())
1102             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1103         CacheInfo->NonLocalDeps.clear();
1104       }
1105       if (Loc.AATags)
1106         return getNonLocalPointerDepFromBB(QueryInst,
1107                                            Pointer, Loc.getWithoutAATags(),
1108                                            isLoad, StartBB, Result, Visited,
1109                                            SkipFirstBlock);
1110     }
1111   }
1112 
1113   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1114 
1115   // If we have valid cached information for exactly the block we are
1116   // investigating, just return it with no recomputation.
1117   if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1118     // We have a fully cached result for this query then we can just return the
1119     // cached results and populate the visited set.  However, we have to verify
1120     // that we don't already have conflicting results for these blocks.  Check
1121     // to ensure that if a block in the results set is in the visited set that
1122     // it was for the same pointer query.
1123     if (!Visited.empty()) {
1124       for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1125            I != E; ++I) {
1126         DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
1127         if (VI == Visited.end() || VI->second == Pointer.getAddr())
1128           continue;
1129 
1130         // We have a pointer mismatch in a block.  Just return clobber, saying
1131         // that something was clobbered in this result.  We could also do a
1132         // non-fully cached query, but there is little point in doing this.
1133         return true;
1134       }
1135     }
1136 
1137     Value *Addr = Pointer.getAddr();
1138     for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1139          I != E; ++I) {
1140       Visited.insert(std::make_pair(I->getBB(), Addr));
1141       if (I->getResult().isNonLocal()) {
1142         continue;
1143       }
1144 
1145       if (!DT) {
1146         Result.push_back(NonLocalDepResult(I->getBB(),
1147                                            MemDepResult::getUnknown(),
1148                                            Addr));
1149       } else if (DT->isReachableFromEntry(I->getBB())) {
1150         Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
1151       }
1152     }
1153     ++NumCacheCompleteNonLocalPtr;
1154     return false;
1155   }
1156 
1157   // Otherwise, either this is a new block, a block with an invalid cache
1158   // pointer or one that we're about to invalidate by putting more info into it
1159   // than its valid cache info.  If empty, the result will be valid cache info,
1160   // otherwise it isn't.
1161   if (Cache->empty())
1162     CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1163   else
1164     CacheInfo->Pair = BBSkipFirstBlockPair();
1165 
1166   SmallVector<BasicBlock*, 32> Worklist;
1167   Worklist.push_back(StartBB);
1168 
1169   // PredList used inside loop.
1170   SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
1171 
1172   // Keep track of the entries that we know are sorted.  Previously cached
1173   // entries will all be sorted.  The entries we add we only sort on demand (we
1174   // don't insert every element into its sorted position).  We know that we
1175   // won't get any reuse from currently inserted values, because we don't
1176   // revisit blocks after we insert info for them.
1177   unsigned NumSortedEntries = Cache->size();
1178   DEBUG(AssertSorted(*Cache));
1179 
1180   while (!Worklist.empty()) {
1181     BasicBlock *BB = Worklist.pop_back_val();
1182 
1183     // If we do process a large number of blocks it becomes very expensive and
1184     // likely it isn't worth worrying about
1185     if (Result.size() > NumResultsLimit) {
1186       Worklist.clear();
1187       // Sort it now (if needed) so that recursive invocations of
1188       // getNonLocalPointerDepFromBB and other routines that could reuse the
1189       // cache value will only see properly sorted cache arrays.
1190       if (Cache && NumSortedEntries != Cache->size()) {
1191         SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1192       }
1193       // Since we bail out, the "Cache" set won't contain all of the
1194       // results for the query.  This is ok (we can still use it to accelerate
1195       // specific block queries) but we can't do the fastpath "return all
1196       // results from the set".  Clear out the indicator for this.
1197       CacheInfo->Pair = BBSkipFirstBlockPair();
1198       return true;
1199     }
1200 
1201     // Skip the first block if we have it.
1202     if (!SkipFirstBlock) {
1203       // Analyze the dependency of *Pointer in FromBB.  See if we already have
1204       // been here.
1205       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1206 
1207       // Get the dependency info for Pointer in BB.  If we have cached
1208       // information, we will use it, otherwise we compute it.
1209       DEBUG(AssertSorted(*Cache, NumSortedEntries));
1210       MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst,
1211                                                  Loc, isLoad, BB, Cache,
1212                                                  NumSortedEntries);
1213 
1214       // If we got a Def or Clobber, add this to the list of results.
1215       if (!Dep.isNonLocal()) {
1216         if (!DT) {
1217           Result.push_back(NonLocalDepResult(BB,
1218                                              MemDepResult::getUnknown(),
1219                                              Pointer.getAddr()));
1220           continue;
1221         } else if (DT->isReachableFromEntry(BB)) {
1222           Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1223           continue;
1224         }
1225       }
1226     }
1227 
1228     // If 'Pointer' is an instruction defined in this block, then we need to do
1229     // phi translation to change it into a value live in the predecessor block.
1230     // If not, we just add the predecessors to the worklist and scan them with
1231     // the same Pointer.
1232     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1233       SkipFirstBlock = false;
1234       SmallVector<BasicBlock*, 16> NewBlocks;
1235       for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1236         // Verify that we haven't looked at this block yet.
1237         std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1238           InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
1239         if (InsertRes.second) {
1240           // First time we've looked at *PI.
1241           NewBlocks.push_back(*PI);
1242           continue;
1243         }
1244 
1245         // If we have seen this block before, but it was with a different
1246         // pointer then we have a phi translation failure and we have to treat
1247         // this as a clobber.
1248         if (InsertRes.first->second != Pointer.getAddr()) {
1249           // Make sure to clean up the Visited map before continuing on to
1250           // PredTranslationFailure.
1251           for (unsigned i = 0; i < NewBlocks.size(); i++)
1252             Visited.erase(NewBlocks[i]);
1253           goto PredTranslationFailure;
1254         }
1255       }
1256       Worklist.append(NewBlocks.begin(), NewBlocks.end());
1257       continue;
1258     }
1259 
1260     // We do need to do phi translation, if we know ahead of time we can't phi
1261     // translate this value, don't even try.
1262     if (!Pointer.IsPotentiallyPHITranslatable())
1263       goto PredTranslationFailure;
1264 
1265     // We may have added values to the cache list before this PHI translation.
1266     // If so, we haven't done anything to ensure that the cache remains sorted.
1267     // Sort it now (if needed) so that recursive invocations of
1268     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1269     // value will only see properly sorted cache arrays.
1270     if (Cache && NumSortedEntries != Cache->size()) {
1271       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1272       NumSortedEntries = Cache->size();
1273     }
1274     Cache = nullptr;
1275 
1276     PredList.clear();
1277     for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1278       BasicBlock *Pred = *PI;
1279       PredList.push_back(std::make_pair(Pred, Pointer));
1280 
1281       // Get the PHI translated pointer in this predecessor.  This can fail if
1282       // not translatable, in which case the getAddr() returns null.
1283       PHITransAddr &PredPointer = PredList.back().second;
1284       PredPointer.PHITranslateValue(BB, Pred, nullptr);
1285 
1286       Value *PredPtrVal = PredPointer.getAddr();
1287 
1288       // Check to see if we have already visited this pred block with another
1289       // pointer.  If so, we can't do this lookup.  This failure can occur
1290       // with PHI translation when a critical edge exists and the PHI node in
1291       // the successor translates to a pointer value different than the
1292       // pointer the block was first analyzed with.
1293       std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1294         InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
1295 
1296       if (!InsertRes.second) {
1297         // We found the pred; take it off the list of preds to visit.
1298         PredList.pop_back();
1299 
1300         // If the predecessor was visited with PredPtr, then we already did
1301         // the analysis and can ignore it.
1302         if (InsertRes.first->second == PredPtrVal)
1303           continue;
1304 
1305         // Otherwise, the block was previously analyzed with a different
1306         // pointer.  We can't represent the result of this case, so we just
1307         // treat this as a phi translation failure.
1308 
1309         // Make sure to clean up the Visited map before continuing on to
1310         // PredTranslationFailure.
1311         for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1312           Visited.erase(PredList[i].first);
1313 
1314         goto PredTranslationFailure;
1315       }
1316     }
1317 
1318     // Actually process results here; this need to be a separate loop to avoid
1319     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1320     // any results for.  (getNonLocalPointerDepFromBB will modify our
1321     // datastructures in ways the code after the PredTranslationFailure label
1322     // doesn't expect.)
1323     for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1324       BasicBlock *Pred = PredList[i].first;
1325       PHITransAddr &PredPointer = PredList[i].second;
1326       Value *PredPtrVal = PredPointer.getAddr();
1327 
1328       bool CanTranslate = true;
1329       // If PHI translation was unable to find an available pointer in this
1330       // predecessor, then we have to assume that the pointer is clobbered in
1331       // that predecessor.  We can still do PRE of the load, which would insert
1332       // a computation of the pointer in this predecessor.
1333       if (!PredPtrVal)
1334         CanTranslate = false;
1335 
1336       // FIXME: it is entirely possible that PHI translating will end up with
1337       // the same value.  Consider PHI translating something like:
1338       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1339       // to recurse here, pedantically speaking.
1340 
1341       // If getNonLocalPointerDepFromBB fails here, that means the cached
1342       // result conflicted with the Visited list; we have to conservatively
1343       // assume it is unknown, but this also does not block PRE of the load.
1344       if (!CanTranslate ||
1345           getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1346                                       Loc.getWithNewPtr(PredPtrVal),
1347                                       isLoad, Pred,
1348                                       Result, Visited)) {
1349         // Add the entry to the Result list.
1350         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1351         Result.push_back(Entry);
1352 
1353         // Since we had a phi translation failure, the cache for CacheKey won't
1354         // include all of the entries that we need to immediately satisfy future
1355         // queries.  Mark this in NonLocalPointerDeps by setting the
1356         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1357         // cached value to do more work but not miss the phi trans failure.
1358         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1359         NLPI.Pair = BBSkipFirstBlockPair();
1360         continue;
1361       }
1362     }
1363 
1364     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1365     CacheInfo = &NonLocalPointerDeps[CacheKey];
1366     Cache = &CacheInfo->NonLocalDeps;
1367     NumSortedEntries = Cache->size();
1368 
1369     // Since we did phi translation, the "Cache" set won't contain all of the
1370     // results for the query.  This is ok (we can still use it to accelerate
1371     // specific block queries) but we can't do the fastpath "return all
1372     // results from the set"  Clear out the indicator for this.
1373     CacheInfo->Pair = BBSkipFirstBlockPair();
1374     SkipFirstBlock = false;
1375     continue;
1376 
1377   PredTranslationFailure:
1378     // The following code is "failure"; we can't produce a sane translation
1379     // for the given block.  It assumes that we haven't modified any of
1380     // our datastructures while processing the current block.
1381 
1382     if (!Cache) {
1383       // Refresh the CacheInfo/Cache pointer if it got invalidated.
1384       CacheInfo = &NonLocalPointerDeps[CacheKey];
1385       Cache = &CacheInfo->NonLocalDeps;
1386       NumSortedEntries = Cache->size();
1387     }
1388 
1389     // Since we failed phi translation, the "Cache" set won't contain all of the
1390     // results for the query.  This is ok (we can still use it to accelerate
1391     // specific block queries) but we can't do the fastpath "return all
1392     // results from the set".  Clear out the indicator for this.
1393     CacheInfo->Pair = BBSkipFirstBlockPair();
1394 
1395     // If *nothing* works, mark the pointer as unknown.
1396     //
1397     // If this is the magic first block, return this as a clobber of the whole
1398     // incoming value.  Since we can't phi translate to one of the predecessors,
1399     // we have to bail out.
1400     if (SkipFirstBlock)
1401       return true;
1402 
1403     for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1404       assert(I != Cache->rend() && "Didn't find current block??");
1405       if (I->getBB() != BB)
1406         continue;
1407 
1408       assert((I->getResult().isNonLocal() || !DT->isReachableFromEntry(BB)) &&
1409              "Should only be here with transparent block");
1410       I->setResult(MemDepResult::getUnknown());
1411       Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1412                                          Pointer.getAddr()));
1413       break;
1414     }
1415   }
1416 
1417   // Okay, we're done now.  If we added new values to the cache, re-sort it.
1418   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1419   DEBUG(AssertSorted(*Cache));
1420   return false;
1421 }
1422 
1423 /// RemoveCachedNonLocalPointerDependencies - If P exists in
1424 /// CachedNonLocalPointerInfo, remove it.
1425 void MemoryDependenceAnalysis::
RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P)1426 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1427   CachedNonLocalPointerInfo::iterator It =
1428     NonLocalPointerDeps.find(P);
1429   if (It == NonLocalPointerDeps.end()) return;
1430 
1431   // Remove all of the entries in the BB->val map.  This involves removing
1432   // instructions from the reverse map.
1433   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1434 
1435   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1436     Instruction *Target = PInfo[i].getResult().getInst();
1437     if (!Target) continue;  // Ignore non-local dep results.
1438     assert(Target->getParent() == PInfo[i].getBB());
1439 
1440     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1441     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1442   }
1443 
1444   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1445   NonLocalPointerDeps.erase(It);
1446 }
1447 
1448 
1449 /// invalidateCachedPointerInfo - This method is used to invalidate cached
1450 /// information about the specified pointer, because it may be too
1451 /// conservative in memdep.  This is an optional call that can be used when
1452 /// the client detects an equivalence between the pointer and some other
1453 /// value and replaces the other value with ptr. This can make Ptr available
1454 /// in more places that cached info does not necessarily keep.
invalidateCachedPointerInfo(Value * Ptr)1455 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1456   // If Ptr isn't really a pointer, just ignore it.
1457   if (!Ptr->getType()->isPointerTy()) return;
1458   // Flush store info for the pointer.
1459   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1460   // Flush load info for the pointer.
1461   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1462 }
1463 
1464 /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1465 /// This needs to be done when the CFG changes, e.g., due to splitting
1466 /// critical edges.
invalidateCachedPredecessors()1467 void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1468   PredCache->clear();
1469 }
1470 
1471 /// removeInstruction - Remove an instruction from the dependence analysis,
1472 /// updating the dependence of instructions that previously depended on it.
1473 /// This method attempts to keep the cache coherent using the reverse map.
removeInstruction(Instruction * RemInst)1474 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1475   // Walk through the Non-local dependencies, removing this one as the value
1476   // for any cached queries.
1477   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1478   if (NLDI != NonLocalDeps.end()) {
1479     NonLocalDepInfo &BlockMap = NLDI->second.first;
1480     for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1481          DI != DE; ++DI)
1482       if (Instruction *Inst = DI->getResult().getInst())
1483         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1484     NonLocalDeps.erase(NLDI);
1485   }
1486 
1487   // If we have a cached local dependence query for this instruction, remove it.
1488   //
1489   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1490   if (LocalDepEntry != LocalDeps.end()) {
1491     // Remove us from DepInst's reverse set now that the local dep info is gone.
1492     if (Instruction *Inst = LocalDepEntry->second.getInst())
1493       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1494 
1495     // Remove this local dependency info.
1496     LocalDeps.erase(LocalDepEntry);
1497   }
1498 
1499   // If we have any cached pointer dependencies on this instruction, remove
1500   // them.  If the instruction has non-pointer type, then it can't be a pointer
1501   // base.
1502 
1503   // Remove it from both the load info and the store info.  The instruction
1504   // can't be in either of these maps if it is non-pointer.
1505   if (RemInst->getType()->isPointerTy()) {
1506     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1507     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1508   }
1509 
1510   // Loop over all of the things that depend on the instruction we're removing.
1511   //
1512   SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1513 
1514   // If we find RemInst as a clobber or Def in any of the maps for other values,
1515   // we need to replace its entry with a dirty version of the instruction after
1516   // it.  If RemInst is a terminator, we use a null dirty value.
1517   //
1518   // Using a dirty version of the instruction after RemInst saves having to scan
1519   // the entire block to get to this point.
1520   MemDepResult NewDirtyVal;
1521   if (!RemInst->isTerminator())
1522     NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1523 
1524   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1525   if (ReverseDepIt != ReverseLocalDeps.end()) {
1526     // RemInst can't be the terminator if it has local stuff depending on it.
1527     assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) &&
1528            "Nothing can locally depend on a terminator");
1529 
1530     for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1531       assert(InstDependingOnRemInst != RemInst &&
1532              "Already removed our local dep info");
1533 
1534       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1535 
1536       // Make sure to remember that new things depend on NewDepInst.
1537       assert(NewDirtyVal.getInst() && "There is no way something else can have "
1538              "a local dep on this if it is a terminator!");
1539       ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1540                                                 InstDependingOnRemInst));
1541     }
1542 
1543     ReverseLocalDeps.erase(ReverseDepIt);
1544 
1545     // Add new reverse deps after scanning the set, to avoid invalidating the
1546     // 'ReverseDeps' reference.
1547     while (!ReverseDepsToAdd.empty()) {
1548       ReverseLocalDeps[ReverseDepsToAdd.back().first]
1549         .insert(ReverseDepsToAdd.back().second);
1550       ReverseDepsToAdd.pop_back();
1551     }
1552   }
1553 
1554   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1555   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1556     for (Instruction *I : ReverseDepIt->second) {
1557       assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1558 
1559       PerInstNLInfo &INLD = NonLocalDeps[I];
1560       // The information is now dirty!
1561       INLD.second = true;
1562 
1563       for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1564            DE = INLD.first.end(); DI != DE; ++DI) {
1565         if (DI->getResult().getInst() != RemInst) continue;
1566 
1567         // Convert to a dirty entry for the subsequent instruction.
1568         DI->setResult(NewDirtyVal);
1569 
1570         if (Instruction *NextI = NewDirtyVal.getInst())
1571           ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1572       }
1573     }
1574 
1575     ReverseNonLocalDeps.erase(ReverseDepIt);
1576 
1577     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1578     while (!ReverseDepsToAdd.empty()) {
1579       ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1580         .insert(ReverseDepsToAdd.back().second);
1581       ReverseDepsToAdd.pop_back();
1582     }
1583   }
1584 
1585   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1586   // value in the NonLocalPointerDeps info.
1587   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1588     ReverseNonLocalPtrDeps.find(RemInst);
1589   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1590     SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1591 
1592     for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1593       assert(P.getPointer() != RemInst &&
1594              "Already removed NonLocalPointerDeps info for RemInst");
1595 
1596       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1597 
1598       // The cache is not valid for any specific block anymore.
1599       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1600 
1601       // Update any entries for RemInst to use the instruction after it.
1602       for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1603            DI != DE; ++DI) {
1604         if (DI->getResult().getInst() != RemInst) continue;
1605 
1606         // Convert to a dirty entry for the subsequent instruction.
1607         DI->setResult(NewDirtyVal);
1608 
1609         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1610           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1611       }
1612 
1613       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1614       // subsequent value may invalidate the sortedness.
1615       std::sort(NLPDI.begin(), NLPDI.end());
1616     }
1617 
1618     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1619 
1620     while (!ReversePtrDepsToAdd.empty()) {
1621       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1622         .insert(ReversePtrDepsToAdd.back().second);
1623       ReversePtrDepsToAdd.pop_back();
1624     }
1625   }
1626 
1627 
1628   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1629   AA->deleteValue(RemInst);
1630   DEBUG(verifyRemoved(RemInst));
1631 }
1632 /// verifyRemoved - Verify that the specified instruction does not occur
1633 /// in our internal data structures. This function verifies by asserting in
1634 /// debug builds.
verifyRemoved(Instruction * D) const1635 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1636 #ifndef NDEBUG
1637   for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1638        E = LocalDeps.end(); I != E; ++I) {
1639     assert(I->first != D && "Inst occurs in data structures");
1640     assert(I->second.getInst() != D &&
1641            "Inst occurs in data structures");
1642   }
1643 
1644   for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1645        E = NonLocalPointerDeps.end(); I != E; ++I) {
1646     assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1647     const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1648     for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1649          II != E; ++II)
1650       assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1651   }
1652 
1653   for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1654        E = NonLocalDeps.end(); I != E; ++I) {
1655     assert(I->first != D && "Inst occurs in data structures");
1656     const PerInstNLInfo &INLD = I->second;
1657     for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1658          EE = INLD.first.end(); II  != EE; ++II)
1659       assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1660   }
1661 
1662   for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1663        E = ReverseLocalDeps.end(); I != E; ++I) {
1664     assert(I->first != D && "Inst occurs in data structures");
1665     for (Instruction *Inst : I->second)
1666       assert(Inst != D && "Inst occurs in data structures");
1667   }
1668 
1669   for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1670        E = ReverseNonLocalDeps.end();
1671        I != E; ++I) {
1672     assert(I->first != D && "Inst occurs in data structures");
1673     for (Instruction *Inst : I->second)
1674       assert(Inst != D && "Inst occurs in data structures");
1675   }
1676 
1677   for (ReverseNonLocalPtrDepTy::const_iterator
1678        I = ReverseNonLocalPtrDeps.begin(),
1679        E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1680     assert(I->first != D && "Inst occurs in rev NLPD map");
1681 
1682     for (ValueIsLoadPair P : I->second)
1683       assert(P != ValueIsLoadPair(D, false) &&
1684              P != ValueIsLoadPair(D, true) &&
1685              "Inst occurs in ReverseNonLocalPtrDeps map");
1686   }
1687 #endif
1688 }
1689