1 //===-- llvm/CodeGen/TargetSchedule.h - Sched Machine Model -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a wrapper around MCSchedModel that allows the interface to 11 // benefit from information currently only available in TargetInstrInfo. 12 // Ideally, the scheduling interface would be fully defined in the MC layer. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_CODEGEN_TARGETSCHEDULE_H 17 #define LLVM_CODEGEN_TARGETSCHEDULE_H 18 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/MC/MCInstrItineraries.h" 21 #include "llvm/MC/MCSchedule.h" 22 #include "llvm/Target/TargetSubtargetInfo.h" 23 24 namespace llvm { 25 26 class TargetRegisterInfo; 27 class TargetSubtargetInfo; 28 class TargetInstrInfo; 29 class MachineInstr; 30 31 /// Provide an instruction scheduling machine model to CodeGen passes. 32 class TargetSchedModel { 33 // For efficiency, hold a copy of the statically defined MCSchedModel for this 34 // processor. 35 MCSchedModel SchedModel; 36 InstrItineraryData InstrItins; 37 const TargetSubtargetInfo *STI; 38 const TargetInstrInfo *TII; 39 40 SmallVector<unsigned, 16> ResourceFactors; 41 unsigned MicroOpFactor; // Multiply to normalize microops to resource units. 42 unsigned ResourceLCM; // Resource units per cycle. Latency normalization factor. 43 public: TargetSchedModel()44 TargetSchedModel(): SchedModel(MCSchedModel::GetDefaultSchedModel()), STI(nullptr), TII(nullptr) {} 45 46 /// \brief Initialize the machine model for instruction scheduling. 47 /// 48 /// The machine model API keeps a copy of the top-level MCSchedModel table 49 /// indices and may query TargetSubtargetInfo and TargetInstrInfo to resolve 50 /// dynamic properties. 51 void init(const MCSchedModel &sm, const TargetSubtargetInfo *sti, 52 const TargetInstrInfo *tii); 53 54 /// Return the MCSchedClassDesc for this instruction. 55 const MCSchedClassDesc *resolveSchedClass(const MachineInstr *MI) const; 56 57 /// \brief TargetInstrInfo getter. getInstrInfo()58 const TargetInstrInfo *getInstrInfo() const { return TII; } 59 60 /// \brief Return true if this machine model includes an instruction-level 61 /// scheduling model. 62 /// 63 /// This is more detailed than the course grain IssueWidth and default 64 /// latency properties, but separate from the per-cycle itinerary data. 65 bool hasInstrSchedModel() const; 66 getMCSchedModel()67 const MCSchedModel *getMCSchedModel() const { return &SchedModel; } 68 69 /// \brief Return true if this machine model includes cycle-to-cycle itinerary 70 /// data. 71 /// 72 /// This models scheduling at each stage in the processor pipeline. 73 bool hasInstrItineraries() const; 74 getInstrItineraries()75 const InstrItineraryData *getInstrItineraries() const { 76 if (hasInstrItineraries()) 77 return &InstrItins; 78 return nullptr; 79 } 80 81 /// \brief Identify the processor corresponding to the current subtarget. getProcessorID()82 unsigned getProcessorID() const { return SchedModel.getProcessorID(); } 83 84 /// \brief Maximum number of micro-ops that may be scheduled per cycle. getIssueWidth()85 unsigned getIssueWidth() const { return SchedModel.IssueWidth; } 86 87 /// \brief Return the number of issue slots required for this MI. 88 unsigned getNumMicroOps(const MachineInstr *MI, 89 const MCSchedClassDesc *SC = nullptr) const; 90 91 /// \brief Get the number of kinds of resources for this target. getNumProcResourceKinds()92 unsigned getNumProcResourceKinds() const { 93 return SchedModel.getNumProcResourceKinds(); 94 } 95 96 /// \brief Get a processor resource by ID for convenience. getProcResource(unsigned PIdx)97 const MCProcResourceDesc *getProcResource(unsigned PIdx) const { 98 return SchedModel.getProcResource(PIdx); 99 } 100 101 #ifndef NDEBUG getResourceName(unsigned PIdx)102 const char *getResourceName(unsigned PIdx) const { 103 if (!PIdx) 104 return "MOps"; 105 return SchedModel.getProcResource(PIdx)->Name; 106 } 107 #endif 108 109 typedef const MCWriteProcResEntry *ProcResIter; 110 111 // \brief Get an iterator into the processor resources consumed by this 112 // scheduling class. getWriteProcResBegin(const MCSchedClassDesc * SC)113 ProcResIter getWriteProcResBegin(const MCSchedClassDesc *SC) const { 114 // The subtarget holds a single resource table for all processors. 115 return STI->getWriteProcResBegin(SC); 116 } getWriteProcResEnd(const MCSchedClassDesc * SC)117 ProcResIter getWriteProcResEnd(const MCSchedClassDesc *SC) const { 118 return STI->getWriteProcResEnd(SC); 119 } 120 121 /// \brief Multiply the number of units consumed for a resource by this factor 122 /// to normalize it relative to other resources. getResourceFactor(unsigned ResIdx)123 unsigned getResourceFactor(unsigned ResIdx) const { 124 return ResourceFactors[ResIdx]; 125 } 126 127 /// \brief Multiply number of micro-ops by this factor to normalize it 128 /// relative to other resources. getMicroOpFactor()129 unsigned getMicroOpFactor() const { 130 return MicroOpFactor; 131 } 132 133 /// \brief Multiply cycle count by this factor to normalize it relative to 134 /// other resources. This is the number of resource units per cycle. getLatencyFactor()135 unsigned getLatencyFactor() const { 136 return ResourceLCM; 137 } 138 139 /// \brief Number of micro-ops that may be buffered for OOO execution. getMicroOpBufferSize()140 unsigned getMicroOpBufferSize() const { return SchedModel.MicroOpBufferSize; } 141 142 /// \brief Number of resource units that may be buffered for OOO execution. 143 /// \return The buffer size in resource units or -1 for unlimited. getResourceBufferSize(unsigned PIdx)144 int getResourceBufferSize(unsigned PIdx) const { 145 return SchedModel.getProcResource(PIdx)->BufferSize; 146 } 147 148 /// \brief Compute operand latency based on the available machine model. 149 /// 150 /// Compute and return the latency of the given data dependent def and use 151 /// when the operand indices are already known. UseMI may be NULL for an 152 /// unknown user. 153 unsigned computeOperandLatency(const MachineInstr *DefMI, unsigned DefOperIdx, 154 const MachineInstr *UseMI, unsigned UseOperIdx) 155 const; 156 157 /// \brief Compute the instruction latency based on the available machine 158 /// model. 159 /// 160 /// Compute and return the expected latency of this instruction independent of 161 /// a particular use. computeOperandLatency is the preferred API, but this is 162 /// occasionally useful to help estimate instruction cost. 163 /// 164 /// If UseDefaultDefLatency is false and no new machine sched model is 165 /// present this method falls back to TII->getInstrLatency with an empty 166 /// instruction itinerary (this is so we preserve the previous behavior of the 167 /// if converter after moving it to TargetSchedModel). 168 unsigned computeInstrLatency(const MachineInstr *MI, 169 bool UseDefaultDefLatency = true) const; 170 unsigned computeInstrLatency(unsigned Opcode) const; 171 172 /// \brief Output dependency latency of a pair of defs of the same register. 173 /// 174 /// This is typically one cycle. 175 unsigned computeOutputLatency(const MachineInstr *DefMI, unsigned DefIdx, 176 const MachineInstr *DepMI) const; 177 }; 178 179 } // namespace llvm 180 181 #endif 182