1 //===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the generic AliasAnalysis interface which is used as the
11 // common interface used by all clients and implementations of alias analysis.
12 //
13 // This file also implements the default version of the AliasAnalysis interface
14 // that is to be used when no other implementation is specified.  This does some
15 // simple tests that detect obvious cases: two different global pointers cannot
16 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
17 // etc.
18 //
19 // This alias analysis implementation really isn't very good for anything, but
20 // it is very fast, and makes a nice clean default implementation.  Because it
21 // handles lots of little corner cases, other, more complex, alias analysis
22 // implementations may choose to rely on this pass to resolve these simple and
23 // easy cases.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/CaptureTracking.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/Pass.h"
41 using namespace llvm;
42 
43 // Register the AliasAnalysis interface, providing a nice name to refer to.
44 INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA)
45 char AliasAnalysis::ID = 0;
46 
47 //===----------------------------------------------------------------------===//
48 // Default chaining methods
49 //===----------------------------------------------------------------------===//
50 
51 AliasAnalysis::AliasResult
alias(const Location & LocA,const Location & LocB)52 AliasAnalysis::alias(const Location &LocA, const Location &LocB) {
53   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
54   return AA->alias(LocA, LocB);
55 }
56 
pointsToConstantMemory(const Location & Loc,bool OrLocal)57 bool AliasAnalysis::pointsToConstantMemory(const Location &Loc,
58                                            bool OrLocal) {
59   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
60   return AA->pointsToConstantMemory(Loc, OrLocal);
61 }
62 
63 AliasAnalysis::Location
getArgLocation(ImmutableCallSite CS,unsigned ArgIdx,AliasAnalysis::ModRefResult & Mask)64 AliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
65                               AliasAnalysis::ModRefResult &Mask) {
66   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
67   return AA->getArgLocation(CS, ArgIdx, Mask);
68 }
69 
deleteValue(Value * V)70 void AliasAnalysis::deleteValue(Value *V) {
71   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
72   AA->deleteValue(V);
73 }
74 
copyValue(Value * From,Value * To)75 void AliasAnalysis::copyValue(Value *From, Value *To) {
76   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
77   AA->copyValue(From, To);
78 }
79 
addEscapingUse(Use & U)80 void AliasAnalysis::addEscapingUse(Use &U) {
81   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
82   AA->addEscapingUse(U);
83 }
84 
85 AliasAnalysis::ModRefResult
getModRefInfo(Instruction * I,ImmutableCallSite Call)86 AliasAnalysis::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
87   // We may have two calls
88   if (auto CS = ImmutableCallSite(I)) {
89     // Check if the two calls modify the same memory
90     return getModRefInfo(Call, CS);
91   } else {
92     // Otherwise, check if the call modifies or references the
93     // location this memory access defines.  The best we can say
94     // is that if the call references what this instruction
95     // defines, it must be clobbered by this location.
96     const AliasAnalysis::Location DefLoc = AA->getLocation(I);
97     if (getModRefInfo(Call, DefLoc) != AliasAnalysis::NoModRef)
98       return AliasAnalysis::ModRef;
99   }
100   return AliasAnalysis::NoModRef;
101 }
102 
103 AliasAnalysis::ModRefResult
getModRefInfo(ImmutableCallSite CS,const Location & Loc)104 AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
105                              const Location &Loc) {
106   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
107 
108   ModRefBehavior MRB = getModRefBehavior(CS);
109   if (MRB == DoesNotAccessMemory)
110     return NoModRef;
111 
112   ModRefResult Mask = ModRef;
113   if (onlyReadsMemory(MRB))
114     Mask = Ref;
115 
116   if (onlyAccessesArgPointees(MRB)) {
117     bool doesAlias = false;
118     ModRefResult AllArgsMask = NoModRef;
119     if (doesAccessArgPointees(MRB)) {
120       for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
121            AI != AE; ++AI) {
122         const Value *Arg = *AI;
123         if (!Arg->getType()->isPointerTy())
124           continue;
125         ModRefResult ArgMask;
126         Location CSLoc =
127           getArgLocation(CS, (unsigned) std::distance(CS.arg_begin(), AI),
128                          ArgMask);
129         if (!isNoAlias(CSLoc, Loc)) {
130           doesAlias = true;
131           AllArgsMask = ModRefResult(AllArgsMask | ArgMask);
132         }
133       }
134     }
135     if (!doesAlias)
136       return NoModRef;
137     Mask = ModRefResult(Mask & AllArgsMask);
138   }
139 
140   // If Loc is a constant memory location, the call definitely could not
141   // modify the memory location.
142   if ((Mask & Mod) && pointsToConstantMemory(Loc))
143     Mask = ModRefResult(Mask & ~Mod);
144 
145   // If this is the end of the chain, don't forward.
146   if (!AA) return Mask;
147 
148   // Otherwise, fall back to the next AA in the chain. But we can merge
149   // in any mask we've managed to compute.
150   return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask);
151 }
152 
153 AliasAnalysis::ModRefResult
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)154 AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
155   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
156 
157   // If CS1 or CS2 are readnone, they don't interact.
158   ModRefBehavior CS1B = getModRefBehavior(CS1);
159   if (CS1B == DoesNotAccessMemory) return NoModRef;
160 
161   ModRefBehavior CS2B = getModRefBehavior(CS2);
162   if (CS2B == DoesNotAccessMemory) return NoModRef;
163 
164   // If they both only read from memory, there is no dependence.
165   if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
166     return NoModRef;
167 
168   AliasAnalysis::ModRefResult Mask = ModRef;
169 
170   // If CS1 only reads memory, the only dependence on CS2 can be
171   // from CS1 reading memory written by CS2.
172   if (onlyReadsMemory(CS1B))
173     Mask = ModRefResult(Mask & Ref);
174 
175   // If CS2 only access memory through arguments, accumulate the mod/ref
176   // information from CS1's references to the memory referenced by
177   // CS2's arguments.
178   if (onlyAccessesArgPointees(CS2B)) {
179     AliasAnalysis::ModRefResult R = NoModRef;
180     if (doesAccessArgPointees(CS2B)) {
181       for (ImmutableCallSite::arg_iterator
182            I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
183         const Value *Arg = *I;
184         if (!Arg->getType()->isPointerTy())
185           continue;
186         ModRefResult ArgMask;
187         Location CS2Loc =
188           getArgLocation(CS2, (unsigned) std::distance(CS2.arg_begin(), I),
189                          ArgMask);
190         // ArgMask indicates what CS2 might do to CS2Loc, and the dependence of
191         // CS1 on that location is the inverse.
192         if (ArgMask == Mod)
193           ArgMask = ModRef;
194         else if (ArgMask == Ref)
195           ArgMask = Mod;
196 
197         R = ModRefResult((R | (getModRefInfo(CS1, CS2Loc) & ArgMask)) & Mask);
198         if (R == Mask)
199           break;
200       }
201     }
202     return R;
203   }
204 
205   // If CS1 only accesses memory through arguments, check if CS2 references
206   // any of the memory referenced by CS1's arguments. If not, return NoModRef.
207   if (onlyAccessesArgPointees(CS1B)) {
208     AliasAnalysis::ModRefResult R = NoModRef;
209     if (doesAccessArgPointees(CS1B)) {
210       for (ImmutableCallSite::arg_iterator
211            I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
212         const Value *Arg = *I;
213         if (!Arg->getType()->isPointerTy())
214           continue;
215         ModRefResult ArgMask;
216         Location CS1Loc = getArgLocation(
217             CS1, (unsigned)std::distance(CS1.arg_begin(), I), ArgMask);
218         // ArgMask indicates what CS1 might do to CS1Loc; if CS1 might Mod
219         // CS1Loc, then we care about either a Mod or a Ref by CS2. If CS1
220         // might Ref, then we care only about a Mod by CS2.
221         ModRefResult ArgR = getModRefInfo(CS2, CS1Loc);
222         if (((ArgMask & Mod) != NoModRef && (ArgR & ModRef) != NoModRef) ||
223             ((ArgMask & Ref) != NoModRef && (ArgR & Mod)    != NoModRef))
224           R = ModRefResult((R | ArgMask) & Mask);
225 
226         if (R == Mask)
227           break;
228       }
229     }
230     return R;
231   }
232 
233   // If this is the end of the chain, don't forward.
234   if (!AA) return Mask;
235 
236   // Otherwise, fall back to the next AA in the chain. But we can merge
237   // in any mask we've managed to compute.
238   return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
239 }
240 
241 AliasAnalysis::ModRefBehavior
getModRefBehavior(ImmutableCallSite CS)242 AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
243   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
244 
245   ModRefBehavior Min = UnknownModRefBehavior;
246 
247   // Call back into the alias analysis with the other form of getModRefBehavior
248   // to see if it can give a better response.
249   if (const Function *F = CS.getCalledFunction())
250     Min = getModRefBehavior(F);
251 
252   // If this is the end of the chain, don't forward.
253   if (!AA) return Min;
254 
255   // Otherwise, fall back to the next AA in the chain. But we can merge
256   // in any result we've managed to compute.
257   return ModRefBehavior(AA->getModRefBehavior(CS) & Min);
258 }
259 
260 AliasAnalysis::ModRefBehavior
getModRefBehavior(const Function * F)261 AliasAnalysis::getModRefBehavior(const Function *F) {
262   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
263   return AA->getModRefBehavior(F);
264 }
265 
266 //===----------------------------------------------------------------------===//
267 // AliasAnalysis non-virtual helper method implementation
268 //===----------------------------------------------------------------------===//
269 
getLocation(const LoadInst * LI)270 AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) {
271   AAMDNodes AATags;
272   LI->getAAMetadata(AATags);
273 
274   return Location(LI->getPointerOperand(),
275                   getTypeStoreSize(LI->getType()), AATags);
276 }
277 
getLocation(const StoreInst * SI)278 AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) {
279   AAMDNodes AATags;
280   SI->getAAMetadata(AATags);
281 
282   return Location(SI->getPointerOperand(),
283                   getTypeStoreSize(SI->getValueOperand()->getType()), AATags);
284 }
285 
getLocation(const VAArgInst * VI)286 AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) {
287   AAMDNodes AATags;
288   VI->getAAMetadata(AATags);
289 
290   return Location(VI->getPointerOperand(), UnknownSize, AATags);
291 }
292 
293 AliasAnalysis::Location
getLocation(const AtomicCmpXchgInst * CXI)294 AliasAnalysis::getLocation(const AtomicCmpXchgInst *CXI) {
295   AAMDNodes AATags;
296   CXI->getAAMetadata(AATags);
297 
298   return Location(CXI->getPointerOperand(),
299                   getTypeStoreSize(CXI->getCompareOperand()->getType()),
300                   AATags);
301 }
302 
303 AliasAnalysis::Location
getLocation(const AtomicRMWInst * RMWI)304 AliasAnalysis::getLocation(const AtomicRMWInst *RMWI) {
305   AAMDNodes AATags;
306   RMWI->getAAMetadata(AATags);
307 
308   return Location(RMWI->getPointerOperand(),
309                   getTypeStoreSize(RMWI->getValOperand()->getType()), AATags);
310 }
311 
312 AliasAnalysis::Location
getLocationForSource(const MemTransferInst * MTI)313 AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) {
314   uint64_t Size = UnknownSize;
315   if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
316     Size = C->getValue().getZExtValue();
317 
318   // memcpy/memmove can have AA tags. For memcpy, they apply
319   // to both the source and the destination.
320   AAMDNodes AATags;
321   MTI->getAAMetadata(AATags);
322 
323   return Location(MTI->getRawSource(), Size, AATags);
324 }
325 
326 AliasAnalysis::Location
getLocationForDest(const MemIntrinsic * MTI)327 AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) {
328   uint64_t Size = UnknownSize;
329   if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
330     Size = C->getValue().getZExtValue();
331 
332   // memcpy/memmove can have AA tags. For memcpy, they apply
333   // to both the source and the destination.
334   AAMDNodes AATags;
335   MTI->getAAMetadata(AATags);
336 
337   return Location(MTI->getRawDest(), Size, AATags);
338 }
339 
340 
341 
342 AliasAnalysis::ModRefResult
getModRefInfo(const LoadInst * L,const Location & Loc)343 AliasAnalysis::getModRefInfo(const LoadInst *L, const Location &Loc) {
344   // Be conservative in the face of volatile/atomic.
345   if (!L->isUnordered())
346     return ModRef;
347 
348   // If the load address doesn't alias the given address, it doesn't read
349   // or write the specified memory.
350   if (Loc.Ptr && !alias(getLocation(L), Loc))
351     return NoModRef;
352 
353   // Otherwise, a load just reads.
354   return Ref;
355 }
356 
357 AliasAnalysis::ModRefResult
getModRefInfo(const StoreInst * S,const Location & Loc)358 AliasAnalysis::getModRefInfo(const StoreInst *S, const Location &Loc) {
359   // Be conservative in the face of volatile/atomic.
360   if (!S->isUnordered())
361     return ModRef;
362 
363   if (Loc.Ptr) {
364     // If the store address cannot alias the pointer in question, then the
365     // specified memory cannot be modified by the store.
366     if (!alias(getLocation(S), Loc))
367       return NoModRef;
368 
369     // If the pointer is a pointer to constant memory, then it could not have
370     // been modified by this store.
371     if (pointsToConstantMemory(Loc))
372       return NoModRef;
373 
374   }
375 
376   // Otherwise, a store just writes.
377   return Mod;
378 }
379 
380 AliasAnalysis::ModRefResult
getModRefInfo(const VAArgInst * V,const Location & Loc)381 AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) {
382   // If the va_arg address cannot alias the pointer in question, then the
383   // specified memory cannot be accessed by the va_arg.
384   if (!alias(getLocation(V), Loc))
385     return NoModRef;
386 
387   // If the pointer is a pointer to constant memory, then it could not have been
388   // modified by this va_arg.
389   if (pointsToConstantMemory(Loc))
390     return NoModRef;
391 
392   // Otherwise, a va_arg reads and writes.
393   return ModRef;
394 }
395 
396 AliasAnalysis::ModRefResult
getModRefInfo(const AtomicCmpXchgInst * CX,const Location & Loc)397 AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc) {
398   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
399   if (CX->getSuccessOrdering() > Monotonic)
400     return ModRef;
401 
402   // If the cmpxchg address does not alias the location, it does not access it.
403   if (!alias(getLocation(CX), Loc))
404     return NoModRef;
405 
406   return ModRef;
407 }
408 
409 AliasAnalysis::ModRefResult
getModRefInfo(const AtomicRMWInst * RMW,const Location & Loc)410 AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc) {
411   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
412   if (RMW->getOrdering() > Monotonic)
413     return ModRef;
414 
415   // If the atomicrmw address does not alias the location, it does not access it.
416   if (!alias(getLocation(RMW), Loc))
417     return NoModRef;
418 
419   return ModRef;
420 }
421 
422 // FIXME: this is really just shoring-up a deficiency in alias analysis.
423 // BasicAA isn't willing to spend linear time determining whether an alloca
424 // was captured before or after this particular call, while we are. However,
425 // with a smarter AA in place, this test is just wasting compile time.
426 AliasAnalysis::ModRefResult
callCapturesBefore(const Instruction * I,const AliasAnalysis::Location & MemLoc,DominatorTree * DT)427 AliasAnalysis::callCapturesBefore(const Instruction *I,
428                                   const AliasAnalysis::Location &MemLoc,
429                                   DominatorTree *DT) {
430   if (!DT)
431     return AliasAnalysis::ModRef;
432 
433   const Value *Object = GetUnderlyingObject(MemLoc.Ptr, *DL);
434   if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
435       isa<Constant>(Object))
436     return AliasAnalysis::ModRef;
437 
438   ImmutableCallSite CS(I);
439   if (!CS.getInstruction() || CS.getInstruction() == Object)
440     return AliasAnalysis::ModRef;
441 
442   if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
443                                        /* StoreCaptures */ true, I, DT,
444                                        /* include Object */ true))
445     return AliasAnalysis::ModRef;
446 
447   unsigned ArgNo = 0;
448   AliasAnalysis::ModRefResult R = AliasAnalysis::NoModRef;
449   for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
450        CI != CE; ++CI, ++ArgNo) {
451     // Only look at the no-capture or byval pointer arguments.  If this
452     // pointer were passed to arguments that were neither of these, then it
453     // couldn't be no-capture.
454     if (!(*CI)->getType()->isPointerTy() ||
455         (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
456       continue;
457 
458     // If this is a no-capture pointer argument, see if we can tell that it
459     // is impossible to alias the pointer we're checking.  If not, we have to
460     // assume that the call could touch the pointer, even though it doesn't
461     // escape.
462     if (isNoAlias(AliasAnalysis::Location(*CI),
463                   AliasAnalysis::Location(Object)))
464       continue;
465     if (CS.doesNotAccessMemory(ArgNo))
466       continue;
467     if (CS.onlyReadsMemory(ArgNo)) {
468       R = AliasAnalysis::Ref;
469       continue;
470     }
471     return AliasAnalysis::ModRef;
472   }
473   return R;
474 }
475 
476 // AliasAnalysis destructor: DO NOT move this to the header file for
477 // AliasAnalysis or else clients of the AliasAnalysis class may not depend on
478 // the AliasAnalysis.o file in the current .a file, causing alias analysis
479 // support to not be included in the tool correctly!
480 //
~AliasAnalysis()481 AliasAnalysis::~AliasAnalysis() {}
482 
483 /// InitializeAliasAnalysis - Subclasses must call this method to initialize the
484 /// AliasAnalysis interface before any other methods are called.
485 ///
InitializeAliasAnalysis(Pass * P,const DataLayout * NewDL)486 void AliasAnalysis::InitializeAliasAnalysis(Pass *P, const DataLayout *NewDL) {
487   DL = NewDL;
488   auto *TLIP = P->getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
489   TLI = TLIP ? &TLIP->getTLI() : nullptr;
490   AA = &P->getAnalysis<AliasAnalysis>();
491 }
492 
493 // getAnalysisUsage - All alias analysis implementations should invoke this
494 // directly (using AliasAnalysis::getAnalysisUsage(AU)).
getAnalysisUsage(AnalysisUsage & AU) const495 void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
496   AU.addRequired<AliasAnalysis>();         // All AA's chain
497 }
498 
499 /// getTypeStoreSize - Return the DataLayout store size for the given type,
500 /// if known, or a conservative value otherwise.
501 ///
getTypeStoreSize(Type * Ty)502 uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
503   return DL ? DL->getTypeStoreSize(Ty) : UnknownSize;
504 }
505 
506 /// canBasicBlockModify - Return true if it is possible for execution of the
507 /// specified basic block to modify the location Loc.
508 ///
canBasicBlockModify(const BasicBlock & BB,const Location & Loc)509 bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
510                                         const Location &Loc) {
511   return canInstructionRangeModRef(BB.front(), BB.back(), Loc, Mod);
512 }
513 
514 /// canInstructionRangeModRef - Return true if it is possible for the
515 /// execution of the specified instructions to mod\ref (according to the
516 /// mode) the location Loc. The instructions to consider are all
517 /// of the instructions in the range of [I1,I2] INCLUSIVE.
518 /// I1 and I2 must be in the same basic block.
canInstructionRangeModRef(const Instruction & I1,const Instruction & I2,const Location & Loc,const ModRefResult Mode)519 bool AliasAnalysis::canInstructionRangeModRef(const Instruction &I1,
520                                               const Instruction &I2,
521                                               const Location &Loc,
522                                               const ModRefResult Mode) {
523   assert(I1.getParent() == I2.getParent() &&
524          "Instructions not in same basic block!");
525   BasicBlock::const_iterator I = &I1;
526   BasicBlock::const_iterator E = &I2;
527   ++E;  // Convert from inclusive to exclusive range.
528 
529   for (; I != E; ++I) // Check every instruction in range
530     if (getModRefInfo(I, Loc) & Mode)
531       return true;
532   return false;
533 }
534 
535 /// isNoAliasCall - Return true if this pointer is returned by a noalias
536 /// function.
isNoAliasCall(const Value * V)537 bool llvm::isNoAliasCall(const Value *V) {
538   if (isa<CallInst>(V) || isa<InvokeInst>(V))
539     return ImmutableCallSite(cast<Instruction>(V))
540       .paramHasAttr(0, Attribute::NoAlias);
541   return false;
542 }
543 
544 /// isNoAliasArgument - Return true if this is an argument with the noalias
545 /// attribute.
isNoAliasArgument(const Value * V)546 bool llvm::isNoAliasArgument(const Value *V)
547 {
548   if (const Argument *A = dyn_cast<Argument>(V))
549     return A->hasNoAliasAttr();
550   return false;
551 }
552 
553 /// isIdentifiedObject - Return true if this pointer refers to a distinct and
554 /// identifiable object.  This returns true for:
555 ///    Global Variables and Functions (but not Global Aliases)
556 ///    Allocas and Mallocs
557 ///    ByVal and NoAlias Arguments
558 ///    NoAlias returns
559 ///
isIdentifiedObject(const Value * V)560 bool llvm::isIdentifiedObject(const Value *V) {
561   if (isa<AllocaInst>(V))
562     return true;
563   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
564     return true;
565   if (isNoAliasCall(V))
566     return true;
567   if (const Argument *A = dyn_cast<Argument>(V))
568     return A->hasNoAliasAttr() || A->hasByValAttr();
569   return false;
570 }
571 
572 /// isIdentifiedFunctionLocal - Return true if V is umabigously identified
573 /// at the function-level. Different IdentifiedFunctionLocals can't alias.
574 /// Further, an IdentifiedFunctionLocal can not alias with any function
575 /// arguments other than itself, which is not necessarily true for
576 /// IdentifiedObjects.
isIdentifiedFunctionLocal(const Value * V)577 bool llvm::isIdentifiedFunctionLocal(const Value *V)
578 {
579   return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
580 }
581