1 //===-- Type.cpp - Implement the Type class -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Type class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Type.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/IR/Module.h"
18 #include <algorithm>
19 #include <cstdarg>
20 using namespace llvm;
21
22 //===----------------------------------------------------------------------===//
23 // Type Class Implementation
24 //===----------------------------------------------------------------------===//
25
getPrimitiveType(LLVMContext & C,TypeID IDNumber)26 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
27 switch (IDNumber) {
28 case VoidTyID : return getVoidTy(C);
29 case HalfTyID : return getHalfTy(C);
30 case FloatTyID : return getFloatTy(C);
31 case DoubleTyID : return getDoubleTy(C);
32 case X86_FP80TyID : return getX86_FP80Ty(C);
33 case FP128TyID : return getFP128Ty(C);
34 case PPC_FP128TyID : return getPPC_FP128Ty(C);
35 case LabelTyID : return getLabelTy(C);
36 case MetadataTyID : return getMetadataTy(C);
37 case X86_MMXTyID : return getX86_MMXTy(C);
38 default:
39 return nullptr;
40 }
41 }
42
43 /// getScalarType - If this is a vector type, return the element type,
44 /// otherwise return this.
getScalarType()45 Type *Type::getScalarType() {
46 if (VectorType *VTy = dyn_cast<VectorType>(this))
47 return VTy->getElementType();
48 return this;
49 }
50
getScalarType() const51 const Type *Type::getScalarType() const {
52 if (const VectorType *VTy = dyn_cast<VectorType>(this))
53 return VTy->getElementType();
54 return this;
55 }
56
57 /// isIntegerTy - Return true if this is an IntegerType of the specified width.
isIntegerTy(unsigned Bitwidth) const58 bool Type::isIntegerTy(unsigned Bitwidth) const {
59 return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
60 }
61
62 // canLosslesslyBitCastTo - Return true if this type can be converted to
63 // 'Ty' without any reinterpretation of bits. For example, i8* to i32*.
64 //
canLosslesslyBitCastTo(Type * Ty) const65 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
66 // Identity cast means no change so return true
67 if (this == Ty)
68 return true;
69
70 // They are not convertible unless they are at least first class types
71 if (!this->isFirstClassType() || !Ty->isFirstClassType())
72 return false;
73
74 // Vector -> Vector conversions are always lossless if the two vector types
75 // have the same size, otherwise not. Also, 64-bit vector types can be
76 // converted to x86mmx.
77 if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
78 if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
79 return thisPTy->getBitWidth() == thatPTy->getBitWidth();
80 if (Ty->getTypeID() == Type::X86_MMXTyID &&
81 thisPTy->getBitWidth() == 64)
82 return true;
83 }
84
85 if (this->getTypeID() == Type::X86_MMXTyID)
86 if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
87 if (thatPTy->getBitWidth() == 64)
88 return true;
89
90 // At this point we have only various mismatches of the first class types
91 // remaining and ptr->ptr. Just select the lossless conversions. Everything
92 // else is not lossless. Conservatively assume we can't losslessly convert
93 // between pointers with different address spaces.
94 if (const PointerType *PTy = dyn_cast<PointerType>(this)) {
95 if (const PointerType *OtherPTy = dyn_cast<PointerType>(Ty))
96 return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
97 return false;
98 }
99 return false; // Other types have no identity values
100 }
101
isEmptyTy() const102 bool Type::isEmptyTy() const {
103 const ArrayType *ATy = dyn_cast<ArrayType>(this);
104 if (ATy) {
105 unsigned NumElements = ATy->getNumElements();
106 return NumElements == 0 || ATy->getElementType()->isEmptyTy();
107 }
108
109 const StructType *STy = dyn_cast<StructType>(this);
110 if (STy) {
111 unsigned NumElements = STy->getNumElements();
112 for (unsigned i = 0; i < NumElements; ++i)
113 if (!STy->getElementType(i)->isEmptyTy())
114 return false;
115 return true;
116 }
117
118 return false;
119 }
120
getPrimitiveSizeInBits() const121 unsigned Type::getPrimitiveSizeInBits() const {
122 switch (getTypeID()) {
123 case Type::HalfTyID: return 16;
124 case Type::FloatTyID: return 32;
125 case Type::DoubleTyID: return 64;
126 case Type::X86_FP80TyID: return 80;
127 case Type::FP128TyID: return 128;
128 case Type::PPC_FP128TyID: return 128;
129 case Type::X86_MMXTyID: return 64;
130 case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
131 case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
132 default: return 0;
133 }
134 }
135
136 /// getScalarSizeInBits - If this is a vector type, return the
137 /// getPrimitiveSizeInBits value for the element type. Otherwise return the
138 /// getPrimitiveSizeInBits value for this type.
getScalarSizeInBits() const139 unsigned Type::getScalarSizeInBits() const {
140 return getScalarType()->getPrimitiveSizeInBits();
141 }
142
143 /// getFPMantissaWidth - Return the width of the mantissa of this type. This
144 /// is only valid on floating point types. If the FP type does not
145 /// have a stable mantissa (e.g. ppc long double), this method returns -1.
getFPMantissaWidth() const146 int Type::getFPMantissaWidth() const {
147 if (const VectorType *VTy = dyn_cast<VectorType>(this))
148 return VTy->getElementType()->getFPMantissaWidth();
149 assert(isFloatingPointTy() && "Not a floating point type!");
150 if (getTypeID() == HalfTyID) return 11;
151 if (getTypeID() == FloatTyID) return 24;
152 if (getTypeID() == DoubleTyID) return 53;
153 if (getTypeID() == X86_FP80TyID) return 64;
154 if (getTypeID() == FP128TyID) return 113;
155 assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
156 return -1;
157 }
158
159 /// isSizedDerivedType - Derived types like structures and arrays are sized
160 /// iff all of the members of the type are sized as well. Since asking for
161 /// their size is relatively uncommon, move this operation out of line.
isSizedDerivedType(SmallPtrSetImpl<const Type * > * Visited) const162 bool Type::isSizedDerivedType(SmallPtrSetImpl<const Type*> *Visited) const {
163 if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
164 return ATy->getElementType()->isSized(Visited);
165
166 if (const VectorType *VTy = dyn_cast<VectorType>(this))
167 return VTy->getElementType()->isSized(Visited);
168
169 return cast<StructType>(this)->isSized(Visited);
170 }
171
172 //===----------------------------------------------------------------------===//
173 // Subclass Helper Methods
174 //===----------------------------------------------------------------------===//
175
getIntegerBitWidth() const176 unsigned Type::getIntegerBitWidth() const {
177 return cast<IntegerType>(this)->getBitWidth();
178 }
179
isFunctionVarArg() const180 bool Type::isFunctionVarArg() const {
181 return cast<FunctionType>(this)->isVarArg();
182 }
183
getFunctionParamType(unsigned i) const184 Type *Type::getFunctionParamType(unsigned i) const {
185 return cast<FunctionType>(this)->getParamType(i);
186 }
187
getFunctionNumParams() const188 unsigned Type::getFunctionNumParams() const {
189 return cast<FunctionType>(this)->getNumParams();
190 }
191
getStructName() const192 StringRef Type::getStructName() const {
193 return cast<StructType>(this)->getName();
194 }
195
getStructNumElements() const196 unsigned Type::getStructNumElements() const {
197 return cast<StructType>(this)->getNumElements();
198 }
199
getStructElementType(unsigned N) const200 Type *Type::getStructElementType(unsigned N) const {
201 return cast<StructType>(this)->getElementType(N);
202 }
203
getSequentialElementType() const204 Type *Type::getSequentialElementType() const {
205 return cast<SequentialType>(this)->getElementType();
206 }
207
getArrayNumElements() const208 uint64_t Type::getArrayNumElements() const {
209 return cast<ArrayType>(this)->getNumElements();
210 }
211
getVectorNumElements() const212 unsigned Type::getVectorNumElements() const {
213 return cast<VectorType>(this)->getNumElements();
214 }
215
getPointerAddressSpace() const216 unsigned Type::getPointerAddressSpace() const {
217 return cast<PointerType>(getScalarType())->getAddressSpace();
218 }
219
220
221 //===----------------------------------------------------------------------===//
222 // Primitive 'Type' data
223 //===----------------------------------------------------------------------===//
224
getVoidTy(LLVMContext & C)225 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
getLabelTy(LLVMContext & C)226 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
getHalfTy(LLVMContext & C)227 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
getFloatTy(LLVMContext & C)228 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
getDoubleTy(LLVMContext & C)229 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
getMetadataTy(LLVMContext & C)230 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
getX86_FP80Ty(LLVMContext & C)231 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
getFP128Ty(LLVMContext & C)232 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
getPPC_FP128Ty(LLVMContext & C)233 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
getX86_MMXTy(LLVMContext & C)234 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
235
getInt1Ty(LLVMContext & C)236 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
getInt8Ty(LLVMContext & C)237 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
getInt16Ty(LLVMContext & C)238 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
getInt32Ty(LLVMContext & C)239 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
getInt64Ty(LLVMContext & C)240 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
241
getIntNTy(LLVMContext & C,unsigned N)242 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
243 return IntegerType::get(C, N);
244 }
245
getHalfPtrTy(LLVMContext & C,unsigned AS)246 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
247 return getHalfTy(C)->getPointerTo(AS);
248 }
249
getFloatPtrTy(LLVMContext & C,unsigned AS)250 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
251 return getFloatTy(C)->getPointerTo(AS);
252 }
253
getDoublePtrTy(LLVMContext & C,unsigned AS)254 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
255 return getDoubleTy(C)->getPointerTo(AS);
256 }
257
getX86_FP80PtrTy(LLVMContext & C,unsigned AS)258 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
259 return getX86_FP80Ty(C)->getPointerTo(AS);
260 }
261
getFP128PtrTy(LLVMContext & C,unsigned AS)262 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
263 return getFP128Ty(C)->getPointerTo(AS);
264 }
265
getPPC_FP128PtrTy(LLVMContext & C,unsigned AS)266 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
267 return getPPC_FP128Ty(C)->getPointerTo(AS);
268 }
269
getX86_MMXPtrTy(LLVMContext & C,unsigned AS)270 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
271 return getX86_MMXTy(C)->getPointerTo(AS);
272 }
273
getIntNPtrTy(LLVMContext & C,unsigned N,unsigned AS)274 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
275 return getIntNTy(C, N)->getPointerTo(AS);
276 }
277
getInt1PtrTy(LLVMContext & C,unsigned AS)278 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
279 return getInt1Ty(C)->getPointerTo(AS);
280 }
281
getInt8PtrTy(LLVMContext & C,unsigned AS)282 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
283 return getInt8Ty(C)->getPointerTo(AS);
284 }
285
getInt16PtrTy(LLVMContext & C,unsigned AS)286 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
287 return getInt16Ty(C)->getPointerTo(AS);
288 }
289
getInt32PtrTy(LLVMContext & C,unsigned AS)290 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
291 return getInt32Ty(C)->getPointerTo(AS);
292 }
293
getInt64PtrTy(LLVMContext & C,unsigned AS)294 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
295 return getInt64Ty(C)->getPointerTo(AS);
296 }
297
298
299 //===----------------------------------------------------------------------===//
300 // IntegerType Implementation
301 //===----------------------------------------------------------------------===//
302
get(LLVMContext & C,unsigned NumBits)303 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
304 assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
305 assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
306
307 // Check for the built-in integer types
308 switch (NumBits) {
309 case 1: return cast<IntegerType>(Type::getInt1Ty(C));
310 case 8: return cast<IntegerType>(Type::getInt8Ty(C));
311 case 16: return cast<IntegerType>(Type::getInt16Ty(C));
312 case 32: return cast<IntegerType>(Type::getInt32Ty(C));
313 case 64: return cast<IntegerType>(Type::getInt64Ty(C));
314 default:
315 break;
316 }
317
318 IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
319
320 if (!Entry)
321 Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
322
323 return Entry;
324 }
325
isPowerOf2ByteWidth() const326 bool IntegerType::isPowerOf2ByteWidth() const {
327 unsigned BitWidth = getBitWidth();
328 return (BitWidth > 7) && isPowerOf2_32(BitWidth);
329 }
330
getMask() const331 APInt IntegerType::getMask() const {
332 return APInt::getAllOnesValue(getBitWidth());
333 }
334
335 //===----------------------------------------------------------------------===//
336 // FunctionType Implementation
337 //===----------------------------------------------------------------------===//
338
FunctionType(Type * Result,ArrayRef<Type * > Params,bool IsVarArgs)339 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
340 bool IsVarArgs)
341 : Type(Result->getContext(), FunctionTyID) {
342 Type **SubTys = reinterpret_cast<Type**>(this+1);
343 assert(isValidReturnType(Result) && "invalid return type for function");
344 setSubclassData(IsVarArgs);
345
346 SubTys[0] = const_cast<Type*>(Result);
347
348 for (unsigned i = 0, e = Params.size(); i != e; ++i) {
349 assert(isValidArgumentType(Params[i]) &&
350 "Not a valid type for function argument!");
351 SubTys[i+1] = Params[i];
352 }
353
354 ContainedTys = SubTys;
355 NumContainedTys = Params.size() + 1; // + 1 for result type
356 }
357
358 // FunctionType::get - The factory function for the FunctionType class.
get(Type * ReturnType,ArrayRef<Type * > Params,bool isVarArg)359 FunctionType *FunctionType::get(Type *ReturnType,
360 ArrayRef<Type*> Params, bool isVarArg) {
361 LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
362 FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
363 auto I = pImpl->FunctionTypes.find_as(Key);
364 FunctionType *FT;
365
366 if (I == pImpl->FunctionTypes.end()) {
367 FT = (FunctionType*) pImpl->TypeAllocator.
368 Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
369 AlignOf<FunctionType>::Alignment);
370 new (FT) FunctionType(ReturnType, Params, isVarArg);
371 pImpl->FunctionTypes.insert(FT);
372 } else {
373 FT = *I;
374 }
375
376 return FT;
377 }
378
get(Type * Result,bool isVarArg)379 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
380 return get(Result, None, isVarArg);
381 }
382
383 /// isValidReturnType - Return true if the specified type is valid as a return
384 /// type.
isValidReturnType(Type * RetTy)385 bool FunctionType::isValidReturnType(Type *RetTy) {
386 return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
387 !RetTy->isMetadataTy();
388 }
389
390 /// isValidArgumentType - Return true if the specified type is valid as an
391 /// argument type.
isValidArgumentType(Type * ArgTy)392 bool FunctionType::isValidArgumentType(Type *ArgTy) {
393 return ArgTy->isFirstClassType();
394 }
395
396 //===----------------------------------------------------------------------===//
397 // StructType Implementation
398 //===----------------------------------------------------------------------===//
399
400 // Primitive Constructors.
401
get(LLVMContext & Context,ArrayRef<Type * > ETypes,bool isPacked)402 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
403 bool isPacked) {
404 LLVMContextImpl *pImpl = Context.pImpl;
405 AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
406 auto I = pImpl->AnonStructTypes.find_as(Key);
407 StructType *ST;
408
409 if (I == pImpl->AnonStructTypes.end()) {
410 // Value not found. Create a new type!
411 ST = new (Context.pImpl->TypeAllocator) StructType(Context);
412 ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
413 ST->setBody(ETypes, isPacked);
414 Context.pImpl->AnonStructTypes.insert(ST);
415 } else {
416 ST = *I;
417 }
418
419 return ST;
420 }
421
setBody(ArrayRef<Type * > Elements,bool isPacked)422 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
423 assert(isOpaque() && "Struct body already set!");
424
425 setSubclassData(getSubclassData() | SCDB_HasBody);
426 if (isPacked)
427 setSubclassData(getSubclassData() | SCDB_Packed);
428
429 unsigned NumElements = Elements.size();
430 Type **Elts = getContext().pImpl->TypeAllocator.Allocate<Type*>(NumElements);
431 memcpy(Elts, Elements.data(), sizeof(Elements[0]) * NumElements);
432
433 ContainedTys = Elts;
434 NumContainedTys = NumElements;
435 }
436
setName(StringRef Name)437 void StructType::setName(StringRef Name) {
438 if (Name == getName()) return;
439
440 StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
441 typedef StringMap<StructType *>::MapEntryTy EntryTy;
442
443 // If this struct already had a name, remove its symbol table entry. Don't
444 // delete the data yet because it may be part of the new name.
445 if (SymbolTableEntry)
446 SymbolTable.remove((EntryTy *)SymbolTableEntry);
447
448 // If this is just removing the name, we're done.
449 if (Name.empty()) {
450 if (SymbolTableEntry) {
451 // Delete the old string data.
452 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
453 SymbolTableEntry = nullptr;
454 }
455 return;
456 }
457
458 // Look up the entry for the name.
459 auto IterBool =
460 getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
461
462 // While we have a name collision, try a random rename.
463 if (!IterBool.second) {
464 SmallString<64> TempStr(Name);
465 TempStr.push_back('.');
466 raw_svector_ostream TmpStream(TempStr);
467 unsigned NameSize = Name.size();
468
469 do {
470 TempStr.resize(NameSize + 1);
471 TmpStream.resync();
472 TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
473
474 IterBool = getContext().pImpl->NamedStructTypes.insert(
475 std::make_pair(TmpStream.str(), this));
476 } while (!IterBool.second);
477 }
478
479 // Delete the old string data.
480 if (SymbolTableEntry)
481 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
482 SymbolTableEntry = &*IterBool.first;
483 }
484
485 //===----------------------------------------------------------------------===//
486 // StructType Helper functions.
487
create(LLVMContext & Context,StringRef Name)488 StructType *StructType::create(LLVMContext &Context, StringRef Name) {
489 StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
490 if (!Name.empty())
491 ST->setName(Name);
492 return ST;
493 }
494
get(LLVMContext & Context,bool isPacked)495 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
496 return get(Context, None, isPacked);
497 }
498
get(Type * type,...)499 StructType *StructType::get(Type *type, ...) {
500 assert(type && "Cannot create a struct type with no elements with this");
501 LLVMContext &Ctx = type->getContext();
502 va_list ap;
503 SmallVector<llvm::Type*, 8> StructFields;
504 va_start(ap, type);
505 while (type) {
506 StructFields.push_back(type);
507 type = va_arg(ap, llvm::Type*);
508 }
509 auto *Ret = llvm::StructType::get(Ctx, StructFields);
510 va_end(ap);
511 return Ret;
512 }
513
create(LLVMContext & Context,ArrayRef<Type * > Elements,StringRef Name,bool isPacked)514 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
515 StringRef Name, bool isPacked) {
516 StructType *ST = create(Context, Name);
517 ST->setBody(Elements, isPacked);
518 return ST;
519 }
520
create(LLVMContext & Context,ArrayRef<Type * > Elements)521 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
522 return create(Context, Elements, StringRef());
523 }
524
create(LLVMContext & Context)525 StructType *StructType::create(LLVMContext &Context) {
526 return create(Context, StringRef());
527 }
528
create(ArrayRef<Type * > Elements,StringRef Name,bool isPacked)529 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
530 bool isPacked) {
531 assert(!Elements.empty() &&
532 "This method may not be invoked with an empty list");
533 return create(Elements[0]->getContext(), Elements, Name, isPacked);
534 }
535
create(ArrayRef<Type * > Elements)536 StructType *StructType::create(ArrayRef<Type*> Elements) {
537 assert(!Elements.empty() &&
538 "This method may not be invoked with an empty list");
539 return create(Elements[0]->getContext(), Elements, StringRef());
540 }
541
create(StringRef Name,Type * type,...)542 StructType *StructType::create(StringRef Name, Type *type, ...) {
543 assert(type && "Cannot create a struct type with no elements with this");
544 LLVMContext &Ctx = type->getContext();
545 va_list ap;
546 SmallVector<llvm::Type*, 8> StructFields;
547 va_start(ap, type);
548 while (type) {
549 StructFields.push_back(type);
550 type = va_arg(ap, llvm::Type*);
551 }
552 auto *Ret = llvm::StructType::create(Ctx, StructFields, Name);
553 va_end(ap);
554 return Ret;
555 }
556
isSized(SmallPtrSetImpl<const Type * > * Visited) const557 bool StructType::isSized(SmallPtrSetImpl<const Type*> *Visited) const {
558 if ((getSubclassData() & SCDB_IsSized) != 0)
559 return true;
560 if (isOpaque())
561 return false;
562
563 if (Visited && !Visited->insert(this).second)
564 return false;
565
566 // Okay, our struct is sized if all of the elements are, but if one of the
567 // elements is opaque, the struct isn't sized *yet*, but may become sized in
568 // the future, so just bail out without caching.
569 for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
570 if (!(*I)->isSized(Visited))
571 return false;
572
573 // Here we cheat a bit and cast away const-ness. The goal is to memoize when
574 // we find a sized type, as types can only move from opaque to sized, not the
575 // other way.
576 const_cast<StructType*>(this)->setSubclassData(
577 getSubclassData() | SCDB_IsSized);
578 return true;
579 }
580
getName() const581 StringRef StructType::getName() const {
582 assert(!isLiteral() && "Literal structs never have names");
583 if (!SymbolTableEntry) return StringRef();
584
585 return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
586 }
587
setBody(Type * type,...)588 void StructType::setBody(Type *type, ...) {
589 assert(type && "Cannot create a struct type with no elements with this");
590 va_list ap;
591 SmallVector<llvm::Type*, 8> StructFields;
592 va_start(ap, type);
593 while (type) {
594 StructFields.push_back(type);
595 type = va_arg(ap, llvm::Type*);
596 }
597 setBody(StructFields);
598 va_end(ap);
599 }
600
isValidElementType(Type * ElemTy)601 bool StructType::isValidElementType(Type *ElemTy) {
602 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
603 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
604 }
605
606 /// isLayoutIdentical - Return true if this is layout identical to the
607 /// specified struct.
isLayoutIdentical(StructType * Other) const608 bool StructType::isLayoutIdentical(StructType *Other) const {
609 if (this == Other) return true;
610
611 if (isPacked() != Other->isPacked() ||
612 getNumElements() != Other->getNumElements())
613 return false;
614
615 return std::equal(element_begin(), element_end(), Other->element_begin());
616 }
617
618 /// getTypeByName - Return the type with the specified name, or null if there
619 /// is none by that name.
getTypeByName(StringRef Name) const620 StructType *Module::getTypeByName(StringRef Name) const {
621 return getContext().pImpl->NamedStructTypes.lookup(Name);
622 }
623
624
625 //===----------------------------------------------------------------------===//
626 // CompositeType Implementation
627 //===----------------------------------------------------------------------===//
628
getTypeAtIndex(const Value * V)629 Type *CompositeType::getTypeAtIndex(const Value *V) {
630 if (StructType *STy = dyn_cast<StructType>(this)) {
631 unsigned Idx =
632 (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
633 assert(indexValid(Idx) && "Invalid structure index!");
634 return STy->getElementType(Idx);
635 }
636
637 return cast<SequentialType>(this)->getElementType();
638 }
getTypeAtIndex(unsigned Idx)639 Type *CompositeType::getTypeAtIndex(unsigned Idx) {
640 if (StructType *STy = dyn_cast<StructType>(this)) {
641 assert(indexValid(Idx) && "Invalid structure index!");
642 return STy->getElementType(Idx);
643 }
644
645 return cast<SequentialType>(this)->getElementType();
646 }
indexValid(const Value * V) const647 bool CompositeType::indexValid(const Value *V) const {
648 if (const StructType *STy = dyn_cast<StructType>(this)) {
649 // Structure indexes require (vectors of) 32-bit integer constants. In the
650 // vector case all of the indices must be equal.
651 if (!V->getType()->getScalarType()->isIntegerTy(32))
652 return false;
653 const Constant *C = dyn_cast<Constant>(V);
654 if (C && V->getType()->isVectorTy())
655 C = C->getSplatValue();
656 const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
657 return CU && CU->getZExtValue() < STy->getNumElements();
658 }
659
660 // Sequential types can be indexed by any integer.
661 return V->getType()->isIntOrIntVectorTy();
662 }
663
indexValid(unsigned Idx) const664 bool CompositeType::indexValid(unsigned Idx) const {
665 if (const StructType *STy = dyn_cast<StructType>(this))
666 return Idx < STy->getNumElements();
667 // Sequential types can be indexed by any integer.
668 return true;
669 }
670
671
672 //===----------------------------------------------------------------------===//
673 // ArrayType Implementation
674 //===----------------------------------------------------------------------===//
675
ArrayType(Type * ElType,uint64_t NumEl)676 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
677 : SequentialType(ArrayTyID, ElType) {
678 NumElements = NumEl;
679 }
680
get(Type * elementType,uint64_t NumElements)681 ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) {
682 Type *ElementType = const_cast<Type*>(elementType);
683 assert(isValidElementType(ElementType) && "Invalid type for array element!");
684
685 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
686 ArrayType *&Entry =
687 pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
688
689 if (!Entry)
690 Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
691 return Entry;
692 }
693
isValidElementType(Type * ElemTy)694 bool ArrayType::isValidElementType(Type *ElemTy) {
695 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
696 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
697 }
698
699 //===----------------------------------------------------------------------===//
700 // VectorType Implementation
701 //===----------------------------------------------------------------------===//
702
VectorType(Type * ElType,unsigned NumEl)703 VectorType::VectorType(Type *ElType, unsigned NumEl)
704 : SequentialType(VectorTyID, ElType) {
705 NumElements = NumEl;
706 }
707
get(Type * elementType,unsigned NumElements)708 VectorType *VectorType::get(Type *elementType, unsigned NumElements) {
709 Type *ElementType = const_cast<Type*>(elementType);
710 assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
711 assert(isValidElementType(ElementType) && "Element type of a VectorType must "
712 "be an integer, floating point, or "
713 "pointer type.");
714
715 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
716 VectorType *&Entry = ElementType->getContext().pImpl
717 ->VectorTypes[std::make_pair(ElementType, NumElements)];
718
719 if (!Entry)
720 Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
721 return Entry;
722 }
723
isValidElementType(Type * ElemTy)724 bool VectorType::isValidElementType(Type *ElemTy) {
725 return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
726 ElemTy->isPointerTy();
727 }
728
729 //===----------------------------------------------------------------------===//
730 // PointerType Implementation
731 //===----------------------------------------------------------------------===//
732
get(Type * EltTy,unsigned AddressSpace)733 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
734 assert(EltTy && "Can't get a pointer to <null> type!");
735 assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
736
737 LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
738
739 // Since AddressSpace #0 is the common case, we special case it.
740 PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
741 : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
742
743 if (!Entry)
744 Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
745 return Entry;
746 }
747
748
PointerType(Type * E,unsigned AddrSpace)749 PointerType::PointerType(Type *E, unsigned AddrSpace)
750 : SequentialType(PointerTyID, E) {
751 #ifndef NDEBUG
752 const unsigned oldNCT = NumContainedTys;
753 #endif
754 setSubclassData(AddrSpace);
755 // Check for miscompile. PR11652.
756 assert(oldNCT == NumContainedTys && "bitfield written out of bounds?");
757 }
758
getPointerTo(unsigned addrs)759 PointerType *Type::getPointerTo(unsigned addrs) {
760 return PointerType::get(this, addrs);
761 }
762
isValidElementType(Type * ElemTy)763 bool PointerType::isValidElementType(Type *ElemTy) {
764 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
765 !ElemTy->isMetadataTy();
766 }
767