1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/FoldingSet.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineMemOperand.h"
21 #include "llvm/CodeGen/MachineModuleInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/PseudoSourceValue.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/Value.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/MC/MCSymbol.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include "llvm/Target/TargetRegisterInfo.h"
42 #include "llvm/Target/TargetSubtargetInfo.h"
43 using namespace llvm;
44 
45 //===----------------------------------------------------------------------===//
46 // MachineOperand Implementation
47 //===----------------------------------------------------------------------===//
48 
setReg(unsigned Reg)49 void MachineOperand::setReg(unsigned Reg) {
50   if (getReg() == Reg) return; // No change.
51 
52   // Otherwise, we have to change the register.  If this operand is embedded
53   // into a machine function, we need to update the old and new register's
54   // use/def lists.
55   if (MachineInstr *MI = getParent())
56     if (MachineBasicBlock *MBB = MI->getParent())
57       if (MachineFunction *MF = MBB->getParent()) {
58         MachineRegisterInfo &MRI = MF->getRegInfo();
59         MRI.removeRegOperandFromUseList(this);
60         SmallContents.RegNo = Reg;
61         MRI.addRegOperandToUseList(this);
62         return;
63       }
64 
65   // Otherwise, just change the register, no problem.  :)
66   SmallContents.RegNo = Reg;
67 }
68 
substVirtReg(unsigned Reg,unsigned SubIdx,const TargetRegisterInfo & TRI)69 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
70                                   const TargetRegisterInfo &TRI) {
71   assert(TargetRegisterInfo::isVirtualRegister(Reg));
72   if (SubIdx && getSubReg())
73     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
74   setReg(Reg);
75   if (SubIdx)
76     setSubReg(SubIdx);
77 }
78 
substPhysReg(unsigned Reg,const TargetRegisterInfo & TRI)79 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
80   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
81   if (getSubReg()) {
82     Reg = TRI.getSubReg(Reg, getSubReg());
83     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
84     // That won't happen in legal code.
85     setSubReg(0);
86   }
87   setReg(Reg);
88 }
89 
90 /// Change a def to a use, or a use to a def.
setIsDef(bool Val)91 void MachineOperand::setIsDef(bool Val) {
92   assert(isReg() && "Wrong MachineOperand accessor");
93   assert((!Val || !isDebug()) && "Marking a debug operation as def");
94   if (IsDef == Val)
95     return;
96   // MRI may keep uses and defs in different list positions.
97   if (MachineInstr *MI = getParent())
98     if (MachineBasicBlock *MBB = MI->getParent())
99       if (MachineFunction *MF = MBB->getParent()) {
100         MachineRegisterInfo &MRI = MF->getRegInfo();
101         MRI.removeRegOperandFromUseList(this);
102         IsDef = Val;
103         MRI.addRegOperandToUseList(this);
104         return;
105       }
106   IsDef = Val;
107 }
108 
109 // If this operand is currently a register operand, and if this is in a
110 // function, deregister the operand from the register's use/def list.
removeRegFromUses()111 void MachineOperand::removeRegFromUses() {
112   if (!isReg() || !isOnRegUseList())
113     return;
114 
115   if (MachineInstr *MI = getParent()) {
116     if (MachineBasicBlock *MBB = MI->getParent()) {
117       if (MachineFunction *MF = MBB->getParent())
118         MF->getRegInfo().removeRegOperandFromUseList(this);
119     }
120   }
121 }
122 
123 /// ChangeToImmediate - Replace this operand with a new immediate operand of
124 /// the specified value.  If an operand is known to be an immediate already,
125 /// the setImm method should be used.
ChangeToImmediate(int64_t ImmVal)126 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
127   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
128 
129   removeRegFromUses();
130 
131   OpKind = MO_Immediate;
132   Contents.ImmVal = ImmVal;
133 }
134 
ChangeToFPImmediate(const ConstantFP * FPImm)135 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
136   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
137 
138   removeRegFromUses();
139 
140   OpKind = MO_FPImmediate;
141   Contents.CFP = FPImm;
142 }
143 
144 /// ChangeToRegister - Replace this operand with a new register operand of
145 /// the specified value.  If an operand is known to be an register already,
146 /// the setReg method should be used.
ChangeToRegister(unsigned Reg,bool isDef,bool isImp,bool isKill,bool isDead,bool isUndef,bool isDebug)147 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
148                                       bool isKill, bool isDead, bool isUndef,
149                                       bool isDebug) {
150   MachineRegisterInfo *RegInfo = nullptr;
151   if (MachineInstr *MI = getParent())
152     if (MachineBasicBlock *MBB = MI->getParent())
153       if (MachineFunction *MF = MBB->getParent())
154         RegInfo = &MF->getRegInfo();
155   // If this operand is already a register operand, remove it from the
156   // register's use/def lists.
157   bool WasReg = isReg();
158   if (RegInfo && WasReg)
159     RegInfo->removeRegOperandFromUseList(this);
160 
161   // Change this to a register and set the reg#.
162   OpKind = MO_Register;
163   SmallContents.RegNo = Reg;
164   SubReg_TargetFlags = 0;
165   IsDef = isDef;
166   IsImp = isImp;
167   IsKill = isKill;
168   IsDead = isDead;
169   IsUndef = isUndef;
170   IsInternalRead = false;
171   IsEarlyClobber = false;
172   IsDebug = isDebug;
173   // Ensure isOnRegUseList() returns false.
174   Contents.Reg.Prev = nullptr;
175   // Preserve the tie when the operand was already a register.
176   if (!WasReg)
177     TiedTo = 0;
178 
179   // If this operand is embedded in a function, add the operand to the
180   // register's use/def list.
181   if (RegInfo)
182     RegInfo->addRegOperandToUseList(this);
183 }
184 
185 /// isIdenticalTo - Return true if this operand is identical to the specified
186 /// operand. Note that this should stay in sync with the hash_value overload
187 /// below.
isIdenticalTo(const MachineOperand & Other) const188 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
189   if (getType() != Other.getType() ||
190       getTargetFlags() != Other.getTargetFlags())
191     return false;
192 
193   switch (getType()) {
194   case MachineOperand::MO_Register:
195     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
196            getSubReg() == Other.getSubReg();
197   case MachineOperand::MO_Immediate:
198     return getImm() == Other.getImm();
199   case MachineOperand::MO_CImmediate:
200     return getCImm() == Other.getCImm();
201   case MachineOperand::MO_FPImmediate:
202     return getFPImm() == Other.getFPImm();
203   case MachineOperand::MO_MachineBasicBlock:
204     return getMBB() == Other.getMBB();
205   case MachineOperand::MO_FrameIndex:
206     return getIndex() == Other.getIndex();
207   case MachineOperand::MO_ConstantPoolIndex:
208   case MachineOperand::MO_TargetIndex:
209     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
210   case MachineOperand::MO_JumpTableIndex:
211     return getIndex() == Other.getIndex();
212   case MachineOperand::MO_GlobalAddress:
213     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
214   case MachineOperand::MO_ExternalSymbol:
215     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
216            getOffset() == Other.getOffset();
217   case MachineOperand::MO_BlockAddress:
218     return getBlockAddress() == Other.getBlockAddress() &&
219            getOffset() == Other.getOffset();
220   case MachineOperand::MO_RegisterMask:
221   case MachineOperand::MO_RegisterLiveOut:
222     return getRegMask() == Other.getRegMask();
223   case MachineOperand::MO_MCSymbol:
224     return getMCSymbol() == Other.getMCSymbol();
225   case MachineOperand::MO_CFIIndex:
226     return getCFIIndex() == Other.getCFIIndex();
227   case MachineOperand::MO_Metadata:
228     return getMetadata() == Other.getMetadata();
229   }
230   llvm_unreachable("Invalid machine operand type");
231 }
232 
233 // Note: this must stay exactly in sync with isIdenticalTo above.
hash_value(const MachineOperand & MO)234 hash_code llvm::hash_value(const MachineOperand &MO) {
235   switch (MO.getType()) {
236   case MachineOperand::MO_Register:
237     // Register operands don't have target flags.
238     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
239   case MachineOperand::MO_Immediate:
240     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
241   case MachineOperand::MO_CImmediate:
242     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
243   case MachineOperand::MO_FPImmediate:
244     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
245   case MachineOperand::MO_MachineBasicBlock:
246     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
247   case MachineOperand::MO_FrameIndex:
248     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
249   case MachineOperand::MO_ConstantPoolIndex:
250   case MachineOperand::MO_TargetIndex:
251     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
252                         MO.getOffset());
253   case MachineOperand::MO_JumpTableIndex:
254     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
255   case MachineOperand::MO_ExternalSymbol:
256     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
257                         MO.getSymbolName());
258   case MachineOperand::MO_GlobalAddress:
259     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
260                         MO.getOffset());
261   case MachineOperand::MO_BlockAddress:
262     return hash_combine(MO.getType(), MO.getTargetFlags(),
263                         MO.getBlockAddress(), MO.getOffset());
264   case MachineOperand::MO_RegisterMask:
265   case MachineOperand::MO_RegisterLiveOut:
266     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
267   case MachineOperand::MO_Metadata:
268     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
269   case MachineOperand::MO_MCSymbol:
270     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
271   case MachineOperand::MO_CFIIndex:
272     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
273   }
274   llvm_unreachable("Invalid machine operand type");
275 }
276 
277 /// print - Print the specified machine operand.
278 ///
print(raw_ostream & OS,const TargetRegisterInfo * TRI) const279 void MachineOperand::print(raw_ostream &OS,
280                            const TargetRegisterInfo *TRI) const {
281   switch (getType()) {
282   case MachineOperand::MO_Register:
283     OS << PrintReg(getReg(), TRI, getSubReg());
284 
285     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
286         isInternalRead() || isEarlyClobber() || isTied()) {
287       OS << '<';
288       bool NeedComma = false;
289       if (isDef()) {
290         if (NeedComma) OS << ',';
291         if (isEarlyClobber())
292           OS << "earlyclobber,";
293         if (isImplicit())
294           OS << "imp-";
295         OS << "def";
296         NeedComma = true;
297         // <def,read-undef> only makes sense when getSubReg() is set.
298         // Don't clutter the output otherwise.
299         if (isUndef() && getSubReg())
300           OS << ",read-undef";
301       } else if (isImplicit()) {
302           OS << "imp-use";
303           NeedComma = true;
304       }
305 
306       if (isKill()) {
307         if (NeedComma) OS << ',';
308         OS << "kill";
309         NeedComma = true;
310       }
311       if (isDead()) {
312         if (NeedComma) OS << ',';
313         OS << "dead";
314         NeedComma = true;
315       }
316       if (isUndef() && isUse()) {
317         if (NeedComma) OS << ',';
318         OS << "undef";
319         NeedComma = true;
320       }
321       if (isInternalRead()) {
322         if (NeedComma) OS << ',';
323         OS << "internal";
324         NeedComma = true;
325       }
326       if (isTied()) {
327         if (NeedComma) OS << ',';
328         OS << "tied";
329         if (TiedTo != 15)
330           OS << unsigned(TiedTo - 1);
331       }
332       OS << '>';
333     }
334     break;
335   case MachineOperand::MO_Immediate:
336     OS << getImm();
337     break;
338   case MachineOperand::MO_CImmediate:
339     getCImm()->getValue().print(OS, false);
340     break;
341   case MachineOperand::MO_FPImmediate:
342     if (getFPImm()->getType()->isFloatTy())
343       OS << getFPImm()->getValueAPF().convertToFloat();
344     else
345       OS << getFPImm()->getValueAPF().convertToDouble();
346     break;
347   case MachineOperand::MO_MachineBasicBlock:
348     OS << "<BB#" << getMBB()->getNumber() << ">";
349     break;
350   case MachineOperand::MO_FrameIndex:
351     OS << "<fi#" << getIndex() << '>';
352     break;
353   case MachineOperand::MO_ConstantPoolIndex:
354     OS << "<cp#" << getIndex();
355     if (getOffset()) OS << "+" << getOffset();
356     OS << '>';
357     break;
358   case MachineOperand::MO_TargetIndex:
359     OS << "<ti#" << getIndex();
360     if (getOffset()) OS << "+" << getOffset();
361     OS << '>';
362     break;
363   case MachineOperand::MO_JumpTableIndex:
364     OS << "<jt#" << getIndex() << '>';
365     break;
366   case MachineOperand::MO_GlobalAddress:
367     OS << "<ga:";
368     getGlobal()->printAsOperand(OS, /*PrintType=*/false);
369     if (getOffset()) OS << "+" << getOffset();
370     OS << '>';
371     break;
372   case MachineOperand::MO_ExternalSymbol:
373     OS << "<es:" << getSymbolName();
374     if (getOffset()) OS << "+" << getOffset();
375     OS << '>';
376     break;
377   case MachineOperand::MO_BlockAddress:
378     OS << '<';
379     getBlockAddress()->printAsOperand(OS, /*PrintType=*/false);
380     if (getOffset()) OS << "+" << getOffset();
381     OS << '>';
382     break;
383   case MachineOperand::MO_RegisterMask:
384     OS << "<regmask>";
385     break;
386   case MachineOperand::MO_RegisterLiveOut:
387     OS << "<regliveout>";
388     break;
389   case MachineOperand::MO_Metadata:
390     OS << '<';
391     getMetadata()->printAsOperand(OS);
392     OS << '>';
393     break;
394   case MachineOperand::MO_MCSymbol:
395     OS << "<MCSym=" << *getMCSymbol() << '>';
396     break;
397   case MachineOperand::MO_CFIIndex:
398     OS << "<call frame instruction>";
399     break;
400   }
401 
402   if (unsigned TF = getTargetFlags())
403     OS << "[TF=" << TF << ']';
404 }
405 
406 //===----------------------------------------------------------------------===//
407 // MachineMemOperand Implementation
408 //===----------------------------------------------------------------------===//
409 
410 /// getAddrSpace - Return the LLVM IR address space number that this pointer
411 /// points into.
getAddrSpace() const412 unsigned MachinePointerInfo::getAddrSpace() const {
413   if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
414   return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
415 }
416 
417 /// getConstantPool - Return a MachinePointerInfo record that refers to the
418 /// constant pool.
getConstantPool()419 MachinePointerInfo MachinePointerInfo::getConstantPool() {
420   return MachinePointerInfo(PseudoSourceValue::getConstantPool());
421 }
422 
423 /// getFixedStack - Return a MachinePointerInfo record that refers to the
424 /// the specified FrameIndex.
getFixedStack(int FI,int64_t offset)425 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
426   return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
427 }
428 
getJumpTable()429 MachinePointerInfo MachinePointerInfo::getJumpTable() {
430   return MachinePointerInfo(PseudoSourceValue::getJumpTable());
431 }
432 
getGOT()433 MachinePointerInfo MachinePointerInfo::getGOT() {
434   return MachinePointerInfo(PseudoSourceValue::getGOT());
435 }
436 
getStack(int64_t Offset)437 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
438   return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
439 }
440 
MachineMemOperand(MachinePointerInfo ptrinfo,unsigned f,uint64_t s,unsigned int a,const AAMDNodes & AAInfo,const MDNode * Ranges)441 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
442                                      uint64_t s, unsigned int a,
443                                      const AAMDNodes &AAInfo,
444                                      const MDNode *Ranges)
445   : PtrInfo(ptrinfo), Size(s),
446     Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
447     AAInfo(AAInfo), Ranges(Ranges) {
448   assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
449           isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
450          "invalid pointer value");
451   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
452   assert((isLoad() || isStore()) && "Not a load/store!");
453 }
454 
455 /// Profile - Gather unique data for the object.
456 ///
Profile(FoldingSetNodeID & ID) const457 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
458   ID.AddInteger(getOffset());
459   ID.AddInteger(Size);
460   ID.AddPointer(getOpaqueValue());
461   ID.AddInteger(Flags);
462 }
463 
refineAlignment(const MachineMemOperand * MMO)464 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
465   // The Value and Offset may differ due to CSE. But the flags and size
466   // should be the same.
467   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
468   assert(MMO->getSize() == getSize() && "Size mismatch!");
469 
470   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
471     // Update the alignment value.
472     Flags = (Flags & ((1 << MOMaxBits) - 1)) |
473       ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
474     // Also update the base and offset, because the new alignment may
475     // not be applicable with the old ones.
476     PtrInfo = MMO->PtrInfo;
477   }
478 }
479 
480 /// getAlignment - Return the minimum known alignment in bytes of the
481 /// actual memory reference.
getAlignment() const482 uint64_t MachineMemOperand::getAlignment() const {
483   return MinAlign(getBaseAlignment(), getOffset());
484 }
485 
operator <<(raw_ostream & OS,const MachineMemOperand & MMO)486 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
487   assert((MMO.isLoad() || MMO.isStore()) &&
488          "SV has to be a load, store or both.");
489 
490   if (MMO.isVolatile())
491     OS << "Volatile ";
492 
493   if (MMO.isLoad())
494     OS << "LD";
495   if (MMO.isStore())
496     OS << "ST";
497   OS << MMO.getSize();
498 
499   // Print the address information.
500   OS << "[";
501   if (const Value *V = MMO.getValue())
502     V->printAsOperand(OS, /*PrintType=*/false);
503   else if (const PseudoSourceValue *PSV = MMO.getPseudoValue())
504     PSV->printCustom(OS);
505   else
506     OS << "<unknown>";
507 
508   unsigned AS = MMO.getAddrSpace();
509   if (AS != 0)
510     OS << "(addrspace=" << AS << ')';
511 
512   // If the alignment of the memory reference itself differs from the alignment
513   // of the base pointer, print the base alignment explicitly, next to the base
514   // pointer.
515   if (MMO.getBaseAlignment() != MMO.getAlignment())
516     OS << "(align=" << MMO.getBaseAlignment() << ")";
517 
518   if (MMO.getOffset() != 0)
519     OS << "+" << MMO.getOffset();
520   OS << "]";
521 
522   // Print the alignment of the reference.
523   if (MMO.getBaseAlignment() != MMO.getAlignment() ||
524       MMO.getBaseAlignment() != MMO.getSize())
525     OS << "(align=" << MMO.getAlignment() << ")";
526 
527   // Print TBAA info.
528   if (const MDNode *TBAAInfo = MMO.getAAInfo().TBAA) {
529     OS << "(tbaa=";
530     if (TBAAInfo->getNumOperands() > 0)
531       TBAAInfo->getOperand(0)->printAsOperand(OS);
532     else
533       OS << "<unknown>";
534     OS << ")";
535   }
536 
537   // Print AA scope info.
538   if (const MDNode *ScopeInfo = MMO.getAAInfo().Scope) {
539     OS << "(alias.scope=";
540     if (ScopeInfo->getNumOperands() > 0)
541       for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
542         ScopeInfo->getOperand(i)->printAsOperand(OS);
543         if (i != ie-1)
544           OS << ",";
545       }
546     else
547       OS << "<unknown>";
548     OS << ")";
549   }
550 
551   // Print AA noalias scope info.
552   if (const MDNode *NoAliasInfo = MMO.getAAInfo().NoAlias) {
553     OS << "(noalias=";
554     if (NoAliasInfo->getNumOperands() > 0)
555       for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
556         NoAliasInfo->getOperand(i)->printAsOperand(OS);
557         if (i != ie-1)
558           OS << ",";
559       }
560     else
561       OS << "<unknown>";
562     OS << ")";
563   }
564 
565   // Print nontemporal info.
566   if (MMO.isNonTemporal())
567     OS << "(nontemporal)";
568 
569   return OS;
570 }
571 
572 //===----------------------------------------------------------------------===//
573 // MachineInstr Implementation
574 //===----------------------------------------------------------------------===//
575 
addImplicitDefUseOperands(MachineFunction & MF)576 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
577   if (MCID->ImplicitDefs)
578     for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
579       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
580   if (MCID->ImplicitUses)
581     for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
582       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
583 }
584 
585 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
586 /// implicit operands. It reserves space for the number of operands specified by
587 /// the MCInstrDesc.
MachineInstr(MachineFunction & MF,const MCInstrDesc & tid,DebugLoc dl,bool NoImp)588 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
589                            DebugLoc dl, bool NoImp)
590     : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0),
591       AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr),
592       debugLoc(std::move(dl)) {
593   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
594 
595   // Reserve space for the expected number of operands.
596   if (unsigned NumOps = MCID->getNumOperands() +
597     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
598     CapOperands = OperandCapacity::get(NumOps);
599     Operands = MF.allocateOperandArray(CapOperands);
600   }
601 
602   if (!NoImp)
603     addImplicitDefUseOperands(MF);
604 }
605 
606 /// MachineInstr ctor - Copies MachineInstr arg exactly
607 ///
MachineInstr(MachineFunction & MF,const MachineInstr & MI)608 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
609   : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0),
610     Flags(0), AsmPrinterFlags(0),
611     NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
612     debugLoc(MI.getDebugLoc()) {
613   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
614 
615   CapOperands = OperandCapacity::get(MI.getNumOperands());
616   Operands = MF.allocateOperandArray(CapOperands);
617 
618   // Copy operands.
619   for (const MachineOperand &MO : MI.operands())
620     addOperand(MF, MO);
621 
622   // Copy all the sensible flags.
623   setFlags(MI.Flags);
624 }
625 
626 /// getRegInfo - If this instruction is embedded into a MachineFunction,
627 /// return the MachineRegisterInfo object for the current function, otherwise
628 /// return null.
getRegInfo()629 MachineRegisterInfo *MachineInstr::getRegInfo() {
630   if (MachineBasicBlock *MBB = getParent())
631     return &MBB->getParent()->getRegInfo();
632   return nullptr;
633 }
634 
635 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
636 /// this instruction from their respective use lists.  This requires that the
637 /// operands already be on their use lists.
RemoveRegOperandsFromUseLists(MachineRegisterInfo & MRI)638 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
639   for (MachineOperand &MO : operands())
640     if (MO.isReg())
641       MRI.removeRegOperandFromUseList(&MO);
642 }
643 
644 /// AddRegOperandsToUseLists - Add all of the register operands in
645 /// this instruction from their respective use lists.  This requires that the
646 /// operands not be on their use lists yet.
AddRegOperandsToUseLists(MachineRegisterInfo & MRI)647 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
648   for (MachineOperand &MO : operands())
649     if (MO.isReg())
650       MRI.addRegOperandToUseList(&MO);
651 }
652 
addOperand(const MachineOperand & Op)653 void MachineInstr::addOperand(const MachineOperand &Op) {
654   MachineBasicBlock *MBB = getParent();
655   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
656   MachineFunction *MF = MBB->getParent();
657   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
658   addOperand(*MF, Op);
659 }
660 
661 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
662 /// ranges. If MRI is non-null also update use-def chains.
moveOperands(MachineOperand * Dst,MachineOperand * Src,unsigned NumOps,MachineRegisterInfo * MRI)663 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
664                          unsigned NumOps, MachineRegisterInfo *MRI) {
665   if (MRI)
666     return MRI->moveOperands(Dst, Src, NumOps);
667 
668   // MachineOperand is a trivially copyable type so we can just use memmove.
669   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
670 }
671 
672 /// addOperand - Add the specified operand to the instruction.  If it is an
673 /// implicit operand, it is added to the end of the operand list.  If it is
674 /// an explicit operand it is added at the end of the explicit operand list
675 /// (before the first implicit operand).
addOperand(MachineFunction & MF,const MachineOperand & Op)676 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
677   assert(MCID && "Cannot add operands before providing an instr descriptor");
678 
679   // Check if we're adding one of our existing operands.
680   if (&Op >= Operands && &Op < Operands + NumOperands) {
681     // This is unusual: MI->addOperand(MI->getOperand(i)).
682     // If adding Op requires reallocating or moving existing operands around,
683     // the Op reference could go stale. Support it by copying Op.
684     MachineOperand CopyOp(Op);
685     return addOperand(MF, CopyOp);
686   }
687 
688   // Find the insert location for the new operand.  Implicit registers go at
689   // the end, everything else goes before the implicit regs.
690   //
691   // FIXME: Allow mixed explicit and implicit operands on inline asm.
692   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
693   // implicit-defs, but they must not be moved around.  See the FIXME in
694   // InstrEmitter.cpp.
695   unsigned OpNo = getNumOperands();
696   bool isImpReg = Op.isReg() && Op.isImplicit();
697   if (!isImpReg && !isInlineAsm()) {
698     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
699       --OpNo;
700       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
701     }
702   }
703 
704 #ifndef NDEBUG
705   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
706   // OpNo now points as the desired insertion point.  Unless this is a variadic
707   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
708   // RegMask operands go between the explicit and implicit operands.
709   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
710           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
711          "Trying to add an operand to a machine instr that is already done!");
712 #endif
713 
714   MachineRegisterInfo *MRI = getRegInfo();
715 
716   // Determine if the Operands array needs to be reallocated.
717   // Save the old capacity and operand array.
718   OperandCapacity OldCap = CapOperands;
719   MachineOperand *OldOperands = Operands;
720   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
721     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
722     Operands = MF.allocateOperandArray(CapOperands);
723     // Move the operands before the insertion point.
724     if (OpNo)
725       moveOperands(Operands, OldOperands, OpNo, MRI);
726   }
727 
728   // Move the operands following the insertion point.
729   if (OpNo != NumOperands)
730     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
731                  MRI);
732   ++NumOperands;
733 
734   // Deallocate the old operand array.
735   if (OldOperands != Operands && OldOperands)
736     MF.deallocateOperandArray(OldCap, OldOperands);
737 
738   // Copy Op into place. It still needs to be inserted into the MRI use lists.
739   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
740   NewMO->ParentMI = this;
741 
742   // When adding a register operand, tell MRI about it.
743   if (NewMO->isReg()) {
744     // Ensure isOnRegUseList() returns false, regardless of Op's status.
745     NewMO->Contents.Reg.Prev = nullptr;
746     // Ignore existing ties. This is not a property that can be copied.
747     NewMO->TiedTo = 0;
748     // Add the new operand to MRI, but only for instructions in an MBB.
749     if (MRI)
750       MRI->addRegOperandToUseList(NewMO);
751     // The MCID operand information isn't accurate until we start adding
752     // explicit operands. The implicit operands are added first, then the
753     // explicits are inserted before them.
754     if (!isImpReg) {
755       // Tie uses to defs as indicated in MCInstrDesc.
756       if (NewMO->isUse()) {
757         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
758         if (DefIdx != -1)
759           tieOperands(DefIdx, OpNo);
760       }
761       // If the register operand is flagged as early, mark the operand as such.
762       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
763         NewMO->setIsEarlyClobber(true);
764     }
765   }
766 }
767 
768 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
769 /// fewer operand than it started with.
770 ///
RemoveOperand(unsigned OpNo)771 void MachineInstr::RemoveOperand(unsigned OpNo) {
772   assert(OpNo < getNumOperands() && "Invalid operand number");
773   untieRegOperand(OpNo);
774 
775 #ifndef NDEBUG
776   // Moving tied operands would break the ties.
777   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
778     if (Operands[i].isReg())
779       assert(!Operands[i].isTied() && "Cannot move tied operands");
780 #endif
781 
782   MachineRegisterInfo *MRI = getRegInfo();
783   if (MRI && Operands[OpNo].isReg())
784     MRI->removeRegOperandFromUseList(Operands + OpNo);
785 
786   // Don't call the MachineOperand destructor. A lot of this code depends on
787   // MachineOperand having a trivial destructor anyway, and adding a call here
788   // wouldn't make it 'destructor-correct'.
789 
790   if (unsigned N = NumOperands - 1 - OpNo)
791     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
792   --NumOperands;
793 }
794 
795 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
796 /// This function should be used only occasionally. The setMemRefs function
797 /// is the primary method for setting up a MachineInstr's MemRefs list.
addMemOperand(MachineFunction & MF,MachineMemOperand * MO)798 void MachineInstr::addMemOperand(MachineFunction &MF,
799                                  MachineMemOperand *MO) {
800   mmo_iterator OldMemRefs = MemRefs;
801   unsigned OldNumMemRefs = NumMemRefs;
802 
803   unsigned NewNum = NumMemRefs + 1;
804   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
805 
806   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
807   NewMemRefs[NewNum - 1] = MO;
808   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
809 }
810 
hasPropertyInBundle(unsigned Mask,QueryType Type) const811 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
812   assert(!isBundledWithPred() && "Must be called on bundle header");
813   for (MachineBasicBlock::const_instr_iterator MII = this;; ++MII) {
814     if (MII->getDesc().getFlags() & Mask) {
815       if (Type == AnyInBundle)
816         return true;
817     } else {
818       if (Type == AllInBundle && !MII->isBundle())
819         return false;
820     }
821     // This was the last instruction in the bundle.
822     if (!MII->isBundledWithSucc())
823       return Type == AllInBundle;
824   }
825 }
826 
isIdenticalTo(const MachineInstr * Other,MICheckType Check) const827 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
828                                  MICheckType Check) const {
829   // If opcodes or number of operands are not the same then the two
830   // instructions are obviously not identical.
831   if (Other->getOpcode() != getOpcode() ||
832       Other->getNumOperands() != getNumOperands())
833     return false;
834 
835   if (isBundle()) {
836     // Both instructions are bundles, compare MIs inside the bundle.
837     MachineBasicBlock::const_instr_iterator I1 = *this;
838     MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
839     MachineBasicBlock::const_instr_iterator I2 = *Other;
840     MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
841     while (++I1 != E1 && I1->isInsideBundle()) {
842       ++I2;
843       if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
844         return false;
845     }
846   }
847 
848   // Check operands to make sure they match.
849   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
850     const MachineOperand &MO = getOperand(i);
851     const MachineOperand &OMO = Other->getOperand(i);
852     if (!MO.isReg()) {
853       if (!MO.isIdenticalTo(OMO))
854         return false;
855       continue;
856     }
857 
858     // Clients may or may not want to ignore defs when testing for equality.
859     // For example, machine CSE pass only cares about finding common
860     // subexpressions, so it's safe to ignore virtual register defs.
861     if (MO.isDef()) {
862       if (Check == IgnoreDefs)
863         continue;
864       else if (Check == IgnoreVRegDefs) {
865         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
866             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
867           if (MO.getReg() != OMO.getReg())
868             return false;
869       } else {
870         if (!MO.isIdenticalTo(OMO))
871           return false;
872         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
873           return false;
874       }
875     } else {
876       if (!MO.isIdenticalTo(OMO))
877         return false;
878       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
879         return false;
880     }
881   }
882   // If DebugLoc does not match then two dbg.values are not identical.
883   if (isDebugValue())
884     if (getDebugLoc() && Other->getDebugLoc() &&
885         getDebugLoc() != Other->getDebugLoc())
886       return false;
887   return true;
888 }
889 
removeFromParent()890 MachineInstr *MachineInstr::removeFromParent() {
891   assert(getParent() && "Not embedded in a basic block!");
892   return getParent()->remove(this);
893 }
894 
removeFromBundle()895 MachineInstr *MachineInstr::removeFromBundle() {
896   assert(getParent() && "Not embedded in a basic block!");
897   return getParent()->remove_instr(this);
898 }
899 
eraseFromParent()900 void MachineInstr::eraseFromParent() {
901   assert(getParent() && "Not embedded in a basic block!");
902   getParent()->erase(this);
903 }
904 
eraseFromParentAndMarkDBGValuesForRemoval()905 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
906   assert(getParent() && "Not embedded in a basic block!");
907   MachineBasicBlock *MBB = getParent();
908   MachineFunction *MF = MBB->getParent();
909   assert(MF && "Not embedded in a function!");
910 
911   MachineInstr *MI = (MachineInstr *)this;
912   MachineRegisterInfo &MRI = MF->getRegInfo();
913 
914   for (const MachineOperand &MO : MI->operands()) {
915     if (!MO.isReg() || !MO.isDef())
916       continue;
917     unsigned Reg = MO.getReg();
918     if (!TargetRegisterInfo::isVirtualRegister(Reg))
919       continue;
920     MRI.markUsesInDebugValueAsUndef(Reg);
921   }
922   MI->eraseFromParent();
923 }
924 
eraseFromBundle()925 void MachineInstr::eraseFromBundle() {
926   assert(getParent() && "Not embedded in a basic block!");
927   getParent()->erase_instr(this);
928 }
929 
930 /// getNumExplicitOperands - Returns the number of non-implicit operands.
931 ///
getNumExplicitOperands() const932 unsigned MachineInstr::getNumExplicitOperands() const {
933   unsigned NumOperands = MCID->getNumOperands();
934   if (!MCID->isVariadic())
935     return NumOperands;
936 
937   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
938     const MachineOperand &MO = getOperand(i);
939     if (!MO.isReg() || !MO.isImplicit())
940       NumOperands++;
941   }
942   return NumOperands;
943 }
944 
bundleWithPred()945 void MachineInstr::bundleWithPred() {
946   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
947   setFlag(BundledPred);
948   MachineBasicBlock::instr_iterator Pred = this;
949   --Pred;
950   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
951   Pred->setFlag(BundledSucc);
952 }
953 
bundleWithSucc()954 void MachineInstr::bundleWithSucc() {
955   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
956   setFlag(BundledSucc);
957   MachineBasicBlock::instr_iterator Succ = this;
958   ++Succ;
959   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
960   Succ->setFlag(BundledPred);
961 }
962 
unbundleFromPred()963 void MachineInstr::unbundleFromPred() {
964   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
965   clearFlag(BundledPred);
966   MachineBasicBlock::instr_iterator Pred = this;
967   --Pred;
968   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
969   Pred->clearFlag(BundledSucc);
970 }
971 
unbundleFromSucc()972 void MachineInstr::unbundleFromSucc() {
973   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
974   clearFlag(BundledSucc);
975   MachineBasicBlock::instr_iterator Succ = this;
976   ++Succ;
977   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
978   Succ->clearFlag(BundledPred);
979 }
980 
isStackAligningInlineAsm() const981 bool MachineInstr::isStackAligningInlineAsm() const {
982   if (isInlineAsm()) {
983     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
984     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
985       return true;
986   }
987   return false;
988 }
989 
getInlineAsmDialect() const990 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
991   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
992   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
993   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
994 }
995 
findInlineAsmFlagIdx(unsigned OpIdx,unsigned * GroupNo) const996 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
997                                        unsigned *GroupNo) const {
998   assert(isInlineAsm() && "Expected an inline asm instruction");
999   assert(OpIdx < getNumOperands() && "OpIdx out of range");
1000 
1001   // Ignore queries about the initial operands.
1002   if (OpIdx < InlineAsm::MIOp_FirstOperand)
1003     return -1;
1004 
1005   unsigned Group = 0;
1006   unsigned NumOps;
1007   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1008        i += NumOps) {
1009     const MachineOperand &FlagMO = getOperand(i);
1010     // If we reach the implicit register operands, stop looking.
1011     if (!FlagMO.isImm())
1012       return -1;
1013     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1014     if (i + NumOps > OpIdx) {
1015       if (GroupNo)
1016         *GroupNo = Group;
1017       return i;
1018     }
1019     ++Group;
1020   }
1021   return -1;
1022 }
1023 
1024 const TargetRegisterClass*
getRegClassConstraint(unsigned OpIdx,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const1025 MachineInstr::getRegClassConstraint(unsigned OpIdx,
1026                                     const TargetInstrInfo *TII,
1027                                     const TargetRegisterInfo *TRI) const {
1028   assert(getParent() && "Can't have an MBB reference here!");
1029   assert(getParent()->getParent() && "Can't have an MF reference here!");
1030   const MachineFunction &MF = *getParent()->getParent();
1031 
1032   // Most opcodes have fixed constraints in their MCInstrDesc.
1033   if (!isInlineAsm())
1034     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1035 
1036   if (!getOperand(OpIdx).isReg())
1037     return nullptr;
1038 
1039   // For tied uses on inline asm, get the constraint from the def.
1040   unsigned DefIdx;
1041   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1042     OpIdx = DefIdx;
1043 
1044   // Inline asm stores register class constraints in the flag word.
1045   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1046   if (FlagIdx < 0)
1047     return nullptr;
1048 
1049   unsigned Flag = getOperand(FlagIdx).getImm();
1050   unsigned RCID;
1051   if (InlineAsm::hasRegClassConstraint(Flag, RCID))
1052     return TRI->getRegClass(RCID);
1053 
1054   // Assume that all registers in a memory operand are pointers.
1055   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1056     return TRI->getPointerRegClass(MF);
1057 
1058   return nullptr;
1059 }
1060 
getRegClassConstraintEffectForVReg(unsigned Reg,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI,bool ExploreBundle) const1061 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
1062     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
1063     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
1064   // Check every operands inside the bundle if we have
1065   // been asked to.
1066   if (ExploreBundle)
1067     for (ConstMIBundleOperands OpndIt(this); OpndIt.isValid() && CurRC;
1068          ++OpndIt)
1069       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
1070           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
1071   else
1072     // Otherwise, just check the current operands.
1073     for (ConstMIOperands OpndIt(this); OpndIt.isValid() && CurRC; ++OpndIt)
1074       CurRC = getRegClassConstraintEffectForVRegImpl(OpndIt.getOperandNo(), Reg,
1075                                                      CurRC, TII, TRI);
1076   return CurRC;
1077 }
1078 
getRegClassConstraintEffectForVRegImpl(unsigned OpIdx,unsigned Reg,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const1079 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1080     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1081     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1082   assert(CurRC && "Invalid initial register class");
1083   // Check if Reg is constrained by some of its use/def from MI.
1084   const MachineOperand &MO = getOperand(OpIdx);
1085   if (!MO.isReg() || MO.getReg() != Reg)
1086     return CurRC;
1087   // If yes, accumulate the constraints through the operand.
1088   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1089 }
1090 
getRegClassConstraintEffect(unsigned OpIdx,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const1091 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1092     unsigned OpIdx, const TargetRegisterClass *CurRC,
1093     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1094   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1095   const MachineOperand &MO = getOperand(OpIdx);
1096   assert(MO.isReg() &&
1097          "Cannot get register constraints for non-register operand");
1098   assert(CurRC && "Invalid initial register class");
1099   if (unsigned SubIdx = MO.getSubReg()) {
1100     if (OpRC)
1101       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1102     else
1103       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1104   } else if (OpRC)
1105     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1106   return CurRC;
1107 }
1108 
1109 /// Return the number of instructions inside the MI bundle, not counting the
1110 /// header instruction.
getBundleSize() const1111 unsigned MachineInstr::getBundleSize() const {
1112   MachineBasicBlock::const_instr_iterator I = this;
1113   unsigned Size = 0;
1114   while (I->isBundledWithSucc())
1115     ++Size, ++I;
1116   return Size;
1117 }
1118 
1119 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1120 /// the specific register or -1 if it is not found. It further tightens
1121 /// the search criteria to a use that kills the register if isKill is true.
findRegisterUseOperandIdx(unsigned Reg,bool isKill,const TargetRegisterInfo * TRI) const1122 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
1123                                           const TargetRegisterInfo *TRI) const {
1124   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1125     const MachineOperand &MO = getOperand(i);
1126     if (!MO.isReg() || !MO.isUse())
1127       continue;
1128     unsigned MOReg = MO.getReg();
1129     if (!MOReg)
1130       continue;
1131     if (MOReg == Reg ||
1132         (TRI &&
1133          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1134          TargetRegisterInfo::isPhysicalRegister(Reg) &&
1135          TRI->isSubRegister(MOReg, Reg)))
1136       if (!isKill || MO.isKill())
1137         return i;
1138   }
1139   return -1;
1140 }
1141 
1142 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1143 /// indicating if this instruction reads or writes Reg. This also considers
1144 /// partial defines.
1145 std::pair<bool,bool>
readsWritesVirtualRegister(unsigned Reg,SmallVectorImpl<unsigned> * Ops) const1146 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1147                                          SmallVectorImpl<unsigned> *Ops) const {
1148   bool PartDef = false; // Partial redefine.
1149   bool FullDef = false; // Full define.
1150   bool Use = false;
1151 
1152   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1153     const MachineOperand &MO = getOperand(i);
1154     if (!MO.isReg() || MO.getReg() != Reg)
1155       continue;
1156     if (Ops)
1157       Ops->push_back(i);
1158     if (MO.isUse())
1159       Use |= !MO.isUndef();
1160     else if (MO.getSubReg() && !MO.isUndef())
1161       // A partial <def,undef> doesn't count as reading the register.
1162       PartDef = true;
1163     else
1164       FullDef = true;
1165   }
1166   // A partial redefine uses Reg unless there is also a full define.
1167   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1168 }
1169 
1170 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1171 /// the specified register or -1 if it is not found. If isDead is true, defs
1172 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1173 /// also checks if there is a def of a super-register.
1174 int
findRegisterDefOperandIdx(unsigned Reg,bool isDead,bool Overlap,const TargetRegisterInfo * TRI) const1175 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1176                                         const TargetRegisterInfo *TRI) const {
1177   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1178   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1179     const MachineOperand &MO = getOperand(i);
1180     // Accept regmask operands when Overlap is set.
1181     // Ignore them when looking for a specific def operand (Overlap == false).
1182     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1183       return i;
1184     if (!MO.isReg() || !MO.isDef())
1185       continue;
1186     unsigned MOReg = MO.getReg();
1187     bool Found = (MOReg == Reg);
1188     if (!Found && TRI && isPhys &&
1189         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1190       if (Overlap)
1191         Found = TRI->regsOverlap(MOReg, Reg);
1192       else
1193         Found = TRI->isSubRegister(MOReg, Reg);
1194     }
1195     if (Found && (!isDead || MO.isDead()))
1196       return i;
1197   }
1198   return -1;
1199 }
1200 
1201 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1202 /// operand list that is used to represent the predicate. It returns -1 if
1203 /// none is found.
findFirstPredOperandIdx() const1204 int MachineInstr::findFirstPredOperandIdx() const {
1205   // Don't call MCID.findFirstPredOperandIdx() because this variant
1206   // is sometimes called on an instruction that's not yet complete, and
1207   // so the number of operands is less than the MCID indicates. In
1208   // particular, the PTX target does this.
1209   const MCInstrDesc &MCID = getDesc();
1210   if (MCID.isPredicable()) {
1211     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1212       if (MCID.OpInfo[i].isPredicate())
1213         return i;
1214   }
1215 
1216   return -1;
1217 }
1218 
1219 // MachineOperand::TiedTo is 4 bits wide.
1220 const unsigned TiedMax = 15;
1221 
1222 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1223 ///
1224 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1225 /// field. TiedTo can have these values:
1226 ///
1227 /// 0:              Operand is not tied to anything.
1228 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1229 /// TiedMax:        Tied to an operand >= TiedMax-1.
1230 ///
1231 /// The tied def must be one of the first TiedMax operands on a normal
1232 /// instruction. INLINEASM instructions allow more tied defs.
1233 ///
tieOperands(unsigned DefIdx,unsigned UseIdx)1234 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1235   MachineOperand &DefMO = getOperand(DefIdx);
1236   MachineOperand &UseMO = getOperand(UseIdx);
1237   assert(DefMO.isDef() && "DefIdx must be a def operand");
1238   assert(UseMO.isUse() && "UseIdx must be a use operand");
1239   assert(!DefMO.isTied() && "Def is already tied to another use");
1240   assert(!UseMO.isTied() && "Use is already tied to another def");
1241 
1242   if (DefIdx < TiedMax)
1243     UseMO.TiedTo = DefIdx + 1;
1244   else {
1245     // Inline asm can use the group descriptors to find tied operands, but on
1246     // normal instruction, the tied def must be within the first TiedMax
1247     // operands.
1248     assert(isInlineAsm() && "DefIdx out of range");
1249     UseMO.TiedTo = TiedMax;
1250   }
1251 
1252   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1253   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1254 }
1255 
1256 /// Given the index of a tied register operand, find the operand it is tied to.
1257 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1258 /// which must exist.
findTiedOperandIdx(unsigned OpIdx) const1259 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1260   const MachineOperand &MO = getOperand(OpIdx);
1261   assert(MO.isTied() && "Operand isn't tied");
1262 
1263   // Normally TiedTo is in range.
1264   if (MO.TiedTo < TiedMax)
1265     return MO.TiedTo - 1;
1266 
1267   // Uses on normal instructions can be out of range.
1268   if (!isInlineAsm()) {
1269     // Normal tied defs must be in the 0..TiedMax-1 range.
1270     if (MO.isUse())
1271       return TiedMax - 1;
1272     // MO is a def. Search for the tied use.
1273     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1274       const MachineOperand &UseMO = getOperand(i);
1275       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1276         return i;
1277     }
1278     llvm_unreachable("Can't find tied use");
1279   }
1280 
1281   // Now deal with inline asm by parsing the operand group descriptor flags.
1282   // Find the beginning of each operand group.
1283   SmallVector<unsigned, 8> GroupIdx;
1284   unsigned OpIdxGroup = ~0u;
1285   unsigned NumOps;
1286   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1287        i += NumOps) {
1288     const MachineOperand &FlagMO = getOperand(i);
1289     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1290     unsigned CurGroup = GroupIdx.size();
1291     GroupIdx.push_back(i);
1292     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1293     // OpIdx belongs to this operand group.
1294     if (OpIdx > i && OpIdx < i + NumOps)
1295       OpIdxGroup = CurGroup;
1296     unsigned TiedGroup;
1297     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1298       continue;
1299     // Operands in this group are tied to operands in TiedGroup which must be
1300     // earlier. Find the number of operands between the two groups.
1301     unsigned Delta = i - GroupIdx[TiedGroup];
1302 
1303     // OpIdx is a use tied to TiedGroup.
1304     if (OpIdxGroup == CurGroup)
1305       return OpIdx - Delta;
1306 
1307     // OpIdx is a def tied to this use group.
1308     if (OpIdxGroup == TiedGroup)
1309       return OpIdx + Delta;
1310   }
1311   llvm_unreachable("Invalid tied operand on inline asm");
1312 }
1313 
1314 /// clearKillInfo - Clears kill flags on all operands.
1315 ///
clearKillInfo()1316 void MachineInstr::clearKillInfo() {
1317   for (MachineOperand &MO : operands()) {
1318     if (MO.isReg() && MO.isUse())
1319       MO.setIsKill(false);
1320   }
1321 }
1322 
substituteRegister(unsigned FromReg,unsigned ToReg,unsigned SubIdx,const TargetRegisterInfo & RegInfo)1323 void MachineInstr::substituteRegister(unsigned FromReg,
1324                                       unsigned ToReg,
1325                                       unsigned SubIdx,
1326                                       const TargetRegisterInfo &RegInfo) {
1327   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1328     if (SubIdx)
1329       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1330     for (MachineOperand &MO : operands()) {
1331       if (!MO.isReg() || MO.getReg() != FromReg)
1332         continue;
1333       MO.substPhysReg(ToReg, RegInfo);
1334     }
1335   } else {
1336     for (MachineOperand &MO : operands()) {
1337       if (!MO.isReg() || MO.getReg() != FromReg)
1338         continue;
1339       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1340     }
1341   }
1342 }
1343 
1344 /// isSafeToMove - Return true if it is safe to move this instruction. If
1345 /// SawStore is set to true, it means that there is a store (or call) between
1346 /// the instruction's location and its intended destination.
isSafeToMove(const TargetInstrInfo * TII,AliasAnalysis * AA,bool & SawStore) const1347 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1348                                 AliasAnalysis *AA,
1349                                 bool &SawStore) const {
1350   // Ignore stuff that we obviously can't move.
1351   //
1352   // Treat volatile loads as stores. This is not strictly necessary for
1353   // volatiles, but it is required for atomic loads. It is not allowed to move
1354   // a load across an atomic load with Ordering > Monotonic.
1355   if (mayStore() || isCall() ||
1356       (mayLoad() && hasOrderedMemoryRef())) {
1357     SawStore = true;
1358     return false;
1359   }
1360 
1361   if (isPosition() || isDebugValue() || isTerminator() ||
1362       hasUnmodeledSideEffects())
1363     return false;
1364 
1365   // See if this instruction does a load.  If so, we have to guarantee that the
1366   // loaded value doesn't change between the load and the its intended
1367   // destination. The check for isInvariantLoad gives the targe the chance to
1368   // classify the load as always returning a constant, e.g. a constant pool
1369   // load.
1370   if (mayLoad() && !isInvariantLoad(AA))
1371     // Otherwise, this is a real load.  If there is a store between the load and
1372     // end of block, we can't move it.
1373     return !SawStore;
1374 
1375   return true;
1376 }
1377 
1378 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1379 /// or volatile memory reference, or if the information describing the memory
1380 /// reference is not available. Return false if it is known to have no ordered
1381 /// memory references.
hasOrderedMemoryRef() const1382 bool MachineInstr::hasOrderedMemoryRef() const {
1383   // An instruction known never to access memory won't have a volatile access.
1384   if (!mayStore() &&
1385       !mayLoad() &&
1386       !isCall() &&
1387       !hasUnmodeledSideEffects())
1388     return false;
1389 
1390   // Otherwise, if the instruction has no memory reference information,
1391   // conservatively assume it wasn't preserved.
1392   if (memoperands_empty())
1393     return true;
1394 
1395   // Check the memory reference information for ordered references.
1396   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1397     if (!(*I)->isUnordered())
1398       return true;
1399 
1400   return false;
1401 }
1402 
1403 /// isInvariantLoad - Return true if this instruction is loading from a
1404 /// location whose value is invariant across the function.  For example,
1405 /// loading a value from the constant pool or from the argument area
1406 /// of a function if it does not change.  This should only return true of
1407 /// *all* loads the instruction does are invariant (if it does multiple loads).
isInvariantLoad(AliasAnalysis * AA) const1408 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1409   // If the instruction doesn't load at all, it isn't an invariant load.
1410   if (!mayLoad())
1411     return false;
1412 
1413   // If the instruction has lost its memoperands, conservatively assume that
1414   // it may not be an invariant load.
1415   if (memoperands_empty())
1416     return false;
1417 
1418   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1419 
1420   for (mmo_iterator I = memoperands_begin(),
1421        E = memoperands_end(); I != E; ++I) {
1422     if ((*I)->isVolatile()) return false;
1423     if ((*I)->isStore()) return false;
1424     if ((*I)->isInvariant()) return true;
1425 
1426 
1427     // A load from a constant PseudoSourceValue is invariant.
1428     if (const PseudoSourceValue *PSV = (*I)->getPseudoValue())
1429       if (PSV->isConstant(MFI))
1430         continue;
1431 
1432     if (const Value *V = (*I)->getValue()) {
1433       // If we have an AliasAnalysis, ask it whether the memory is constant.
1434       if (AA && AA->pointsToConstantMemory(
1435                       AliasAnalysis::Location(V, (*I)->getSize(),
1436                                               (*I)->getAAInfo())))
1437         continue;
1438     }
1439 
1440     // Otherwise assume conservatively.
1441     return false;
1442   }
1443 
1444   // Everything checks out.
1445   return true;
1446 }
1447 
1448 /// isConstantValuePHI - If the specified instruction is a PHI that always
1449 /// merges together the same virtual register, return the register, otherwise
1450 /// return 0.
isConstantValuePHI() const1451 unsigned MachineInstr::isConstantValuePHI() const {
1452   if (!isPHI())
1453     return 0;
1454   assert(getNumOperands() >= 3 &&
1455          "It's illegal to have a PHI without source operands");
1456 
1457   unsigned Reg = getOperand(1).getReg();
1458   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1459     if (getOperand(i).getReg() != Reg)
1460       return 0;
1461   return Reg;
1462 }
1463 
hasUnmodeledSideEffects() const1464 bool MachineInstr::hasUnmodeledSideEffects() const {
1465   if (hasProperty(MCID::UnmodeledSideEffects))
1466     return true;
1467   if (isInlineAsm()) {
1468     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1469     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1470       return true;
1471   }
1472 
1473   return false;
1474 }
1475 
1476 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1477 ///
allDefsAreDead() const1478 bool MachineInstr::allDefsAreDead() const {
1479   for (const MachineOperand &MO : operands()) {
1480     if (!MO.isReg() || MO.isUse())
1481       continue;
1482     if (!MO.isDead())
1483       return false;
1484   }
1485   return true;
1486 }
1487 
1488 /// copyImplicitOps - Copy implicit register operands from specified
1489 /// instruction to this instruction.
copyImplicitOps(MachineFunction & MF,const MachineInstr * MI)1490 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1491                                    const MachineInstr *MI) {
1492   for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1493        i != e; ++i) {
1494     const MachineOperand &MO = MI->getOperand(i);
1495     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1496       addOperand(MF, MO);
1497   }
1498 }
1499 
dump() const1500 void MachineInstr::dump() const {
1501 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1502   dbgs() << "  " << *this;
1503 #endif
1504 }
1505 
print(raw_ostream & OS,bool SkipOpers) const1506 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const {
1507   // We can be a bit tidier if we know the MachineFunction.
1508   const MachineFunction *MF = nullptr;
1509   const TargetRegisterInfo *TRI = nullptr;
1510   const MachineRegisterInfo *MRI = nullptr;
1511   const TargetInstrInfo *TII = nullptr;
1512   if (const MachineBasicBlock *MBB = getParent()) {
1513     MF = MBB->getParent();
1514     if (MF) {
1515       MRI = &MF->getRegInfo();
1516       TRI = MF->getSubtarget().getRegisterInfo();
1517       TII = MF->getSubtarget().getInstrInfo();
1518     }
1519   }
1520 
1521   // Save a list of virtual registers.
1522   SmallVector<unsigned, 8> VirtRegs;
1523 
1524   // Print explicitly defined operands on the left of an assignment syntax.
1525   unsigned StartOp = 0, e = getNumOperands();
1526   for (; StartOp < e && getOperand(StartOp).isReg() &&
1527          getOperand(StartOp).isDef() &&
1528          !getOperand(StartOp).isImplicit();
1529        ++StartOp) {
1530     if (StartOp != 0) OS << ", ";
1531     getOperand(StartOp).print(OS, TRI);
1532     unsigned Reg = getOperand(StartOp).getReg();
1533     if (TargetRegisterInfo::isVirtualRegister(Reg))
1534       VirtRegs.push_back(Reg);
1535   }
1536 
1537   if (StartOp != 0)
1538     OS << " = ";
1539 
1540   // Print the opcode name.
1541   if (TII)
1542     OS << TII->getName(getOpcode());
1543   else
1544     OS << "UNKNOWN";
1545 
1546   if (SkipOpers)
1547     return;
1548 
1549   // Print the rest of the operands.
1550   bool OmittedAnyCallClobbers = false;
1551   bool FirstOp = true;
1552   unsigned AsmDescOp = ~0u;
1553   unsigned AsmOpCount = 0;
1554 
1555   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1556     // Print asm string.
1557     OS << " ";
1558     getOperand(InlineAsm::MIOp_AsmString).print(OS, TRI);
1559 
1560     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1561     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1562     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1563       OS << " [sideeffect]";
1564     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1565       OS << " [mayload]";
1566     if (ExtraInfo & InlineAsm::Extra_MayStore)
1567       OS << " [maystore]";
1568     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1569       OS << " [alignstack]";
1570     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1571       OS << " [attdialect]";
1572     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1573       OS << " [inteldialect]";
1574 
1575     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1576     FirstOp = false;
1577   }
1578 
1579 
1580   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1581     const MachineOperand &MO = getOperand(i);
1582 
1583     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1584       VirtRegs.push_back(MO.getReg());
1585 
1586     // Omit call-clobbered registers which aren't used anywhere. This makes
1587     // call instructions much less noisy on targets where calls clobber lots
1588     // of registers. Don't rely on MO.isDead() because we may be called before
1589     // LiveVariables is run, or we may be looking at a non-allocatable reg.
1590     if (MRI && isCall() &&
1591         MO.isReg() && MO.isImplicit() && MO.isDef()) {
1592       unsigned Reg = MO.getReg();
1593       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1594         if (MRI->use_empty(Reg)) {
1595           bool HasAliasLive = false;
1596           for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
1597             unsigned AliasReg = *AI;
1598             if (!MRI->use_empty(AliasReg)) {
1599               HasAliasLive = true;
1600               break;
1601             }
1602           }
1603           if (!HasAliasLive) {
1604             OmittedAnyCallClobbers = true;
1605             continue;
1606           }
1607         }
1608       }
1609     }
1610 
1611     if (FirstOp) FirstOp = false; else OS << ",";
1612     OS << " ";
1613     if (i < getDesc().NumOperands) {
1614       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1615       if (MCOI.isPredicate())
1616         OS << "pred:";
1617       if (MCOI.isOptionalDef())
1618         OS << "opt:";
1619     }
1620     if (isDebugValue() && MO.isMetadata()) {
1621       // Pretty print DBG_VALUE instructions.
1622       DIVariable DIV = dyn_cast<MDLocalVariable>(MO.getMetadata());
1623       if (DIV && !DIV->getName().empty())
1624         OS << "!\"" << DIV->getName() << '\"';
1625       else
1626         MO.print(OS, TRI);
1627     } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1628       OS << TRI->getSubRegIndexName(MO.getImm());
1629     } else if (i == AsmDescOp && MO.isImm()) {
1630       // Pretty print the inline asm operand descriptor.
1631       OS << '$' << AsmOpCount++;
1632       unsigned Flag = MO.getImm();
1633       switch (InlineAsm::getKind(Flag)) {
1634       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1635       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1636       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1637       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1638       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1639       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1640       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1641       }
1642 
1643       unsigned RCID = 0;
1644       if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1645         if (TRI) {
1646           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1647         } else
1648           OS << ":RC" << RCID;
1649       }
1650 
1651       unsigned TiedTo = 0;
1652       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1653         OS << " tiedto:$" << TiedTo;
1654 
1655       OS << ']';
1656 
1657       // Compute the index of the next operand descriptor.
1658       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1659     } else
1660       MO.print(OS, TRI);
1661   }
1662 
1663   // Briefly indicate whether any call clobbers were omitted.
1664   if (OmittedAnyCallClobbers) {
1665     if (!FirstOp) OS << ",";
1666     OS << " ...";
1667   }
1668 
1669   bool HaveSemi = false;
1670   const unsigned PrintableFlags = FrameSetup;
1671   if (Flags & PrintableFlags) {
1672     if (!HaveSemi) OS << ";"; HaveSemi = true;
1673     OS << " flags: ";
1674 
1675     if (Flags & FrameSetup)
1676       OS << "FrameSetup";
1677   }
1678 
1679   if (!memoperands_empty()) {
1680     if (!HaveSemi) OS << ";"; HaveSemi = true;
1681 
1682     OS << " mem:";
1683     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1684          i != e; ++i) {
1685       OS << **i;
1686       if (std::next(i) != e)
1687         OS << " ";
1688     }
1689   }
1690 
1691   // Print the regclass of any virtual registers encountered.
1692   if (MRI && !VirtRegs.empty()) {
1693     if (!HaveSemi) OS << ";"; HaveSemi = true;
1694     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1695       const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1696       OS << " " << TRI->getRegClassName(RC)
1697          << ':' << PrintReg(VirtRegs[i]);
1698       for (unsigned j = i+1; j != VirtRegs.size();) {
1699         if (MRI->getRegClass(VirtRegs[j]) != RC) {
1700           ++j;
1701           continue;
1702         }
1703         if (VirtRegs[i] != VirtRegs[j])
1704           OS << "," << PrintReg(VirtRegs[j]);
1705         VirtRegs.erase(VirtRegs.begin()+j);
1706       }
1707     }
1708   }
1709 
1710   // Print debug location information.
1711   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1712     if (!HaveSemi) OS << ";";
1713     DIVariable DV = cast<MDLocalVariable>(getOperand(e - 2).getMetadata());
1714     OS << " line no:" <<  DV->getLine();
1715     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1716       DebugLoc InlinedAtDL(InlinedAt);
1717       if (InlinedAtDL && MF) {
1718         OS << " inlined @[ ";
1719 	InlinedAtDL.print(OS);
1720         OS << " ]";
1721       }
1722     }
1723     if (isIndirectDebugValue())
1724       OS << " indirect";
1725   } else if (debugLoc && MF) {
1726     if (!HaveSemi) OS << ";";
1727     OS << " dbg:";
1728     debugLoc.print(OS);
1729   }
1730 
1731   OS << '\n';
1732 }
1733 
addRegisterKilled(unsigned IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1734 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1735                                      const TargetRegisterInfo *RegInfo,
1736                                      bool AddIfNotFound) {
1737   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1738   bool hasAliases = isPhysReg &&
1739     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1740   bool Found = false;
1741   SmallVector<unsigned,4> DeadOps;
1742   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1743     MachineOperand &MO = getOperand(i);
1744     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1745       continue;
1746     unsigned Reg = MO.getReg();
1747     if (!Reg)
1748       continue;
1749 
1750     if (Reg == IncomingReg) {
1751       if (!Found) {
1752         if (MO.isKill())
1753           // The register is already marked kill.
1754           return true;
1755         if (isPhysReg && isRegTiedToDefOperand(i))
1756           // Two-address uses of physregs must not be marked kill.
1757           return true;
1758         MO.setIsKill();
1759         Found = true;
1760       }
1761     } else if (hasAliases && MO.isKill() &&
1762                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1763       // A super-register kill already exists.
1764       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1765         return true;
1766       if (RegInfo->isSubRegister(IncomingReg, Reg))
1767         DeadOps.push_back(i);
1768     }
1769   }
1770 
1771   // Trim unneeded kill operands.
1772   while (!DeadOps.empty()) {
1773     unsigned OpIdx = DeadOps.back();
1774     if (getOperand(OpIdx).isImplicit())
1775       RemoveOperand(OpIdx);
1776     else
1777       getOperand(OpIdx).setIsKill(false);
1778     DeadOps.pop_back();
1779   }
1780 
1781   // If not found, this means an alias of one of the operands is killed. Add a
1782   // new implicit operand if required.
1783   if (!Found && AddIfNotFound) {
1784     addOperand(MachineOperand::CreateReg(IncomingReg,
1785                                          false /*IsDef*/,
1786                                          true  /*IsImp*/,
1787                                          true  /*IsKill*/));
1788     return true;
1789   }
1790   return Found;
1791 }
1792 
clearRegisterKills(unsigned Reg,const TargetRegisterInfo * RegInfo)1793 void MachineInstr::clearRegisterKills(unsigned Reg,
1794                                       const TargetRegisterInfo *RegInfo) {
1795   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1796     RegInfo = nullptr;
1797   for (MachineOperand &MO : operands()) {
1798     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1799       continue;
1800     unsigned OpReg = MO.getReg();
1801     if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
1802       MO.setIsKill(false);
1803   }
1804 }
1805 
addRegisterDead(unsigned Reg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1806 bool MachineInstr::addRegisterDead(unsigned Reg,
1807                                    const TargetRegisterInfo *RegInfo,
1808                                    bool AddIfNotFound) {
1809   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
1810   bool hasAliases = isPhysReg &&
1811     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1812   bool Found = false;
1813   SmallVector<unsigned,4> DeadOps;
1814   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1815     MachineOperand &MO = getOperand(i);
1816     if (!MO.isReg() || !MO.isDef())
1817       continue;
1818     unsigned MOReg = MO.getReg();
1819     if (!MOReg)
1820       continue;
1821 
1822     if (MOReg == Reg) {
1823       MO.setIsDead();
1824       Found = true;
1825     } else if (hasAliases && MO.isDead() &&
1826                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1827       // There exists a super-register that's marked dead.
1828       if (RegInfo->isSuperRegister(Reg, MOReg))
1829         return true;
1830       if (RegInfo->isSubRegister(Reg, MOReg))
1831         DeadOps.push_back(i);
1832     }
1833   }
1834 
1835   // Trim unneeded dead operands.
1836   while (!DeadOps.empty()) {
1837     unsigned OpIdx = DeadOps.back();
1838     if (getOperand(OpIdx).isImplicit())
1839       RemoveOperand(OpIdx);
1840     else
1841       getOperand(OpIdx).setIsDead(false);
1842     DeadOps.pop_back();
1843   }
1844 
1845   // If not found, this means an alias of one of the operands is dead. Add a
1846   // new implicit operand if required.
1847   if (Found || !AddIfNotFound)
1848     return Found;
1849 
1850   addOperand(MachineOperand::CreateReg(Reg,
1851                                        true  /*IsDef*/,
1852                                        true  /*IsImp*/,
1853                                        false /*IsKill*/,
1854                                        true  /*IsDead*/));
1855   return true;
1856 }
1857 
clearRegisterDeads(unsigned Reg)1858 void MachineInstr::clearRegisterDeads(unsigned Reg) {
1859   for (MachineOperand &MO : operands()) {
1860     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1861       continue;
1862     MO.setIsDead(false);
1863   }
1864 }
1865 
addRegisterDefReadUndef(unsigned Reg)1866 void MachineInstr::addRegisterDefReadUndef(unsigned Reg) {
1867   for (MachineOperand &MO : operands()) {
1868     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1869       continue;
1870     MO.setIsUndef();
1871   }
1872 }
1873 
addRegisterDefined(unsigned Reg,const TargetRegisterInfo * RegInfo)1874 void MachineInstr::addRegisterDefined(unsigned Reg,
1875                                       const TargetRegisterInfo *RegInfo) {
1876   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1877     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
1878     if (MO)
1879       return;
1880   } else {
1881     for (const MachineOperand &MO : operands()) {
1882       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1883           MO.getSubReg() == 0)
1884         return;
1885     }
1886   }
1887   addOperand(MachineOperand::CreateReg(Reg,
1888                                        true  /*IsDef*/,
1889                                        true  /*IsImp*/));
1890 }
1891 
setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,const TargetRegisterInfo & TRI)1892 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1893                                          const TargetRegisterInfo &TRI) {
1894   bool HasRegMask = false;
1895   for (MachineOperand &MO : operands()) {
1896     if (MO.isRegMask()) {
1897       HasRegMask = true;
1898       continue;
1899     }
1900     if (!MO.isReg() || !MO.isDef()) continue;
1901     unsigned Reg = MO.getReg();
1902     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1903     // If there are no uses, including partial uses, the def is dead.
1904     if (std::none_of(UsedRegs.begin(), UsedRegs.end(),
1905                      [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
1906       MO.setIsDead();
1907   }
1908 
1909   // This is a call with a register mask operand.
1910   // Mask clobbers are always dead, so add defs for the non-dead defines.
1911   if (HasRegMask)
1912     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1913          I != E; ++I)
1914       addRegisterDefined(*I, &TRI);
1915 }
1916 
1917 unsigned
getHashValue(const MachineInstr * const & MI)1918 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1919   // Build up a buffer of hash code components.
1920   SmallVector<size_t, 8> HashComponents;
1921   HashComponents.reserve(MI->getNumOperands() + 1);
1922   HashComponents.push_back(MI->getOpcode());
1923   for (const MachineOperand &MO : MI->operands()) {
1924     if (MO.isReg() && MO.isDef() &&
1925         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1926       continue;  // Skip virtual register defs.
1927 
1928     HashComponents.push_back(hash_value(MO));
1929   }
1930   return hash_combine_range(HashComponents.begin(), HashComponents.end());
1931 }
1932 
emitError(StringRef Msg) const1933 void MachineInstr::emitError(StringRef Msg) const {
1934   // Find the source location cookie.
1935   unsigned LocCookie = 0;
1936   const MDNode *LocMD = nullptr;
1937   for (unsigned i = getNumOperands(); i != 0; --i) {
1938     if (getOperand(i-1).isMetadata() &&
1939         (LocMD = getOperand(i-1).getMetadata()) &&
1940         LocMD->getNumOperands() != 0) {
1941       if (const ConstantInt *CI =
1942               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
1943         LocCookie = CI->getZExtValue();
1944         break;
1945       }
1946     }
1947   }
1948 
1949   if (const MachineBasicBlock *MBB = getParent())
1950     if (const MachineFunction *MF = MBB->getParent())
1951       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1952   report_fatal_error(Msg);
1953 }
1954