1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines structures to encapsulate information gleaned from the
11 // target register and register class definitions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CodeGenRegisters.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/IntEqClasses.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/TableGen/Error.h"
24 
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "regalloc-emitter"
28 
29 //===----------------------------------------------------------------------===//
30 //                             CodeGenSubRegIndex
31 //===----------------------------------------------------------------------===//
32 
CodeGenSubRegIndex(Record * R,unsigned Enum)33 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
34   : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
35   Name = R->getName();
36   if (R->getValue("Namespace"))
37     Namespace = R->getValueAsString("Namespace");
38   Size = R->getValueAsInt("Size");
39   Offset = R->getValueAsInt("Offset");
40 }
41 
CodeGenSubRegIndex(StringRef N,StringRef Nspace,unsigned Enum)42 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
43                                        unsigned Enum)
44   : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
45     EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
46 }
47 
getQualifiedName() const48 std::string CodeGenSubRegIndex::getQualifiedName() const {
49   std::string N = getNamespace();
50   if (!N.empty())
51     N += "::";
52   N += getName();
53   return N;
54 }
55 
updateComponents(CodeGenRegBank & RegBank)56 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
57   if (!TheDef)
58     return;
59 
60   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
61   if (!Comps.empty()) {
62     if (Comps.size() != 2)
63       PrintFatalError(TheDef->getLoc(),
64                       "ComposedOf must have exactly two entries");
65     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
66     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
67     CodeGenSubRegIndex *X = A->addComposite(B, this);
68     if (X)
69       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
70   }
71 
72   std::vector<Record*> Parts =
73     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
74   if (!Parts.empty()) {
75     if (Parts.size() < 2)
76       PrintFatalError(TheDef->getLoc(),
77                       "CoveredBySubRegs must have two or more entries");
78     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
79     for (unsigned i = 0, e = Parts.size(); i != e; ++i)
80       IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
81     RegBank.addConcatSubRegIndex(IdxParts, this);
82   }
83 }
84 
computeLaneMask() const85 unsigned CodeGenSubRegIndex::computeLaneMask() const {
86   // Already computed?
87   if (LaneMask)
88     return LaneMask;
89 
90   // Recursion guard, shouldn't be required.
91   LaneMask = ~0u;
92 
93   // The lane mask is simply the union of all sub-indices.
94   unsigned M = 0;
95   for (const auto &C : Composed)
96     M |= C.second->computeLaneMask();
97   assert(M && "Missing lane mask, sub-register cycle?");
98   LaneMask = M;
99   return LaneMask;
100 }
101 
102 //===----------------------------------------------------------------------===//
103 //                              CodeGenRegister
104 //===----------------------------------------------------------------------===//
105 
CodeGenRegister(Record * R,unsigned Enum)106 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
107   : TheDef(R),
108     EnumValue(Enum),
109     CostPerUse(R->getValueAsInt("CostPerUse")),
110     CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
111     HasDisjunctSubRegs(false),
112     SubRegsComplete(false),
113     SuperRegsComplete(false),
114     TopoSig(~0u)
115 {}
116 
buildObjectGraph(CodeGenRegBank & RegBank)117 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
118   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
119   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
120 
121   if (SRIs.size() != SRs.size())
122     PrintFatalError(TheDef->getLoc(),
123                     "SubRegs and SubRegIndices must have the same size");
124 
125   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
126     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
127     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
128   }
129 
130   // Also compute leading super-registers. Each register has a list of
131   // covered-by-subregs super-registers where it appears as the first explicit
132   // sub-register.
133   //
134   // This is used by computeSecondarySubRegs() to find candidates.
135   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
136     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
137 
138   // Add ad hoc alias links. This is a symmetric relationship between two
139   // registers, so build a symmetric graph by adding links in both ends.
140   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
141   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
142     CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
143     ExplicitAliases.push_back(Reg);
144     Reg->ExplicitAliases.push_back(this);
145   }
146 }
147 
getName() const148 const std::string &CodeGenRegister::getName() const {
149   assert(TheDef && "no def");
150   return TheDef->getName();
151 }
152 
153 namespace {
154 // Iterate over all register units in a set of registers.
155 class RegUnitIterator {
156   CodeGenRegister::Vec::const_iterator RegI, RegE;
157   CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
158 
159 public:
RegUnitIterator(const CodeGenRegister::Vec & Regs)160   RegUnitIterator(const CodeGenRegister::Vec &Regs):
161     RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
162 
163     if (RegI != RegE) {
164       UnitI = (*RegI)->getRegUnits().begin();
165       UnitE = (*RegI)->getRegUnits().end();
166       advance();
167     }
168   }
169 
isValid() const170   bool isValid() const { return UnitI != UnitE; }
171 
operator *() const172   unsigned operator* () const { assert(isValid()); return *UnitI; }
173 
getReg() const174   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
175 
176   /// Preincrement.  Move to the next unit.
operator ++()177   void operator++() {
178     assert(isValid() && "Cannot advance beyond the last operand");
179     ++UnitI;
180     advance();
181   }
182 
183 protected:
advance()184   void advance() {
185     while (UnitI == UnitE) {
186       if (++RegI == RegE)
187         break;
188       UnitI = (*RegI)->getRegUnits().begin();
189       UnitE = (*RegI)->getRegUnits().end();
190     }
191   }
192 };
193 } // namespace
194 
195 // Return true of this unit appears in RegUnits.
hasRegUnit(CodeGenRegister::RegUnitList & RegUnits,unsigned Unit)196 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
197   return RegUnits.test(Unit);
198 }
199 
200 // Inherit register units from subregisters.
201 // Return true if the RegUnits changed.
inheritRegUnits(CodeGenRegBank & RegBank)202 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
203   bool changed = false;
204   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
205        I != E; ++I) {
206     CodeGenRegister *SR = I->second;
207     // Merge the subregister's units into this register's RegUnits.
208     changed |= (RegUnits |= SR->RegUnits);
209   }
210 
211   return changed;
212 }
213 
214 const CodeGenRegister::SubRegMap &
computeSubRegs(CodeGenRegBank & RegBank)215 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
216   // Only compute this map once.
217   if (SubRegsComplete)
218     return SubRegs;
219   SubRegsComplete = true;
220 
221   HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
222 
223   // First insert the explicit subregs and make sure they are fully indexed.
224   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
225     CodeGenRegister *SR = ExplicitSubRegs[i];
226     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
227     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
228       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
229                       " appears twice in Register " + getName());
230     // Map explicit sub-registers first, so the names take precedence.
231     // The inherited sub-registers are mapped below.
232     SubReg2Idx.insert(std::make_pair(SR, Idx));
233   }
234 
235   // Keep track of inherited subregs and how they can be reached.
236   SmallPtrSet<CodeGenRegister*, 8> Orphans;
237 
238   // Clone inherited subregs and place duplicate entries in Orphans.
239   // Here the order is important - earlier subregs take precedence.
240   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
241     CodeGenRegister *SR = ExplicitSubRegs[i];
242     const SubRegMap &Map = SR->computeSubRegs(RegBank);
243     HasDisjunctSubRegs |= SR->HasDisjunctSubRegs;
244 
245     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
246          ++SI) {
247       if (!SubRegs.insert(*SI).second)
248         Orphans.insert(SI->second);
249     }
250   }
251 
252   // Expand any composed subreg indices.
253   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
254   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
255   // expanded subreg indices recursively.
256   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
257   for (unsigned i = 0; i != Indices.size(); ++i) {
258     CodeGenSubRegIndex *Idx = Indices[i];
259     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
260     CodeGenRegister *SR = SubRegs[Idx];
261     const SubRegMap &Map = SR->computeSubRegs(RegBank);
262 
263     // Look at the possible compositions of Idx.
264     // They may not all be supported by SR.
265     for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
266            E = Comps.end(); I != E; ++I) {
267       SubRegMap::const_iterator SRI = Map.find(I->first);
268       if (SRI == Map.end())
269         continue; // Idx + I->first doesn't exist in SR.
270       // Add I->second as a name for the subreg SRI->second, assuming it is
271       // orphaned, and the name isn't already used for something else.
272       if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
273         continue;
274       // We found a new name for the orphaned sub-register.
275       SubRegs.insert(std::make_pair(I->second, SRI->second));
276       Indices.push_back(I->second);
277     }
278   }
279 
280   // Now Orphans contains the inherited subregisters without a direct index.
281   // Create inferred indexes for all missing entries.
282   // Work backwards in the Indices vector in order to compose subregs bottom-up.
283   // Consider this subreg sequence:
284   //
285   //   qsub_1 -> dsub_0 -> ssub_0
286   //
287   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
288   // can be reached in two different ways:
289   //
290   //   qsub_1 -> ssub_0
291   //   dsub_2 -> ssub_0
292   //
293   // We pick the latter composition because another register may have [dsub_0,
294   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
295   // dsub_2 -> ssub_0 composition can be shared.
296   while (!Indices.empty() && !Orphans.empty()) {
297     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
298     CodeGenRegister *SR = SubRegs[Idx];
299     const SubRegMap &Map = SR->computeSubRegs(RegBank);
300     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
301          ++SI)
302       if (Orphans.erase(SI->second))
303         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
304   }
305 
306   // Compute the inverse SubReg -> Idx map.
307   for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
308        SI != SE; ++SI) {
309     if (SI->second == this) {
310       ArrayRef<SMLoc> Loc;
311       if (TheDef)
312         Loc = TheDef->getLoc();
313       PrintFatalError(Loc, "Register " + getName() +
314                       " has itself as a sub-register");
315     }
316 
317     // Compute AllSuperRegsCovered.
318     if (!CoveredBySubRegs)
319       SI->first->AllSuperRegsCovered = false;
320 
321     // Ensure that every sub-register has a unique name.
322     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
323       SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
324     if (Ins->second == SI->first)
325       continue;
326     // Trouble: Two different names for SI->second.
327     ArrayRef<SMLoc> Loc;
328     if (TheDef)
329       Loc = TheDef->getLoc();
330     PrintFatalError(Loc, "Sub-register can't have two names: " +
331                   SI->second->getName() + " available as " +
332                   SI->first->getName() + " and " + Ins->second->getName());
333   }
334 
335   // Derive possible names for sub-register concatenations from any explicit
336   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
337   // that getConcatSubRegIndex() won't invent any concatenated indices that the
338   // user already specified.
339   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
340     CodeGenRegister *SR = ExplicitSubRegs[i];
341     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
342       continue;
343 
344     // SR is composed of multiple sub-regs. Find their names in this register.
345     SmallVector<CodeGenSubRegIndex*, 8> Parts;
346     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
347       Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
348 
349     // Offer this as an existing spelling for the concatenation of Parts.
350     RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
351   }
352 
353   // Initialize RegUnitList. Because getSubRegs is called recursively, this
354   // processes the register hierarchy in postorder.
355   //
356   // Inherit all sub-register units. It is good enough to look at the explicit
357   // sub-registers, the other registers won't contribute any more units.
358   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
359     CodeGenRegister *SR = ExplicitSubRegs[i];
360     RegUnits |= SR->RegUnits;
361   }
362 
363   // Absent any ad hoc aliasing, we create one register unit per leaf register.
364   // These units correspond to the maximal cliques in the register overlap
365   // graph which is optimal.
366   //
367   // When there is ad hoc aliasing, we simply create one unit per edge in the
368   // undirected ad hoc aliasing graph. Technically, we could do better by
369   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
370   // are extremely rare anyway (I've never seen one), so we don't bother with
371   // the added complexity.
372   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
373     CodeGenRegister *AR = ExplicitAliases[i];
374     // Only visit each edge once.
375     if (AR->SubRegsComplete)
376       continue;
377     // Create a RegUnit representing this alias edge, and add it to both
378     // registers.
379     unsigned Unit = RegBank.newRegUnit(this, AR);
380     RegUnits.set(Unit);
381     AR->RegUnits.set(Unit);
382   }
383 
384   // Finally, create units for leaf registers without ad hoc aliases. Note that
385   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
386   // necessary. This means the aliasing leaf registers can share a single unit.
387   if (RegUnits.empty())
388     RegUnits.set(RegBank.newRegUnit(this));
389 
390   // We have now computed the native register units. More may be adopted later
391   // for balancing purposes.
392   NativeRegUnits = RegUnits;
393 
394   return SubRegs;
395 }
396 
397 // In a register that is covered by its sub-registers, try to find redundant
398 // sub-registers. For example:
399 //
400 //   QQ0 = {Q0, Q1}
401 //   Q0 = {D0, D1}
402 //   Q1 = {D2, D3}
403 //
404 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
405 // the register definition.
406 //
407 // The explicitly specified registers form a tree. This function discovers
408 // sub-register relationships that would force a DAG.
409 //
computeSecondarySubRegs(CodeGenRegBank & RegBank)410 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
411   // Collect new sub-registers first, add them later.
412   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
413 
414   // Look at the leading super-registers of each sub-register. Those are the
415   // candidates for new sub-registers, assuming they are fully contained in
416   // this register.
417   for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
418     const CodeGenRegister *SubReg = I->second;
419     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
420     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
421       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
422       // Already got this sub-register?
423       if (Cand == this || getSubRegIndex(Cand))
424         continue;
425       // Check if each component of Cand is already a sub-register.
426       // We know that the first component is I->second, and is present with the
427       // name I->first.
428       SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
429       assert(!Cand->ExplicitSubRegs.empty() &&
430              "Super-register has no sub-registers");
431       for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
432         if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
433           Parts.push_back(Idx);
434         else {
435           // Sub-register doesn't exist.
436           Parts.clear();
437           break;
438         }
439       }
440       // If some Cand sub-register is not part of this register, or if Cand only
441       // has one sub-register, there is nothing to do.
442       if (Parts.size() <= 1)
443         continue;
444 
445       // Each part of Cand is a sub-register of this. Make the full Cand also
446       // a sub-register with a concatenated sub-register index.
447       CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
448       NewSubRegs.push_back(std::make_pair(Concat, Cand));
449     }
450   }
451 
452   // Now add all the new sub-registers.
453   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
454     // Don't add Cand if another sub-register is already using the index.
455     if (!SubRegs.insert(NewSubRegs[i]).second)
456       continue;
457 
458     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
459     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
460     SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
461   }
462 
463   // Create sub-register index composition maps for the synthesized indices.
464   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
465     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
466     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
467     for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
468            SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
469       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
470       if (!SubIdx)
471         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
472                         SI->second->getName() + " in " + getName());
473       NewIdx->addComposite(SI->first, SubIdx);
474     }
475   }
476 }
477 
computeSuperRegs(CodeGenRegBank & RegBank)478 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
479   // Only visit each register once.
480   if (SuperRegsComplete)
481     return;
482   SuperRegsComplete = true;
483 
484   // Make sure all sub-registers have been visited first, so the super-reg
485   // lists will be topologically ordered.
486   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
487        I != E; ++I)
488     I->second->computeSuperRegs(RegBank);
489 
490   // Now add this as a super-register on all sub-registers.
491   // Also compute the TopoSigId in post-order.
492   TopoSigId Id;
493   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
494        I != E; ++I) {
495     // Topological signature computed from SubIdx, TopoId(SubReg).
496     // Loops and idempotent indices have TopoSig = ~0u.
497     Id.push_back(I->first->EnumValue);
498     Id.push_back(I->second->TopoSig);
499 
500     // Don't add duplicate entries.
501     if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
502       continue;
503     I->second->SuperRegs.push_back(this);
504   }
505   TopoSig = RegBank.getTopoSig(Id);
506 }
507 
508 void
addSubRegsPreOrder(SetVector<const CodeGenRegister * > & OSet,CodeGenRegBank & RegBank) const509 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
510                                     CodeGenRegBank &RegBank) const {
511   assert(SubRegsComplete && "Must precompute sub-registers");
512   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
513     CodeGenRegister *SR = ExplicitSubRegs[i];
514     if (OSet.insert(SR))
515       SR->addSubRegsPreOrder(OSet, RegBank);
516   }
517   // Add any secondary sub-registers that weren't part of the explicit tree.
518   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
519        I != E; ++I)
520     OSet.insert(I->second);
521 }
522 
523 // Get the sum of this register's unit weights.
getWeight(const CodeGenRegBank & RegBank) const524 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
525   unsigned Weight = 0;
526   for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end();
527        I != E; ++I) {
528     Weight += RegBank.getRegUnit(*I).Weight;
529   }
530   return Weight;
531 }
532 
533 //===----------------------------------------------------------------------===//
534 //                               RegisterTuples
535 //===----------------------------------------------------------------------===//
536 
537 // A RegisterTuples def is used to generate pseudo-registers from lists of
538 // sub-registers. We provide a SetTheory expander class that returns the new
539 // registers.
540 namespace {
541 struct TupleExpander : SetTheory::Expander {
expand__anon69515c8a0211::TupleExpander542   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
543     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
544     unsigned Dim = Indices.size();
545     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
546     if (Dim != SubRegs->getSize())
547       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
548     if (Dim < 2)
549       PrintFatalError(Def->getLoc(),
550                       "Tuples must have at least 2 sub-registers");
551 
552     // Evaluate the sub-register lists to be zipped.
553     unsigned Length = ~0u;
554     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
555     for (unsigned i = 0; i != Dim; ++i) {
556       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
557       Length = std::min(Length, unsigned(Lists[i].size()));
558     }
559 
560     if (Length == 0)
561       return;
562 
563     // Precompute some types.
564     Record *RegisterCl = Def->getRecords().getClass("Register");
565     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
566     StringInit *BlankName = StringInit::get("");
567 
568     // Zip them up.
569     for (unsigned n = 0; n != Length; ++n) {
570       std::string Name;
571       Record *Proto = Lists[0][n];
572       std::vector<Init*> Tuple;
573       unsigned CostPerUse = 0;
574       for (unsigned i = 0; i != Dim; ++i) {
575         Record *Reg = Lists[i][n];
576         if (i) Name += '_';
577         Name += Reg->getName();
578         Tuple.push_back(DefInit::get(Reg));
579         CostPerUse = std::max(CostPerUse,
580                               unsigned(Reg->getValueAsInt("CostPerUse")));
581       }
582 
583       // Create a new Record representing the synthesized register. This record
584       // is only for consumption by CodeGenRegister, it is not added to the
585       // RecordKeeper.
586       Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
587       Elts.insert(NewReg);
588 
589       // Copy Proto super-classes.
590       ArrayRef<Record *> Supers = Proto->getSuperClasses();
591       ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges();
592       for (unsigned i = 0, e = Supers.size(); i != e; ++i)
593         NewReg->addSuperClass(Supers[i], Ranges[i]);
594 
595       // Copy Proto fields.
596       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
597         RecordVal RV = Proto->getValues()[i];
598 
599         // Skip existing fields, like NAME.
600         if (NewReg->getValue(RV.getNameInit()))
601           continue;
602 
603         StringRef Field = RV.getName();
604 
605         // Replace the sub-register list with Tuple.
606         if (Field == "SubRegs")
607           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
608 
609         // Provide a blank AsmName. MC hacks are required anyway.
610         if (Field == "AsmName")
611           RV.setValue(BlankName);
612 
613         // CostPerUse is aggregated from all Tuple members.
614         if (Field == "CostPerUse")
615           RV.setValue(IntInit::get(CostPerUse));
616 
617         // Composite registers are always covered by sub-registers.
618         if (Field == "CoveredBySubRegs")
619           RV.setValue(BitInit::get(true));
620 
621         // Copy fields from the RegisterTuples def.
622         if (Field == "SubRegIndices" ||
623             Field == "CompositeIndices") {
624           NewReg->addValue(*Def->getValue(Field));
625           continue;
626         }
627 
628         // Some fields get their default uninitialized value.
629         if (Field == "DwarfNumbers" ||
630             Field == "DwarfAlias" ||
631             Field == "Aliases") {
632           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
633             NewReg->addValue(*DefRV);
634           continue;
635         }
636 
637         // Everything else is copied from Proto.
638         NewReg->addValue(RV);
639       }
640     }
641   }
642 };
643 }
644 
645 //===----------------------------------------------------------------------===//
646 //                            CodeGenRegisterClass
647 //===----------------------------------------------------------------------===//
648 
sortAndUniqueRegisters(CodeGenRegister::Vec & M)649 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
650   std::sort(M.begin(), M.end(), deref<llvm::less>());
651   M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end());
652 }
653 
CodeGenRegisterClass(CodeGenRegBank & RegBank,Record * R)654 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
655   : TheDef(R),
656     Name(R->getName()),
657     TopoSigs(RegBank.getNumTopoSigs()),
658     EnumValue(-1),
659     LaneMask(0) {
660   // Rename anonymous register classes.
661   if (R->getName().size() > 9 && R->getName()[9] == '.') {
662     static unsigned AnonCounter = 0;
663     R->setName("AnonRegClass_" + utostr(AnonCounter++));
664   }
665 
666   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
667   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
668     Record *Type = TypeList[i];
669     if (!Type->isSubClassOf("ValueType"))
670       PrintFatalError("RegTypes list member '" + Type->getName() +
671         "' does not derive from the ValueType class!");
672     VTs.push_back(getValueType(Type));
673   }
674   assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
675 
676   // Allocation order 0 is the full set. AltOrders provides others.
677   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
678   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
679   Orders.resize(1 + AltOrders->size());
680 
681   // Default allocation order always contains all registers.
682   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
683     Orders[0].push_back((*Elements)[i]);
684     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
685     Members.push_back(Reg);
686     TopoSigs.set(Reg->getTopoSig());
687   }
688   sortAndUniqueRegisters(Members);
689 
690   // Alternative allocation orders may be subsets.
691   SetTheory::RecSet Order;
692   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
693     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
694     Orders[1 + i].append(Order.begin(), Order.end());
695     // Verify that all altorder members are regclass members.
696     while (!Order.empty()) {
697       CodeGenRegister *Reg = RegBank.getReg(Order.back());
698       Order.pop_back();
699       if (!contains(Reg))
700         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
701                       " is not a class member");
702     }
703   }
704 
705   // Allow targets to override the size in bits of the RegisterClass.
706   unsigned Size = R->getValueAsInt("Size");
707 
708   Namespace = R->getValueAsString("Namespace");
709   SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits();
710   SpillAlignment = R->getValueAsInt("Alignment");
711   CopyCost = R->getValueAsInt("CopyCost");
712   Allocatable = R->getValueAsBit("isAllocatable");
713   AltOrderSelect = R->getValueAsString("AltOrderSelect");
714   int AllocationPriority = R->getValueAsInt("AllocationPriority");
715   if (AllocationPriority < 0 || AllocationPriority > 63)
716     PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
717   this->AllocationPriority = AllocationPriority;
718 }
719 
720 // Create an inferred register class that was missing from the .td files.
721 // Most properties will be inherited from the closest super-class after the
722 // class structure has been computed.
CodeGenRegisterClass(CodeGenRegBank & RegBank,StringRef Name,Key Props)723 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
724                                            StringRef Name, Key Props)
725   : Members(*Props.Members),
726     TheDef(nullptr),
727     Name(Name),
728     TopoSigs(RegBank.getNumTopoSigs()),
729     EnumValue(-1),
730     SpillSize(Props.SpillSize),
731     SpillAlignment(Props.SpillAlignment),
732     CopyCost(0),
733     Allocatable(true),
734     AllocationPriority(0) {
735   for (const auto R : Members)
736     TopoSigs.set(R->getTopoSig());
737 }
738 
739 // Compute inherited propertied for a synthesized register class.
inheritProperties(CodeGenRegBank & RegBank)740 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
741   assert(!getDef() && "Only synthesized classes can inherit properties");
742   assert(!SuperClasses.empty() && "Synthesized class without super class");
743 
744   // The last super-class is the smallest one.
745   CodeGenRegisterClass &Super = *SuperClasses.back();
746 
747   // Most properties are copied directly.
748   // Exceptions are members, size, and alignment
749   Namespace = Super.Namespace;
750   VTs = Super.VTs;
751   CopyCost = Super.CopyCost;
752   Allocatable = Super.Allocatable;
753   AltOrderSelect = Super.AltOrderSelect;
754   AllocationPriority = Super.AllocationPriority;
755 
756   // Copy all allocation orders, filter out foreign registers from the larger
757   // super-class.
758   Orders.resize(Super.Orders.size());
759   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
760     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
761       if (contains(RegBank.getReg(Super.Orders[i][j])))
762         Orders[i].push_back(Super.Orders[i][j]);
763 }
764 
contains(const CodeGenRegister * Reg) const765 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
766   return std::binary_search(Members.begin(), Members.end(), Reg,
767                             deref<llvm::less>());
768 }
769 
770 namespace llvm {
operator <<(raw_ostream & OS,const CodeGenRegisterClass::Key & K)771   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
772     OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
773     for (const auto R : *K.Members)
774       OS << ", " << R->getName();
775     return OS << " }";
776   }
777 }
778 
779 // This is a simple lexicographical order that can be used to search for sets.
780 // It is not the same as the topological order provided by TopoOrderRC.
781 bool CodeGenRegisterClass::Key::
operator <(const CodeGenRegisterClass::Key & B) const782 operator<(const CodeGenRegisterClass::Key &B) const {
783   assert(Members && B.Members);
784   return std::tie(*Members, SpillSize, SpillAlignment) <
785          std::tie(*B.Members, B.SpillSize, B.SpillAlignment);
786 }
787 
788 // Returns true if RC is a strict subclass.
789 // RC is a sub-class of this class if it is a valid replacement for any
790 // instruction operand where a register of this classis required. It must
791 // satisfy these conditions:
792 //
793 // 1. All RC registers are also in this.
794 // 2. The RC spill size must not be smaller than our spill size.
795 // 3. RC spill alignment must be compatible with ours.
796 //
testSubClass(const CodeGenRegisterClass * A,const CodeGenRegisterClass * B)797 static bool testSubClass(const CodeGenRegisterClass *A,
798                          const CodeGenRegisterClass *B) {
799   return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
800          A->SpillSize <= B->SpillSize &&
801          std::includes(A->getMembers().begin(), A->getMembers().end(),
802                        B->getMembers().begin(), B->getMembers().end(),
803                        deref<llvm::less>());
804 }
805 
806 /// Sorting predicate for register classes.  This provides a topological
807 /// ordering that arranges all register classes before their sub-classes.
808 ///
809 /// Register classes with the same registers, spill size, and alignment form a
810 /// clique.  They will be ordered alphabetically.
811 ///
TopoOrderRC(const CodeGenRegisterClass & PA,const CodeGenRegisterClass & PB)812 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
813                         const CodeGenRegisterClass &PB) {
814   auto *A = &PA;
815   auto *B = &PB;
816   if (A == B)
817     return 0;
818 
819   // Order by ascending spill size.
820   if (A->SpillSize < B->SpillSize)
821     return true;
822   if (A->SpillSize > B->SpillSize)
823     return false;
824 
825   // Order by ascending spill alignment.
826   if (A->SpillAlignment < B->SpillAlignment)
827     return true;
828   if (A->SpillAlignment > B->SpillAlignment)
829     return false;
830 
831   // Order by descending set size.  Note that the classes' allocation order may
832   // not have been computed yet.  The Members set is always vaild.
833   if (A->getMembers().size() > B->getMembers().size())
834     return true;
835   if (A->getMembers().size() < B->getMembers().size())
836     return false;
837 
838   // Finally order by name as a tie breaker.
839   return StringRef(A->getName()) < B->getName();
840 }
841 
getQualifiedName() const842 std::string CodeGenRegisterClass::getQualifiedName() const {
843   if (Namespace.empty())
844     return getName();
845   else
846     return Namespace + "::" + getName();
847 }
848 
849 // Compute sub-classes of all register classes.
850 // Assume the classes are ordered topologically.
computeSubClasses(CodeGenRegBank & RegBank)851 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
852   auto &RegClasses = RegBank.getRegClasses();
853 
854   // Visit backwards so sub-classes are seen first.
855   for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
856     CodeGenRegisterClass &RC = *I;
857     RC.SubClasses.resize(RegClasses.size());
858     RC.SubClasses.set(RC.EnumValue);
859 
860     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
861     for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
862       CodeGenRegisterClass &SubRC = *I2;
863       if (RC.SubClasses.test(SubRC.EnumValue))
864         continue;
865       if (!testSubClass(&RC, &SubRC))
866         continue;
867       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
868       // check them again.
869       RC.SubClasses |= SubRC.SubClasses;
870     }
871 
872     // Sweep up missed clique members.  They will be immediately preceding RC.
873     for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
874       RC.SubClasses.set(I2->EnumValue);
875   }
876 
877   // Compute the SuperClasses lists from the SubClasses vectors.
878   for (auto &RC : RegClasses) {
879     const BitVector &SC = RC.getSubClasses();
880     auto I = RegClasses.begin();
881     for (int s = 0, next_s = SC.find_first(); next_s != -1;
882          next_s = SC.find_next(s)) {
883       std::advance(I, next_s - s);
884       s = next_s;
885       if (&*I == &RC)
886         continue;
887       I->SuperClasses.push_back(&RC);
888     }
889   }
890 
891   // With the class hierarchy in place, let synthesized register classes inherit
892   // properties from their closest super-class. The iteration order here can
893   // propagate properties down multiple levels.
894   for (auto &RC : RegClasses)
895     if (!RC.getDef())
896       RC.inheritProperties(RegBank);
897 }
898 
getSuperRegClasses(const CodeGenSubRegIndex * SubIdx,BitVector & Out) const899 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
900                                               BitVector &Out) const {
901   auto FindI = SuperRegClasses.find(SubIdx);
902   if (FindI == SuperRegClasses.end())
903     return;
904   for (CodeGenRegisterClass *RC : FindI->second)
905     Out.set(RC->EnumValue);
906 }
907 
908 // Populate a unique sorted list of units from a register set.
buildRegUnitSet(std::vector<unsigned> & RegUnits) const909 void CodeGenRegisterClass::buildRegUnitSet(
910   std::vector<unsigned> &RegUnits) const {
911   std::vector<unsigned> TmpUnits;
912   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
913     TmpUnits.push_back(*UnitI);
914   std::sort(TmpUnits.begin(), TmpUnits.end());
915   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
916                    std::back_inserter(RegUnits));
917 }
918 
919 //===----------------------------------------------------------------------===//
920 //                               CodeGenRegBank
921 //===----------------------------------------------------------------------===//
922 
CodeGenRegBank(RecordKeeper & Records)923 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
924   // Configure register Sets to understand register classes and tuples.
925   Sets.addFieldExpander("RegisterClass", "MemberList");
926   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
927   Sets.addExpander("RegisterTuples", new TupleExpander());
928 
929   // Read in the user-defined (named) sub-register indices.
930   // More indices will be synthesized later.
931   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
932   std::sort(SRIs.begin(), SRIs.end(), LessRecord());
933   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
934     getSubRegIdx(SRIs[i]);
935   // Build composite maps from ComposedOf fields.
936   for (auto &Idx : SubRegIndices)
937     Idx.updateComponents(*this);
938 
939   // Read in the register definitions.
940   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
941   std::sort(Regs.begin(), Regs.end(), LessRecordRegister());
942   // Assign the enumeration values.
943   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
944     getReg(Regs[i]);
945 
946   // Expand tuples and number the new registers.
947   std::vector<Record*> Tups =
948     Records.getAllDerivedDefinitions("RegisterTuples");
949 
950   for (Record *R : Tups) {
951     std::vector<Record *> TupRegs = *Sets.expand(R);
952     std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister());
953     for (Record *RC : TupRegs)
954       getReg(RC);
955   }
956 
957   // Now all the registers are known. Build the object graph of explicit
958   // register-register references.
959   for (auto &Reg : Registers)
960     Reg.buildObjectGraph(*this);
961 
962   // Compute register name map.
963   for (auto &Reg : Registers)
964     // FIXME: This could just be RegistersByName[name] = register, except that
965     // causes some failures in MIPS - perhaps they have duplicate register name
966     // entries? (or maybe there's a reason for it - I don't know much about this
967     // code, just drive-by refactoring)
968     RegistersByName.insert(
969         std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
970 
971   // Precompute all sub-register maps.
972   // This will create Composite entries for all inferred sub-register indices.
973   for (auto &Reg : Registers)
974     Reg.computeSubRegs(*this);
975 
976   // Infer even more sub-registers by combining leading super-registers.
977   for (auto &Reg : Registers)
978     if (Reg.CoveredBySubRegs)
979       Reg.computeSecondarySubRegs(*this);
980 
981   // After the sub-register graph is complete, compute the topologically
982   // ordered SuperRegs list.
983   for (auto &Reg : Registers)
984     Reg.computeSuperRegs(*this);
985 
986   // Native register units are associated with a leaf register. They've all been
987   // discovered now.
988   NumNativeRegUnits = RegUnits.size();
989 
990   // Read in register class definitions.
991   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
992   if (RCs.empty())
993     PrintFatalError("No 'RegisterClass' subclasses defined!");
994 
995   // Allocate user-defined register classes.
996   for (auto *RC : RCs) {
997     RegClasses.push_back(CodeGenRegisterClass(*this, RC));
998     addToMaps(&RegClasses.back());
999   }
1000 
1001   // Infer missing classes to create a full algebra.
1002   computeInferredRegisterClasses();
1003 
1004   // Order register classes topologically and assign enum values.
1005   RegClasses.sort(TopoOrderRC);
1006   unsigned i = 0;
1007   for (auto &RC : RegClasses)
1008     RC.EnumValue = i++;
1009   CodeGenRegisterClass::computeSubClasses(*this);
1010 }
1011 
1012 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1013 CodeGenSubRegIndex*
createSubRegIndex(StringRef Name,StringRef Namespace)1014 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1015   SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1016   return &SubRegIndices.back();
1017 }
1018 
getSubRegIdx(Record * Def)1019 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1020   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1021   if (Idx)
1022     return Idx;
1023   SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1024   Idx = &SubRegIndices.back();
1025   return Idx;
1026 }
1027 
getReg(Record * Def)1028 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1029   CodeGenRegister *&Reg = Def2Reg[Def];
1030   if (Reg)
1031     return Reg;
1032   Registers.emplace_back(Def, Registers.size() + 1);
1033   Reg = &Registers.back();
1034   return Reg;
1035 }
1036 
addToMaps(CodeGenRegisterClass * RC)1037 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1038   if (Record *Def = RC->getDef())
1039     Def2RC.insert(std::make_pair(Def, RC));
1040 
1041   // Duplicate classes are rejected by insert().
1042   // That's OK, we only care about the properties handled by CGRC::Key.
1043   CodeGenRegisterClass::Key K(*RC);
1044   Key2RC.insert(std::make_pair(K, RC));
1045 }
1046 
1047 // Create a synthetic sub-class if it is missing.
1048 CodeGenRegisterClass*
getOrCreateSubClass(const CodeGenRegisterClass * RC,const CodeGenRegister::Vec * Members,StringRef Name)1049 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1050                                     const CodeGenRegister::Vec *Members,
1051                                     StringRef Name) {
1052   // Synthetic sub-class has the same size and alignment as RC.
1053   CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
1054   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1055   if (FoundI != Key2RC.end())
1056     return FoundI->second;
1057 
1058   // Sub-class doesn't exist, create a new one.
1059   RegClasses.push_back(CodeGenRegisterClass(*this, Name, K));
1060   addToMaps(&RegClasses.back());
1061   return &RegClasses.back();
1062 }
1063 
getRegClass(Record * Def)1064 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1065   if (CodeGenRegisterClass *RC = Def2RC[Def])
1066     return RC;
1067 
1068   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1069 }
1070 
1071 CodeGenSubRegIndex*
getCompositeSubRegIndex(CodeGenSubRegIndex * A,CodeGenSubRegIndex * B)1072 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1073                                         CodeGenSubRegIndex *B) {
1074   // Look for an existing entry.
1075   CodeGenSubRegIndex *Comp = A->compose(B);
1076   if (Comp)
1077     return Comp;
1078 
1079   // None exists, synthesize one.
1080   std::string Name = A->getName() + "_then_" + B->getName();
1081   Comp = createSubRegIndex(Name, A->getNamespace());
1082   A->addComposite(B, Comp);
1083   return Comp;
1084 }
1085 
1086 CodeGenSubRegIndex *CodeGenRegBank::
getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *,8> & Parts)1087 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1088   assert(Parts.size() > 1 && "Need two parts to concatenate");
1089 
1090   // Look for an existing entry.
1091   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1092   if (Idx)
1093     return Idx;
1094 
1095   // None exists, synthesize one.
1096   std::string Name = Parts.front()->getName();
1097   // Determine whether all parts are contiguous.
1098   bool isContinuous = true;
1099   unsigned Size = Parts.front()->Size;
1100   unsigned LastOffset = Parts.front()->Offset;
1101   unsigned LastSize = Parts.front()->Size;
1102   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1103     Name += '_';
1104     Name += Parts[i]->getName();
1105     Size += Parts[i]->Size;
1106     if (Parts[i]->Offset != (LastOffset + LastSize))
1107       isContinuous = false;
1108     LastOffset = Parts[i]->Offset;
1109     LastSize = Parts[i]->Size;
1110   }
1111   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1112   Idx->Size = Size;
1113   Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1114   return Idx;
1115 }
1116 
computeComposites()1117 void CodeGenRegBank::computeComposites() {
1118   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1119   // and many registers will share TopoSigs on regular architectures.
1120   BitVector TopoSigs(getNumTopoSigs());
1121 
1122   for (const auto &Reg1 : Registers) {
1123     // Skip identical subreg structures already processed.
1124     if (TopoSigs.test(Reg1.getTopoSig()))
1125       continue;
1126     TopoSigs.set(Reg1.getTopoSig());
1127 
1128     const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1129     for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1130          e1 = SRM1.end(); i1 != e1; ++i1) {
1131       CodeGenSubRegIndex *Idx1 = i1->first;
1132       CodeGenRegister *Reg2 = i1->second;
1133       // Ignore identity compositions.
1134       if (&Reg1 == Reg2)
1135         continue;
1136       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1137       // Try composing Idx1 with another SubRegIndex.
1138       for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1139            e2 = SRM2.end(); i2 != e2; ++i2) {
1140         CodeGenSubRegIndex *Idx2 = i2->first;
1141         CodeGenRegister *Reg3 = i2->second;
1142         // Ignore identity compositions.
1143         if (Reg2 == Reg3)
1144           continue;
1145         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1146         CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1147         assert(Idx3 && "Sub-register doesn't have an index");
1148 
1149         // Conflicting composition? Emit a warning but allow it.
1150         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
1151           PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1152                        " and " + Idx2->getQualifiedName() +
1153                        " compose ambiguously as " + Prev->getQualifiedName() +
1154                        " or " + Idx3->getQualifiedName());
1155       }
1156     }
1157   }
1158 }
1159 
1160 // Compute lane masks. This is similar to register units, but at the
1161 // sub-register index level. Each bit in the lane mask is like a register unit
1162 // class, and two lane masks will have a bit in common if two sub-register
1163 // indices overlap in some register.
1164 //
1165 // Conservatively share a lane mask bit if two sub-register indices overlap in
1166 // some registers, but not in others. That shouldn't happen a lot.
computeSubRegLaneMasks()1167 void CodeGenRegBank::computeSubRegLaneMasks() {
1168   // First assign individual bits to all the leaf indices.
1169   unsigned Bit = 0;
1170   // Determine mask of lanes that cover their registers.
1171   CoveringLanes = ~0u;
1172   for (auto &Idx : SubRegIndices) {
1173     if (Idx.getComposites().empty()) {
1174       Idx.LaneMask = 1u << Bit;
1175       // Share bit 31 in the unlikely case there are more than 32 leafs.
1176       //
1177       // Sharing bits is harmless; it allows graceful degradation in targets
1178       // with more than 32 vector lanes. They simply get a limited resolution
1179       // view of lanes beyond the 32nd.
1180       //
1181       // See also the comment for getSubRegIndexLaneMask().
1182       if (Bit < 31)
1183         ++Bit;
1184       else
1185         // Once bit 31 is shared among multiple leafs, the 'lane' it represents
1186         // is no longer covering its registers.
1187         CoveringLanes &= ~(1u << Bit);
1188     } else {
1189       Idx.LaneMask = 0;
1190     }
1191   }
1192 
1193   // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1194   // here is that for each possible target subregister we look at the leafs
1195   // in the subregister graph that compose for this target and create
1196   // transformation sequences for the lanemasks. Each step in the sequence
1197   // consists of a bitmask and a bitrotate operation. As the rotation amounts
1198   // are usually the same for many subregisters we can easily combine the steps
1199   // by combining the masks.
1200   for (const auto &Idx : SubRegIndices) {
1201     const auto &Composites = Idx.getComposites();
1202     auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1203     // Go through all leaf subregisters and find the ones that compose with Idx.
1204     // These make out all possible valid bits in the lane mask we want to
1205     // transform. Looking only at the leafs ensure that only a single bit in
1206     // the mask is set.
1207     unsigned NextBit = 0;
1208     for (auto &Idx2 : SubRegIndices) {
1209       // Skip non-leaf subregisters.
1210       if (!Idx2.getComposites().empty())
1211         continue;
1212       // Replicate the behaviour from the lane mask generation loop above.
1213       unsigned SrcBit = NextBit;
1214       unsigned SrcMask = 1u << SrcBit;
1215       if (NextBit < 31)
1216         ++NextBit;
1217       assert(Idx2.LaneMask == SrcMask);
1218 
1219       // Get the composed subregister if there is any.
1220       auto C = Composites.find(&Idx2);
1221       if (C == Composites.end())
1222         continue;
1223       const CodeGenSubRegIndex *Composite = C->second;
1224       // The Composed subreg should be a leaf subreg too
1225       assert(Composite->getComposites().empty());
1226 
1227       // Create Mask+Rotate operation and merge with existing ops if possible.
1228       unsigned DstBit = Log2_32(Composite->LaneMask);
1229       int Shift = DstBit - SrcBit;
1230       uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift : 32+Shift;
1231       for (auto &I : LaneTransforms) {
1232         if (I.RotateLeft == RotateLeft) {
1233           I.Mask |= SrcMask;
1234           SrcMask = 0;
1235         }
1236       }
1237       if (SrcMask != 0) {
1238         MaskRolPair MaskRol = { SrcMask, RotateLeft };
1239         LaneTransforms.push_back(MaskRol);
1240       }
1241     }
1242     // Optimize if the transformation consists of one step only: Set mask to
1243     // 0xffffffff (including some irrelevant invalid bits) so that it should
1244     // merge with more entries later while compressing the table.
1245     if (LaneTransforms.size() == 1)
1246       LaneTransforms[0].Mask = ~0u;
1247 
1248     // Further compression optimization: For invalid compositions resulting
1249     // in a sequence with 0 entries we can just pick any other. Choose
1250     // Mask 0xffffffff with Rotation 0.
1251     if (LaneTransforms.size() == 0) {
1252       MaskRolPair P = { ~0u, 0 };
1253       LaneTransforms.push_back(P);
1254     }
1255   }
1256 
1257   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1258   // by the sub-register graph? This doesn't occur in any known targets.
1259 
1260   // Inherit lanes from composites.
1261   for (const auto &Idx : SubRegIndices) {
1262     unsigned Mask = Idx.computeLaneMask();
1263     // If some super-registers without CoveredBySubRegs use this index, we can
1264     // no longer assume that the lanes are covering their registers.
1265     if (!Idx.AllSuperRegsCovered)
1266       CoveringLanes &= ~Mask;
1267   }
1268 
1269   // Compute lane mask combinations for register classes.
1270   for (auto &RegClass : RegClasses) {
1271     unsigned LaneMask = 0;
1272     for (const auto &SubRegIndex : SubRegIndices) {
1273       if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1274         continue;
1275       LaneMask |= SubRegIndex.LaneMask;
1276     }
1277     RegClass.LaneMask = LaneMask;
1278   }
1279 }
1280 
1281 namespace {
1282 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1283 // the transitive closure of the union of overlapping register
1284 // classes. Together, the UberRegSets form a partition of the registers. If we
1285 // consider overlapping register classes to be connected, then each UberRegSet
1286 // is a set of connected components.
1287 //
1288 // An UberRegSet will likely be a horizontal slice of register names of
1289 // the same width. Nontrivial subregisters should then be in a separate
1290 // UberRegSet. But this property isn't required for valid computation of
1291 // register unit weights.
1292 //
1293 // A Weight field caches the max per-register unit weight in each UberRegSet.
1294 //
1295 // A set of SingularDeterminants flags single units of some register in this set
1296 // for which the unit weight equals the set weight. These units should not have
1297 // their weight increased.
1298 struct UberRegSet {
1299   CodeGenRegister::Vec Regs;
1300   unsigned Weight;
1301   CodeGenRegister::RegUnitList SingularDeterminants;
1302 
UberRegSet__anon69515c8a0311::UberRegSet1303   UberRegSet(): Weight(0) {}
1304 };
1305 } // namespace
1306 
1307 // Partition registers into UberRegSets, where each set is the transitive
1308 // closure of the union of overlapping register classes.
1309 //
1310 // UberRegSets[0] is a special non-allocatable set.
computeUberSets(std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,CodeGenRegBank & RegBank)1311 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1312                             std::vector<UberRegSet*> &RegSets,
1313                             CodeGenRegBank &RegBank) {
1314 
1315   const auto &Registers = RegBank.getRegisters();
1316 
1317   // The Register EnumValue is one greater than its index into Registers.
1318   assert(Registers.size() == Registers.back().EnumValue &&
1319          "register enum value mismatch");
1320 
1321   // For simplicitly make the SetID the same as EnumValue.
1322   IntEqClasses UberSetIDs(Registers.size()+1);
1323   std::set<unsigned> AllocatableRegs;
1324   for (auto &RegClass : RegBank.getRegClasses()) {
1325     if (!RegClass.Allocatable)
1326       continue;
1327 
1328     const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1329     if (Regs.empty())
1330       continue;
1331 
1332     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1333     assert(USetID && "register number 0 is invalid");
1334 
1335     AllocatableRegs.insert((*Regs.begin())->EnumValue);
1336     for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
1337       AllocatableRegs.insert((*I)->EnumValue);
1338       UberSetIDs.join(USetID, (*I)->EnumValue);
1339     }
1340   }
1341   // Combine non-allocatable regs.
1342   for (const auto &Reg : Registers) {
1343     unsigned RegNum = Reg.EnumValue;
1344     if (AllocatableRegs.count(RegNum))
1345       continue;
1346 
1347     UberSetIDs.join(0, RegNum);
1348   }
1349   UberSetIDs.compress();
1350 
1351   // Make the first UberSet a special unallocatable set.
1352   unsigned ZeroID = UberSetIDs[0];
1353 
1354   // Insert Registers into the UberSets formed by union-find.
1355   // Do not resize after this.
1356   UberSets.resize(UberSetIDs.getNumClasses());
1357   unsigned i = 0;
1358   for (const CodeGenRegister &Reg : Registers) {
1359     unsigned USetID = UberSetIDs[Reg.EnumValue];
1360     if (!USetID)
1361       USetID = ZeroID;
1362     else if (USetID == ZeroID)
1363       USetID = 0;
1364 
1365     UberRegSet *USet = &UberSets[USetID];
1366     USet->Regs.push_back(&Reg);
1367     sortAndUniqueRegisters(USet->Regs);
1368     RegSets[i++] = USet;
1369   }
1370 }
1371 
1372 // Recompute each UberSet weight after changing unit weights.
computeUberWeights(std::vector<UberRegSet> & UberSets,CodeGenRegBank & RegBank)1373 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1374                                CodeGenRegBank &RegBank) {
1375   // Skip the first unallocatable set.
1376   for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1377          E = UberSets.end(); I != E; ++I) {
1378 
1379     // Initialize all unit weights in this set, and remember the max units/reg.
1380     const CodeGenRegister *Reg = nullptr;
1381     unsigned MaxWeight = 0, Weight = 0;
1382     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1383       if (Reg != UnitI.getReg()) {
1384         if (Weight > MaxWeight)
1385           MaxWeight = Weight;
1386         Reg = UnitI.getReg();
1387         Weight = 0;
1388       }
1389       unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1390       if (!UWeight) {
1391         UWeight = 1;
1392         RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1393       }
1394       Weight += UWeight;
1395     }
1396     if (Weight > MaxWeight)
1397       MaxWeight = Weight;
1398     if (I->Weight != MaxWeight) {
1399       DEBUG(
1400         dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight;
1401         for (auto &Unit : I->Regs)
1402           dbgs() << " " << Unit->getName();
1403         dbgs() << "\n");
1404       // Update the set weight.
1405       I->Weight = MaxWeight;
1406     }
1407 
1408     // Find singular determinants.
1409     for (const auto R : I->Regs) {
1410       if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1411         I->SingularDeterminants |= R->getRegUnits();
1412       }
1413     }
1414   }
1415 }
1416 
1417 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1418 // a register and its subregisters so that they have the same weight as their
1419 // UberSet. Self-recursion processes the subregister tree in postorder so
1420 // subregisters are normalized first.
1421 //
1422 // Side effects:
1423 // - creates new adopted register units
1424 // - causes superregisters to inherit adopted units
1425 // - increases the weight of "singular" units
1426 // - induces recomputation of UberWeights.
normalizeWeight(CodeGenRegister * Reg,std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,SparseBitVector<> & NormalRegs,CodeGenRegister::RegUnitList & NormalUnits,CodeGenRegBank & RegBank)1427 static bool normalizeWeight(CodeGenRegister *Reg,
1428                             std::vector<UberRegSet> &UberSets,
1429                             std::vector<UberRegSet*> &RegSets,
1430                             SparseBitVector<> &NormalRegs,
1431                             CodeGenRegister::RegUnitList &NormalUnits,
1432                             CodeGenRegBank &RegBank) {
1433   if (NormalRegs.test(Reg->EnumValue))
1434     return false;
1435   NormalRegs.set(Reg->EnumValue);
1436 
1437   bool Changed = false;
1438   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1439   for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1440          SRE = SRM.end(); SRI != SRE; ++SRI) {
1441     if (SRI->second == Reg)
1442       continue; // self-cycles happen
1443 
1444     Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1445                                NormalRegs, NormalUnits, RegBank);
1446   }
1447   // Postorder register normalization.
1448 
1449   // Inherit register units newly adopted by subregisters.
1450   if (Reg->inheritRegUnits(RegBank))
1451     computeUberWeights(UberSets, RegBank);
1452 
1453   // Check if this register is too skinny for its UberRegSet.
1454   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1455 
1456   unsigned RegWeight = Reg->getWeight(RegBank);
1457   if (UberSet->Weight > RegWeight) {
1458     // A register unit's weight can be adjusted only if it is the singular unit
1459     // for this register, has not been used to normalize a subregister's set,
1460     // and has not already been used to singularly determine this UberRegSet.
1461     unsigned AdjustUnit = *Reg->getRegUnits().begin();
1462     if (Reg->getRegUnits().count() != 1
1463         || hasRegUnit(NormalUnits, AdjustUnit)
1464         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1465       // We don't have an adjustable unit, so adopt a new one.
1466       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1467       Reg->adoptRegUnit(AdjustUnit);
1468       // Adopting a unit does not immediately require recomputing set weights.
1469     }
1470     else {
1471       // Adjust the existing single unit.
1472       RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1473       // The unit may be shared among sets and registers within this set.
1474       computeUberWeights(UberSets, RegBank);
1475     }
1476     Changed = true;
1477   }
1478 
1479   // Mark these units normalized so superregisters can't change their weights.
1480   NormalUnits |= Reg->getRegUnits();
1481 
1482   return Changed;
1483 }
1484 
1485 // Compute a weight for each register unit created during getSubRegs.
1486 //
1487 // The goal is that two registers in the same class will have the same weight,
1488 // where each register's weight is defined as sum of its units' weights.
computeRegUnitWeights()1489 void CodeGenRegBank::computeRegUnitWeights() {
1490   std::vector<UberRegSet> UberSets;
1491   std::vector<UberRegSet*> RegSets(Registers.size());
1492   computeUberSets(UberSets, RegSets, *this);
1493   // UberSets and RegSets are now immutable.
1494 
1495   computeUberWeights(UberSets, *this);
1496 
1497   // Iterate over each Register, normalizing the unit weights until reaching
1498   // a fix point.
1499   unsigned NumIters = 0;
1500   for (bool Changed = true; Changed; ++NumIters) {
1501     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1502     Changed = false;
1503     for (auto &Reg : Registers) {
1504       CodeGenRegister::RegUnitList NormalUnits;
1505       SparseBitVector<> NormalRegs;
1506       Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1507                                  NormalUnits, *this);
1508     }
1509   }
1510 }
1511 
1512 // Find a set in UniqueSets with the same elements as Set.
1513 // Return an iterator into UniqueSets.
1514 static std::vector<RegUnitSet>::const_iterator
findRegUnitSet(const std::vector<RegUnitSet> & UniqueSets,const RegUnitSet & Set)1515 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1516                const RegUnitSet &Set) {
1517   std::vector<RegUnitSet>::const_iterator
1518     I = UniqueSets.begin(), E = UniqueSets.end();
1519   for(;I != E; ++I) {
1520     if (I->Units == Set.Units)
1521       break;
1522   }
1523   return I;
1524 }
1525 
1526 // Return true if the RUSubSet is a subset of RUSuperSet.
isRegUnitSubSet(const std::vector<unsigned> & RUSubSet,const std::vector<unsigned> & RUSuperSet)1527 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1528                             const std::vector<unsigned> &RUSuperSet) {
1529   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1530                        RUSubSet.begin(), RUSubSet.end());
1531 }
1532 
1533 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1534 /// but with one or two registers removed. We occasionally have registers like
1535 /// APSR and PC thrown in with the general registers. We also see many
1536 /// special-purpose register subsets, such as tail-call and Thumb
1537 /// encodings. Generating all possible overlapping sets is combinatorial and
1538 /// overkill for modeling pressure. Ideally we could fix this statically in
1539 /// tablegen by (1) having the target define register classes that only include
1540 /// the allocatable registers and marking other classes as non-allocatable and
1541 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1542 /// the purpose of pressure.  However, we make an attempt to handle targets that
1543 /// are not nicely defined by merging nearly identical register unit sets
1544 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1545 /// set limit by filtering the reserved registers.
1546 ///
1547 /// Merge sets only if the units have the same weight. For example, on ARM,
1548 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1549 /// should not expand the S set to include D regs.
pruneUnitSets()1550 void CodeGenRegBank::pruneUnitSets() {
1551   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1552 
1553   // Form an equivalence class of UnitSets with no significant difference.
1554   std::vector<unsigned> SuperSetIDs;
1555   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1556        SubIdx != EndIdx; ++SubIdx) {
1557     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1558     unsigned SuperIdx = 0;
1559     for (; SuperIdx != EndIdx; ++SuperIdx) {
1560       if (SuperIdx == SubIdx)
1561         continue;
1562 
1563       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1564       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1565       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1566           && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1567           && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1568           && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1569         DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1570               << "\n");
1571         break;
1572       }
1573     }
1574     if (SuperIdx == EndIdx)
1575       SuperSetIDs.push_back(SubIdx);
1576   }
1577   // Populate PrunedUnitSets with each equivalence class's superset.
1578   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1579   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1580     unsigned SuperIdx = SuperSetIDs[i];
1581     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1582     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1583   }
1584   RegUnitSets.swap(PrunedUnitSets);
1585 }
1586 
1587 // Create a RegUnitSet for each RegClass that contains all units in the class
1588 // including adopted units that are necessary to model register pressure. Then
1589 // iteratively compute RegUnitSets such that the union of any two overlapping
1590 // RegUnitSets is repreresented.
1591 //
1592 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1593 // RegUnitSet that is a superset of that RegUnitClass.
computeRegUnitSets()1594 void CodeGenRegBank::computeRegUnitSets() {
1595   assert(RegUnitSets.empty() && "dirty RegUnitSets");
1596 
1597   // Compute a unique RegUnitSet for each RegClass.
1598   auto &RegClasses = getRegClasses();
1599   for (auto &RC : RegClasses) {
1600     if (!RC.Allocatable)
1601       continue;
1602 
1603     // Speculatively grow the RegUnitSets to hold the new set.
1604     RegUnitSets.resize(RegUnitSets.size() + 1);
1605     RegUnitSets.back().Name = RC.getName();
1606 
1607     // Compute a sorted list of units in this class.
1608     RC.buildRegUnitSet(RegUnitSets.back().Units);
1609 
1610     // Find an existing RegUnitSet.
1611     std::vector<RegUnitSet>::const_iterator SetI =
1612       findRegUnitSet(RegUnitSets, RegUnitSets.back());
1613     if (SetI != std::prev(RegUnitSets.end()))
1614       RegUnitSets.pop_back();
1615   }
1616 
1617   DEBUG(dbgs() << "\nBefore pruning:\n";
1618         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1619              USIdx < USEnd; ++USIdx) {
1620           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1621                  << ":";
1622           for (auto &U : RegUnitSets[USIdx].Units)
1623             dbgs() << " " << RegUnits[U].Roots[0]->getName();
1624           dbgs() << "\n";
1625         });
1626 
1627   // Iteratively prune unit sets.
1628   pruneUnitSets();
1629 
1630   DEBUG(dbgs() << "\nBefore union:\n";
1631         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1632              USIdx < USEnd; ++USIdx) {
1633           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1634                  << ":";
1635           for (auto &U : RegUnitSets[USIdx].Units)
1636             dbgs() << " " << RegUnits[U].Roots[0]->getName();
1637           dbgs() << "\n";
1638         }
1639         dbgs() << "\nUnion sets:\n");
1640 
1641   // Iterate over all unit sets, including new ones added by this loop.
1642   unsigned NumRegUnitSubSets = RegUnitSets.size();
1643   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1644     // In theory, this is combinatorial. In practice, it needs to be bounded
1645     // by a small number of sets for regpressure to be efficient.
1646     // If the assert is hit, we need to implement pruning.
1647     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1648 
1649     // Compare new sets with all original classes.
1650     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1651          SearchIdx != EndIdx; ++SearchIdx) {
1652       std::set<unsigned> Intersection;
1653       std::set_intersection(RegUnitSets[Idx].Units.begin(),
1654                             RegUnitSets[Idx].Units.end(),
1655                             RegUnitSets[SearchIdx].Units.begin(),
1656                             RegUnitSets[SearchIdx].Units.end(),
1657                             std::inserter(Intersection, Intersection.begin()));
1658       if (Intersection.empty())
1659         continue;
1660 
1661       // Speculatively grow the RegUnitSets to hold the new set.
1662       RegUnitSets.resize(RegUnitSets.size() + 1);
1663       RegUnitSets.back().Name =
1664         RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1665 
1666       std::set_union(RegUnitSets[Idx].Units.begin(),
1667                      RegUnitSets[Idx].Units.end(),
1668                      RegUnitSets[SearchIdx].Units.begin(),
1669                      RegUnitSets[SearchIdx].Units.end(),
1670                      std::inserter(RegUnitSets.back().Units,
1671                                    RegUnitSets.back().Units.begin()));
1672 
1673       // Find an existing RegUnitSet, or add the union to the unique sets.
1674       std::vector<RegUnitSet>::const_iterator SetI =
1675         findRegUnitSet(RegUnitSets, RegUnitSets.back());
1676       if (SetI != std::prev(RegUnitSets.end()))
1677         RegUnitSets.pop_back();
1678       else {
1679         DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1
1680               << " " << RegUnitSets.back().Name << ":";
1681               for (auto &U : RegUnitSets.back().Units)
1682                 dbgs() << " " << RegUnits[U].Roots[0]->getName();
1683               dbgs() << "\n";);
1684       }
1685     }
1686   }
1687 
1688   // Iteratively prune unit sets after inferring supersets.
1689   pruneUnitSets();
1690 
1691   DEBUG(dbgs() << "\n";
1692         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1693              USIdx < USEnd; ++USIdx) {
1694           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1695                  << ":";
1696           for (auto &U : RegUnitSets[USIdx].Units)
1697             dbgs() << " " << RegUnits[U].Roots[0]->getName();
1698           dbgs() << "\n";
1699         });
1700 
1701   // For each register class, list the UnitSets that are supersets.
1702   RegClassUnitSets.resize(RegClasses.size());
1703   int RCIdx = -1;
1704   for (auto &RC : RegClasses) {
1705     ++RCIdx;
1706     if (!RC.Allocatable)
1707       continue;
1708 
1709     // Recompute the sorted list of units in this class.
1710     std::vector<unsigned> RCRegUnits;
1711     RC.buildRegUnitSet(RCRegUnits);
1712 
1713     // Don't increase pressure for unallocatable regclasses.
1714     if (RCRegUnits.empty())
1715       continue;
1716 
1717     DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n";
1718           for (auto &U : RCRegUnits)
1719             dbgs() << RegUnits[U].getRoots()[0]->getName() << " ";
1720           dbgs() << "\n  UnitSetIDs:");
1721 
1722     // Find all supersets.
1723     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1724          USIdx != USEnd; ++USIdx) {
1725       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
1726         DEBUG(dbgs() << " " << USIdx);
1727         RegClassUnitSets[RCIdx].push_back(USIdx);
1728       }
1729     }
1730     DEBUG(dbgs() << "\n");
1731     assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
1732   }
1733 
1734   // For each register unit, ensure that we have the list of UnitSets that
1735   // contain the unit. Normally, this matches an existing list of UnitSets for a
1736   // register class. If not, we create a new entry in RegClassUnitSets as a
1737   // "fake" register class.
1738   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
1739        UnitIdx < UnitEnd; ++UnitIdx) {
1740     std::vector<unsigned> RUSets;
1741     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
1742       RegUnitSet &RUSet = RegUnitSets[i];
1743       if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx)
1744           == RUSet.Units.end())
1745         continue;
1746       RUSets.push_back(i);
1747     }
1748     unsigned RCUnitSetsIdx = 0;
1749     for (unsigned e = RegClassUnitSets.size();
1750          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
1751       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
1752         break;
1753       }
1754     }
1755     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
1756     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
1757       // Create a new list of UnitSets as a "fake" register class.
1758       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
1759       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
1760     }
1761   }
1762 }
1763 
computeRegUnitLaneMasks()1764 void CodeGenRegBank::computeRegUnitLaneMasks() {
1765   for (auto &Register : Registers) {
1766     // Create an initial lane mask for all register units.
1767     const auto &RegUnits = Register.getRegUnits();
1768     CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(RegUnits.count(), 0);
1769     // Iterate through SubRegisters.
1770     typedef CodeGenRegister::SubRegMap SubRegMap;
1771     const SubRegMap &SubRegs = Register.getSubRegs();
1772     for (SubRegMap::const_iterator S = SubRegs.begin(),
1773          SE = SubRegs.end(); S != SE; ++S) {
1774       CodeGenRegister *SubReg = S->second;
1775       // Ignore non-leaf subregisters, their lane masks are fully covered by
1776       // the leaf subregisters anyway.
1777       if (SubReg->getSubRegs().size() != 0)
1778         continue;
1779       CodeGenSubRegIndex *SubRegIndex = S->first;
1780       const CodeGenRegister *SubRegister = S->second;
1781       unsigned LaneMask = SubRegIndex->LaneMask;
1782       // Distribute LaneMask to Register Units touched.
1783       for (unsigned SUI : SubRegister->getRegUnits()) {
1784         bool Found = false;
1785         unsigned u = 0;
1786         for (unsigned RU : RegUnits) {
1787           if (SUI == RU) {
1788             RegUnitLaneMasks[u] |= LaneMask;
1789             assert(!Found);
1790             Found = true;
1791           }
1792           ++u;
1793         }
1794         (void)Found;
1795         assert(Found);
1796       }
1797     }
1798     Register.setRegUnitLaneMasks(RegUnitLaneMasks);
1799   }
1800 }
1801 
computeDerivedInfo()1802 void CodeGenRegBank::computeDerivedInfo() {
1803   computeComposites();
1804   computeSubRegLaneMasks();
1805 
1806   // Compute a weight for each register unit created during getSubRegs.
1807   // This may create adopted register units (with unit # >= NumNativeRegUnits).
1808   computeRegUnitWeights();
1809 
1810   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
1811   // supersets for the union of overlapping sets.
1812   computeRegUnitSets();
1813 
1814   computeRegUnitLaneMasks();
1815 
1816   // Compute register class HasDisjunctSubRegs flag.
1817   for (CodeGenRegisterClass &RC : RegClasses) {
1818     RC.HasDisjunctSubRegs = false;
1819     for (const CodeGenRegister *Reg : RC.getMembers())
1820       RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
1821   }
1822 
1823   // Get the weight of each set.
1824   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1825     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
1826 
1827   // Find the order of each set.
1828   RegUnitSetOrder.reserve(RegUnitSets.size());
1829   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1830     RegUnitSetOrder.push_back(Idx);
1831 
1832   std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(),
1833                    [this](unsigned ID1, unsigned ID2) {
1834     return getRegPressureSet(ID1).Units.size() <
1835            getRegPressureSet(ID2).Units.size();
1836   });
1837   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1838     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
1839   }
1840 }
1841 
1842 //
1843 // Synthesize missing register class intersections.
1844 //
1845 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
1846 // returns a maximal register class for all X.
1847 //
inferCommonSubClass(CodeGenRegisterClass * RC)1848 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
1849   assert(!RegClasses.empty());
1850   // Stash the iterator to the last element so that this loop doesn't visit
1851   // elements added by the getOrCreateSubClass call within it.
1852   for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
1853        I != std::next(E); ++I) {
1854     CodeGenRegisterClass *RC1 = RC;
1855     CodeGenRegisterClass *RC2 = &*I;
1856     if (RC1 == RC2)
1857       continue;
1858 
1859     // Compute the set intersection of RC1 and RC2.
1860     const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
1861     const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
1862     CodeGenRegister::Vec Intersection;
1863     std::set_intersection(
1864         Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(),
1865         std::inserter(Intersection, Intersection.begin()), deref<llvm::less>());
1866 
1867     // Skip disjoint class pairs.
1868     if (Intersection.empty())
1869       continue;
1870 
1871     // If RC1 and RC2 have different spill sizes or alignments, use the
1872     // larger size for sub-classing.  If they are equal, prefer RC1.
1873     if (RC2->SpillSize > RC1->SpillSize ||
1874         (RC2->SpillSize == RC1->SpillSize &&
1875          RC2->SpillAlignment > RC1->SpillAlignment))
1876       std::swap(RC1, RC2);
1877 
1878     getOrCreateSubClass(RC1, &Intersection,
1879                         RC1->getName() + "_and_" + RC2->getName());
1880   }
1881 }
1882 
1883 //
1884 // Synthesize missing sub-classes for getSubClassWithSubReg().
1885 //
1886 // Make sure that the set of registers in RC with a given SubIdx sub-register
1887 // form a register class.  Update RC->SubClassWithSubReg.
1888 //
inferSubClassWithSubReg(CodeGenRegisterClass * RC)1889 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
1890   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
1891   typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
1892                    deref<llvm::less>> SubReg2SetMap;
1893 
1894   // Compute the set of registers supporting each SubRegIndex.
1895   SubReg2SetMap SRSets;
1896   for (const auto R : RC->getMembers()) {
1897     const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
1898     for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1899          E = SRM.end(); I != E; ++I)
1900       SRSets[I->first].push_back(R);
1901   }
1902 
1903   for (auto I : SRSets)
1904     sortAndUniqueRegisters(I.second);
1905 
1906   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
1907   // numerical order to visit synthetic indices last.
1908   for (const auto &SubIdx : SubRegIndices) {
1909     SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
1910     // Unsupported SubRegIndex. Skip it.
1911     if (I == SRSets.end())
1912       continue;
1913     // In most cases, all RC registers support the SubRegIndex.
1914     if (I->second.size() == RC->getMembers().size()) {
1915       RC->setSubClassWithSubReg(&SubIdx, RC);
1916       continue;
1917     }
1918     // This is a real subset.  See if we have a matching class.
1919     CodeGenRegisterClass *SubRC =
1920       getOrCreateSubClass(RC, &I->second,
1921                           RC->getName() + "_with_" + I->first->getName());
1922     RC->setSubClassWithSubReg(&SubIdx, SubRC);
1923   }
1924 }
1925 
1926 //
1927 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
1928 //
1929 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
1930 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
1931 //
1932 
inferMatchingSuperRegClass(CodeGenRegisterClass * RC,std::list<CodeGenRegisterClass>::iterator FirstSubRegRC)1933 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
1934                                                 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
1935   SmallVector<std::pair<const CodeGenRegister*,
1936                         const CodeGenRegister*>, 16> SSPairs;
1937   BitVector TopoSigs(getNumTopoSigs());
1938 
1939   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
1940   for (auto &SubIdx : SubRegIndices) {
1941     // Skip indexes that aren't fully supported by RC's registers. This was
1942     // computed by inferSubClassWithSubReg() above which should have been
1943     // called first.
1944     if (RC->getSubClassWithSubReg(&SubIdx) != RC)
1945       continue;
1946 
1947     // Build list of (Super, Sub) pairs for this SubIdx.
1948     SSPairs.clear();
1949     TopoSigs.reset();
1950     for (const auto Super : RC->getMembers()) {
1951       const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
1952       assert(Sub && "Missing sub-register");
1953       SSPairs.push_back(std::make_pair(Super, Sub));
1954       TopoSigs.set(Sub->getTopoSig());
1955     }
1956 
1957     // Iterate over sub-register class candidates.  Ignore classes created by
1958     // this loop. They will never be useful.
1959     // Store an iterator to the last element (not end) so that this loop doesn't
1960     // visit newly inserted elements.
1961     assert(!RegClasses.empty());
1962     for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
1963          I != std::next(E); ++I) {
1964       CodeGenRegisterClass &SubRC = *I;
1965       // Topological shortcut: SubRC members have the wrong shape.
1966       if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
1967         continue;
1968       // Compute the subset of RC that maps into SubRC.
1969       CodeGenRegister::Vec SubSetVec;
1970       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
1971         if (SubRC.contains(SSPairs[i].second))
1972           SubSetVec.push_back(SSPairs[i].first);
1973 
1974       if (SubSetVec.empty())
1975         continue;
1976 
1977       // RC injects completely into SubRC.
1978       sortAndUniqueRegisters(SubSetVec);
1979       if (SubSetVec.size() == SSPairs.size()) {
1980         SubRC.addSuperRegClass(&SubIdx, RC);
1981         continue;
1982       }
1983 
1984       // Only a subset of RC maps into SubRC. Make sure it is represented by a
1985       // class.
1986       getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
1987                                           SubIdx.getName() + "_in_" +
1988                                           SubRC.getName());
1989     }
1990   }
1991 }
1992 
1993 
1994 //
1995 // Infer missing register classes.
1996 //
computeInferredRegisterClasses()1997 void CodeGenRegBank::computeInferredRegisterClasses() {
1998   assert(!RegClasses.empty());
1999   // When this function is called, the register classes have not been sorted
2000   // and assigned EnumValues yet.  That means getSubClasses(),
2001   // getSuperClasses(), and hasSubClass() functions are defunct.
2002 
2003   // Use one-before-the-end so it doesn't move forward when new elements are
2004   // added.
2005   auto FirstNewRC = std::prev(RegClasses.end());
2006 
2007   // Visit all register classes, including the ones being added by the loop.
2008   // Watch out for iterator invalidation here.
2009   for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2010     CodeGenRegisterClass *RC = &*I;
2011 
2012     // Synthesize answers for getSubClassWithSubReg().
2013     inferSubClassWithSubReg(RC);
2014 
2015     // Synthesize answers for getCommonSubClass().
2016     inferCommonSubClass(RC);
2017 
2018     // Synthesize answers for getMatchingSuperRegClass().
2019     inferMatchingSuperRegClass(RC);
2020 
2021     // New register classes are created while this loop is running, and we need
2022     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2023     // to match old super-register classes with sub-register classes created
2024     // after inferMatchingSuperRegClass was called.  At this point,
2025     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2026     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2027     if (I == FirstNewRC) {
2028       auto NextNewRC = std::prev(RegClasses.end());
2029       for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2030            ++I2)
2031         inferMatchingSuperRegClass(&*I2, E2);
2032       FirstNewRC = NextNewRC;
2033     }
2034   }
2035 }
2036 
2037 /// getRegisterClassForRegister - Find the register class that contains the
2038 /// specified physical register.  If the register is not in a register class,
2039 /// return null. If the register is in multiple classes, and the classes have a
2040 /// superset-subset relationship and the same set of types, return the
2041 /// superclass.  Otherwise return null.
2042 const CodeGenRegisterClass*
getRegClassForRegister(Record * R)2043 CodeGenRegBank::getRegClassForRegister(Record *R) {
2044   const CodeGenRegister *Reg = getReg(R);
2045   const CodeGenRegisterClass *FoundRC = nullptr;
2046   for (const auto &RC : getRegClasses()) {
2047     if (!RC.contains(Reg))
2048       continue;
2049 
2050     // If this is the first class that contains the register,
2051     // make a note of it and go on to the next class.
2052     if (!FoundRC) {
2053       FoundRC = &RC;
2054       continue;
2055     }
2056 
2057     // If a register's classes have different types, return null.
2058     if (RC.getValueTypes() != FoundRC->getValueTypes())
2059       return nullptr;
2060 
2061     // Check to see if the previously found class that contains
2062     // the register is a subclass of the current class. If so,
2063     // prefer the superclass.
2064     if (RC.hasSubClass(FoundRC)) {
2065       FoundRC = &RC;
2066       continue;
2067     }
2068 
2069     // Check to see if the previously found class that contains
2070     // the register is a superclass of the current class. If so,
2071     // prefer the superclass.
2072     if (FoundRC->hasSubClass(&RC))
2073       continue;
2074 
2075     // Multiple classes, and neither is a superclass of the other.
2076     // Return null.
2077     return nullptr;
2078   }
2079   return FoundRC;
2080 }
2081 
computeCoveredRegisters(ArrayRef<Record * > Regs)2082 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2083   SetVector<const CodeGenRegister*> Set;
2084 
2085   // First add Regs with all sub-registers.
2086   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2087     CodeGenRegister *Reg = getReg(Regs[i]);
2088     if (Set.insert(Reg))
2089       // Reg is new, add all sub-registers.
2090       // The pre-ordering is not important here.
2091       Reg->addSubRegsPreOrder(Set, *this);
2092   }
2093 
2094   // Second, find all super-registers that are completely covered by the set.
2095   for (unsigned i = 0; i != Set.size(); ++i) {
2096     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2097     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2098       const CodeGenRegister *Super = SR[j];
2099       if (!Super->CoveredBySubRegs || Set.count(Super))
2100         continue;
2101       // This new super-register is covered by its sub-registers.
2102       bool AllSubsInSet = true;
2103       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2104       for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2105              E = SRM.end(); I != E; ++I)
2106         if (!Set.count(I->second)) {
2107           AllSubsInSet = false;
2108           break;
2109         }
2110       // All sub-registers in Set, add Super as well.
2111       // We will visit Super later to recheck its super-registers.
2112       if (AllSubsInSet)
2113         Set.insert(Super);
2114     }
2115   }
2116 
2117   // Convert to BitVector.
2118   BitVector BV(Registers.size() + 1);
2119   for (unsigned i = 0, e = Set.size(); i != e; ++i)
2120     BV.set(Set[i]->EnumValue);
2121   return BV;
2122 }
2123