1 /* 2 * Copyright (C) 2008 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package android.hardware; 18 19 import android.annotation.SystemApi; 20 import android.os.Build; 21 import android.os.Handler; 22 import android.util.Log; 23 import android.util.SparseArray; 24 25 import java.util.ArrayList; 26 import java.util.Collections; 27 import java.util.List; 28 29 /** 30 * <p> 31 * SensorManager lets you access the device's {@link android.hardware.Sensor 32 * sensors}. Get an instance of this class by calling 33 * {@link android.content.Context#getSystemService(java.lang.String) 34 * Context.getSystemService()} with the argument 35 * {@link android.content.Context#SENSOR_SERVICE}. 36 * </p> 37 * <p> 38 * Always make sure to disable sensors you don't need, especially when your 39 * activity is paused. Failing to do so can drain the battery in just a few 40 * hours. Note that the system will <i>not</i> disable sensors automatically when 41 * the screen turns off. 42 * </p> 43 * <p class="note"> 44 * Note: Don't use this mechanism with a Trigger Sensor, have a look 45 * at {@link TriggerEventListener}. {@link Sensor#TYPE_SIGNIFICANT_MOTION} 46 * is an example of a trigger sensor. 47 * </p> 48 * <pre class="prettyprint"> 49 * public class SensorActivity extends Activity, implements SensorEventListener { 50 * private final SensorManager mSensorManager; 51 * private final Sensor mAccelerometer; 52 * 53 * public SensorActivity() { 54 * mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE); 55 * mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER); 56 * } 57 * 58 * protected void onResume() { 59 * super.onResume(); 60 * mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL); 61 * } 62 * 63 * protected void onPause() { 64 * super.onPause(); 65 * mSensorManager.unregisterListener(this); 66 * } 67 * 68 * public void onAccuracyChanged(Sensor sensor, int accuracy) { 69 * } 70 * 71 * public void onSensorChanged(SensorEvent event) { 72 * } 73 * } 74 * </pre> 75 * 76 * @see SensorEventListener 77 * @see SensorEvent 78 * @see Sensor 79 * 80 */ 81 public abstract class SensorManager { 82 /** @hide */ 83 protected static final String TAG = "SensorManager"; 84 85 private static final float[] mTempMatrix = new float[16]; 86 87 // Cached lists of sensors by type. Guarded by mSensorListByType. 88 private final SparseArray<List<Sensor>> mSensorListByType = 89 new SparseArray<List<Sensor>>(); 90 91 // Legacy sensor manager implementation. Guarded by mSensorListByType during initialization. 92 private LegacySensorManager mLegacySensorManager; 93 94 /* NOTE: sensor IDs must be a power of 2 */ 95 96 /** 97 * A constant describing an orientation sensor. See 98 * {@link android.hardware.SensorListener SensorListener} for more details. 99 * 100 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 101 */ 102 @Deprecated 103 public static final int SENSOR_ORIENTATION = 1 << 0; 104 105 /** 106 * A constant describing an accelerometer. See 107 * {@link android.hardware.SensorListener SensorListener} for more details. 108 * 109 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 110 */ 111 @Deprecated 112 public static final int SENSOR_ACCELEROMETER = 1 << 1; 113 114 /** 115 * A constant describing a temperature sensor See 116 * {@link android.hardware.SensorListener SensorListener} for more details. 117 * 118 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 119 */ 120 @Deprecated 121 public static final int SENSOR_TEMPERATURE = 1 << 2; 122 123 /** 124 * A constant describing a magnetic sensor See 125 * {@link android.hardware.SensorListener SensorListener} for more details. 126 * 127 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 128 */ 129 @Deprecated 130 public static final int SENSOR_MAGNETIC_FIELD = 1 << 3; 131 132 /** 133 * A constant describing an ambient light sensor See 134 * {@link android.hardware.SensorListener SensorListener} for more details. 135 * 136 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 137 */ 138 @Deprecated 139 public static final int SENSOR_LIGHT = 1 << 4; 140 141 /** 142 * A constant describing a proximity sensor See 143 * {@link android.hardware.SensorListener SensorListener} for more details. 144 * 145 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 146 */ 147 @Deprecated 148 public static final int SENSOR_PROXIMITY = 1 << 5; 149 150 /** 151 * A constant describing a Tricorder See 152 * {@link android.hardware.SensorListener SensorListener} for more details. 153 * 154 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 155 */ 156 @Deprecated 157 public static final int SENSOR_TRICORDER = 1 << 6; 158 159 /** 160 * A constant describing an orientation sensor. See 161 * {@link android.hardware.SensorListener SensorListener} for more details. 162 * 163 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 164 */ 165 @Deprecated 166 public static final int SENSOR_ORIENTATION_RAW = 1 << 7; 167 168 /** 169 * A constant that includes all sensors 170 * 171 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 172 */ 173 @Deprecated 174 public static final int SENSOR_ALL = 0x7F; 175 176 /** 177 * Smallest sensor ID 178 * 179 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 180 */ 181 @Deprecated 182 public static final int SENSOR_MIN = SENSOR_ORIENTATION; 183 184 /** 185 * Largest sensor ID 186 * 187 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 188 */ 189 @Deprecated 190 public static final int SENSOR_MAX = ((SENSOR_ALL + 1)>>1); 191 192 193 /** 194 * Index of the X value in the array returned by 195 * {@link android.hardware.SensorListener#onSensorChanged} 196 * 197 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 198 */ 199 @Deprecated 200 public static final int DATA_X = 0; 201 202 /** 203 * Index of the Y value in the array returned by 204 * {@link android.hardware.SensorListener#onSensorChanged} 205 * 206 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 207 */ 208 @Deprecated 209 public static final int DATA_Y = 1; 210 211 /** 212 * Index of the Z value in the array returned by 213 * {@link android.hardware.SensorListener#onSensorChanged} 214 * 215 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 216 */ 217 @Deprecated 218 public static final int DATA_Z = 2; 219 220 /** 221 * Offset to the untransformed values in the array returned by 222 * {@link android.hardware.SensorListener#onSensorChanged} 223 * 224 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 225 */ 226 @Deprecated 227 public static final int RAW_DATA_INDEX = 3; 228 229 /** 230 * Index of the untransformed X value in the array returned by 231 * {@link android.hardware.SensorListener#onSensorChanged} 232 * 233 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 234 */ 235 @Deprecated 236 public static final int RAW_DATA_X = 3; 237 238 /** 239 * Index of the untransformed Y value in the array returned by 240 * {@link android.hardware.SensorListener#onSensorChanged} 241 * 242 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 243 */ 244 @Deprecated 245 public static final int RAW_DATA_Y = 4; 246 247 /** 248 * Index of the untransformed Z value in the array returned by 249 * {@link android.hardware.SensorListener#onSensorChanged} 250 * 251 * @deprecated use {@link android.hardware.Sensor Sensor} instead. 252 */ 253 @Deprecated 254 public static final int RAW_DATA_Z = 5; 255 256 /** Standard gravity (g) on Earth. This value is equivalent to 1G */ 257 public static final float STANDARD_GRAVITY = 9.80665f; 258 259 /** Sun's gravity in SI units (m/s^2) */ 260 public static final float GRAVITY_SUN = 275.0f; 261 /** Mercury's gravity in SI units (m/s^2) */ 262 public static final float GRAVITY_MERCURY = 3.70f; 263 /** Venus' gravity in SI units (m/s^2) */ 264 public static final float GRAVITY_VENUS = 8.87f; 265 /** Earth's gravity in SI units (m/s^2) */ 266 public static final float GRAVITY_EARTH = 9.80665f; 267 /** The Moon's gravity in SI units (m/s^2) */ 268 public static final float GRAVITY_MOON = 1.6f; 269 /** Mars' gravity in SI units (m/s^2) */ 270 public static final float GRAVITY_MARS = 3.71f; 271 /** Jupiter's gravity in SI units (m/s^2) */ 272 public static final float GRAVITY_JUPITER = 23.12f; 273 /** Saturn's gravity in SI units (m/s^2) */ 274 public static final float GRAVITY_SATURN = 8.96f; 275 /** Uranus' gravity in SI units (m/s^2) */ 276 public static final float GRAVITY_URANUS = 8.69f; 277 /** Neptune's gravity in SI units (m/s^2) */ 278 public static final float GRAVITY_NEPTUNE = 11.0f; 279 /** Pluto's gravity in SI units (m/s^2) */ 280 public static final float GRAVITY_PLUTO = 0.6f; 281 /** Gravity (estimate) on the first Death Star in Empire units (m/s^2) */ 282 public static final float GRAVITY_DEATH_STAR_I = 0.000000353036145f; 283 /** Gravity on the island */ 284 public static final float GRAVITY_THE_ISLAND = 4.815162342f; 285 286 287 /** Maximum magnetic field on Earth's surface */ 288 public static final float MAGNETIC_FIELD_EARTH_MAX = 60.0f; 289 /** Minimum magnetic field on Earth's surface */ 290 public static final float MAGNETIC_FIELD_EARTH_MIN = 30.0f; 291 292 293 /** Standard atmosphere, or average sea-level pressure in hPa (millibar) */ 294 public static final float PRESSURE_STANDARD_ATMOSPHERE = 1013.25f; 295 296 297 /** Maximum luminance of sunlight in lux */ 298 public static final float LIGHT_SUNLIGHT_MAX = 120000.0f; 299 /** luminance of sunlight in lux */ 300 public static final float LIGHT_SUNLIGHT = 110000.0f; 301 /** luminance in shade in lux */ 302 public static final float LIGHT_SHADE = 20000.0f; 303 /** luminance under an overcast sky in lux */ 304 public static final float LIGHT_OVERCAST = 10000.0f; 305 /** luminance at sunrise in lux */ 306 public static final float LIGHT_SUNRISE = 400.0f; 307 /** luminance under a cloudy sky in lux */ 308 public static final float LIGHT_CLOUDY = 100.0f; 309 /** luminance at night with full moon in lux */ 310 public static final float LIGHT_FULLMOON = 0.25f; 311 /** luminance at night with no moon in lux*/ 312 public static final float LIGHT_NO_MOON = 0.001f; 313 314 315 /** get sensor data as fast as possible */ 316 public static final int SENSOR_DELAY_FASTEST = 0; 317 /** rate suitable for games */ 318 public static final int SENSOR_DELAY_GAME = 1; 319 /** rate suitable for the user interface */ 320 public static final int SENSOR_DELAY_UI = 2; 321 /** rate (default) suitable for screen orientation changes */ 322 public static final int SENSOR_DELAY_NORMAL = 3; 323 324 325 /** 326 * The values returned by this sensor cannot be trusted because the sensor 327 * had no contact with what it was measuring (for example, the heart rate 328 * monitor is not in contact with the user). 329 */ 330 public static final int SENSOR_STATUS_NO_CONTACT = -1; 331 332 /** 333 * The values returned by this sensor cannot be trusted, calibration is 334 * needed or the environment doesn't allow readings 335 */ 336 public static final int SENSOR_STATUS_UNRELIABLE = 0; 337 338 /** 339 * This sensor is reporting data with low accuracy, calibration with the 340 * environment is needed 341 */ 342 public static final int SENSOR_STATUS_ACCURACY_LOW = 1; 343 344 /** 345 * This sensor is reporting data with an average level of accuracy, 346 * calibration with the environment may improve the readings 347 */ 348 public static final int SENSOR_STATUS_ACCURACY_MEDIUM = 2; 349 350 /** This sensor is reporting data with maximum accuracy */ 351 public static final int SENSOR_STATUS_ACCURACY_HIGH = 3; 352 353 /** see {@link #remapCoordinateSystem} */ 354 public static final int AXIS_X = 1; 355 /** see {@link #remapCoordinateSystem} */ 356 public static final int AXIS_Y = 2; 357 /** see {@link #remapCoordinateSystem} */ 358 public static final int AXIS_Z = 3; 359 /** see {@link #remapCoordinateSystem} */ 360 public static final int AXIS_MINUS_X = AXIS_X | 0x80; 361 /** see {@link #remapCoordinateSystem} */ 362 public static final int AXIS_MINUS_Y = AXIS_Y | 0x80; 363 /** see {@link #remapCoordinateSystem} */ 364 public static final int AXIS_MINUS_Z = AXIS_Z | 0x80; 365 366 367 /** 368 * {@hide} 369 */ SensorManager()370 public SensorManager() { 371 } 372 373 /** 374 * Gets the full list of sensors that are available. 375 * @hide 376 */ getFullSensorList()377 protected abstract List<Sensor> getFullSensorList(); 378 379 /** 380 * @return available sensors. 381 * @deprecated This method is deprecated, use 382 * {@link SensorManager#getSensorList(int)} instead 383 */ 384 @Deprecated getSensors()385 public int getSensors() { 386 return getLegacySensorManager().getSensors(); 387 } 388 389 /** 390 * Use this method to get the list of available sensors of a certain type. 391 * Make multiple calls to get sensors of different types or use 392 * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all the 393 * sensors. 394 * 395 * <p class="note"> 396 * NOTE: Both wake-up and non wake-up sensors matching the given type are 397 * returned. Check {@link Sensor#isWakeUpSensor()} to know the wake-up properties 398 * of the returned {@link Sensor}. 399 * </p> 400 * 401 * @param type 402 * of sensors requested 403 * 404 * @return a list of sensors matching the asked type. 405 * 406 * @see #getDefaultSensor(int) 407 * @see Sensor 408 */ getSensorList(int type)409 public List<Sensor> getSensorList(int type) { 410 // cache the returned lists the first time 411 List<Sensor> list; 412 final List<Sensor> fullList = getFullSensorList(); 413 synchronized (mSensorListByType) { 414 list = mSensorListByType.get(type); 415 if (list == null) { 416 if (type == Sensor.TYPE_ALL) { 417 list = fullList; 418 } else { 419 list = new ArrayList<Sensor>(); 420 for (Sensor i : fullList) { 421 if (i.getType() == type) 422 list.add(i); 423 } 424 } 425 list = Collections.unmodifiableList(list); 426 mSensorListByType.append(type, list); 427 } 428 } 429 return list; 430 } 431 432 /** 433 * Use this method to get the default sensor for a given type. Note that the 434 * returned sensor could be a composite sensor, and its data could be 435 * averaged or filtered. If you need to access the raw sensors use 436 * {@link SensorManager#getSensorList(int) getSensorList}. 437 * 438 * @param type 439 * of sensors requested 440 * 441 * @return the default sensor matching the requested type if one exists and the application 442 * has the necessary permissions, or null otherwise. 443 * 444 * @see #getSensorList(int) 445 * @see Sensor 446 */ getDefaultSensor(int type)447 public Sensor getDefaultSensor(int type) { 448 // TODO: need to be smarter, for now, just return the 1st sensor 449 List<Sensor> l = getSensorList(type); 450 boolean wakeUpSensor = false; 451 // For the following sensor types, return a wake-up sensor. These types are by default 452 // defined as wake-up sensors. For the rest of the SDK defined sensor types return a 453 // non_wake-up version. 454 if (type == Sensor.TYPE_PROXIMITY || type == Sensor.TYPE_SIGNIFICANT_MOTION || 455 type == Sensor.TYPE_TILT_DETECTOR || type == Sensor.TYPE_WAKE_GESTURE || 456 type == Sensor.TYPE_GLANCE_GESTURE || type == Sensor.TYPE_PICK_UP_GESTURE || 457 type == Sensor.TYPE_WRIST_TILT_GESTURE) { 458 wakeUpSensor = true; 459 } 460 461 for (Sensor sensor : l) { 462 if (sensor.isWakeUpSensor() == wakeUpSensor) return sensor; 463 } 464 return null; 465 } 466 467 /** 468 * Return a Sensor with the given type and wakeUp properties. If multiple sensors of this 469 * type exist, any one of them may be returned. 470 * <p> 471 * For example, 472 * <ul> 473 * <li>getDefaultSensor({@link Sensor#TYPE_ACCELEROMETER}, true) returns a wake-up accelerometer 474 * sensor if it exists. </li> 475 * <li>getDefaultSensor({@link Sensor#TYPE_PROXIMITY}, false) returns a non wake-up proximity 476 * sensor if it exists. </li> 477 * <li>getDefaultSensor({@link Sensor#TYPE_PROXIMITY}, true) returns a wake-up proximity sensor 478 * which is the same as the Sensor returned by {@link #getDefaultSensor(int)}. </li> 479 * </ul> 480 * </p> 481 * <p class="note"> 482 * Note: Sensors like {@link Sensor#TYPE_PROXIMITY} and {@link Sensor#TYPE_SIGNIFICANT_MOTION} 483 * are declared as wake-up sensors by default. 484 * </p> 485 * @param type 486 * type of sensor requested 487 * @param wakeUp 488 * flag to indicate whether the Sensor is a wake-up or non wake-up sensor. 489 * @return the default sensor matching the requested type and wakeUp properties if one exists 490 * and the application has the necessary permissions, or null otherwise. 491 * @see Sensor#isWakeUpSensor() 492 */ getDefaultSensor(int type, boolean wakeUp)493 public Sensor getDefaultSensor(int type, boolean wakeUp) { 494 List<Sensor> l = getSensorList(type); 495 for (Sensor sensor : l) { 496 if (sensor.isWakeUpSensor() == wakeUp) 497 return sensor; 498 } 499 return null; 500 } 501 502 /** 503 * Registers a listener for given sensors. 504 * 505 * @deprecated This method is deprecated, use 506 * {@link SensorManager#registerListener(SensorEventListener, Sensor, int)} 507 * instead. 508 * 509 * @param listener 510 * sensor listener object 511 * 512 * @param sensors 513 * a bit masks of the sensors to register to 514 * 515 * @return <code>true</code> if the sensor is supported and successfully 516 * enabled 517 */ 518 @Deprecated registerListener(SensorListener listener, int sensors)519 public boolean registerListener(SensorListener listener, int sensors) { 520 return registerListener(listener, sensors, SENSOR_DELAY_NORMAL); 521 } 522 523 /** 524 * Registers a SensorListener for given sensors. 525 * 526 * @deprecated This method is deprecated, use 527 * {@link SensorManager#registerListener(SensorEventListener, Sensor, int)} 528 * instead. 529 * 530 * @param listener 531 * sensor listener object 532 * 533 * @param sensors 534 * a bit masks of the sensors to register to 535 * 536 * @param rate 537 * rate of events. This is only a hint to the system. events may be 538 * received faster or slower than the specified rate. Usually events 539 * are received faster. The value must be one of 540 * {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, 541 * {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}. 542 * 543 * @return <code>true</code> if the sensor is supported and successfully 544 * enabled 545 */ 546 @Deprecated registerListener(SensorListener listener, int sensors, int rate)547 public boolean registerListener(SensorListener listener, int sensors, int rate) { 548 return getLegacySensorManager().registerListener(listener, sensors, rate); 549 } 550 551 /** 552 * Unregisters a listener for all sensors. 553 * 554 * @deprecated This method is deprecated, use 555 * {@link SensorManager#unregisterListener(SensorEventListener)} 556 * instead. 557 * 558 * @param listener 559 * a SensorListener object 560 */ 561 @Deprecated unregisterListener(SensorListener listener)562 public void unregisterListener(SensorListener listener) { 563 unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW); 564 } 565 566 /** 567 * Unregisters a listener for the sensors with which it is registered. 568 * 569 * @deprecated This method is deprecated, use 570 * {@link SensorManager#unregisterListener(SensorEventListener, Sensor)} 571 * instead. 572 * 573 * @param listener 574 * a SensorListener object 575 * 576 * @param sensors 577 * a bit masks of the sensors to unregister from 578 */ 579 @Deprecated unregisterListener(SensorListener listener, int sensors)580 public void unregisterListener(SensorListener listener, int sensors) { 581 getLegacySensorManager().unregisterListener(listener, sensors); 582 } 583 584 /** 585 * Unregisters a listener for the sensors with which it is registered. 586 * 587 * <p class="note"></p> 588 * Note: Don't use this method with a one shot trigger sensor such as 589 * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. 590 * Use {@link #cancelTriggerSensor(TriggerEventListener, Sensor)} instead. 591 * </p> 592 * 593 * @param listener 594 * a SensorEventListener object 595 * 596 * @param sensor 597 * the sensor to unregister from 598 * 599 * @see #unregisterListener(SensorEventListener) 600 * @see #registerListener(SensorEventListener, Sensor, int) 601 */ unregisterListener(SensorEventListener listener, Sensor sensor)602 public void unregisterListener(SensorEventListener listener, Sensor sensor) { 603 if (listener == null || sensor == null) { 604 return; 605 } 606 607 unregisterListenerImpl(listener, sensor); 608 } 609 610 /** 611 * Unregisters a listener for all sensors. 612 * 613 * @param listener 614 * a SensorListener object 615 * 616 * @see #unregisterListener(SensorEventListener, Sensor) 617 * @see #registerListener(SensorEventListener, Sensor, int) 618 * 619 */ unregisterListener(SensorEventListener listener)620 public void unregisterListener(SensorEventListener listener) { 621 if (listener == null) { 622 return; 623 } 624 625 unregisterListenerImpl(listener, null); 626 } 627 628 /** @hide */ unregisterListenerImpl(SensorEventListener listener, Sensor sensor)629 protected abstract void unregisterListenerImpl(SensorEventListener listener, Sensor sensor); 630 631 /** 632 * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given 633 * sensor at the given sampling frequency. 634 * <p> 635 * The events will be delivered to the provided {@code SensorEventListener} as soon as they are 636 * available. To reduce the power consumption, applications can use 637 * {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a 638 * positive non-zero maximum reporting latency. 639 * </p> 640 * <p> 641 * In the case of non-wake-up sensors, the events are only delivered while the Application 642 * Processor (AP) is not in suspend mode. See {@link Sensor#isWakeUpSensor()} for more details. 643 * To ensure delivery of events from non-wake-up sensors even when the screen is OFF, the 644 * application registering to the sensor must hold a partial wake-lock to keep the AP awake, 645 * otherwise some events might be lost while the AP is asleep. Note that although events might 646 * be lost while the AP is asleep, the sensor will still consume power if it is not explicitly 647 * deactivated by the application. Applications must unregister their {@code 648 * SensorEventListener}s in their activity's {@code onPause()} method to avoid consuming power 649 * while the device is inactive. See {@link #registerListener(SensorEventListener, Sensor, int, 650 * int)} for more details on hardware FIFO (queueing) capabilities and when some sensor events 651 * might be lost. 652 * </p> 653 * <p> 654 * In the case of wake-up sensors, each event generated by the sensor will cause the AP to 655 * wake-up, ensuring that each event can be delivered. Because of this, registering to a wake-up 656 * sensor has very significant power implications. Call {@link Sensor#isWakeUpSensor()} to check 657 * whether a sensor is a wake-up sensor. See 658 * {@link #registerListener(SensorEventListener, Sensor, int, int)} for information on how to 659 * reduce the power impact of registering to wake-up sensors. 660 * </p> 661 * <p class="note"> 662 * Note: Don't use this method with one-shot trigger sensors such as 663 * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use 664 * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. Use 665 * {@link Sensor#getReportingMode()} to obtain the reporting mode of a given sensor. 666 * </p> 667 * 668 * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object. 669 * @param sensor The {@link android.hardware.Sensor Sensor} to register to. 670 * @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are 671 * delivered at. This is only a hint to the system. Events may be received faster or 672 * slower than the specified rate. Usually events are received faster. The value must 673 * be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, 674 * {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired delay 675 * between events in microseconds. Specifying the delay in microseconds only works 676 * from Android 2.3 (API level 9) onwards. For earlier releases, you must use one of 677 * the {@code SENSOR_DELAY_*} constants. 678 * @return <code>true</code> if the sensor is supported and successfully enabled. 679 * @see #registerListener(SensorEventListener, Sensor, int, Handler) 680 * @see #unregisterListener(SensorEventListener) 681 * @see #unregisterListener(SensorEventListener, Sensor) 682 */ registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs)683 public boolean registerListener(SensorEventListener listener, Sensor sensor, 684 int samplingPeriodUs) { 685 return registerListener(listener, sensor, samplingPeriodUs, null); 686 } 687 688 /** 689 * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given 690 * sensor at the given sampling frequency and the given maximum reporting latency. 691 * <p> 692 * This function is similar to {@link #registerListener(SensorEventListener, Sensor, int)} but 693 * it allows events to stay temporarily in the hardware FIFO (queue) before being delivered. The 694 * events can be stored in the hardware FIFO up to {@code maxReportLatencyUs} microseconds. Once 695 * one of the events in the FIFO needs to be reported, all of the events in the FIFO are 696 * reported sequentially. This means that some events will be reported before the maximum 697 * reporting latency has elapsed. 698 * </p><p> 699 * When {@code maxReportLatencyUs} is 0, the call is equivalent to a call to 700 * {@link #registerListener(SensorEventListener, Sensor, int)}, as it requires the events to be 701 * delivered as soon as possible. 702 * </p><p> 703 * When {@code sensor.maxFifoEventCount()} is 0, the sensor does not use a FIFO, so the call 704 * will also be equivalent to {@link #registerListener(SensorEventListener, Sensor, int)}. 705 * </p><p> 706 * Setting {@code maxReportLatencyUs} to a positive value allows to reduce the number of 707 * interrupts the AP (Application Processor) receives, hence reducing power consumption, as the 708 * AP can switch to a lower power state while the sensor is capturing the data. This is 709 * especially important when registering to wake-up sensors, for which each interrupt causes the 710 * AP to wake up if it was in suspend mode. See {@link Sensor#isWakeUpSensor()} for more 711 * information on wake-up sensors. 712 * </p> 713 * <p class="note"> 714 * </p> 715 * Note: Don't use this method with one-shot trigger sensors such as 716 * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use 717 * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p> 718 * 719 * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object 720 * that will receive the sensor events. If the application is interested in receiving 721 * flush complete notifications, it should register with 722 * {@link android.hardware.SensorEventListener SensorEventListener2} instead. 723 * @param sensor The {@link android.hardware.Sensor Sensor} to register to. 724 * @param samplingPeriodUs The desired delay between two consecutive events in microseconds. 725 * This is only a hint to the system. Events may be received faster or slower than 726 * the specified rate. Usually events are received faster. Can be one of 727 * {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, 728 * {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in 729 * microseconds. 730 * @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before 731 * being reported to the application. A large value allows reducing the power 732 * consumption associated with the sensor. If maxReportLatencyUs is set to zero, 733 * events are delivered as soon as they are available, which is equivalent to calling 734 * {@link #registerListener(SensorEventListener, Sensor, int)}. 735 * @return <code>true</code> if the sensor is supported and successfully enabled. 736 * @see #registerListener(SensorEventListener, Sensor, int) 737 * @see #unregisterListener(SensorEventListener) 738 * @see #flush(SensorEventListener) 739 */ registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs, int maxReportLatencyUs)740 public boolean registerListener(SensorEventListener listener, Sensor sensor, 741 int samplingPeriodUs, int maxReportLatencyUs) { 742 int delay = getDelay(samplingPeriodUs); 743 return registerListenerImpl(listener, sensor, delay, null, maxReportLatencyUs, 0); 744 } 745 746 /** 747 * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given 748 * sensor. Events are delivered in continuous mode as soon as they are available. To reduce the 749 * power consumption, applications can use 750 * {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a 751 * positive non-zero maximum reporting latency. 752 * <p class="note"> 753 * </p> 754 * Note: Don't use this method with a one shot trigger sensor such as 755 * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use 756 * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p> 757 * 758 * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object. 759 * @param sensor The {@link android.hardware.Sensor Sensor} to register to. 760 * @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are 761 * delivered at. This is only a hint to the system. Events may be received faster or 762 * slower than the specified rate. Usually events are received faster. The value must 763 * be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, 764 * {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired 765 * delay between events in microseconds. Specifying the delay in microseconds only 766 * works from Android 2.3 (API level 9) onwards. For earlier releases, you must use 767 * one of the {@code SENSOR_DELAY_*} constants. 768 * @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent 769 * sensor events} will be delivered to. 770 * @return <code>true</code> if the sensor is supported and successfully enabled. 771 * @see #registerListener(SensorEventListener, Sensor, int) 772 * @see #unregisterListener(SensorEventListener) 773 * @see #unregisterListener(SensorEventListener, Sensor) 774 */ registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs, Handler handler)775 public boolean registerListener(SensorEventListener listener, Sensor sensor, 776 int samplingPeriodUs, Handler handler) { 777 int delay = getDelay(samplingPeriodUs); 778 return registerListenerImpl(listener, sensor, delay, handler, 0, 0); 779 } 780 781 /** 782 * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given 783 * sensor at the given sampling frequency and the given maximum reporting latency. 784 * 785 * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object 786 * that will receive the sensor events. If the application is interested in receiving 787 * flush complete notifications, it should register with 788 * {@link android.hardware.SensorEventListener SensorEventListener2} instead. 789 * @param sensor The {@link android.hardware.Sensor Sensor} to register to. 790 * @param samplingPeriodUs The desired delay between two consecutive events in microseconds. 791 * This is only a hint to the system. Events may be received faster or slower than 792 * the specified rate. Usually events are received faster. Can be one of 793 * {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI}, 794 * {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in 795 * microseconds. 796 * @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before 797 * being reported to the application. A large value allows reducing the power 798 * consumption associated with the sensor. If maxReportLatencyUs is set to zero, 799 * events are delivered as soon as they are available, which is equivalent to calling 800 * {@link #registerListener(SensorEventListener, Sensor, int)}. 801 * @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent 802 * sensor events} will be delivered to. 803 * @return <code>true</code> if the sensor is supported and successfully enabled. 804 * @see #registerListener(SensorEventListener, Sensor, int, int) 805 */ registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs, int maxReportLatencyUs, Handler handler)806 public boolean registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs, 807 int maxReportLatencyUs, Handler handler) { 808 int delayUs = getDelay(samplingPeriodUs); 809 return registerListenerImpl(listener, sensor, delayUs, handler, maxReportLatencyUs, 0); 810 } 811 812 /** @hide */ registerListenerImpl(SensorEventListener listener, Sensor sensor, int delayUs, Handler handler, int maxReportLatencyUs, int reservedFlags)813 protected abstract boolean registerListenerImpl(SensorEventListener listener, Sensor sensor, 814 int delayUs, Handler handler, int maxReportLatencyUs, int reservedFlags); 815 816 817 /** 818 * Flushes the FIFO of all the sensors registered for this listener. If there are events 819 * in the FIFO of the sensor, they are returned as if the maxReportLantecy of the FIFO has 820 * expired. Events are returned in the usual way through the SensorEventListener. 821 * This call doesn't affect the maxReportLantecy for this sensor. This call is asynchronous and 822 * returns immediately. 823 * {@link android.hardware.SensorEventListener2#onFlushCompleted onFlushCompleted} is called 824 * after all the events in the batch at the time of calling this method have been delivered 825 * successfully. If the hardware doesn't support flush, it still returns true and a trivial 826 * flush complete event is sent after the current event for all the clients registered for this 827 * sensor. 828 * 829 * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object 830 * which was previously used in a registerListener call. 831 * @return <code>true</code> if the flush is initiated successfully on all the sensors 832 * registered for this listener, false if no sensor is previously registered for this 833 * listener or flush on one of the sensors fails. 834 * @see #registerListener(SensorEventListener, Sensor, int, int) 835 * @throws IllegalArgumentException when listener is null. 836 */ flush(SensorEventListener listener)837 public boolean flush(SensorEventListener listener) { 838 return flushImpl(listener); 839 } 840 841 /** @hide */ flushImpl(SensorEventListener listener)842 protected abstract boolean flushImpl(SensorEventListener listener); 843 844 /** 845 * <p> 846 * Computes the inclination matrix <b>I</b> as well as the rotation matrix 847 * <b>R</b> transforming a vector from the device coordinate system to the 848 * world's coordinate system which is defined as a direct orthonormal basis, 849 * where: 850 * </p> 851 * 852 * <ul> 853 * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to 854 * the ground at the device's current location and roughly points East).</li> 855 * <li>Y is tangential to the ground at the device's current location and 856 * points towards the magnetic North Pole.</li> 857 * <li>Z points towards the sky and is perpendicular to the ground.</li> 858 * </ul> 859 * 860 * <p> 861 * <center><img src="../../../images/axis_globe.png" 862 * alt="World coordinate-system diagram." border="0" /></center> 863 * </p> 864 * 865 * <p> 866 * <hr> 867 * <p> 868 * By definition: 869 * <p> 870 * [0 0 g] = <b>R</b> * <b>gravity</b> (g = magnitude of gravity) 871 * <p> 872 * [0 m 0] = <b>I</b> * <b>R</b> * <b>geomagnetic</b> (m = magnitude of 873 * geomagnetic field) 874 * <p> 875 * <b>R</b> is the identity matrix when the device is aligned with the 876 * world's coordinate system, that is, when the device's X axis points 877 * toward East, the Y axis points to the North Pole and the device is facing 878 * the sky. 879 * 880 * <p> 881 * <b>I</b> is a rotation matrix transforming the geomagnetic vector into 882 * the same coordinate space as gravity (the world's coordinate space). 883 * <b>I</b> is a simple rotation around the X axis. The inclination angle in 884 * radians can be computed with {@link #getInclination}. 885 * <hr> 886 * 887 * <p> 888 * Each matrix is returned either as a 3x3 or 4x4 row-major matrix depending 889 * on the length of the passed array: 890 * <p> 891 * <u>If the array length is 16:</u> 892 * 893 * <pre> 894 * / M[ 0] M[ 1] M[ 2] M[ 3] \ 895 * | M[ 4] M[ 5] M[ 6] M[ 7] | 896 * | M[ 8] M[ 9] M[10] M[11] | 897 * \ M[12] M[13] M[14] M[15] / 898 *</pre> 899 * 900 * This matrix is ready to be used by OpenGL ES's 901 * {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int) 902 * glLoadMatrixf(float[], int)}. 903 * <p> 904 * Note that because OpenGL matrices are column-major matrices you must 905 * transpose the matrix before using it. However, since the matrix is a 906 * rotation matrix, its transpose is also its inverse, conveniently, it is 907 * often the inverse of the rotation that is needed for rendering; it can 908 * therefore be used with OpenGL ES directly. 909 * <p> 910 * Also note that the returned matrices always have this form: 911 * 912 * <pre> 913 * / M[ 0] M[ 1] M[ 2] 0 \ 914 * | M[ 4] M[ 5] M[ 6] 0 | 915 * | M[ 8] M[ 9] M[10] 0 | 916 * \ 0 0 0 1 / 917 *</pre> 918 * 919 * <p> 920 * <u>If the array length is 9:</u> 921 * 922 * <pre> 923 * / M[ 0] M[ 1] M[ 2] \ 924 * | M[ 3] M[ 4] M[ 5] | 925 * \ M[ 6] M[ 7] M[ 8] / 926 *</pre> 927 * 928 * <hr> 929 * <p> 930 * The inverse of each matrix can be computed easily by taking its 931 * transpose. 932 * 933 * <p> 934 * The matrices returned by this function are meaningful only when the 935 * device is not free-falling and it is not close to the magnetic north. If 936 * the device is accelerating, or placed into a strong magnetic field, the 937 * returned matrices may be inaccurate. 938 * 939 * @param R 940 * is an array of 9 floats holding the rotation matrix <b>R</b> when 941 * this function returns. R can be null. 942 * <p> 943 * 944 * @param I 945 * is an array of 9 floats holding the rotation matrix <b>I</b> when 946 * this function returns. I can be null. 947 * <p> 948 * 949 * @param gravity 950 * is an array of 3 floats containing the gravity vector expressed in 951 * the device's coordinate. You can simply use the 952 * {@link android.hardware.SensorEvent#values values} returned by a 953 * {@link android.hardware.SensorEvent SensorEvent} of a 954 * {@link android.hardware.Sensor Sensor} of type 955 * {@link android.hardware.Sensor#TYPE_ACCELEROMETER 956 * TYPE_ACCELEROMETER}. 957 * <p> 958 * 959 * @param geomagnetic 960 * is an array of 3 floats containing the geomagnetic vector 961 * expressed in the device's coordinate. You can simply use the 962 * {@link android.hardware.SensorEvent#values values} returned by a 963 * {@link android.hardware.SensorEvent SensorEvent} of a 964 * {@link android.hardware.Sensor Sensor} of type 965 * {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD 966 * TYPE_MAGNETIC_FIELD}. 967 * 968 * @return <code>true</code> on success, <code>false</code> on failure (for 969 * instance, if the device is in free fall). Free fall is defined as 970 * condition when the magnitude of the gravity is less than 1/10 of 971 * the nominal value. On failure the output matrices are not modified. 972 * 973 * @see #getInclination(float[]) 974 * @see #getOrientation(float[], float[]) 975 * @see #remapCoordinateSystem(float[], int, int, float[]) 976 */ 977 getRotationMatrix(float[] R, float[] I, float[] gravity, float[] geomagnetic)978 public static boolean getRotationMatrix(float[] R, float[] I, 979 float[] gravity, float[] geomagnetic) { 980 // TODO: move this to native code for efficiency 981 float Ax = gravity[0]; 982 float Ay = gravity[1]; 983 float Az = gravity[2]; 984 985 final float normsqA = (Ax*Ax + Ay*Ay + Az*Az); 986 final float g = 9.81f; 987 final float freeFallGravitySquared = 0.01f * g * g; 988 if (normsqA < freeFallGravitySquared) { 989 // gravity less than 10% of normal value 990 return false; 991 } 992 993 final float Ex = geomagnetic[0]; 994 final float Ey = geomagnetic[1]; 995 final float Ez = geomagnetic[2]; 996 float Hx = Ey*Az - Ez*Ay; 997 float Hy = Ez*Ax - Ex*Az; 998 float Hz = Ex*Ay - Ey*Ax; 999 final float normH = (float)Math.sqrt(Hx*Hx + Hy*Hy + Hz*Hz); 1000 1001 if (normH < 0.1f) { 1002 // device is close to free fall (or in space?), or close to 1003 // magnetic north pole. Typical values are > 100. 1004 return false; 1005 } 1006 final float invH = 1.0f / normH; 1007 Hx *= invH; 1008 Hy *= invH; 1009 Hz *= invH; 1010 final float invA = 1.0f / (float)Math.sqrt(Ax*Ax + Ay*Ay + Az*Az); 1011 Ax *= invA; 1012 Ay *= invA; 1013 Az *= invA; 1014 final float Mx = Ay*Hz - Az*Hy; 1015 final float My = Az*Hx - Ax*Hz; 1016 final float Mz = Ax*Hy - Ay*Hx; 1017 if (R != null) { 1018 if (R.length == 9) { 1019 R[0] = Hx; R[1] = Hy; R[2] = Hz; 1020 R[3] = Mx; R[4] = My; R[5] = Mz; 1021 R[6] = Ax; R[7] = Ay; R[8] = Az; 1022 } else if (R.length == 16) { 1023 R[0] = Hx; R[1] = Hy; R[2] = Hz; R[3] = 0; 1024 R[4] = Mx; R[5] = My; R[6] = Mz; R[7] = 0; 1025 R[8] = Ax; R[9] = Ay; R[10] = Az; R[11] = 0; 1026 R[12] = 0; R[13] = 0; R[14] = 0; R[15] = 1; 1027 } 1028 } 1029 if (I != null) { 1030 // compute the inclination matrix by projecting the geomagnetic 1031 // vector onto the Z (gravity) and X (horizontal component 1032 // of geomagnetic vector) axes. 1033 final float invE = 1.0f / (float)Math.sqrt(Ex*Ex + Ey*Ey + Ez*Ez); 1034 final float c = (Ex*Mx + Ey*My + Ez*Mz) * invE; 1035 final float s = (Ex*Ax + Ey*Ay + Ez*Az) * invE; 1036 if (I.length == 9) { 1037 I[0] = 1; I[1] = 0; I[2] = 0; 1038 I[3] = 0; I[4] = c; I[5] = s; 1039 I[6] = 0; I[7] =-s; I[8] = c; 1040 } else if (I.length == 16) { 1041 I[0] = 1; I[1] = 0; I[2] = 0; 1042 I[4] = 0; I[5] = c; I[6] = s; 1043 I[8] = 0; I[9] =-s; I[10]= c; 1044 I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0; 1045 I[15] = 1; 1046 } 1047 } 1048 return true; 1049 } 1050 1051 /** 1052 * Computes the geomagnetic inclination angle in radians from the 1053 * inclination matrix <b>I</b> returned by {@link #getRotationMatrix}. 1054 * 1055 * @param I 1056 * inclination matrix see {@link #getRotationMatrix}. 1057 * 1058 * @return The geomagnetic inclination angle in radians. 1059 * 1060 * @see #getRotationMatrix(float[], float[], float[], float[]) 1061 * @see #getOrientation(float[], float[]) 1062 * @see GeomagneticField 1063 * 1064 */ getInclination(float[] I)1065 public static float getInclination(float[] I) { 1066 if (I.length == 9) { 1067 return (float)Math.atan2(I[5], I[4]); 1068 } else { 1069 return (float)Math.atan2(I[6], I[5]); 1070 } 1071 } 1072 1073 /** 1074 * <p> 1075 * Rotates the supplied rotation matrix so it is expressed in a different 1076 * coordinate system. This is typically used when an application needs to 1077 * compute the three orientation angles of the device (see 1078 * {@link #getOrientation}) in a different coordinate system. 1079 * </p> 1080 * 1081 * <p> 1082 * When the rotation matrix is used for drawing (for instance with OpenGL 1083 * ES), it usually <b>doesn't need</b> to be transformed by this function, 1084 * unless the screen is physically rotated, in which case you can use 1085 * {@link android.view.Display#getRotation() Display.getRotation()} to 1086 * retrieve the current rotation of the screen. Note that because the user 1087 * is generally free to rotate their screen, you often should consider the 1088 * rotation in deciding the parameters to use here. 1089 * </p> 1090 * 1091 * <p> 1092 * <u>Examples:</u> 1093 * <p> 1094 * 1095 * <ul> 1096 * <li>Using the camera (Y axis along the camera's axis) for an augmented 1097 * reality application where the rotation angles are needed:</li> 1098 * 1099 * <p> 1100 * <ul> 1101 * <code>remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR);</code> 1102 * </ul> 1103 * </p> 1104 * 1105 * <li>Using the device as a mechanical compass when rotation is 1106 * {@link android.view.Surface#ROTATION_90 Surface.ROTATION_90}:</li> 1107 * 1108 * <p> 1109 * <ul> 1110 * <code>remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR);</code> 1111 * </ul> 1112 * </p> 1113 * 1114 * Beware of the above example. This call is needed only to account for a 1115 * rotation from its natural orientation when calculating the rotation 1116 * angles (see {@link #getOrientation}). If the rotation matrix is also used 1117 * for rendering, it may not need to be transformed, for instance if your 1118 * {@link android.app.Activity Activity} is running in landscape mode. 1119 * </ul> 1120 * 1121 * <p> 1122 * Since the resulting coordinate system is orthonormal, only two axes need 1123 * to be specified. 1124 * 1125 * @param inR 1126 * the rotation matrix to be transformed. Usually it is the matrix 1127 * returned by {@link #getRotationMatrix}. 1128 * 1129 * @param X 1130 * defines the axis of the new cooridinate system that coincide with the X axis of the 1131 * original coordinate system. 1132 * 1133 * @param Y 1134 * defines the axis of the new cooridinate system that coincide with the Y axis of the 1135 * original coordinate system. 1136 * 1137 * @param outR 1138 * the transformed rotation matrix. inR and outR should not be the same 1139 * array. 1140 * 1141 * @return <code>true</code> on success. <code>false</code> if the input 1142 * parameters are incorrect, for instance if X and Y define the same 1143 * axis. Or if inR and outR don't have the same length. 1144 * 1145 * @see #getRotationMatrix(float[], float[], float[], float[]) 1146 */ 1147 remapCoordinateSystem(float[] inR, int X, int Y, float[] outR)1148 public static boolean remapCoordinateSystem(float[] inR, int X, int Y, 1149 float[] outR) 1150 { 1151 if (inR == outR) { 1152 final float[] temp = mTempMatrix; 1153 synchronized(temp) { 1154 // we don't expect to have a lot of contention 1155 if (remapCoordinateSystemImpl(inR, X, Y, temp)) { 1156 final int size = outR.length; 1157 for (int i=0 ; i<size ; i++) 1158 outR[i] = temp[i]; 1159 return true; 1160 } 1161 } 1162 } 1163 return remapCoordinateSystemImpl(inR, X, Y, outR); 1164 } 1165 remapCoordinateSystemImpl(float[] inR, int X, int Y, float[] outR)1166 private static boolean remapCoordinateSystemImpl(float[] inR, int X, int Y, 1167 float[] outR) 1168 { 1169 /* 1170 * X and Y define a rotation matrix 'r': 1171 * 1172 * (X==1)?((X&0x80)?-1:1):0 (X==2)?((X&0x80)?-1:1):0 (X==3)?((X&0x80)?-1:1):0 1173 * (Y==1)?((Y&0x80)?-1:1):0 (Y==2)?((Y&0x80)?-1:1):0 (Y==3)?((X&0x80)?-1:1):0 1174 * r[0] ^ r[1] 1175 * 1176 * where the 3rd line is the vector product of the first 2 lines 1177 * 1178 */ 1179 1180 final int length = outR.length; 1181 if (inR.length != length) 1182 return false; // invalid parameter 1183 if ((X & 0x7C)!=0 || (Y & 0x7C)!=0) 1184 return false; // invalid parameter 1185 if (((X & 0x3)==0) || ((Y & 0x3)==0)) 1186 return false; // no axis specified 1187 if ((X & 0x3) == (Y & 0x3)) 1188 return false; // same axis specified 1189 1190 // Z is "the other" axis, its sign is either +/- sign(X)*sign(Y) 1191 // this can be calculated by exclusive-or'ing X and Y; except for 1192 // the sign inversion (+/-) which is calculated below. 1193 int Z = X ^ Y; 1194 1195 // extract the axis (remove the sign), offset in the range 0 to 2. 1196 final int x = (X & 0x3)-1; 1197 final int y = (Y & 0x3)-1; 1198 final int z = (Z & 0x3)-1; 1199 1200 // compute the sign of Z (whether it needs to be inverted) 1201 final int axis_y = (z+1)%3; 1202 final int axis_z = (z+2)%3; 1203 if (((x^axis_y)|(y^axis_z)) != 0) 1204 Z ^= 0x80; 1205 1206 final boolean sx = (X>=0x80); 1207 final boolean sy = (Y>=0x80); 1208 final boolean sz = (Z>=0x80); 1209 1210 // Perform R * r, in avoiding actual muls and adds. 1211 final int rowLength = ((length==16)?4:3); 1212 for (int j=0 ; j<3 ; j++) { 1213 final int offset = j*rowLength; 1214 for (int i=0 ; i<3 ; i++) { 1215 if (x==i) outR[offset+i] = sx ? -inR[offset+0] : inR[offset+0]; 1216 if (y==i) outR[offset+i] = sy ? -inR[offset+1] : inR[offset+1]; 1217 if (z==i) outR[offset+i] = sz ? -inR[offset+2] : inR[offset+2]; 1218 } 1219 } 1220 if (length == 16) { 1221 outR[3] = outR[7] = outR[11] = outR[12] = outR[13] = outR[14] = 0; 1222 outR[15] = 1; 1223 } 1224 return true; 1225 } 1226 1227 /** 1228 * Computes the device's orientation based on the rotation matrix. 1229 * <p> 1230 * When it returns, the array values is filled with the result: 1231 * <ul> 1232 * <li>values[0]: <i>azimuth</i>, rotation around the -Z axis, 1233 * i.e. the opposite direction of Z axis.</li> 1234 * <li>values[1]: <i>pitch</i>, rotation around the -X axis, 1235 * i.e the opposite direction of X axis.</li> 1236 * <li>values[2]: <i>roll</i>, rotation around the Y axis.</li> 1237 * </ul> 1238 * <p> 1239 * Applying these three intrinsic rotations in azimuth, pitch and roll order transforms 1240 * identity matrix to the rotation matrix given in input R. 1241 * All three angles above are in <b>radians</b> and <b>positive</b> in the 1242 * <b>counter-clockwise</b> direction. Range of output is: azimuth from -π to π, 1243 * pitch from -π/2 to π/2 and roll from -π to π. 1244 * 1245 * @param R 1246 * rotation matrix see {@link #getRotationMatrix}. 1247 * 1248 * @param values 1249 * an array of 3 floats to hold the result. 1250 * 1251 * @return The array values passed as argument. 1252 * 1253 * @see #getRotationMatrix(float[], float[], float[], float[]) 1254 * @see GeomagneticField 1255 */ getOrientation(float[] R, float values[])1256 public static float[] getOrientation(float[] R, float values[]) { 1257 /* 1258 * 4x4 (length=16) case: 1259 * / R[ 0] R[ 1] R[ 2] 0 \ 1260 * | R[ 4] R[ 5] R[ 6] 0 | 1261 * | R[ 8] R[ 9] R[10] 0 | 1262 * \ 0 0 0 1 / 1263 * 1264 * 3x3 (length=9) case: 1265 * / R[ 0] R[ 1] R[ 2] \ 1266 * | R[ 3] R[ 4] R[ 5] | 1267 * \ R[ 6] R[ 7] R[ 8] / 1268 * 1269 */ 1270 if (R.length == 9) { 1271 values[0] = (float)Math.atan2(R[1], R[4]); 1272 values[1] = (float)Math.asin(-R[7]); 1273 values[2] = (float)Math.atan2(-R[6], R[8]); 1274 } else { 1275 values[0] = (float)Math.atan2(R[1], R[5]); 1276 values[1] = (float)Math.asin(-R[9]); 1277 values[2] = (float)Math.atan2(-R[8], R[10]); 1278 } 1279 1280 return values; 1281 } 1282 1283 /** 1284 * Computes the Altitude in meters from the atmospheric pressure and the 1285 * pressure at sea level. 1286 * <p> 1287 * Typically the atmospheric pressure is read from a 1288 * {@link Sensor#TYPE_PRESSURE} sensor. The pressure at sea level must be 1289 * known, usually it can be retrieved from airport databases in the 1290 * vicinity. If unknown, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} 1291 * as an approximation, but absolute altitudes won't be accurate. 1292 * </p> 1293 * <p> 1294 * To calculate altitude differences, you must calculate the difference 1295 * between the altitudes at both points. If you don't know the altitude 1296 * as sea level, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} instead, 1297 * which will give good results considering the range of pressure typically 1298 * involved. 1299 * </p> 1300 * <p> 1301 * <code><ul> 1302 * float altitude_difference = 1303 * getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point2) 1304 * - getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point1); 1305 * </ul></code> 1306 * </p> 1307 * 1308 * @param p0 pressure at sea level 1309 * @param p atmospheric pressure 1310 * @return Altitude in meters 1311 */ getAltitude(float p0, float p)1312 public static float getAltitude(float p0, float p) { 1313 final float coef = 1.0f / 5.255f; 1314 return 44330.0f * (1.0f - (float)Math.pow(p/p0, coef)); 1315 } 1316 1317 /** Helper function to compute the angle change between two rotation matrices. 1318 * Given a current rotation matrix (R) and a previous rotation matrix 1319 * (prevR) computes the intrinsic rotation around the z, x, and y axes which 1320 * transforms prevR to R. 1321 * outputs a 3 element vector containing the z, x, and y angle 1322 * change at indexes 0, 1, and 2 respectively. 1323 * <p> Each input matrix is either as a 3x3 or 4x4 row-major matrix 1324 * depending on the length of the passed array: 1325 * <p>If the array length is 9, then the array elements represent this matrix 1326 * <pre> 1327 * / R[ 0] R[ 1] R[ 2] \ 1328 * | R[ 3] R[ 4] R[ 5] | 1329 * \ R[ 6] R[ 7] R[ 8] / 1330 *</pre> 1331 * <p>If the array length is 16, then the array elements represent this matrix 1332 * <pre> 1333 * / R[ 0] R[ 1] R[ 2] R[ 3] \ 1334 * | R[ 4] R[ 5] R[ 6] R[ 7] | 1335 * | R[ 8] R[ 9] R[10] R[11] | 1336 * \ R[12] R[13] R[14] R[15] / 1337 *</pre> 1338 * 1339 * See {@link #getOrientation} for more detailed definition of the output. 1340 * 1341 * @param R current rotation matrix 1342 * @param prevR previous rotation matrix 1343 * @param angleChange an an array of floats (z, x, and y) in which the angle change 1344 * (in radians) is stored 1345 */ 1346 getAngleChange( float[] angleChange, float[] R, float[] prevR)1347 public static void getAngleChange( float[] angleChange, float[] R, float[] prevR) { 1348 float rd1=0,rd4=0, rd6=0,rd7=0, rd8=0; 1349 float ri0=0,ri1=0,ri2=0,ri3=0,ri4=0,ri5=0,ri6=0,ri7=0,ri8=0; 1350 float pri0=0, pri1=0, pri2=0, pri3=0, pri4=0, pri5=0, pri6=0, pri7=0, pri8=0; 1351 1352 if(R.length == 9) { 1353 ri0 = R[0]; 1354 ri1 = R[1]; 1355 ri2 = R[2]; 1356 ri3 = R[3]; 1357 ri4 = R[4]; 1358 ri5 = R[5]; 1359 ri6 = R[6]; 1360 ri7 = R[7]; 1361 ri8 = R[8]; 1362 } else if(R.length == 16) { 1363 ri0 = R[0]; 1364 ri1 = R[1]; 1365 ri2 = R[2]; 1366 ri3 = R[4]; 1367 ri4 = R[5]; 1368 ri5 = R[6]; 1369 ri6 = R[8]; 1370 ri7 = R[9]; 1371 ri8 = R[10]; 1372 } 1373 1374 if(prevR.length == 9) { 1375 pri0 = prevR[0]; 1376 pri1 = prevR[1]; 1377 pri2 = prevR[2]; 1378 pri3 = prevR[3]; 1379 pri4 = prevR[4]; 1380 pri5 = prevR[5]; 1381 pri6 = prevR[6]; 1382 pri7 = prevR[7]; 1383 pri8 = prevR[8]; 1384 } else if(prevR.length == 16) { 1385 pri0 = prevR[0]; 1386 pri1 = prevR[1]; 1387 pri2 = prevR[2]; 1388 pri3 = prevR[4]; 1389 pri4 = prevR[5]; 1390 pri5 = prevR[6]; 1391 pri6 = prevR[8]; 1392 pri7 = prevR[9]; 1393 pri8 = prevR[10]; 1394 } 1395 1396 // calculate the parts of the rotation difference matrix we need 1397 // rd[i][j] = pri[0][i] * ri[0][j] + pri[1][i] * ri[1][j] + pri[2][i] * ri[2][j]; 1398 1399 rd1 = pri0 * ri1 + pri3 * ri4 + pri6 * ri7; //rd[0][1] 1400 rd4 = pri1 * ri1 + pri4 * ri4 + pri7 * ri7; //rd[1][1] 1401 rd6 = pri2 * ri0 + pri5 * ri3 + pri8 * ri6; //rd[2][0] 1402 rd7 = pri2 * ri1 + pri5 * ri4 + pri8 * ri7; //rd[2][1] 1403 rd8 = pri2 * ri2 + pri5 * ri5 + pri8 * ri8; //rd[2][2] 1404 1405 angleChange[0] = (float)Math.atan2(rd1, rd4); 1406 angleChange[1] = (float)Math.asin(-rd7); 1407 angleChange[2] = (float)Math.atan2(-rd6, rd8); 1408 1409 } 1410 1411 /** Helper function to convert a rotation vector to a rotation matrix. 1412 * Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a 1413 * 9 or 16 element rotation matrix in the array R. R must have length 9 or 16. 1414 * If R.length == 9, the following matrix is returned: 1415 * <pre> 1416 * / R[ 0] R[ 1] R[ 2] \ 1417 * | R[ 3] R[ 4] R[ 5] | 1418 * \ R[ 6] R[ 7] R[ 8] / 1419 *</pre> 1420 * If R.length == 16, the following matrix is returned: 1421 * <pre> 1422 * / R[ 0] R[ 1] R[ 2] 0 \ 1423 * | R[ 4] R[ 5] R[ 6] 0 | 1424 * | R[ 8] R[ 9] R[10] 0 | 1425 * \ 0 0 0 1 / 1426 *</pre> 1427 * @param rotationVector the rotation vector to convert 1428 * @param R an array of floats in which to store the rotation matrix 1429 */ getRotationMatrixFromVector(float[] R, float[] rotationVector)1430 public static void getRotationMatrixFromVector(float[] R, float[] rotationVector) { 1431 1432 float q0; 1433 float q1 = rotationVector[0]; 1434 float q2 = rotationVector[1]; 1435 float q3 = rotationVector[2]; 1436 1437 if (rotationVector.length >= 4) { 1438 q0 = rotationVector[3]; 1439 } else { 1440 q0 = 1 - q1*q1 - q2*q2 - q3*q3; 1441 q0 = (q0 > 0) ? (float)Math.sqrt(q0) : 0; 1442 } 1443 1444 float sq_q1 = 2 * q1 * q1; 1445 float sq_q2 = 2 * q2 * q2; 1446 float sq_q3 = 2 * q3 * q3; 1447 float q1_q2 = 2 * q1 * q2; 1448 float q3_q0 = 2 * q3 * q0; 1449 float q1_q3 = 2 * q1 * q3; 1450 float q2_q0 = 2 * q2 * q0; 1451 float q2_q3 = 2 * q2 * q3; 1452 float q1_q0 = 2 * q1 * q0; 1453 1454 if(R.length == 9) { 1455 R[0] = 1 - sq_q2 - sq_q3; 1456 R[1] = q1_q2 - q3_q0; 1457 R[2] = q1_q3 + q2_q0; 1458 1459 R[3] = q1_q2 + q3_q0; 1460 R[4] = 1 - sq_q1 - sq_q3; 1461 R[5] = q2_q3 - q1_q0; 1462 1463 R[6] = q1_q3 - q2_q0; 1464 R[7] = q2_q3 + q1_q0; 1465 R[8] = 1 - sq_q1 - sq_q2; 1466 } else if (R.length == 16) { 1467 R[0] = 1 - sq_q2 - sq_q3; 1468 R[1] = q1_q2 - q3_q0; 1469 R[2] = q1_q3 + q2_q0; 1470 R[3] = 0.0f; 1471 1472 R[4] = q1_q2 + q3_q0; 1473 R[5] = 1 - sq_q1 - sq_q3; 1474 R[6] = q2_q3 - q1_q0; 1475 R[7] = 0.0f; 1476 1477 R[8] = q1_q3 - q2_q0; 1478 R[9] = q2_q3 + q1_q0; 1479 R[10] = 1 - sq_q1 - sq_q2; 1480 R[11] = 0.0f; 1481 1482 R[12] = R[13] = R[14] = 0.0f; 1483 R[15] = 1.0f; 1484 } 1485 } 1486 1487 /** Helper function to convert a rotation vector to a normalized quaternion. 1488 * Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a normalized 1489 * quaternion in the array Q. The quaternion is stored as [w, x, y, z] 1490 * @param rv the rotation vector to convert 1491 * @param Q an array of floats in which to store the computed quaternion 1492 */ getQuaternionFromVector(float[] Q, float[] rv)1493 public static void getQuaternionFromVector(float[] Q, float[] rv) { 1494 if (rv.length >= 4) { 1495 Q[0] = rv[3]; 1496 } else { 1497 Q[0] = 1 - rv[0]*rv[0] - rv[1]*rv[1] - rv[2]*rv[2]; 1498 Q[0] = (Q[0] > 0) ? (float)Math.sqrt(Q[0]) : 0; 1499 } 1500 Q[1] = rv[0]; 1501 Q[2] = rv[1]; 1502 Q[3] = rv[2]; 1503 } 1504 1505 /** 1506 * Requests receiving trigger events for a trigger sensor. 1507 * 1508 * <p> 1509 * When the sensor detects a trigger event condition, such as significant motion in 1510 * the case of the {@link Sensor#TYPE_SIGNIFICANT_MOTION}, the provided trigger listener 1511 * will be invoked once and then its request to receive trigger events will be canceled. 1512 * To continue receiving trigger events, the application must request to receive trigger 1513 * events again. 1514 * </p> 1515 * 1516 * @param listener The listener on which the 1517 * {@link TriggerEventListener#onTrigger(TriggerEvent)} will be delivered. 1518 * @param sensor The sensor to be enabled. 1519 * 1520 * @return true if the sensor was successfully enabled. 1521 * 1522 * @throws IllegalArgumentException when sensor is null or not a trigger sensor. 1523 */ requestTriggerSensor(TriggerEventListener listener, Sensor sensor)1524 public boolean requestTriggerSensor(TriggerEventListener listener, Sensor sensor) { 1525 return requestTriggerSensorImpl(listener, sensor); 1526 } 1527 1528 /** 1529 * @hide 1530 */ requestTriggerSensorImpl(TriggerEventListener listener, Sensor sensor)1531 protected abstract boolean requestTriggerSensorImpl(TriggerEventListener listener, 1532 Sensor sensor); 1533 1534 /** 1535 * Cancels receiving trigger events for a trigger sensor. 1536 * 1537 * <p> 1538 * Note that a Trigger sensor will be auto disabled if 1539 * {@link TriggerEventListener#onTrigger(TriggerEvent)} has triggered. 1540 * This method is provided in case the user wants to explicitly cancel the request 1541 * to receive trigger events. 1542 * </p> 1543 * 1544 * @param listener The listener on which the 1545 * {@link TriggerEventListener#onTrigger(TriggerEvent)} 1546 * is delivered.It should be the same as the one used 1547 * in {@link #requestTriggerSensor(TriggerEventListener, Sensor)} 1548 * @param sensor The sensor for which the trigger request should be canceled. 1549 * If null, it cancels receiving trigger for all sensors associated 1550 * with the listener. 1551 * 1552 * @return true if successfully canceled. 1553 * 1554 * @throws IllegalArgumentException when sensor is a trigger sensor. 1555 */ cancelTriggerSensor(TriggerEventListener listener, Sensor sensor)1556 public boolean cancelTriggerSensor(TriggerEventListener listener, Sensor sensor) { 1557 return cancelTriggerSensorImpl(listener, sensor, true); 1558 } 1559 1560 /** 1561 * @hide 1562 */ cancelTriggerSensorImpl(TriggerEventListener listener, Sensor sensor, boolean disable)1563 protected abstract boolean cancelTriggerSensorImpl(TriggerEventListener listener, 1564 Sensor sensor, boolean disable); 1565 1566 1567 /** 1568 * For testing purposes only. Not for third party applications. 1569 * 1570 * Initialize data injection mode and create a client for data injection. SensorService should 1571 * already be operating in DATA_INJECTION mode for this call succeed. To set SensorService into 1572 * DATA_INJECTION mode "adb shell dumpsys sensorservice data_injection" needs to be called 1573 * through adb. Typically this is done using a host side test. This mode is expected to be used 1574 * only for testing purposes. If the HAL is set to data injection mode, it will ignore the input 1575 * from physical sensors and read sensor data that is injected from the test application. This 1576 * mode is used for testing vendor implementations for various algorithms like Rotation Vector, 1577 * Significant Motion, Step Counter etc. Not all HALs support DATA_INJECTION. This method will 1578 * fail in those cases. Once this method succeeds, the test can call 1579 * {@link injectSensorData(Sensor, float[], int, long)} to inject sensor data into the HAL. 1580 * 1581 * @param enable True to initialize a client in DATA_INJECTION mode. 1582 * False to clean up the native resources. 1583 * 1584 * @return true if the HAL supports data injection and false 1585 * otherwise. 1586 * @hide 1587 */ 1588 @SystemApi initDataInjection(boolean enable)1589 public boolean initDataInjection(boolean enable) { 1590 return initDataInjectionImpl(enable); 1591 } 1592 1593 /** 1594 * @hide 1595 */ initDataInjectionImpl(boolean enable)1596 protected abstract boolean initDataInjectionImpl(boolean enable); 1597 1598 /** 1599 * For testing purposes only. Not for third party applications. 1600 * 1601 * This method is used to inject raw sensor data into the HAL. Call {@link 1602 * initDataInjection(boolean)} before this method to set the HAL in data injection mode. This 1603 * method should be called only if a previous call to initDataInjection has been successful and 1604 * the HAL and SensorService are already opreating in data injection mode. 1605 * 1606 * @param sensor The sensor to inject. 1607 * @param values Sensor values to inject. The length of this 1608 * array must be exactly equal to the number of 1609 * values reported by the sensor type. 1610 * @param accuracy Accuracy of the sensor. 1611 * @param timestamp Sensor timestamp associated with the event. 1612 * 1613 * @return boolean True if the data injection succeeds, false 1614 * otherwise. 1615 * @throws IllegalArgumentException when the sensor is null, 1616 * data injection is not supported by the sensor, values 1617 * are null, incorrect number of values for the sensor, 1618 * sensor accuracy is incorrect or timestamps are 1619 * invalid. 1620 * @hide 1621 */ 1622 @SystemApi injectSensorData(Sensor sensor, float[] values, int accuracy, long timestamp)1623 public boolean injectSensorData(Sensor sensor, float[] values, int accuracy, 1624 long timestamp) { 1625 if (sensor == null) { 1626 throw new IllegalArgumentException("sensor cannot be null"); 1627 } 1628 if (!sensor.isDataInjectionSupported()) { 1629 throw new IllegalArgumentException("sensor does not support data injection"); 1630 } 1631 if (values == null) { 1632 throw new IllegalArgumentException("sensor data cannot be null"); 1633 } 1634 int expectedNumValues = Sensor.getMaxLengthValuesArray(sensor, Build.VERSION_CODES.M); 1635 if (values.length != expectedNumValues) { 1636 throw new IllegalArgumentException ("Wrong number of values for sensor " + 1637 sensor.getName() + " actual=" + values.length + " expected=" + 1638 expectedNumValues); 1639 } 1640 if (accuracy < SENSOR_STATUS_NO_CONTACT || accuracy > SENSOR_STATUS_ACCURACY_HIGH) { 1641 throw new IllegalArgumentException("Invalid sensor accuracy"); 1642 } 1643 if (timestamp <= 0) { 1644 throw new IllegalArgumentException("Negative or zero sensor timestamp"); 1645 } 1646 return injectSensorDataImpl(sensor, values, accuracy, timestamp); 1647 } 1648 1649 /** 1650 * @hide 1651 */ injectSensorDataImpl(Sensor sensor, float[] values, int accuracy, long timestamp)1652 protected abstract boolean injectSensorDataImpl(Sensor sensor, float[] values, int accuracy, 1653 long timestamp); 1654 getLegacySensorManager()1655 private LegacySensorManager getLegacySensorManager() { 1656 synchronized (mSensorListByType) { 1657 if (mLegacySensorManager == null) { 1658 Log.i(TAG, "This application is using deprecated SensorManager API which will " 1659 + "be removed someday. Please consider switching to the new API."); 1660 mLegacySensorManager = new LegacySensorManager(this); 1661 } 1662 return mLegacySensorManager; 1663 } 1664 } 1665 getDelay(int rate)1666 private static int getDelay(int rate) { 1667 int delay = -1; 1668 switch (rate) { 1669 case SENSOR_DELAY_FASTEST: 1670 delay = 0; 1671 break; 1672 case SENSOR_DELAY_GAME: 1673 delay = 20000; 1674 break; 1675 case SENSOR_DELAY_UI: 1676 delay = 66667; 1677 break; 1678 case SENSOR_DELAY_NORMAL: 1679 delay = 200000; 1680 break; 1681 default: 1682 delay = rate; 1683 break; 1684 } 1685 return delay; 1686 } 1687 } 1688