1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/PrettyPrinter.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/IdentifierTable.h"
29 #include "clang/Basic/Module.h"
30 #include "clang/Basic/Specifiers.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Frontend/FrontendDiagnostic.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include <algorithm>
35 
36 using namespace clang;
37 
getPrimaryMergedDecl(Decl * D)38 Decl *clang::getPrimaryMergedDecl(Decl *D) {
39   return D->getASTContext().getPrimaryMergedDecl(D);
40 }
41 
42 // Defined here so that it can be inlined into its direct callers.
isOutOfLine() const43 bool Decl::isOutOfLine() const {
44   return !getLexicalDeclContext()->Equals(getDeclContext());
45 }
46 
47 //===----------------------------------------------------------------------===//
48 // NamedDecl Implementation
49 //===----------------------------------------------------------------------===//
50 
51 // Visibility rules aren't rigorously externally specified, but here
52 // are the basic principles behind what we implement:
53 //
54 // 1. An explicit visibility attribute is generally a direct expression
55 // of the user's intent and should be honored.  Only the innermost
56 // visibility attribute applies.  If no visibility attribute applies,
57 // global visibility settings are considered.
58 //
59 // 2. There is one caveat to the above: on or in a template pattern,
60 // an explicit visibility attribute is just a default rule, and
61 // visibility can be decreased by the visibility of template
62 // arguments.  But this, too, has an exception: an attribute on an
63 // explicit specialization or instantiation causes all the visibility
64 // restrictions of the template arguments to be ignored.
65 //
66 // 3. A variable that does not otherwise have explicit visibility can
67 // be restricted by the visibility of its type.
68 //
69 // 4. A visibility restriction is explicit if it comes from an
70 // attribute (or something like it), not a global visibility setting.
71 // When emitting a reference to an external symbol, visibility
72 // restrictions are ignored unless they are explicit.
73 //
74 // 5. When computing the visibility of a non-type, including a
75 // non-type member of a class, only non-type visibility restrictions
76 // are considered: the 'visibility' attribute, global value-visibility
77 // settings, and a few special cases like __private_extern.
78 //
79 // 6. When computing the visibility of a type, including a type member
80 // of a class, only type visibility restrictions are considered:
81 // the 'type_visibility' attribute and global type-visibility settings.
82 // However, a 'visibility' attribute counts as a 'type_visibility'
83 // attribute on any declaration that only has the former.
84 //
85 // The visibility of a "secondary" entity, like a template argument,
86 // is computed using the kind of that entity, not the kind of the
87 // primary entity for which we are computing visibility.  For example,
88 // the visibility of a specialization of either of these templates:
89 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
90 //   template <class T, bool (&compare)(T, X)> class matcher;
91 // is restricted according to the type visibility of the argument 'T',
92 // the type visibility of 'bool(&)(T,X)', and the value visibility of
93 // the argument function 'compare'.  That 'has_match' is a value
94 // and 'matcher' is a type only matters when looking for attributes
95 // and settings from the immediate context.
96 
97 const unsigned IgnoreExplicitVisibilityBit = 2;
98 const unsigned IgnoreAllVisibilityBit = 4;
99 
100 /// Kinds of LV computation.  The linkage side of the computation is
101 /// always the same, but different things can change how visibility is
102 /// computed.
103 enum LVComputationKind {
104   /// Do an LV computation for, ultimately, a type.
105   /// Visibility may be restricted by type visibility settings and
106   /// the visibility of template arguments.
107   LVForType = NamedDecl::VisibilityForType,
108 
109   /// Do an LV computation for, ultimately, a non-type declaration.
110   /// Visibility may be restricted by value visibility settings and
111   /// the visibility of template arguments.
112   LVForValue = NamedDecl::VisibilityForValue,
113 
114   /// Do an LV computation for, ultimately, a type that already has
115   /// some sort of explicit visibility.  Visibility may only be
116   /// restricted by the visibility of template arguments.
117   LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
118 
119   /// Do an LV computation for, ultimately, a non-type declaration
120   /// that already has some sort of explicit visibility.  Visibility
121   /// may only be restricted by the visibility of template arguments.
122   LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
123 
124   /// Do an LV computation when we only care about the linkage.
125   LVForLinkageOnly =
126       LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
127 };
128 
129 /// Does this computation kind permit us to consider additional
130 /// visibility settings from attributes and the like?
hasExplicitVisibilityAlready(LVComputationKind computation)131 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
132   return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
133 }
134 
135 /// Given an LVComputationKind, return one of the same type/value sort
136 /// that records that it already has explicit visibility.
137 static LVComputationKind
withExplicitVisibilityAlready(LVComputationKind oldKind)138 withExplicitVisibilityAlready(LVComputationKind oldKind) {
139   LVComputationKind newKind =
140     static_cast<LVComputationKind>(unsigned(oldKind) |
141                                    IgnoreExplicitVisibilityBit);
142   assert(oldKind != LVForType          || newKind == LVForExplicitType);
143   assert(oldKind != LVForValue         || newKind == LVForExplicitValue);
144   assert(oldKind != LVForExplicitType  || newKind == LVForExplicitType);
145   assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
146   return newKind;
147 }
148 
getExplicitVisibility(const NamedDecl * D,LVComputationKind kind)149 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
150                                                   LVComputationKind kind) {
151   assert(!hasExplicitVisibilityAlready(kind) &&
152          "asking for explicit visibility when we shouldn't be");
153   return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
154 }
155 
156 /// Is the given declaration a "type" or a "value" for the purposes of
157 /// visibility computation?
usesTypeVisibility(const NamedDecl * D)158 static bool usesTypeVisibility(const NamedDecl *D) {
159   return isa<TypeDecl>(D) ||
160          isa<ClassTemplateDecl>(D) ||
161          isa<ObjCInterfaceDecl>(D);
162 }
163 
164 /// Does the given declaration have member specialization information,
165 /// and if so, is it an explicit specialization?
166 template <class T> static typename
167 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
isExplicitMemberSpecialization(const T * D)168 isExplicitMemberSpecialization(const T *D) {
169   if (const MemberSpecializationInfo *member =
170         D->getMemberSpecializationInfo()) {
171     return member->isExplicitSpecialization();
172   }
173   return false;
174 }
175 
176 /// For templates, this question is easier: a member template can't be
177 /// explicitly instantiated, so there's a single bit indicating whether
178 /// or not this is an explicit member specialization.
isExplicitMemberSpecialization(const RedeclarableTemplateDecl * D)179 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
180   return D->isMemberSpecialization();
181 }
182 
183 /// Given a visibility attribute, return the explicit visibility
184 /// associated with it.
185 template <class T>
getVisibilityFromAttr(const T * attr)186 static Visibility getVisibilityFromAttr(const T *attr) {
187   switch (attr->getVisibility()) {
188   case T::Default:
189     return DefaultVisibility;
190   case T::Hidden:
191     return HiddenVisibility;
192   case T::Protected:
193     return ProtectedVisibility;
194   }
195   llvm_unreachable("bad visibility kind");
196 }
197 
198 /// Return the explicit visibility of the given declaration.
getVisibilityOf(const NamedDecl * D,NamedDecl::ExplicitVisibilityKind kind)199 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
200                                     NamedDecl::ExplicitVisibilityKind kind) {
201   // If we're ultimately computing the visibility of a type, look for
202   // a 'type_visibility' attribute before looking for 'visibility'.
203   if (kind == NamedDecl::VisibilityForType) {
204     if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) {
205       return getVisibilityFromAttr(A);
206     }
207   }
208 
209   // If this declaration has an explicit visibility attribute, use it.
210   if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
211     return getVisibilityFromAttr(A);
212   }
213 
214   // If we're on Mac OS X, an 'availability' for Mac OS X attribute
215   // implies visibility(default).
216   if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
217     for (const auto *A : D->specific_attrs<AvailabilityAttr>())
218       if (A->getPlatform()->getName().equals("macosx"))
219         return DefaultVisibility;
220   }
221 
222   return None;
223 }
224 
225 static LinkageInfo
getLVForType(const Type & T,LVComputationKind computation)226 getLVForType(const Type &T, LVComputationKind computation) {
227   if (computation == LVForLinkageOnly)
228     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
229   return T.getLinkageAndVisibility();
230 }
231 
232 /// \brief Get the most restrictive linkage for the types in the given
233 /// template parameter list.  For visibility purposes, template
234 /// parameters are part of the signature of a template.
235 static LinkageInfo
getLVForTemplateParameterList(const TemplateParameterList * Params,LVComputationKind computation)236 getLVForTemplateParameterList(const TemplateParameterList *Params,
237                               LVComputationKind computation) {
238   LinkageInfo LV;
239   for (const NamedDecl *P : *Params) {
240     // Template type parameters are the most common and never
241     // contribute to visibility, pack or not.
242     if (isa<TemplateTypeParmDecl>(P))
243       continue;
244 
245     // Non-type template parameters can be restricted by the value type, e.g.
246     //   template <enum X> class A { ... };
247     // We have to be careful here, though, because we can be dealing with
248     // dependent types.
249     if (const NonTypeTemplateParmDecl *NTTP =
250             dyn_cast<NonTypeTemplateParmDecl>(P)) {
251       // Handle the non-pack case first.
252       if (!NTTP->isExpandedParameterPack()) {
253         if (!NTTP->getType()->isDependentType()) {
254           LV.merge(getLVForType(*NTTP->getType(), computation));
255         }
256         continue;
257       }
258 
259       // Look at all the types in an expanded pack.
260       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
261         QualType type = NTTP->getExpansionType(i);
262         if (!type->isDependentType())
263           LV.merge(type->getLinkageAndVisibility());
264       }
265       continue;
266     }
267 
268     // Template template parameters can be restricted by their
269     // template parameters, recursively.
270     const TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(P);
271 
272     // Handle the non-pack case first.
273     if (!TTP->isExpandedParameterPack()) {
274       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
275                                              computation));
276       continue;
277     }
278 
279     // Look at all expansions in an expanded pack.
280     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
281            i != n; ++i) {
282       LV.merge(getLVForTemplateParameterList(
283           TTP->getExpansionTemplateParameters(i), computation));
284     }
285   }
286 
287   return LV;
288 }
289 
290 /// getLVForDecl - Get the linkage and visibility for the given declaration.
291 static LinkageInfo getLVForDecl(const NamedDecl *D,
292                                 LVComputationKind computation);
293 
getOutermostFuncOrBlockContext(const Decl * D)294 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
295   const Decl *Ret = nullptr;
296   const DeclContext *DC = D->getDeclContext();
297   while (DC->getDeclKind() != Decl::TranslationUnit) {
298     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
299       Ret = cast<Decl>(DC);
300     DC = DC->getParent();
301   }
302   return Ret;
303 }
304 
305 /// \brief Get the most restrictive linkage for the types and
306 /// declarations in the given template argument list.
307 ///
308 /// Note that we don't take an LVComputationKind because we always
309 /// want to honor the visibility of template arguments in the same way.
getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,LVComputationKind computation)310 static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
311                                                 LVComputationKind computation) {
312   LinkageInfo LV;
313 
314   for (const TemplateArgument &Arg : Args) {
315     switch (Arg.getKind()) {
316     case TemplateArgument::Null:
317     case TemplateArgument::Integral:
318     case TemplateArgument::Expression:
319       continue;
320 
321     case TemplateArgument::Type:
322       LV.merge(getLVForType(*Arg.getAsType(), computation));
323       continue;
324 
325     case TemplateArgument::Declaration:
326       if (NamedDecl *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) {
327         assert(!usesTypeVisibility(ND));
328         LV.merge(getLVForDecl(ND, computation));
329       }
330       continue;
331 
332     case TemplateArgument::NullPtr:
333       LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility());
334       continue;
335 
336     case TemplateArgument::Template:
337     case TemplateArgument::TemplateExpansion:
338       if (TemplateDecl *Template =
339               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
340         LV.merge(getLVForDecl(Template, computation));
341       continue;
342 
343     case TemplateArgument::Pack:
344       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
345       continue;
346     }
347     llvm_unreachable("bad template argument kind");
348   }
349 
350   return LV;
351 }
352 
353 static LinkageInfo
getLVForTemplateArgumentList(const TemplateArgumentList & TArgs,LVComputationKind computation)354 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
355                              LVComputationKind computation) {
356   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
357 }
358 
shouldConsiderTemplateVisibility(const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo)359 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
360                         const FunctionTemplateSpecializationInfo *specInfo) {
361   // Include visibility from the template parameters and arguments
362   // only if this is not an explicit instantiation or specialization
363   // with direct explicit visibility.  (Implicit instantiations won't
364   // have a direct attribute.)
365   if (!specInfo->isExplicitInstantiationOrSpecialization())
366     return true;
367 
368   return !fn->hasAttr<VisibilityAttr>();
369 }
370 
371 /// Merge in template-related linkage and visibility for the given
372 /// function template specialization.
373 ///
374 /// We don't need a computation kind here because we can assume
375 /// LVForValue.
376 ///
377 /// \param[out] LV the computation to use for the parent
378 static void
mergeTemplateLV(LinkageInfo & LV,const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo,LVComputationKind computation)379 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
380                 const FunctionTemplateSpecializationInfo *specInfo,
381                 LVComputationKind computation) {
382   bool considerVisibility =
383     shouldConsiderTemplateVisibility(fn, specInfo);
384 
385   // Merge information from the template parameters.
386   FunctionTemplateDecl *temp = specInfo->getTemplate();
387   LinkageInfo tempLV =
388     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
389   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
390 
391   // Merge information from the template arguments.
392   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
393   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
394   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
395 }
396 
397 /// Does the given declaration have a direct visibility attribute
398 /// that would match the given rules?
hasDirectVisibilityAttribute(const NamedDecl * D,LVComputationKind computation)399 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
400                                          LVComputationKind computation) {
401   switch (computation) {
402   case LVForType:
403   case LVForExplicitType:
404     if (D->hasAttr<TypeVisibilityAttr>())
405       return true;
406     // fallthrough
407   case LVForValue:
408   case LVForExplicitValue:
409     if (D->hasAttr<VisibilityAttr>())
410       return true;
411     return false;
412   case LVForLinkageOnly:
413     return false;
414   }
415   llvm_unreachable("bad visibility computation kind");
416 }
417 
418 /// Should we consider visibility associated with the template
419 /// arguments and parameters of the given class template specialization?
shouldConsiderTemplateVisibility(const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)420 static bool shouldConsiderTemplateVisibility(
421                                  const ClassTemplateSpecializationDecl *spec,
422                                  LVComputationKind computation) {
423   // Include visibility from the template parameters and arguments
424   // only if this is not an explicit instantiation or specialization
425   // with direct explicit visibility (and note that implicit
426   // instantiations won't have a direct attribute).
427   //
428   // Furthermore, we want to ignore template parameters and arguments
429   // for an explicit specialization when computing the visibility of a
430   // member thereof with explicit visibility.
431   //
432   // This is a bit complex; let's unpack it.
433   //
434   // An explicit class specialization is an independent, top-level
435   // declaration.  As such, if it or any of its members has an
436   // explicit visibility attribute, that must directly express the
437   // user's intent, and we should honor it.  The same logic applies to
438   // an explicit instantiation of a member of such a thing.
439 
440   // Fast path: if this is not an explicit instantiation or
441   // specialization, we always want to consider template-related
442   // visibility restrictions.
443   if (!spec->isExplicitInstantiationOrSpecialization())
444     return true;
445 
446   // This is the 'member thereof' check.
447   if (spec->isExplicitSpecialization() &&
448       hasExplicitVisibilityAlready(computation))
449     return false;
450 
451   return !hasDirectVisibilityAttribute(spec, computation);
452 }
453 
454 /// Merge in template-related linkage and visibility for the given
455 /// class template specialization.
mergeTemplateLV(LinkageInfo & LV,const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)456 static void mergeTemplateLV(LinkageInfo &LV,
457                             const ClassTemplateSpecializationDecl *spec,
458                             LVComputationKind computation) {
459   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
460 
461   // Merge information from the template parameters, but ignore
462   // visibility if we're only considering template arguments.
463 
464   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
465   LinkageInfo tempLV =
466     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
467   LV.mergeMaybeWithVisibility(tempLV,
468            considerVisibility && !hasExplicitVisibilityAlready(computation));
469 
470   // Merge information from the template arguments.  We ignore
471   // template-argument visibility if we've got an explicit
472   // instantiation with a visibility attribute.
473   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
474   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
475   if (considerVisibility)
476     LV.mergeVisibility(argsLV);
477   LV.mergeExternalVisibility(argsLV);
478 }
479 
480 /// Should we consider visibility associated with the template
481 /// arguments and parameters of the given variable template
482 /// specialization? As usual, follow class template specialization
483 /// logic up to initialization.
shouldConsiderTemplateVisibility(const VarTemplateSpecializationDecl * spec,LVComputationKind computation)484 static bool shouldConsiderTemplateVisibility(
485                                  const VarTemplateSpecializationDecl *spec,
486                                  LVComputationKind computation) {
487   // Include visibility from the template parameters and arguments
488   // only if this is not an explicit instantiation or specialization
489   // with direct explicit visibility (and note that implicit
490   // instantiations won't have a direct attribute).
491   if (!spec->isExplicitInstantiationOrSpecialization())
492     return true;
493 
494   // An explicit variable specialization is an independent, top-level
495   // declaration.  As such, if it has an explicit visibility attribute,
496   // that must directly express the user's intent, and we should honor
497   // it.
498   if (spec->isExplicitSpecialization() &&
499       hasExplicitVisibilityAlready(computation))
500     return false;
501 
502   return !hasDirectVisibilityAttribute(spec, computation);
503 }
504 
505 /// Merge in template-related linkage and visibility for the given
506 /// variable template specialization. As usual, follow class template
507 /// specialization logic up to initialization.
mergeTemplateLV(LinkageInfo & LV,const VarTemplateSpecializationDecl * spec,LVComputationKind computation)508 static void mergeTemplateLV(LinkageInfo &LV,
509                             const VarTemplateSpecializationDecl *spec,
510                             LVComputationKind computation) {
511   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
512 
513   // Merge information from the template parameters, but ignore
514   // visibility if we're only considering template arguments.
515 
516   VarTemplateDecl *temp = spec->getSpecializedTemplate();
517   LinkageInfo tempLV =
518     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
519   LV.mergeMaybeWithVisibility(tempLV,
520            considerVisibility && !hasExplicitVisibilityAlready(computation));
521 
522   // Merge information from the template arguments.  We ignore
523   // template-argument visibility if we've got an explicit
524   // instantiation with a visibility attribute.
525   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
526   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
527   if (considerVisibility)
528     LV.mergeVisibility(argsLV);
529   LV.mergeExternalVisibility(argsLV);
530 }
531 
useInlineVisibilityHidden(const NamedDecl * D)532 static bool useInlineVisibilityHidden(const NamedDecl *D) {
533   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
534   const LangOptions &Opts = D->getASTContext().getLangOpts();
535   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
536     return false;
537 
538   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
539   if (!FD)
540     return false;
541 
542   TemplateSpecializationKind TSK = TSK_Undeclared;
543   if (FunctionTemplateSpecializationInfo *spec
544       = FD->getTemplateSpecializationInfo()) {
545     TSK = spec->getTemplateSpecializationKind();
546   } else if (MemberSpecializationInfo *MSI =
547              FD->getMemberSpecializationInfo()) {
548     TSK = MSI->getTemplateSpecializationKind();
549   }
550 
551   const FunctionDecl *Def = nullptr;
552   // InlineVisibilityHidden only applies to definitions, and
553   // isInlined() only gives meaningful answers on definitions
554   // anyway.
555   return TSK != TSK_ExplicitInstantiationDeclaration &&
556     TSK != TSK_ExplicitInstantiationDefinition &&
557     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
558 }
559 
isFirstInExternCContext(T * D)560 template <typename T> static bool isFirstInExternCContext(T *D) {
561   const T *First = D->getFirstDecl();
562   return First->isInExternCContext();
563 }
564 
isSingleLineLanguageLinkage(const Decl & D)565 static bool isSingleLineLanguageLinkage(const Decl &D) {
566   if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
567     if (!SD->hasBraces())
568       return true;
569   return false;
570 }
571 
getLVForNamespaceScopeDecl(const NamedDecl * D,LVComputationKind computation)572 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
573                                               LVComputationKind computation) {
574   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
575          "Not a name having namespace scope");
576   ASTContext &Context = D->getASTContext();
577 
578   // C++ [basic.link]p3:
579   //   A name having namespace scope (3.3.6) has internal linkage if it
580   //   is the name of
581   //     - an object, reference, function or function template that is
582   //       explicitly declared static; or,
583   // (This bullet corresponds to C99 6.2.2p3.)
584   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
585     // Explicitly declared static.
586     if (Var->getStorageClass() == SC_Static)
587       return LinkageInfo::internal();
588 
589     // - a non-volatile object or reference that is explicitly declared const
590     //   or constexpr and neither explicitly declared extern nor previously
591     //   declared to have external linkage; or (there is no equivalent in C99)
592     if (Context.getLangOpts().CPlusPlus &&
593         Var->getType().isConstQualified() &&
594         !Var->getType().isVolatileQualified()) {
595       const VarDecl *PrevVar = Var->getPreviousDecl();
596       if (PrevVar)
597         return getLVForDecl(PrevVar, computation);
598 
599       if (Var->getStorageClass() != SC_Extern &&
600           Var->getStorageClass() != SC_PrivateExtern &&
601           !isSingleLineLanguageLinkage(*Var))
602         return LinkageInfo::internal();
603     }
604 
605     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
606          PrevVar = PrevVar->getPreviousDecl()) {
607       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
608           Var->getStorageClass() == SC_None)
609         return PrevVar->getLinkageAndVisibility();
610       // Explicitly declared static.
611       if (PrevVar->getStorageClass() == SC_Static)
612         return LinkageInfo::internal();
613     }
614   } else if (const FunctionDecl *Function = D->getAsFunction()) {
615     // C++ [temp]p4:
616     //   A non-member function template can have internal linkage; any
617     //   other template name shall have external linkage.
618 
619     // Explicitly declared static.
620     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
621       return LinkageInfo(InternalLinkage, DefaultVisibility, false);
622   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
623     //   - a data member of an anonymous union.
624     const VarDecl *VD = IFD->getVarDecl();
625     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
626     return getLVForNamespaceScopeDecl(VD, computation);
627   }
628   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
629 
630   if (D->isInAnonymousNamespace()) {
631     const VarDecl *Var = dyn_cast<VarDecl>(D);
632     const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
633     if ((!Var || !isFirstInExternCContext(Var)) &&
634         (!Func || !isFirstInExternCContext(Func)))
635       return LinkageInfo::uniqueExternal();
636   }
637 
638   // Set up the defaults.
639 
640   // C99 6.2.2p5:
641   //   If the declaration of an identifier for an object has file
642   //   scope and no storage-class specifier, its linkage is
643   //   external.
644   LinkageInfo LV;
645 
646   if (!hasExplicitVisibilityAlready(computation)) {
647     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
648       LV.mergeVisibility(*Vis, true);
649     } else {
650       // If we're declared in a namespace with a visibility attribute,
651       // use that namespace's visibility, and it still counts as explicit.
652       for (const DeclContext *DC = D->getDeclContext();
653            !isa<TranslationUnitDecl>(DC);
654            DC = DC->getParent()) {
655         const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
656         if (!ND) continue;
657         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
658           LV.mergeVisibility(*Vis, true);
659           break;
660         }
661       }
662     }
663 
664     // Add in global settings if the above didn't give us direct visibility.
665     if (!LV.isVisibilityExplicit()) {
666       // Use global type/value visibility as appropriate.
667       Visibility globalVisibility;
668       if (computation == LVForValue) {
669         globalVisibility = Context.getLangOpts().getValueVisibilityMode();
670       } else {
671         assert(computation == LVForType);
672         globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
673       }
674       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
675 
676       // If we're paying attention to global visibility, apply
677       // -finline-visibility-hidden if this is an inline method.
678       if (useInlineVisibilityHidden(D))
679         LV.mergeVisibility(HiddenVisibility, true);
680     }
681   }
682 
683   // C++ [basic.link]p4:
684 
685   //   A name having namespace scope has external linkage if it is the
686   //   name of
687   //
688   //     - an object or reference, unless it has internal linkage; or
689   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
690     // GCC applies the following optimization to variables and static
691     // data members, but not to functions:
692     //
693     // Modify the variable's LV by the LV of its type unless this is
694     // C or extern "C".  This follows from [basic.link]p9:
695     //   A type without linkage shall not be used as the type of a
696     //   variable or function with external linkage unless
697     //    - the entity has C language linkage, or
698     //    - the entity is declared within an unnamed namespace, or
699     //    - the entity is not used or is defined in the same
700     //      translation unit.
701     // and [basic.link]p10:
702     //   ...the types specified by all declarations referring to a
703     //   given variable or function shall be identical...
704     // C does not have an equivalent rule.
705     //
706     // Ignore this if we've got an explicit attribute;  the user
707     // probably knows what they're doing.
708     //
709     // Note that we don't want to make the variable non-external
710     // because of this, but unique-external linkage suits us.
711     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
712       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
713       if (TypeLV.getLinkage() != ExternalLinkage)
714         return LinkageInfo::uniqueExternal();
715       if (!LV.isVisibilityExplicit())
716         LV.mergeVisibility(TypeLV);
717     }
718 
719     if (Var->getStorageClass() == SC_PrivateExtern)
720       LV.mergeVisibility(HiddenVisibility, true);
721 
722     // Note that Sema::MergeVarDecl already takes care of implementing
723     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
724     // to do it here.
725 
726     // As per function and class template specializations (below),
727     // consider LV for the template and template arguments.  We're at file
728     // scope, so we do not need to worry about nested specializations.
729     if (const VarTemplateSpecializationDecl *spec
730               = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
731       mergeTemplateLV(LV, spec, computation);
732     }
733 
734   //     - a function, unless it has internal linkage; or
735   } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
736     // In theory, we can modify the function's LV by the LV of its
737     // type unless it has C linkage (see comment above about variables
738     // for justification).  In practice, GCC doesn't do this, so it's
739     // just too painful to make work.
740 
741     if (Function->getStorageClass() == SC_PrivateExtern)
742       LV.mergeVisibility(HiddenVisibility, true);
743 
744     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
745     // merging storage classes and visibility attributes, so we don't have to
746     // look at previous decls in here.
747 
748     // In C++, then if the type of the function uses a type with
749     // unique-external linkage, it's not legally usable from outside
750     // this translation unit.  However, we should use the C linkage
751     // rules instead for extern "C" declarations.
752     if (Context.getLangOpts().CPlusPlus &&
753         !Function->isInExternCContext()) {
754       // Only look at the type-as-written. If this function has an auto-deduced
755       // return type, we can't compute the linkage of that type because it could
756       // require looking at the linkage of this function, and we don't need this
757       // for correctness because the type is not part of the function's
758       // signature.
759       // FIXME: This is a hack. We should be able to solve this circularity and
760       // the one in getLVForClassMember for Functions some other way.
761       QualType TypeAsWritten = Function->getType();
762       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
763         TypeAsWritten = TSI->getType();
764       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
765         return LinkageInfo::uniqueExternal();
766     }
767 
768     // Consider LV from the template and the template arguments.
769     // We're at file scope, so we do not need to worry about nested
770     // specializations.
771     if (FunctionTemplateSpecializationInfo *specInfo
772                                = Function->getTemplateSpecializationInfo()) {
773       mergeTemplateLV(LV, Function, specInfo, computation);
774     }
775 
776   //     - a named class (Clause 9), or an unnamed class defined in a
777   //       typedef declaration in which the class has the typedef name
778   //       for linkage purposes (7.1.3); or
779   //     - a named enumeration (7.2), or an unnamed enumeration
780   //       defined in a typedef declaration in which the enumeration
781   //       has the typedef name for linkage purposes (7.1.3); or
782   } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
783     // Unnamed tags have no linkage.
784     if (!Tag->hasNameForLinkage())
785       return LinkageInfo::none();
786 
787     // If this is a class template specialization, consider the
788     // linkage of the template and template arguments.  We're at file
789     // scope, so we do not need to worry about nested specializations.
790     if (const ClassTemplateSpecializationDecl *spec
791           = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
792       mergeTemplateLV(LV, spec, computation);
793     }
794 
795   //     - an enumerator belonging to an enumeration with external linkage;
796   } else if (isa<EnumConstantDecl>(D)) {
797     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
798                                       computation);
799     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
800       return LinkageInfo::none();
801     LV.merge(EnumLV);
802 
803   //     - a template, unless it is a function template that has
804   //       internal linkage (Clause 14);
805   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
806     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
807     LinkageInfo tempLV =
808       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
809     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
810 
811   //     - a namespace (7.3), unless it is declared within an unnamed
812   //       namespace.
813   } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
814     return LV;
815 
816   // By extension, we assign external linkage to Objective-C
817   // interfaces.
818   } else if (isa<ObjCInterfaceDecl>(D)) {
819     // fallout
820 
821   // Everything not covered here has no linkage.
822   } else {
823     // FIXME: A typedef declaration has linkage if it gives a type a name for
824     // linkage purposes.
825     return LinkageInfo::none();
826   }
827 
828   // If we ended up with non-external linkage, visibility should
829   // always be default.
830   if (LV.getLinkage() != ExternalLinkage)
831     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
832 
833   return LV;
834 }
835 
getLVForClassMember(const NamedDecl * D,LVComputationKind computation)836 static LinkageInfo getLVForClassMember(const NamedDecl *D,
837                                        LVComputationKind computation) {
838   // Only certain class members have linkage.  Note that fields don't
839   // really have linkage, but it's convenient to say they do for the
840   // purposes of calculating linkage of pointer-to-data-member
841   // template arguments.
842   //
843   // Templates also don't officially have linkage, but since we ignore
844   // the C++ standard and look at template arguments when determining
845   // linkage and visibility of a template specialization, we might hit
846   // a template template argument that way. If we do, we need to
847   // consider its linkage.
848   if (!(isa<CXXMethodDecl>(D) ||
849         isa<VarDecl>(D) ||
850         isa<FieldDecl>(D) ||
851         isa<IndirectFieldDecl>(D) ||
852         isa<TagDecl>(D) ||
853         isa<TemplateDecl>(D)))
854     return LinkageInfo::none();
855 
856   LinkageInfo LV;
857 
858   // If we have an explicit visibility attribute, merge that in.
859   if (!hasExplicitVisibilityAlready(computation)) {
860     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
861       LV.mergeVisibility(*Vis, true);
862     // If we're paying attention to global visibility, apply
863     // -finline-visibility-hidden if this is an inline method.
864     //
865     // Note that we do this before merging information about
866     // the class visibility.
867     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
868       LV.mergeVisibility(HiddenVisibility, true);
869   }
870 
871   // If this class member has an explicit visibility attribute, the only
872   // thing that can change its visibility is the template arguments, so
873   // only look for them when processing the class.
874   LVComputationKind classComputation = computation;
875   if (LV.isVisibilityExplicit())
876     classComputation = withExplicitVisibilityAlready(computation);
877 
878   LinkageInfo classLV =
879     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
880   // If the class already has unique-external linkage, we can't improve.
881   if (classLV.getLinkage() == UniqueExternalLinkage)
882     return LinkageInfo::uniqueExternal();
883 
884   if (!isExternallyVisible(classLV.getLinkage()))
885     return LinkageInfo::none();
886 
887 
888   // Otherwise, don't merge in classLV yet, because in certain cases
889   // we need to completely ignore the visibility from it.
890 
891   // Specifically, if this decl exists and has an explicit attribute.
892   const NamedDecl *explicitSpecSuppressor = nullptr;
893 
894   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
895     // If the type of the function uses a type with unique-external
896     // linkage, it's not legally usable from outside this translation unit.
897     // But only look at the type-as-written. If this function has an auto-deduced
898     // return type, we can't compute the linkage of that type because it could
899     // require looking at the linkage of this function, and we don't need this
900     // for correctness because the type is not part of the function's
901     // signature.
902     // FIXME: This is a hack. We should be able to solve this circularity and the
903     // one in getLVForNamespaceScopeDecl for Functions some other way.
904     {
905       QualType TypeAsWritten = MD->getType();
906       if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
907         TypeAsWritten = TSI->getType();
908       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
909         return LinkageInfo::uniqueExternal();
910     }
911     // If this is a method template specialization, use the linkage for
912     // the template parameters and arguments.
913     if (FunctionTemplateSpecializationInfo *spec
914            = MD->getTemplateSpecializationInfo()) {
915       mergeTemplateLV(LV, MD, spec, computation);
916       if (spec->isExplicitSpecialization()) {
917         explicitSpecSuppressor = MD;
918       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
919         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
920       }
921     } else if (isExplicitMemberSpecialization(MD)) {
922       explicitSpecSuppressor = MD;
923     }
924 
925   } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
926     if (const ClassTemplateSpecializationDecl *spec
927         = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
928       mergeTemplateLV(LV, spec, computation);
929       if (spec->isExplicitSpecialization()) {
930         explicitSpecSuppressor = spec;
931       } else {
932         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
933         if (isExplicitMemberSpecialization(temp)) {
934           explicitSpecSuppressor = temp->getTemplatedDecl();
935         }
936       }
937     } else if (isExplicitMemberSpecialization(RD)) {
938       explicitSpecSuppressor = RD;
939     }
940 
941   // Static data members.
942   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
943     if (const VarTemplateSpecializationDecl *spec
944         = dyn_cast<VarTemplateSpecializationDecl>(VD))
945       mergeTemplateLV(LV, spec, computation);
946 
947     // Modify the variable's linkage by its type, but ignore the
948     // type's visibility unless it's a definition.
949     LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
950     if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
951       LV.mergeVisibility(typeLV);
952     LV.mergeExternalVisibility(typeLV);
953 
954     if (isExplicitMemberSpecialization(VD)) {
955       explicitSpecSuppressor = VD;
956     }
957 
958   // Template members.
959   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
960     bool considerVisibility =
961       (!LV.isVisibilityExplicit() &&
962        !classLV.isVisibilityExplicit() &&
963        !hasExplicitVisibilityAlready(computation));
964     LinkageInfo tempLV =
965       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
966     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
967 
968     if (const RedeclarableTemplateDecl *redeclTemp =
969           dyn_cast<RedeclarableTemplateDecl>(temp)) {
970       if (isExplicitMemberSpecialization(redeclTemp)) {
971         explicitSpecSuppressor = temp->getTemplatedDecl();
972       }
973     }
974   }
975 
976   // We should never be looking for an attribute directly on a template.
977   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
978 
979   // If this member is an explicit member specialization, and it has
980   // an explicit attribute, ignore visibility from the parent.
981   bool considerClassVisibility = true;
982   if (explicitSpecSuppressor &&
983       // optimization: hasDVA() is true only with explicit visibility.
984       LV.isVisibilityExplicit() &&
985       classLV.getVisibility() != DefaultVisibility &&
986       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
987     considerClassVisibility = false;
988   }
989 
990   // Finally, merge in information from the class.
991   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
992   return LV;
993 }
994 
anchor()995 void NamedDecl::anchor() { }
996 
997 static LinkageInfo computeLVForDecl(const NamedDecl *D,
998                                     LVComputationKind computation);
999 
isLinkageValid() const1000 bool NamedDecl::isLinkageValid() const {
1001   if (!hasCachedLinkage())
1002     return true;
1003 
1004   return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
1005          getCachedLinkage();
1006 }
1007 
getObjCFStringFormattingFamily() const1008 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1009   StringRef name = getName();
1010   if (name.empty()) return SFF_None;
1011 
1012   if (name.front() == 'C')
1013     if (name == "CFStringCreateWithFormat" ||
1014         name == "CFStringCreateWithFormatAndArguments" ||
1015         name == "CFStringAppendFormat" ||
1016         name == "CFStringAppendFormatAndArguments")
1017       return SFF_CFString;
1018   return SFF_None;
1019 }
1020 
getLinkageInternal() const1021 Linkage NamedDecl::getLinkageInternal() const {
1022   // We don't care about visibility here, so ask for the cheapest
1023   // possible visibility analysis.
1024   return getLVForDecl(this, LVForLinkageOnly).getLinkage();
1025 }
1026 
getLinkageAndVisibility() const1027 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1028   LVComputationKind computation =
1029     (usesTypeVisibility(this) ? LVForType : LVForValue);
1030   return getLVForDecl(this, computation);
1031 }
1032 
1033 static Optional<Visibility>
getExplicitVisibilityAux(const NamedDecl * ND,NamedDecl::ExplicitVisibilityKind kind,bool IsMostRecent)1034 getExplicitVisibilityAux(const NamedDecl *ND,
1035                          NamedDecl::ExplicitVisibilityKind kind,
1036                          bool IsMostRecent) {
1037   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1038 
1039   // Check the declaration itself first.
1040   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1041     return V;
1042 
1043   // If this is a member class of a specialization of a class template
1044   // and the corresponding decl has explicit visibility, use that.
1045   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND)) {
1046     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1047     if (InstantiatedFrom)
1048       return getVisibilityOf(InstantiatedFrom, kind);
1049   }
1050 
1051   // If there wasn't explicit visibility there, and this is a
1052   // specialization of a class template, check for visibility
1053   // on the pattern.
1054   if (const ClassTemplateSpecializationDecl *spec
1055         = dyn_cast<ClassTemplateSpecializationDecl>(ND))
1056     return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
1057                            kind);
1058 
1059   // Use the most recent declaration.
1060   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1061     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1062     if (MostRecent != ND)
1063       return getExplicitVisibilityAux(MostRecent, kind, true);
1064   }
1065 
1066   if (const VarDecl *Var = dyn_cast<VarDecl>(ND)) {
1067     if (Var->isStaticDataMember()) {
1068       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1069       if (InstantiatedFrom)
1070         return getVisibilityOf(InstantiatedFrom, kind);
1071     }
1072 
1073     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1074       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1075                              kind);
1076 
1077     return None;
1078   }
1079   // Also handle function template specializations.
1080   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) {
1081     // If the function is a specialization of a template with an
1082     // explicit visibility attribute, use that.
1083     if (FunctionTemplateSpecializationInfo *templateInfo
1084           = fn->getTemplateSpecializationInfo())
1085       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1086                              kind);
1087 
1088     // If the function is a member of a specialization of a class template
1089     // and the corresponding decl has explicit visibility, use that.
1090     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1091     if (InstantiatedFrom)
1092       return getVisibilityOf(InstantiatedFrom, kind);
1093 
1094     return None;
1095   }
1096 
1097   // The visibility of a template is stored in the templated decl.
1098   if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(ND))
1099     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1100 
1101   return None;
1102 }
1103 
1104 Optional<Visibility>
getExplicitVisibility(ExplicitVisibilityKind kind) const1105 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1106   return getExplicitVisibilityAux(this, kind, false);
1107 }
1108 
getLVForClosure(const DeclContext * DC,Decl * ContextDecl,LVComputationKind computation)1109 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
1110                                    LVComputationKind computation) {
1111   // This lambda has its linkage/visibility determined by its owner.
1112   if (ContextDecl) {
1113     if (isa<ParmVarDecl>(ContextDecl))
1114       DC = ContextDecl->getDeclContext()->getRedeclContext();
1115     else
1116       return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
1117   }
1118 
1119   if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
1120     return getLVForDecl(ND, computation);
1121 
1122   return LinkageInfo::external();
1123 }
1124 
getLVForLocalDecl(const NamedDecl * D,LVComputationKind computation)1125 static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
1126                                      LVComputationKind computation) {
1127   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1128     if (Function->isInAnonymousNamespace() &&
1129         !Function->isInExternCContext())
1130       return LinkageInfo::uniqueExternal();
1131 
1132     // This is a "void f();" which got merged with a file static.
1133     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1134       return LinkageInfo::internal();
1135 
1136     LinkageInfo LV;
1137     if (!hasExplicitVisibilityAlready(computation)) {
1138       if (Optional<Visibility> Vis =
1139               getExplicitVisibility(Function, computation))
1140         LV.mergeVisibility(*Vis, true);
1141     }
1142 
1143     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1144     // merging storage classes and visibility attributes, so we don't have to
1145     // look at previous decls in here.
1146 
1147     return LV;
1148   }
1149 
1150   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
1151     if (Var->hasExternalStorage()) {
1152       if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
1153         return LinkageInfo::uniqueExternal();
1154 
1155       LinkageInfo LV;
1156       if (Var->getStorageClass() == SC_PrivateExtern)
1157         LV.mergeVisibility(HiddenVisibility, true);
1158       else if (!hasExplicitVisibilityAlready(computation)) {
1159         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1160           LV.mergeVisibility(*Vis, true);
1161       }
1162 
1163       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1164         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1165         if (PrevLV.getLinkage())
1166           LV.setLinkage(PrevLV.getLinkage());
1167         LV.mergeVisibility(PrevLV);
1168       }
1169 
1170       return LV;
1171     }
1172 
1173     if (!Var->isStaticLocal())
1174       return LinkageInfo::none();
1175   }
1176 
1177   ASTContext &Context = D->getASTContext();
1178   if (!Context.getLangOpts().CPlusPlus)
1179     return LinkageInfo::none();
1180 
1181   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1182   if (!OuterD)
1183     return LinkageInfo::none();
1184 
1185   LinkageInfo LV;
1186   if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) {
1187     if (!BD->getBlockManglingNumber())
1188       return LinkageInfo::none();
1189 
1190     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1191                          BD->getBlockManglingContextDecl(), computation);
1192   } else {
1193     const FunctionDecl *FD = cast<FunctionDecl>(OuterD);
1194     if (!FD->isInlined() &&
1195         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1196       return LinkageInfo::none();
1197 
1198     LV = getLVForDecl(FD, computation);
1199   }
1200   if (!isExternallyVisible(LV.getLinkage()))
1201     return LinkageInfo::none();
1202   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1203                      LV.isVisibilityExplicit());
1204 }
1205 
1206 static inline const CXXRecordDecl*
getOutermostEnclosingLambda(const CXXRecordDecl * Record)1207 getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
1208   const CXXRecordDecl *Ret = Record;
1209   while (Record && Record->isLambda()) {
1210     Ret = Record;
1211     if (!Record->getParent()) break;
1212     // Get the Containing Class of this Lambda Class
1213     Record = dyn_cast_or_null<CXXRecordDecl>(
1214       Record->getParent()->getParent());
1215   }
1216   return Ret;
1217 }
1218 
computeLVForDecl(const NamedDecl * D,LVComputationKind computation)1219 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1220                                     LVComputationKind computation) {
1221   // Objective-C: treat all Objective-C declarations as having external
1222   // linkage.
1223   switch (D->getKind()) {
1224     default:
1225       break;
1226     case Decl::ParmVar:
1227       return LinkageInfo::none();
1228     case Decl::TemplateTemplateParm: // count these as external
1229     case Decl::NonTypeTemplateParm:
1230     case Decl::ObjCAtDefsField:
1231     case Decl::ObjCCategory:
1232     case Decl::ObjCCategoryImpl:
1233     case Decl::ObjCCompatibleAlias:
1234     case Decl::ObjCImplementation:
1235     case Decl::ObjCMethod:
1236     case Decl::ObjCProperty:
1237     case Decl::ObjCPropertyImpl:
1238     case Decl::ObjCProtocol:
1239       return LinkageInfo::external();
1240 
1241     case Decl::CXXRecord: {
1242       const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
1243       if (Record->isLambda()) {
1244         if (!Record->getLambdaManglingNumber()) {
1245           // This lambda has no mangling number, so it's internal.
1246           return LinkageInfo::internal();
1247         }
1248 
1249         // This lambda has its linkage/visibility determined:
1250         //  - either by the outermost lambda if that lambda has no mangling
1251         //    number.
1252         //  - or by the parent of the outer most lambda
1253         // This prevents infinite recursion in settings such as nested lambdas
1254         // used in NSDMI's, for e.g.
1255         //  struct L {
1256         //    int t{};
1257         //    int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1258         //  };
1259         const CXXRecordDecl *OuterMostLambda =
1260             getOutermostEnclosingLambda(Record);
1261         if (!OuterMostLambda->getLambdaManglingNumber())
1262           return LinkageInfo::internal();
1263 
1264         return getLVForClosure(
1265                   OuterMostLambda->getDeclContext()->getRedeclContext(),
1266                   OuterMostLambda->getLambdaContextDecl(), computation);
1267       }
1268 
1269       break;
1270     }
1271   }
1272 
1273   // Handle linkage for namespace-scope names.
1274   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1275     return getLVForNamespaceScopeDecl(D, computation);
1276 
1277   // C++ [basic.link]p5:
1278   //   In addition, a member function, static data member, a named
1279   //   class or enumeration of class scope, or an unnamed class or
1280   //   enumeration defined in a class-scope typedef declaration such
1281   //   that the class or enumeration has the typedef name for linkage
1282   //   purposes (7.1.3), has external linkage if the name of the class
1283   //   has external linkage.
1284   if (D->getDeclContext()->isRecord())
1285     return getLVForClassMember(D, computation);
1286 
1287   // C++ [basic.link]p6:
1288   //   The name of a function declared in block scope and the name of
1289   //   an object declared by a block scope extern declaration have
1290   //   linkage. If there is a visible declaration of an entity with
1291   //   linkage having the same name and type, ignoring entities
1292   //   declared outside the innermost enclosing namespace scope, the
1293   //   block scope declaration declares that same entity and receives
1294   //   the linkage of the previous declaration. If there is more than
1295   //   one such matching entity, the program is ill-formed. Otherwise,
1296   //   if no matching entity is found, the block scope entity receives
1297   //   external linkage.
1298   if (D->getDeclContext()->isFunctionOrMethod())
1299     return getLVForLocalDecl(D, computation);
1300 
1301   // C++ [basic.link]p6:
1302   //   Names not covered by these rules have no linkage.
1303   return LinkageInfo::none();
1304 }
1305 
1306 namespace clang {
1307 class LinkageComputer {
1308 public:
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1309   static LinkageInfo getLVForDecl(const NamedDecl *D,
1310                                   LVComputationKind computation) {
1311     if (computation == LVForLinkageOnly && D->hasCachedLinkage())
1312       return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1313 
1314     LinkageInfo LV = computeLVForDecl(D, computation);
1315     if (D->hasCachedLinkage())
1316       assert(D->getCachedLinkage() == LV.getLinkage());
1317 
1318     D->setCachedLinkage(LV.getLinkage());
1319 
1320 #ifndef NDEBUG
1321     // In C (because of gnu inline) and in c++ with microsoft extensions an
1322     // static can follow an extern, so we can have two decls with different
1323     // linkages.
1324     const LangOptions &Opts = D->getASTContext().getLangOpts();
1325     if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1326       return LV;
1327 
1328     // We have just computed the linkage for this decl. By induction we know
1329     // that all other computed linkages match, check that the one we just
1330     // computed also does.
1331     NamedDecl *Old = nullptr;
1332     for (auto I : D->redecls()) {
1333       NamedDecl *T = cast<NamedDecl>(I);
1334       if (T == D)
1335         continue;
1336       if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1337         Old = T;
1338         break;
1339       }
1340     }
1341     assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1342 #endif
1343 
1344     return LV;
1345   }
1346 };
1347 }
1348 
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1349 static LinkageInfo getLVForDecl(const NamedDecl *D,
1350                                 LVComputationKind computation) {
1351   return clang::LinkageComputer::getLVForDecl(D, computation);
1352 }
1353 
getQualifiedNameAsString() const1354 std::string NamedDecl::getQualifiedNameAsString() const {
1355   std::string QualName;
1356   llvm::raw_string_ostream OS(QualName);
1357   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1358   return OS.str();
1359 }
1360 
printQualifiedName(raw_ostream & OS) const1361 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1362   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1363 }
1364 
printQualifiedName(raw_ostream & OS,const PrintingPolicy & P) const1365 void NamedDecl::printQualifiedName(raw_ostream &OS,
1366                                    const PrintingPolicy &P) const {
1367   const DeclContext *Ctx = getDeclContext();
1368 
1369   if (Ctx->isFunctionOrMethod()) {
1370     printName(OS);
1371     return;
1372   }
1373 
1374   typedef SmallVector<const DeclContext *, 8> ContextsTy;
1375   ContextsTy Contexts;
1376 
1377   // Collect contexts.
1378   while (Ctx && isa<NamedDecl>(Ctx)) {
1379     Contexts.push_back(Ctx);
1380     Ctx = Ctx->getParent();
1381   }
1382 
1383   for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
1384        I != E; ++I) {
1385     if (const ClassTemplateSpecializationDecl *Spec
1386           = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
1387       OS << Spec->getName();
1388       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1389       TemplateSpecializationType::PrintTemplateArgumentList(OS,
1390                                                             TemplateArgs.data(),
1391                                                             TemplateArgs.size(),
1392                                                             P);
1393     } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
1394       if (P.SuppressUnwrittenScope &&
1395           (ND->isAnonymousNamespace() || ND->isInline()))
1396         continue;
1397       if (ND->isAnonymousNamespace())
1398         OS << "(anonymous namespace)";
1399       else
1400         OS << *ND;
1401     } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
1402       if (!RD->getIdentifier())
1403         OS << "(anonymous " << RD->getKindName() << ')';
1404       else
1405         OS << *RD;
1406     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
1407       const FunctionProtoType *FT = nullptr;
1408       if (FD->hasWrittenPrototype())
1409         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1410 
1411       OS << *FD << '(';
1412       if (FT) {
1413         unsigned NumParams = FD->getNumParams();
1414         for (unsigned i = 0; i < NumParams; ++i) {
1415           if (i)
1416             OS << ", ";
1417           OS << FD->getParamDecl(i)->getType().stream(P);
1418         }
1419 
1420         if (FT->isVariadic()) {
1421           if (NumParams > 0)
1422             OS << ", ";
1423           OS << "...";
1424         }
1425       }
1426       OS << ')';
1427     } else {
1428       OS << *cast<NamedDecl>(*I);
1429     }
1430     OS << "::";
1431   }
1432 
1433   if (getDeclName())
1434     OS << *this;
1435   else
1436     OS << "(anonymous)";
1437 }
1438 
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const1439 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1440                                      const PrintingPolicy &Policy,
1441                                      bool Qualified) const {
1442   if (Qualified)
1443     printQualifiedName(OS, Policy);
1444   else
1445     printName(OS);
1446 }
1447 
isKindReplaceableBy(Decl::Kind OldK,Decl::Kind NewK)1448 static bool isKindReplaceableBy(Decl::Kind OldK, Decl::Kind NewK) {
1449   // For method declarations, we never replace.
1450   if (ObjCMethodDecl::classofKind(NewK))
1451     return false;
1452 
1453   if (OldK == NewK)
1454     return true;
1455 
1456   // A compatibility alias for a class can be replaced by an interface.
1457   if (ObjCCompatibleAliasDecl::classofKind(OldK) &&
1458       ObjCInterfaceDecl::classofKind(NewK))
1459     return true;
1460 
1461   // A typedef-declaration, alias-declaration, or Objective-C class declaration
1462   // can replace another declaration of the same type. Semantic analysis checks
1463   // that we have matching types.
1464   if ((TypedefNameDecl::classofKind(OldK) ||
1465        ObjCInterfaceDecl::classofKind(OldK)) &&
1466       (TypedefNameDecl::classofKind(NewK) ||
1467        ObjCInterfaceDecl::classofKind(NewK)))
1468     return true;
1469 
1470   // Otherwise, a kind mismatch implies that the declaration is not replaced.
1471   return false;
1472 }
1473 
isRedeclarableImpl(Redeclarable<T> *)1474 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1475   return true;
1476 }
isRedeclarableImpl(...)1477 static bool isRedeclarableImpl(...) { return false; }
isRedeclarable(Decl::Kind K)1478 static bool isRedeclarable(Decl::Kind K) {
1479   switch (K) {
1480 #define DECL(Type, Base) \
1481   case Decl::Type: \
1482     return isRedeclarableImpl((Type##Decl *)nullptr);
1483 #define ABSTRACT_DECL(DECL)
1484 #include "clang/AST/DeclNodes.inc"
1485   }
1486   llvm_unreachable("unknown decl kind");
1487 }
1488 
declarationReplaces(NamedDecl * OldD,bool IsKnownNewer) const1489 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1490   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1491 
1492   // Never replace one imported declaration with another; we need both results
1493   // when re-exporting.
1494   if (OldD->isFromASTFile() && isFromASTFile())
1495     return false;
1496 
1497   if (!isKindReplaceableBy(OldD->getKind(), getKind()))
1498     return false;
1499 
1500   // Inline namespaces can give us two declarations with the same
1501   // name and kind in the same scope but different contexts; we should
1502   // keep both declarations in this case.
1503   if (!this->getDeclContext()->getRedeclContext()->Equals(
1504           OldD->getDeclContext()->getRedeclContext()))
1505     return false;
1506 
1507   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
1508     // For function declarations, we keep track of redeclarations.
1509     // FIXME: This returns false for functions that should in fact be replaced.
1510     // Instead, perform some kind of type check?
1511     if (FD->getPreviousDecl() != OldD)
1512       return false;
1513 
1514   // For function templates, the underlying function declarations are linked.
1515   if (const FunctionTemplateDecl *FunctionTemplate =
1516           dyn_cast<FunctionTemplateDecl>(this))
1517     return FunctionTemplate->getTemplatedDecl()->declarationReplaces(
1518         cast<FunctionTemplateDecl>(OldD)->getTemplatedDecl());
1519 
1520   // Using shadow declarations can be overloaded on their target declarations
1521   // if they introduce functions.
1522   // FIXME: If our target replaces the old target, can we replace the old
1523   //        shadow declaration?
1524   if (auto *USD = dyn_cast<UsingShadowDecl>(this))
1525     if (USD->getTargetDecl() != cast<UsingShadowDecl>(OldD)->getTargetDecl())
1526       return false;
1527 
1528   // Using declarations can be overloaded if they introduce functions.
1529   if (auto *UD = dyn_cast<UsingDecl>(this)) {
1530     ASTContext &Context = getASTContext();
1531     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1532            Context.getCanonicalNestedNameSpecifier(
1533                cast<UsingDecl>(OldD)->getQualifier());
1534   }
1535   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1536     ASTContext &Context = getASTContext();
1537     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1538            Context.getCanonicalNestedNameSpecifier(
1539                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1540   }
1541 
1542   // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
1543   // We want to keep it, unless it nominates same namespace.
1544   if (auto *UD = dyn_cast<UsingDirectiveDecl>(this))
1545     return UD->getNominatedNamespace()->getOriginalNamespace() ==
1546            cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
1547                ->getOriginalNamespace();
1548 
1549   if (!IsKnownNewer && isRedeclarable(getKind())) {
1550     // Check whether this is actually newer than OldD. We want to keep the
1551     // newer declaration. This loop will usually only iterate once, because
1552     // OldD is usually the previous declaration.
1553     for (auto D : redecls()) {
1554       if (D == OldD)
1555         break;
1556 
1557       // If we reach the canonical declaration, then OldD is not actually older
1558       // than this one.
1559       //
1560       // FIXME: In this case, we should not add this decl to the lookup table.
1561       if (D->isCanonicalDecl())
1562         return false;
1563     }
1564   }
1565 
1566   // It's a newer declaration of the same kind of declaration in the same scope,
1567   // and not an overload: we want this decl instead of the existing one.
1568   return true;
1569 }
1570 
hasLinkage() const1571 bool NamedDecl::hasLinkage() const {
1572   return getFormalLinkage() != NoLinkage;
1573 }
1574 
getUnderlyingDeclImpl()1575 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1576   NamedDecl *ND = this;
1577   while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
1578     ND = UD->getTargetDecl();
1579 
1580   if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1581     return AD->getClassInterface();
1582 
1583   return ND;
1584 }
1585 
isCXXInstanceMember() const1586 bool NamedDecl::isCXXInstanceMember() const {
1587   if (!isCXXClassMember())
1588     return false;
1589 
1590   const NamedDecl *D = this;
1591   if (isa<UsingShadowDecl>(D))
1592     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1593 
1594   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1595     return true;
1596   if (const CXXMethodDecl *MD =
1597           dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1598     return MD->isInstance();
1599   return false;
1600 }
1601 
1602 //===----------------------------------------------------------------------===//
1603 // DeclaratorDecl Implementation
1604 //===----------------------------------------------------------------------===//
1605 
1606 template <typename DeclT>
getTemplateOrInnerLocStart(const DeclT * decl)1607 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1608   if (decl->getNumTemplateParameterLists() > 0)
1609     return decl->getTemplateParameterList(0)->getTemplateLoc();
1610   else
1611     return decl->getInnerLocStart();
1612 }
1613 
getTypeSpecStartLoc() const1614 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1615   TypeSourceInfo *TSI = getTypeSourceInfo();
1616   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1617   return SourceLocation();
1618 }
1619 
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)1620 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1621   if (QualifierLoc) {
1622     // Make sure the extended decl info is allocated.
1623     if (!hasExtInfo()) {
1624       // Save (non-extended) type source info pointer.
1625       TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1626       // Allocate external info struct.
1627       DeclInfo = new (getASTContext()) ExtInfo;
1628       // Restore savedTInfo into (extended) decl info.
1629       getExtInfo()->TInfo = savedTInfo;
1630     }
1631     // Set qualifier info.
1632     getExtInfo()->QualifierLoc = QualifierLoc;
1633   } else {
1634     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1635     if (hasExtInfo()) {
1636       if (getExtInfo()->NumTemplParamLists == 0) {
1637         // Save type source info pointer.
1638         TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1639         // Deallocate the extended decl info.
1640         getASTContext().Deallocate(getExtInfo());
1641         // Restore savedTInfo into (non-extended) decl info.
1642         DeclInfo = savedTInfo;
1643       }
1644       else
1645         getExtInfo()->QualifierLoc = QualifierLoc;
1646     }
1647   }
1648 }
1649 
1650 void
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)1651 DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
1652                                               unsigned NumTPLists,
1653                                               TemplateParameterList **TPLists) {
1654   assert(NumTPLists > 0);
1655   // Make sure the extended decl info is allocated.
1656   if (!hasExtInfo()) {
1657     // Save (non-extended) type source info pointer.
1658     TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1659     // Allocate external info struct.
1660     DeclInfo = new (getASTContext()) ExtInfo;
1661     // Restore savedTInfo into (extended) decl info.
1662     getExtInfo()->TInfo = savedTInfo;
1663   }
1664   // Set the template parameter lists info.
1665   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
1666 }
1667 
getOuterLocStart() const1668 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1669   return getTemplateOrInnerLocStart(this);
1670 }
1671 
1672 namespace {
1673 
1674 // Helper function: returns true if QT is or contains a type
1675 // having a postfix component.
typeIsPostfix(clang::QualType QT)1676 bool typeIsPostfix(clang::QualType QT) {
1677   while (true) {
1678     const Type* T = QT.getTypePtr();
1679     switch (T->getTypeClass()) {
1680     default:
1681       return false;
1682     case Type::Pointer:
1683       QT = cast<PointerType>(T)->getPointeeType();
1684       break;
1685     case Type::BlockPointer:
1686       QT = cast<BlockPointerType>(T)->getPointeeType();
1687       break;
1688     case Type::MemberPointer:
1689       QT = cast<MemberPointerType>(T)->getPointeeType();
1690       break;
1691     case Type::LValueReference:
1692     case Type::RValueReference:
1693       QT = cast<ReferenceType>(T)->getPointeeType();
1694       break;
1695     case Type::PackExpansion:
1696       QT = cast<PackExpansionType>(T)->getPattern();
1697       break;
1698     case Type::Paren:
1699     case Type::ConstantArray:
1700     case Type::DependentSizedArray:
1701     case Type::IncompleteArray:
1702     case Type::VariableArray:
1703     case Type::FunctionProto:
1704     case Type::FunctionNoProto:
1705       return true;
1706     }
1707   }
1708 }
1709 
1710 } // namespace
1711 
getSourceRange() const1712 SourceRange DeclaratorDecl::getSourceRange() const {
1713   SourceLocation RangeEnd = getLocation();
1714   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1715     // If the declaration has no name or the type extends past the name take the
1716     // end location of the type.
1717     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1718       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1719   }
1720   return SourceRange(getOuterLocStart(), RangeEnd);
1721 }
1722 
1723 void
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)1724 QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
1725                                              unsigned NumTPLists,
1726                                              TemplateParameterList **TPLists) {
1727   assert((NumTPLists == 0 || TPLists != nullptr) &&
1728          "Empty array of template parameters with positive size!");
1729 
1730   // Free previous template parameters (if any).
1731   if (NumTemplParamLists > 0) {
1732     Context.Deallocate(TemplParamLists);
1733     TemplParamLists = nullptr;
1734     NumTemplParamLists = 0;
1735   }
1736   // Set info on matched template parameter lists (if any).
1737   if (NumTPLists > 0) {
1738     TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
1739     NumTemplParamLists = NumTPLists;
1740     std::copy(TPLists, TPLists + NumTPLists, TemplParamLists);
1741   }
1742 }
1743 
1744 //===----------------------------------------------------------------------===//
1745 // VarDecl Implementation
1746 //===----------------------------------------------------------------------===//
1747 
getStorageClassSpecifierString(StorageClass SC)1748 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1749   switch (SC) {
1750   case SC_None:                 break;
1751   case SC_Auto:                 return "auto";
1752   case SC_Extern:               return "extern";
1753   case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
1754   case SC_PrivateExtern:        return "__private_extern__";
1755   case SC_Register:             return "register";
1756   case SC_Static:               return "static";
1757   }
1758 
1759   llvm_unreachable("Invalid storage class");
1760 }
1761 
VarDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass SC)1762 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1763                  SourceLocation StartLoc, SourceLocation IdLoc,
1764                  IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1765                  StorageClass SC)
1766     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1767       redeclarable_base(C), Init() {
1768   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1769                 "VarDeclBitfields too large!");
1770   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1771                 "ParmVarDeclBitfields too large!");
1772   AllBits = 0;
1773   VarDeclBits.SClass = SC;
1774   // Everything else is implicitly initialized to false.
1775 }
1776 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartL,SourceLocation IdL,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S)1777 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1778                          SourceLocation StartL, SourceLocation IdL,
1779                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1780                          StorageClass S) {
1781   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1782 }
1783 
CreateDeserialized(ASTContext & C,unsigned ID)1784 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1785   return new (C, ID)
1786       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1787               QualType(), nullptr, SC_None);
1788 }
1789 
setStorageClass(StorageClass SC)1790 void VarDecl::setStorageClass(StorageClass SC) {
1791   assert(isLegalForVariable(SC));
1792   VarDeclBits.SClass = SC;
1793 }
1794 
getTLSKind() const1795 VarDecl::TLSKind VarDecl::getTLSKind() const {
1796   switch (VarDeclBits.TSCSpec) {
1797   case TSCS_unspecified:
1798     if (hasAttr<ThreadAttr>())
1799       return TLS_Static;
1800     return TLS_None;
1801   case TSCS___thread: // Fall through.
1802   case TSCS__Thread_local:
1803       return TLS_Static;
1804   case TSCS_thread_local:
1805     return TLS_Dynamic;
1806   }
1807   llvm_unreachable("Unknown thread storage class specifier!");
1808 }
1809 
getSourceRange() const1810 SourceRange VarDecl::getSourceRange() const {
1811   if (const Expr *Init = getInit()) {
1812     SourceLocation InitEnd = Init->getLocEnd();
1813     // If Init is implicit, ignore its source range and fallback on
1814     // DeclaratorDecl::getSourceRange() to handle postfix elements.
1815     if (InitEnd.isValid() && InitEnd != getLocation())
1816       return SourceRange(getOuterLocStart(), InitEnd);
1817   }
1818   return DeclaratorDecl::getSourceRange();
1819 }
1820 
1821 template<typename T>
getDeclLanguageLinkage(const T & D)1822 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
1823   // C++ [dcl.link]p1: All function types, function names with external linkage,
1824   // and variable names with external linkage have a language linkage.
1825   if (!D.hasExternalFormalLinkage())
1826     return NoLanguageLinkage;
1827 
1828   // Language linkage is a C++ concept, but saying that everything else in C has
1829   // C language linkage fits the implementation nicely.
1830   ASTContext &Context = D.getASTContext();
1831   if (!Context.getLangOpts().CPlusPlus)
1832     return CLanguageLinkage;
1833 
1834   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1835   // language linkage of the names of class members and the function type of
1836   // class member functions.
1837   const DeclContext *DC = D.getDeclContext();
1838   if (DC->isRecord())
1839     return CXXLanguageLinkage;
1840 
1841   // If the first decl is in an extern "C" context, any other redeclaration
1842   // will have C language linkage. If the first one is not in an extern "C"
1843   // context, we would have reported an error for any other decl being in one.
1844   if (isFirstInExternCContext(&D))
1845     return CLanguageLinkage;
1846   return CXXLanguageLinkage;
1847 }
1848 
1849 template<typename T>
isDeclExternC(const T & D)1850 static bool isDeclExternC(const T &D) {
1851   // Since the context is ignored for class members, they can only have C++
1852   // language linkage or no language linkage.
1853   const DeclContext *DC = D.getDeclContext();
1854   if (DC->isRecord()) {
1855     assert(D.getASTContext().getLangOpts().CPlusPlus);
1856     return false;
1857   }
1858 
1859   return D.getLanguageLinkage() == CLanguageLinkage;
1860 }
1861 
getLanguageLinkage() const1862 LanguageLinkage VarDecl::getLanguageLinkage() const {
1863   return getDeclLanguageLinkage(*this);
1864 }
1865 
isExternC() const1866 bool VarDecl::isExternC() const {
1867   return isDeclExternC(*this);
1868 }
1869 
isInExternCContext() const1870 bool VarDecl::isInExternCContext() const {
1871   return getLexicalDeclContext()->isExternCContext();
1872 }
1873 
isInExternCXXContext() const1874 bool VarDecl::isInExternCXXContext() const {
1875   return getLexicalDeclContext()->isExternCXXContext();
1876 }
1877 
getCanonicalDecl()1878 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
1879 
1880 VarDecl::DefinitionKind
isThisDeclarationADefinition(ASTContext & C) const1881 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
1882   // C++ [basic.def]p2:
1883   //   A declaration is a definition unless [...] it contains the 'extern'
1884   //   specifier or a linkage-specification and neither an initializer [...],
1885   //   it declares a static data member in a class declaration [...].
1886   // C++1y [temp.expl.spec]p15:
1887   //   An explicit specialization of a static data member or an explicit
1888   //   specialization of a static data member template is a definition if the
1889   //   declaration includes an initializer; otherwise, it is a declaration.
1890   //
1891   // FIXME: How do you declare (but not define) a partial specialization of
1892   // a static data member template outside the containing class?
1893   if (isStaticDataMember()) {
1894     if (isOutOfLine() &&
1895         (hasInit() ||
1896          // If the first declaration is out-of-line, this may be an
1897          // instantiation of an out-of-line partial specialization of a variable
1898          // template for which we have not yet instantiated the initializer.
1899          (getFirstDecl()->isOutOfLine()
1900               ? getTemplateSpecializationKind() == TSK_Undeclared
1901               : getTemplateSpecializationKind() !=
1902                     TSK_ExplicitSpecialization) ||
1903          isa<VarTemplatePartialSpecializationDecl>(this)))
1904       return Definition;
1905     else
1906       return DeclarationOnly;
1907   }
1908   // C99 6.7p5:
1909   //   A definition of an identifier is a declaration for that identifier that
1910   //   [...] causes storage to be reserved for that object.
1911   // Note: that applies for all non-file-scope objects.
1912   // C99 6.9.2p1:
1913   //   If the declaration of an identifier for an object has file scope and an
1914   //   initializer, the declaration is an external definition for the identifier
1915   if (hasInit())
1916     return Definition;
1917 
1918   if (hasAttr<AliasAttr>() || hasAttr<SelectAnyAttr>())
1919     return Definition;
1920 
1921   // A variable template specialization (other than a static data member
1922   // template or an explicit specialization) is a declaration until we
1923   // instantiate its initializer.
1924   if (isa<VarTemplateSpecializationDecl>(this) &&
1925       getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
1926     return DeclarationOnly;
1927 
1928   if (hasExternalStorage())
1929     return DeclarationOnly;
1930 
1931   // [dcl.link] p7:
1932   //   A declaration directly contained in a linkage-specification is treated
1933   //   as if it contains the extern specifier for the purpose of determining
1934   //   the linkage of the declared name and whether it is a definition.
1935   if (isSingleLineLanguageLinkage(*this))
1936     return DeclarationOnly;
1937 
1938   // C99 6.9.2p2:
1939   //   A declaration of an object that has file scope without an initializer,
1940   //   and without a storage class specifier or the scs 'static', constitutes
1941   //   a tentative definition.
1942   // No such thing in C++.
1943   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
1944     return TentativeDefinition;
1945 
1946   // What's left is (in C, block-scope) declarations without initializers or
1947   // external storage. These are definitions.
1948   return Definition;
1949 }
1950 
getActingDefinition()1951 VarDecl *VarDecl::getActingDefinition() {
1952   DefinitionKind Kind = isThisDeclarationADefinition();
1953   if (Kind != TentativeDefinition)
1954     return nullptr;
1955 
1956   VarDecl *LastTentative = nullptr;
1957   VarDecl *First = getFirstDecl();
1958   for (auto I : First->redecls()) {
1959     Kind = I->isThisDeclarationADefinition();
1960     if (Kind == Definition)
1961       return nullptr;
1962     else if (Kind == TentativeDefinition)
1963       LastTentative = I;
1964   }
1965   return LastTentative;
1966 }
1967 
getDefinition(ASTContext & C)1968 VarDecl *VarDecl::getDefinition(ASTContext &C) {
1969   VarDecl *First = getFirstDecl();
1970   for (auto I : First->redecls()) {
1971     if (I->isThisDeclarationADefinition(C) == Definition)
1972       return I;
1973   }
1974   return nullptr;
1975 }
1976 
hasDefinition(ASTContext & C) const1977 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
1978   DefinitionKind Kind = DeclarationOnly;
1979 
1980   const VarDecl *First = getFirstDecl();
1981   for (auto I : First->redecls()) {
1982     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
1983     if (Kind == Definition)
1984       break;
1985   }
1986 
1987   return Kind;
1988 }
1989 
getAnyInitializer(const VarDecl * & D) const1990 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
1991   for (auto I : redecls()) {
1992     if (auto Expr = I->getInit()) {
1993       D = I;
1994       return Expr;
1995     }
1996   }
1997   return nullptr;
1998 }
1999 
isOutOfLine() const2000 bool VarDecl::isOutOfLine() const {
2001   if (Decl::isOutOfLine())
2002     return true;
2003 
2004   if (!isStaticDataMember())
2005     return false;
2006 
2007   // If this static data member was instantiated from a static data member of
2008   // a class template, check whether that static data member was defined
2009   // out-of-line.
2010   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2011     return VD->isOutOfLine();
2012 
2013   return false;
2014 }
2015 
getOutOfLineDefinition()2016 VarDecl *VarDecl::getOutOfLineDefinition() {
2017   if (!isStaticDataMember())
2018     return nullptr;
2019 
2020   for (auto RD : redecls()) {
2021     if (RD->getLexicalDeclContext()->isFileContext())
2022       return RD;
2023   }
2024 
2025   return nullptr;
2026 }
2027 
setInit(Expr * I)2028 void VarDecl::setInit(Expr *I) {
2029   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2030     Eval->~EvaluatedStmt();
2031     getASTContext().Deallocate(Eval);
2032   }
2033 
2034   Init = I;
2035 }
2036 
isUsableInConstantExpressions(ASTContext & C) const2037 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
2038   const LangOptions &Lang = C.getLangOpts();
2039 
2040   if (!Lang.CPlusPlus)
2041     return false;
2042 
2043   // In C++11, any variable of reference type can be used in a constant
2044   // expression if it is initialized by a constant expression.
2045   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2046     return true;
2047 
2048   // Only const objects can be used in constant expressions in C++. C++98 does
2049   // not require the variable to be non-volatile, but we consider this to be a
2050   // defect.
2051   if (!getType().isConstQualified() || getType().isVolatileQualified())
2052     return false;
2053 
2054   // In C++, const, non-volatile variables of integral or enumeration types
2055   // can be used in constant expressions.
2056   if (getType()->isIntegralOrEnumerationType())
2057     return true;
2058 
2059   // Additionally, in C++11, non-volatile constexpr variables can be used in
2060   // constant expressions.
2061   return Lang.CPlusPlus11 && isConstexpr();
2062 }
2063 
2064 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2065 /// form, which contains extra information on the evaluated value of the
2066 /// initializer.
ensureEvaluatedStmt() const2067 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2068   EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
2069   if (!Eval) {
2070     Stmt *S = Init.get<Stmt *>();
2071     // Note: EvaluatedStmt contains an APValue, which usually holds
2072     // resources not allocated from the ASTContext.  We need to do some
2073     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2074     // where we can detect whether there's anything to clean up or not.
2075     Eval = new (getASTContext()) EvaluatedStmt;
2076     Eval->Value = S;
2077     Init = Eval;
2078   }
2079   return Eval;
2080 }
2081 
evaluateValue() const2082 APValue *VarDecl::evaluateValue() const {
2083   SmallVector<PartialDiagnosticAt, 8> Notes;
2084   return evaluateValue(Notes);
2085 }
2086 
2087 namespace {
2088 // Destroy an APValue that was allocated in an ASTContext.
DestroyAPValue(void * UntypedValue)2089 void DestroyAPValue(void* UntypedValue) {
2090   static_cast<APValue*>(UntypedValue)->~APValue();
2091 }
2092 } // namespace
2093 
evaluateValue(SmallVectorImpl<PartialDiagnosticAt> & Notes) const2094 APValue *VarDecl::evaluateValue(
2095     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2096   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2097 
2098   // We only produce notes indicating why an initializer is non-constant the
2099   // first time it is evaluated. FIXME: The notes won't always be emitted the
2100   // first time we try evaluation, so might not be produced at all.
2101   if (Eval->WasEvaluated)
2102     return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
2103 
2104   const Expr *Init = cast<Expr>(Eval->Value);
2105   assert(!Init->isValueDependent());
2106 
2107   if (Eval->IsEvaluating) {
2108     // FIXME: Produce a diagnostic for self-initialization.
2109     Eval->CheckedICE = true;
2110     Eval->IsICE = false;
2111     return nullptr;
2112   }
2113 
2114   Eval->IsEvaluating = true;
2115 
2116   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2117                                             this, Notes);
2118 
2119   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2120   // or that it's empty (so that there's nothing to clean up) if evaluation
2121   // failed.
2122   if (!Result)
2123     Eval->Evaluated = APValue();
2124   else if (Eval->Evaluated.needsCleanup())
2125     getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
2126 
2127   Eval->IsEvaluating = false;
2128   Eval->WasEvaluated = true;
2129 
2130   // In C++11, we have determined whether the initializer was a constant
2131   // expression as a side-effect.
2132   if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2133     Eval->CheckedICE = true;
2134     Eval->IsICE = Result && Notes.empty();
2135   }
2136 
2137   return Result ? &Eval->Evaluated : nullptr;
2138 }
2139 
checkInitIsICE() const2140 bool VarDecl::checkInitIsICE() const {
2141   // Initializers of weak variables are never ICEs.
2142   if (isWeak())
2143     return false;
2144 
2145   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2146   if (Eval->CheckedICE)
2147     // We have already checked whether this subexpression is an
2148     // integral constant expression.
2149     return Eval->IsICE;
2150 
2151   const Expr *Init = cast<Expr>(Eval->Value);
2152   assert(!Init->isValueDependent());
2153 
2154   // In C++11, evaluate the initializer to check whether it's a constant
2155   // expression.
2156   if (getASTContext().getLangOpts().CPlusPlus11) {
2157     SmallVector<PartialDiagnosticAt, 8> Notes;
2158     evaluateValue(Notes);
2159     return Eval->IsICE;
2160   }
2161 
2162   // It's an ICE whether or not the definition we found is
2163   // out-of-line.  See DR 721 and the discussion in Clang PR
2164   // 6206 for details.
2165 
2166   if (Eval->CheckingICE)
2167     return false;
2168   Eval->CheckingICE = true;
2169 
2170   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2171   Eval->CheckingICE = false;
2172   Eval->CheckedICE = true;
2173   return Eval->IsICE;
2174 }
2175 
getInstantiatedFromStaticDataMember() const2176 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2177   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2178     return cast<VarDecl>(MSI->getInstantiatedFrom());
2179 
2180   return nullptr;
2181 }
2182 
getTemplateSpecializationKind() const2183 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2184   if (const VarTemplateSpecializationDecl *Spec =
2185           dyn_cast<VarTemplateSpecializationDecl>(this))
2186     return Spec->getSpecializationKind();
2187 
2188   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2189     return MSI->getTemplateSpecializationKind();
2190 
2191   return TSK_Undeclared;
2192 }
2193 
getPointOfInstantiation() const2194 SourceLocation VarDecl::getPointOfInstantiation() const {
2195   if (const VarTemplateSpecializationDecl *Spec =
2196           dyn_cast<VarTemplateSpecializationDecl>(this))
2197     return Spec->getPointOfInstantiation();
2198 
2199   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2200     return MSI->getPointOfInstantiation();
2201 
2202   return SourceLocation();
2203 }
2204 
getDescribedVarTemplate() const2205 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2206   return getASTContext().getTemplateOrSpecializationInfo(this)
2207       .dyn_cast<VarTemplateDecl *>();
2208 }
2209 
setDescribedVarTemplate(VarTemplateDecl * Template)2210 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2211   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2212 }
2213 
getMemberSpecializationInfo() const2214 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2215   if (isStaticDataMember())
2216     // FIXME: Remove ?
2217     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2218     return getASTContext().getTemplateOrSpecializationInfo(this)
2219         .dyn_cast<MemberSpecializationInfo *>();
2220   return nullptr;
2221 }
2222 
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)2223 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2224                                          SourceLocation PointOfInstantiation) {
2225   assert((isa<VarTemplateSpecializationDecl>(this) ||
2226           getMemberSpecializationInfo()) &&
2227          "not a variable or static data member template specialization");
2228 
2229   if (VarTemplateSpecializationDecl *Spec =
2230           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2231     Spec->setSpecializationKind(TSK);
2232     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2233         Spec->getPointOfInstantiation().isInvalid())
2234       Spec->setPointOfInstantiation(PointOfInstantiation);
2235   }
2236 
2237   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2238     MSI->setTemplateSpecializationKind(TSK);
2239     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2240         MSI->getPointOfInstantiation().isInvalid())
2241       MSI->setPointOfInstantiation(PointOfInstantiation);
2242   }
2243 }
2244 
2245 void
setInstantiationOfStaticDataMember(VarDecl * VD,TemplateSpecializationKind TSK)2246 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2247                                             TemplateSpecializationKind TSK) {
2248   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2249          "Previous template or instantiation?");
2250   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2251 }
2252 
2253 //===----------------------------------------------------------------------===//
2254 // ParmVarDecl Implementation
2255 //===----------------------------------------------------------------------===//
2256 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,Expr * DefArg)2257 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2258                                  SourceLocation StartLoc,
2259                                  SourceLocation IdLoc, IdentifierInfo *Id,
2260                                  QualType T, TypeSourceInfo *TInfo,
2261                                  StorageClass S, Expr *DefArg) {
2262   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2263                                  S, DefArg);
2264 }
2265 
getOriginalType() const2266 QualType ParmVarDecl::getOriginalType() const {
2267   TypeSourceInfo *TSI = getTypeSourceInfo();
2268   QualType T = TSI ? TSI->getType() : getType();
2269   if (const DecayedType *DT = dyn_cast<DecayedType>(T))
2270     return DT->getOriginalType();
2271   return T;
2272 }
2273 
CreateDeserialized(ASTContext & C,unsigned ID)2274 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2275   return new (C, ID)
2276       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2277                   nullptr, QualType(), nullptr, SC_None, nullptr);
2278 }
2279 
getSourceRange() const2280 SourceRange ParmVarDecl::getSourceRange() const {
2281   if (!hasInheritedDefaultArg()) {
2282     SourceRange ArgRange = getDefaultArgRange();
2283     if (ArgRange.isValid())
2284       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2285   }
2286 
2287   // DeclaratorDecl considers the range of postfix types as overlapping with the
2288   // declaration name, but this is not the case with parameters in ObjC methods.
2289   if (isa<ObjCMethodDecl>(getDeclContext()))
2290     return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
2291 
2292   return DeclaratorDecl::getSourceRange();
2293 }
2294 
getDefaultArg()2295 Expr *ParmVarDecl::getDefaultArg() {
2296   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2297   assert(!hasUninstantiatedDefaultArg() &&
2298          "Default argument is not yet instantiated!");
2299 
2300   Expr *Arg = getInit();
2301   if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
2302     return E->getSubExpr();
2303 
2304   return Arg;
2305 }
2306 
getDefaultArgRange() const2307 SourceRange ParmVarDecl::getDefaultArgRange() const {
2308   if (const Expr *E = getInit())
2309     return E->getSourceRange();
2310 
2311   if (hasUninstantiatedDefaultArg())
2312     return getUninstantiatedDefaultArg()->getSourceRange();
2313 
2314   return SourceRange();
2315 }
2316 
isParameterPack() const2317 bool ParmVarDecl::isParameterPack() const {
2318   return isa<PackExpansionType>(getType());
2319 }
2320 
setParameterIndexLarge(unsigned parameterIndex)2321 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2322   getASTContext().setParameterIndex(this, parameterIndex);
2323   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2324 }
2325 
getParameterIndexLarge() const2326 unsigned ParmVarDecl::getParameterIndexLarge() const {
2327   return getASTContext().getParameterIndex(this);
2328 }
2329 
2330 //===----------------------------------------------------------------------===//
2331 // FunctionDecl Implementation
2332 //===----------------------------------------------------------------------===//
2333 
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const2334 void FunctionDecl::getNameForDiagnostic(
2335     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2336   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2337   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2338   if (TemplateArgs)
2339     TemplateSpecializationType::PrintTemplateArgumentList(
2340         OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
2341 }
2342 
isVariadic() const2343 bool FunctionDecl::isVariadic() const {
2344   if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
2345     return FT->isVariadic();
2346   return false;
2347 }
2348 
hasBody(const FunctionDecl * & Definition) const2349 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2350   for (auto I : redecls()) {
2351     if (I->Body || I->IsLateTemplateParsed) {
2352       Definition = I;
2353       return true;
2354     }
2355   }
2356 
2357   return false;
2358 }
2359 
hasTrivialBody() const2360 bool FunctionDecl::hasTrivialBody() const
2361 {
2362   Stmt *S = getBody();
2363   if (!S) {
2364     // Since we don't have a body for this function, we don't know if it's
2365     // trivial or not.
2366     return false;
2367   }
2368 
2369   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2370     return true;
2371   return false;
2372 }
2373 
isDefined(const FunctionDecl * & Definition) const2374 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2375   for (auto I : redecls()) {
2376     if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed ||
2377         I->hasAttr<AliasAttr>()) {
2378       Definition = I->IsDeleted ? I->getCanonicalDecl() : I;
2379       return true;
2380     }
2381   }
2382 
2383   return false;
2384 }
2385 
getBody(const FunctionDecl * & Definition) const2386 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2387   if (!hasBody(Definition))
2388     return nullptr;
2389 
2390   if (Definition->Body)
2391     return Definition->Body.get(getASTContext().getExternalSource());
2392 
2393   return nullptr;
2394 }
2395 
setBody(Stmt * B)2396 void FunctionDecl::setBody(Stmt *B) {
2397   Body = B;
2398   if (B)
2399     EndRangeLoc = B->getLocEnd();
2400 }
2401 
setPure(bool P)2402 void FunctionDecl::setPure(bool P) {
2403   IsPure = P;
2404   if (P)
2405     if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2406       Parent->markedVirtualFunctionPure();
2407 }
2408 
2409 template<std::size_t Len>
isNamed(const NamedDecl * ND,const char (& Str)[Len])2410 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2411   IdentifierInfo *II = ND->getIdentifier();
2412   return II && II->isStr(Str);
2413 }
2414 
isMain() const2415 bool FunctionDecl::isMain() const {
2416   const TranslationUnitDecl *tunit =
2417     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2418   return tunit &&
2419          !tunit->getASTContext().getLangOpts().Freestanding &&
2420          isNamed(this, "main");
2421 }
2422 
isMSVCRTEntryPoint() const2423 bool FunctionDecl::isMSVCRTEntryPoint() const {
2424   const TranslationUnitDecl *TUnit =
2425       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2426   if (!TUnit)
2427     return false;
2428 
2429   // Even though we aren't really targeting MSVCRT if we are freestanding,
2430   // semantic analysis for these functions remains the same.
2431 
2432   // MSVCRT entry points only exist on MSVCRT targets.
2433   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2434     return false;
2435 
2436   // Nameless functions like constructors cannot be entry points.
2437   if (!getIdentifier())
2438     return false;
2439 
2440   return llvm::StringSwitch<bool>(getName())
2441       .Cases("main",     // an ANSI console app
2442              "wmain",    // a Unicode console App
2443              "WinMain",  // an ANSI GUI app
2444              "wWinMain", // a Unicode GUI app
2445              "DllMain",  // a DLL
2446              true)
2447       .Default(false);
2448 }
2449 
isReservedGlobalPlacementOperator() const2450 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2451   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2452   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2453          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2454          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2455          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2456 
2457   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2458     return false;
2459 
2460   const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
2461   if (proto->getNumParams() != 2 || proto->isVariadic())
2462     return false;
2463 
2464   ASTContext &Context =
2465     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2466       ->getASTContext();
2467 
2468   // The result type and first argument type are constant across all
2469   // these operators.  The second argument must be exactly void*.
2470   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2471 }
2472 
isReplaceableGlobalAllocationFunction() const2473 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
2474   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2475     return false;
2476   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2477       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2478       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2479       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2480     return false;
2481 
2482   if (isa<CXXRecordDecl>(getDeclContext()))
2483     return false;
2484 
2485   // This can only fail for an invalid 'operator new' declaration.
2486   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2487     return false;
2488 
2489   const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>();
2490   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic())
2491     return false;
2492 
2493   // If this is a single-parameter function, it must be a replaceable global
2494   // allocation or deallocation function.
2495   if (FPT->getNumParams() == 1)
2496     return true;
2497 
2498   // Otherwise, we're looking for a second parameter whose type is
2499   // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'.
2500   QualType Ty = FPT->getParamType(1);
2501   ASTContext &Ctx = getASTContext();
2502   if (Ctx.getLangOpts().SizedDeallocation &&
2503       Ctx.hasSameType(Ty, Ctx.getSizeType()))
2504     return true;
2505   if (!Ty->isReferenceType())
2506     return false;
2507   Ty = Ty->getPointeeType();
2508   if (Ty.getCVRQualifiers() != Qualifiers::Const)
2509     return false;
2510   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2511   return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace();
2512 }
2513 
getLanguageLinkage() const2514 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
2515   return getDeclLanguageLinkage(*this);
2516 }
2517 
isExternC() const2518 bool FunctionDecl::isExternC() const {
2519   return isDeclExternC(*this);
2520 }
2521 
isInExternCContext() const2522 bool FunctionDecl::isInExternCContext() const {
2523   return getLexicalDeclContext()->isExternCContext();
2524 }
2525 
isInExternCXXContext() const2526 bool FunctionDecl::isInExternCXXContext() const {
2527   return getLexicalDeclContext()->isExternCXXContext();
2528 }
2529 
isGlobal() const2530 bool FunctionDecl::isGlobal() const {
2531   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
2532     return Method->isStatic();
2533 
2534   if (getCanonicalDecl()->getStorageClass() == SC_Static)
2535     return false;
2536 
2537   for (const DeclContext *DC = getDeclContext();
2538        DC->isNamespace();
2539        DC = DC->getParent()) {
2540     if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
2541       if (!Namespace->getDeclName())
2542         return false;
2543       break;
2544     }
2545   }
2546 
2547   return true;
2548 }
2549 
isNoReturn() const2550 bool FunctionDecl::isNoReturn() const {
2551   return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2552          hasAttr<C11NoReturnAttr>() ||
2553          getType()->getAs<FunctionType>()->getNoReturnAttr();
2554 }
2555 
2556 void
setPreviousDeclaration(FunctionDecl * PrevDecl)2557 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
2558   redeclarable_base::setPreviousDecl(PrevDecl);
2559 
2560   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
2561     FunctionTemplateDecl *PrevFunTmpl
2562       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
2563     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2564     FunTmpl->setPreviousDecl(PrevFunTmpl);
2565   }
2566 
2567   if (PrevDecl && PrevDecl->IsInline)
2568     IsInline = true;
2569 }
2570 
getCanonicalDecl() const2571 const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
2572   return getFirstDecl();
2573 }
2574 
getCanonicalDecl()2575 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
2576 
2577 /// \brief Returns a value indicating whether this function
2578 /// corresponds to a builtin function.
2579 ///
2580 /// The function corresponds to a built-in function if it is
2581 /// declared at translation scope or within an extern "C" block and
2582 /// its name matches with the name of a builtin. The returned value
2583 /// will be 0 for functions that do not correspond to a builtin, a
2584 /// value of type \c Builtin::ID if in the target-independent range
2585 /// \c [1,Builtin::First), or a target-specific builtin value.
getBuiltinID() const2586 unsigned FunctionDecl::getBuiltinID() const {
2587   if (!getIdentifier())
2588     return 0;
2589 
2590   unsigned BuiltinID = getIdentifier()->getBuiltinID();
2591   if (!BuiltinID)
2592     return 0;
2593 
2594   ASTContext &Context = getASTContext();
2595   if (Context.getLangOpts().CPlusPlus) {
2596     const LinkageSpecDecl *LinkageDecl = dyn_cast<LinkageSpecDecl>(
2597         getFirstDecl()->getDeclContext());
2598     // In C++, the first declaration of a builtin is always inside an implicit
2599     // extern "C".
2600     // FIXME: A recognised library function may not be directly in an extern "C"
2601     // declaration, for instance "extern "C" { namespace std { decl } }".
2602     if (!LinkageDecl) {
2603       if (BuiltinID == Builtin::BI__GetExceptionInfo &&
2604           Context.getTargetInfo().getCXXABI().isMicrosoft() &&
2605           isInStdNamespace())
2606         return Builtin::BI__GetExceptionInfo;
2607       return 0;
2608     }
2609     if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
2610       return 0;
2611   }
2612 
2613   // If the function is marked "overloadable", it has a different mangled name
2614   // and is not the C library function.
2615   if (hasAttr<OverloadableAttr>())
2616     return 0;
2617 
2618   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2619     return BuiltinID;
2620 
2621   // This function has the name of a known C library
2622   // function. Determine whether it actually refers to the C library
2623   // function or whether it just has the same name.
2624 
2625   // If this is a static function, it's not a builtin.
2626   if (getStorageClass() == SC_Static)
2627     return 0;
2628 
2629   return BuiltinID;
2630 }
2631 
2632 
2633 /// getNumParams - Return the number of parameters this function must have
2634 /// based on its FunctionType.  This is the length of the ParamInfo array
2635 /// after it has been created.
getNumParams() const2636 unsigned FunctionDecl::getNumParams() const {
2637   const FunctionProtoType *FPT = getType()->getAs<FunctionProtoType>();
2638   return FPT ? FPT->getNumParams() : 0;
2639 }
2640 
setParams(ASTContext & C,ArrayRef<ParmVarDecl * > NewParamInfo)2641 void FunctionDecl::setParams(ASTContext &C,
2642                              ArrayRef<ParmVarDecl *> NewParamInfo) {
2643   assert(!ParamInfo && "Already has param info!");
2644   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
2645 
2646   // Zero params -> null pointer.
2647   if (!NewParamInfo.empty()) {
2648     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
2649     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
2650   }
2651 }
2652 
setDeclsInPrototypeScope(ArrayRef<NamedDecl * > NewDecls)2653 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
2654   assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
2655 
2656   if (!NewDecls.empty()) {
2657     NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
2658     std::copy(NewDecls.begin(), NewDecls.end(), A);
2659     DeclsInPrototypeScope = llvm::makeArrayRef(A, NewDecls.size());
2660     // Move declarations introduced in prototype to the function context.
2661     for (auto I : NewDecls) {
2662       DeclContext *DC = I->getDeclContext();
2663       // Forward-declared reference to an enumeration is not added to
2664       // declaration scope, so skip declaration that is absent from its
2665       // declaration contexts.
2666       if (DC->containsDecl(I)) {
2667           DC->removeDecl(I);
2668           I->setDeclContext(this);
2669           addDecl(I);
2670       }
2671     }
2672   }
2673 }
2674 
2675 /// getMinRequiredArguments - Returns the minimum number of arguments
2676 /// needed to call this function. This may be fewer than the number of
2677 /// function parameters, if some of the parameters have default
2678 /// arguments (in C++) or are parameter packs (C++11).
getMinRequiredArguments() const2679 unsigned FunctionDecl::getMinRequiredArguments() const {
2680   if (!getASTContext().getLangOpts().CPlusPlus)
2681     return getNumParams();
2682 
2683   unsigned NumRequiredArgs = 0;
2684   for (auto *Param : params())
2685     if (!Param->isParameterPack() && !Param->hasDefaultArg())
2686       ++NumRequiredArgs;
2687   return NumRequiredArgs;
2688 }
2689 
2690 /// \brief The combination of the extern and inline keywords under MSVC forces
2691 /// the function to be required.
2692 ///
2693 /// Note: This function assumes that we will only get called when isInlined()
2694 /// would return true for this FunctionDecl.
isMSExternInline() const2695 bool FunctionDecl::isMSExternInline() const {
2696   assert(isInlined() && "expected to get called on an inlined function!");
2697 
2698   const ASTContext &Context = getASTContext();
2699   if (!Context.getLangOpts().MSVCCompat && !hasAttr<DLLExportAttr>())
2700     return false;
2701 
2702   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
2703        FD = FD->getPreviousDecl())
2704     if (FD->getStorageClass() == SC_Extern)
2705       return true;
2706 
2707   return false;
2708 }
2709 
redeclForcesDefMSVC(const FunctionDecl * Redecl)2710 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
2711   if (Redecl->getStorageClass() != SC_Extern)
2712     return false;
2713 
2714   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
2715        FD = FD->getPreviousDecl())
2716     if (FD->getStorageClass() == SC_Extern)
2717       return false;
2718 
2719   return true;
2720 }
2721 
RedeclForcesDefC99(const FunctionDecl * Redecl)2722 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
2723   // Only consider file-scope declarations in this test.
2724   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
2725     return false;
2726 
2727   // Only consider explicit declarations; the presence of a builtin for a
2728   // libcall shouldn't affect whether a definition is externally visible.
2729   if (Redecl->isImplicit())
2730     return false;
2731 
2732   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
2733     return true; // Not an inline definition
2734 
2735   return false;
2736 }
2737 
2738 /// \brief For a function declaration in C or C++, determine whether this
2739 /// declaration causes the definition to be externally visible.
2740 ///
2741 /// For instance, this determines if adding the current declaration to the set
2742 /// of redeclarations of the given functions causes
2743 /// isInlineDefinitionExternallyVisible to change from false to true.
doesDeclarationForceExternallyVisibleDefinition() const2744 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
2745   assert(!doesThisDeclarationHaveABody() &&
2746          "Must have a declaration without a body.");
2747 
2748   ASTContext &Context = getASTContext();
2749 
2750   if (Context.getLangOpts().MSVCCompat) {
2751     const FunctionDecl *Definition;
2752     if (hasBody(Definition) && Definition->isInlined() &&
2753         redeclForcesDefMSVC(this))
2754       return true;
2755   }
2756 
2757   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2758     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
2759     // an externally visible definition.
2760     //
2761     // FIXME: What happens if gnu_inline gets added on after the first
2762     // declaration?
2763     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
2764       return false;
2765 
2766     const FunctionDecl *Prev = this;
2767     bool FoundBody = false;
2768     while ((Prev = Prev->getPreviousDecl())) {
2769       FoundBody |= Prev->Body.isValid();
2770 
2771       if (Prev->Body) {
2772         // If it's not the case that both 'inline' and 'extern' are
2773         // specified on the definition, then it is always externally visible.
2774         if (!Prev->isInlineSpecified() ||
2775             Prev->getStorageClass() != SC_Extern)
2776           return false;
2777       } else if (Prev->isInlineSpecified() &&
2778                  Prev->getStorageClass() != SC_Extern) {
2779         return false;
2780       }
2781     }
2782     return FoundBody;
2783   }
2784 
2785   if (Context.getLangOpts().CPlusPlus)
2786     return false;
2787 
2788   // C99 6.7.4p6:
2789   //   [...] If all of the file scope declarations for a function in a
2790   //   translation unit include the inline function specifier without extern,
2791   //   then the definition in that translation unit is an inline definition.
2792   if (isInlineSpecified() && getStorageClass() != SC_Extern)
2793     return false;
2794   const FunctionDecl *Prev = this;
2795   bool FoundBody = false;
2796   while ((Prev = Prev->getPreviousDecl())) {
2797     FoundBody |= Prev->Body.isValid();
2798     if (RedeclForcesDefC99(Prev))
2799       return false;
2800   }
2801   return FoundBody;
2802 }
2803 
getReturnTypeSourceRange() const2804 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
2805   const TypeSourceInfo *TSI = getTypeSourceInfo();
2806   if (!TSI)
2807     return SourceRange();
2808   FunctionTypeLoc FTL =
2809       TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
2810   if (!FTL)
2811     return SourceRange();
2812 
2813   // Skip self-referential return types.
2814   const SourceManager &SM = getASTContext().getSourceManager();
2815   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
2816   SourceLocation Boundary = getNameInfo().getLocStart();
2817   if (RTRange.isInvalid() || Boundary.isInvalid() ||
2818       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
2819     return SourceRange();
2820 
2821   return RTRange;
2822 }
2823 
hasUnusedResultAttr() const2824 bool FunctionDecl::hasUnusedResultAttr() const {
2825   QualType RetType = getReturnType();
2826   if (RetType->isRecordType()) {
2827     const CXXRecordDecl *Ret = RetType->getAsCXXRecordDecl();
2828     const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(this);
2829     if (Ret && Ret->hasAttr<WarnUnusedResultAttr>() &&
2830         !(MD && MD->getCorrespondingMethodInClass(Ret, true)))
2831       return true;
2832   }
2833   return hasAttr<WarnUnusedResultAttr>();
2834 }
2835 
2836 /// \brief For an inline function definition in C, or for a gnu_inline function
2837 /// in C++, determine whether the definition will be externally visible.
2838 ///
2839 /// Inline function definitions are always available for inlining optimizations.
2840 /// However, depending on the language dialect, declaration specifiers, and
2841 /// attributes, the definition of an inline function may or may not be
2842 /// "externally" visible to other translation units in the program.
2843 ///
2844 /// In C99, inline definitions are not externally visible by default. However,
2845 /// if even one of the global-scope declarations is marked "extern inline", the
2846 /// inline definition becomes externally visible (C99 6.7.4p6).
2847 ///
2848 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
2849 /// definition, we use the GNU semantics for inline, which are nearly the
2850 /// opposite of C99 semantics. In particular, "inline" by itself will create
2851 /// an externally visible symbol, but "extern inline" will not create an
2852 /// externally visible symbol.
isInlineDefinitionExternallyVisible() const2853 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
2854   assert(doesThisDeclarationHaveABody() && "Must have the function definition");
2855   assert(isInlined() && "Function must be inline");
2856   ASTContext &Context = getASTContext();
2857 
2858   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2859     // Note: If you change the logic here, please change
2860     // doesDeclarationForceExternallyVisibleDefinition as well.
2861     //
2862     // If it's not the case that both 'inline' and 'extern' are
2863     // specified on the definition, then this inline definition is
2864     // externally visible.
2865     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
2866       return true;
2867 
2868     // If any declaration is 'inline' but not 'extern', then this definition
2869     // is externally visible.
2870     for (auto Redecl : redecls()) {
2871       if (Redecl->isInlineSpecified() &&
2872           Redecl->getStorageClass() != SC_Extern)
2873         return true;
2874     }
2875 
2876     return false;
2877   }
2878 
2879   // The rest of this function is C-only.
2880   assert(!Context.getLangOpts().CPlusPlus &&
2881          "should not use C inline rules in C++");
2882 
2883   // C99 6.7.4p6:
2884   //   [...] If all of the file scope declarations for a function in a
2885   //   translation unit include the inline function specifier without extern,
2886   //   then the definition in that translation unit is an inline definition.
2887   for (auto Redecl : redecls()) {
2888     if (RedeclForcesDefC99(Redecl))
2889       return true;
2890   }
2891 
2892   // C99 6.7.4p6:
2893   //   An inline definition does not provide an external definition for the
2894   //   function, and does not forbid an external definition in another
2895   //   translation unit.
2896   return false;
2897 }
2898 
2899 /// getOverloadedOperator - Which C++ overloaded operator this
2900 /// function represents, if any.
getOverloadedOperator() const2901 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
2902   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
2903     return getDeclName().getCXXOverloadedOperator();
2904   else
2905     return OO_None;
2906 }
2907 
2908 /// getLiteralIdentifier - The literal suffix identifier this function
2909 /// represents, if any.
getLiteralIdentifier() const2910 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
2911   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
2912     return getDeclName().getCXXLiteralIdentifier();
2913   else
2914     return nullptr;
2915 }
2916 
getTemplatedKind() const2917 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
2918   if (TemplateOrSpecialization.isNull())
2919     return TK_NonTemplate;
2920   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
2921     return TK_FunctionTemplate;
2922   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
2923     return TK_MemberSpecialization;
2924   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
2925     return TK_FunctionTemplateSpecialization;
2926   if (TemplateOrSpecialization.is
2927                                <DependentFunctionTemplateSpecializationInfo*>())
2928     return TK_DependentFunctionTemplateSpecialization;
2929 
2930   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
2931 }
2932 
getInstantiatedFromMemberFunction() const2933 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
2934   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
2935     return cast<FunctionDecl>(Info->getInstantiatedFrom());
2936 
2937   return nullptr;
2938 }
2939 
2940 void
setInstantiationOfMemberFunction(ASTContext & C,FunctionDecl * FD,TemplateSpecializationKind TSK)2941 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
2942                                                FunctionDecl *FD,
2943                                                TemplateSpecializationKind TSK) {
2944   assert(TemplateOrSpecialization.isNull() &&
2945          "Member function is already a specialization");
2946   MemberSpecializationInfo *Info
2947     = new (C) MemberSpecializationInfo(FD, TSK);
2948   TemplateOrSpecialization = Info;
2949 }
2950 
isImplicitlyInstantiable() const2951 bool FunctionDecl::isImplicitlyInstantiable() const {
2952   // If the function is invalid, it can't be implicitly instantiated.
2953   if (isInvalidDecl())
2954     return false;
2955 
2956   switch (getTemplateSpecializationKind()) {
2957   case TSK_Undeclared:
2958   case TSK_ExplicitInstantiationDefinition:
2959     return false;
2960 
2961   case TSK_ImplicitInstantiation:
2962     return true;
2963 
2964   // It is possible to instantiate TSK_ExplicitSpecialization kind
2965   // if the FunctionDecl has a class scope specialization pattern.
2966   case TSK_ExplicitSpecialization:
2967     return getClassScopeSpecializationPattern() != nullptr;
2968 
2969   case TSK_ExplicitInstantiationDeclaration:
2970     // Handled below.
2971     break;
2972   }
2973 
2974   // Find the actual template from which we will instantiate.
2975   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
2976   bool HasPattern = false;
2977   if (PatternDecl)
2978     HasPattern = PatternDecl->hasBody(PatternDecl);
2979 
2980   // C++0x [temp.explicit]p9:
2981   //   Except for inline functions, other explicit instantiation declarations
2982   //   have the effect of suppressing the implicit instantiation of the entity
2983   //   to which they refer.
2984   if (!HasPattern || !PatternDecl)
2985     return true;
2986 
2987   return PatternDecl->isInlined();
2988 }
2989 
isTemplateInstantiation() const2990 bool FunctionDecl::isTemplateInstantiation() const {
2991   switch (getTemplateSpecializationKind()) {
2992     case TSK_Undeclared:
2993     case TSK_ExplicitSpecialization:
2994       return false;
2995     case TSK_ImplicitInstantiation:
2996     case TSK_ExplicitInstantiationDeclaration:
2997     case TSK_ExplicitInstantiationDefinition:
2998       return true;
2999   }
3000   llvm_unreachable("All TSK values handled.");
3001 }
3002 
getTemplateInstantiationPattern() const3003 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
3004   // Handle class scope explicit specialization special case.
3005   if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3006     return getClassScopeSpecializationPattern();
3007 
3008   // If this is a generic lambda call operator specialization, its
3009   // instantiation pattern is always its primary template's pattern
3010   // even if its primary template was instantiated from another
3011   // member template (which happens with nested generic lambdas).
3012   // Since a lambda's call operator's body is transformed eagerly,
3013   // we don't have to go hunting for a prototype definition template
3014   // (i.e. instantiated-from-member-template) to use as an instantiation
3015   // pattern.
3016 
3017   if (isGenericLambdaCallOperatorSpecialization(
3018           dyn_cast<CXXMethodDecl>(this))) {
3019     assert(getPrimaryTemplate() && "A generic lambda specialization must be "
3020                                    "generated from a primary call operator "
3021                                    "template");
3022     assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() &&
3023            "A generic lambda call operator template must always have a body - "
3024            "even if instantiated from a prototype (i.e. as written) member "
3025            "template");
3026     return getPrimaryTemplate()->getTemplatedDecl();
3027   }
3028 
3029   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3030     while (Primary->getInstantiatedFromMemberTemplate()) {
3031       // If we have hit a point where the user provided a specialization of
3032       // this template, we're done looking.
3033       if (Primary->isMemberSpecialization())
3034         break;
3035       Primary = Primary->getInstantiatedFromMemberTemplate();
3036     }
3037 
3038     return Primary->getTemplatedDecl();
3039   }
3040 
3041   return getInstantiatedFromMemberFunction();
3042 }
3043 
getPrimaryTemplate() const3044 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3045   if (FunctionTemplateSpecializationInfo *Info
3046         = TemplateOrSpecialization
3047             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3048     return Info->Template.getPointer();
3049   }
3050   return nullptr;
3051 }
3052 
getClassScopeSpecializationPattern() const3053 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
3054     return getASTContext().getClassScopeSpecializationPattern(this);
3055 }
3056 
3057 const TemplateArgumentList *
getTemplateSpecializationArgs() const3058 FunctionDecl::getTemplateSpecializationArgs() const {
3059   if (FunctionTemplateSpecializationInfo *Info
3060         = TemplateOrSpecialization
3061             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3062     return Info->TemplateArguments;
3063   }
3064   return nullptr;
3065 }
3066 
3067 const ASTTemplateArgumentListInfo *
getTemplateSpecializationArgsAsWritten() const3068 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3069   if (FunctionTemplateSpecializationInfo *Info
3070         = TemplateOrSpecialization
3071             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3072     return Info->TemplateArgumentsAsWritten;
3073   }
3074   return nullptr;
3075 }
3076 
3077 void
setFunctionTemplateSpecialization(ASTContext & C,FunctionTemplateDecl * Template,const TemplateArgumentList * TemplateArgs,void * InsertPos,TemplateSpecializationKind TSK,const TemplateArgumentListInfo * TemplateArgsAsWritten,SourceLocation PointOfInstantiation)3078 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3079                                                 FunctionTemplateDecl *Template,
3080                                      const TemplateArgumentList *TemplateArgs,
3081                                                 void *InsertPos,
3082                                                 TemplateSpecializationKind TSK,
3083                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
3084                                           SourceLocation PointOfInstantiation) {
3085   assert(TSK != TSK_Undeclared &&
3086          "Must specify the type of function template specialization");
3087   FunctionTemplateSpecializationInfo *Info
3088     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3089   if (!Info)
3090     Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
3091                                                       TemplateArgs,
3092                                                       TemplateArgsAsWritten,
3093                                                       PointOfInstantiation);
3094   TemplateOrSpecialization = Info;
3095   Template->addSpecialization(Info, InsertPos);
3096 }
3097 
3098 void
setDependentTemplateSpecialization(ASTContext & Context,const UnresolvedSetImpl & Templates,const TemplateArgumentListInfo & TemplateArgs)3099 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3100                                     const UnresolvedSetImpl &Templates,
3101                              const TemplateArgumentListInfo &TemplateArgs) {
3102   assert(TemplateOrSpecialization.isNull());
3103   size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
3104   Size += Templates.size() * sizeof(FunctionTemplateDecl*);
3105   Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
3106   void *Buffer = Context.Allocate(Size);
3107   DependentFunctionTemplateSpecializationInfo *Info =
3108     new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
3109                                                              TemplateArgs);
3110   TemplateOrSpecialization = Info;
3111 }
3112 
3113 DependentFunctionTemplateSpecializationInfo::
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)3114 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3115                                       const TemplateArgumentListInfo &TArgs)
3116   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3117   static_assert(sizeof(*this) % llvm::AlignOf<void *>::Alignment == 0,
3118                 "Trailing data is unaligned!");
3119 
3120   d.NumTemplates = Ts.size();
3121   d.NumArgs = TArgs.size();
3122 
3123   FunctionTemplateDecl **TsArray =
3124     const_cast<FunctionTemplateDecl**>(getTemplates());
3125   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3126     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3127 
3128   TemplateArgumentLoc *ArgsArray =
3129     const_cast<TemplateArgumentLoc*>(getTemplateArgs());
3130   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3131     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3132 }
3133 
getTemplateSpecializationKind() const3134 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3135   // For a function template specialization, query the specialization
3136   // information object.
3137   FunctionTemplateSpecializationInfo *FTSInfo
3138     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3139   if (FTSInfo)
3140     return FTSInfo->getTemplateSpecializationKind();
3141 
3142   MemberSpecializationInfo *MSInfo
3143     = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
3144   if (MSInfo)
3145     return MSInfo->getTemplateSpecializationKind();
3146 
3147   return TSK_Undeclared;
3148 }
3149 
3150 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)3151 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3152                                           SourceLocation PointOfInstantiation) {
3153   if (FunctionTemplateSpecializationInfo *FTSInfo
3154         = TemplateOrSpecialization.dyn_cast<
3155                                     FunctionTemplateSpecializationInfo*>()) {
3156     FTSInfo->setTemplateSpecializationKind(TSK);
3157     if (TSK != TSK_ExplicitSpecialization &&
3158         PointOfInstantiation.isValid() &&
3159         FTSInfo->getPointOfInstantiation().isInvalid())
3160       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3161   } else if (MemberSpecializationInfo *MSInfo
3162              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3163     MSInfo->setTemplateSpecializationKind(TSK);
3164     if (TSK != TSK_ExplicitSpecialization &&
3165         PointOfInstantiation.isValid() &&
3166         MSInfo->getPointOfInstantiation().isInvalid())
3167       MSInfo->setPointOfInstantiation(PointOfInstantiation);
3168   } else
3169     llvm_unreachable("Function cannot have a template specialization kind");
3170 }
3171 
getPointOfInstantiation() const3172 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3173   if (FunctionTemplateSpecializationInfo *FTSInfo
3174         = TemplateOrSpecialization.dyn_cast<
3175                                         FunctionTemplateSpecializationInfo*>())
3176     return FTSInfo->getPointOfInstantiation();
3177   else if (MemberSpecializationInfo *MSInfo
3178              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3179     return MSInfo->getPointOfInstantiation();
3180 
3181   return SourceLocation();
3182 }
3183 
isOutOfLine() const3184 bool FunctionDecl::isOutOfLine() const {
3185   if (Decl::isOutOfLine())
3186     return true;
3187 
3188   // If this function was instantiated from a member function of a
3189   // class template, check whether that member function was defined out-of-line.
3190   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3191     const FunctionDecl *Definition;
3192     if (FD->hasBody(Definition))
3193       return Definition->isOutOfLine();
3194   }
3195 
3196   // If this function was instantiated from a function template,
3197   // check whether that function template was defined out-of-line.
3198   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3199     const FunctionDecl *Definition;
3200     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3201       return Definition->isOutOfLine();
3202   }
3203 
3204   return false;
3205 }
3206 
getSourceRange() const3207 SourceRange FunctionDecl::getSourceRange() const {
3208   return SourceRange(getOuterLocStart(), EndRangeLoc);
3209 }
3210 
getMemoryFunctionKind() const3211 unsigned FunctionDecl::getMemoryFunctionKind() const {
3212   IdentifierInfo *FnInfo = getIdentifier();
3213 
3214   if (!FnInfo)
3215     return 0;
3216 
3217   // Builtin handling.
3218   switch (getBuiltinID()) {
3219   case Builtin::BI__builtin_memset:
3220   case Builtin::BI__builtin___memset_chk:
3221   case Builtin::BImemset:
3222     return Builtin::BImemset;
3223 
3224   case Builtin::BI__builtin_memcpy:
3225   case Builtin::BI__builtin___memcpy_chk:
3226   case Builtin::BImemcpy:
3227     return Builtin::BImemcpy;
3228 
3229   case Builtin::BI__builtin_memmove:
3230   case Builtin::BI__builtin___memmove_chk:
3231   case Builtin::BImemmove:
3232     return Builtin::BImemmove;
3233 
3234   case Builtin::BIstrlcpy:
3235   case Builtin::BI__builtin___strlcpy_chk:
3236     return Builtin::BIstrlcpy;
3237 
3238   case Builtin::BIstrlcat:
3239   case Builtin::BI__builtin___strlcat_chk:
3240     return Builtin::BIstrlcat;
3241 
3242   case Builtin::BI__builtin_memcmp:
3243   case Builtin::BImemcmp:
3244     return Builtin::BImemcmp;
3245 
3246   case Builtin::BI__builtin_strncpy:
3247   case Builtin::BI__builtin___strncpy_chk:
3248   case Builtin::BIstrncpy:
3249     return Builtin::BIstrncpy;
3250 
3251   case Builtin::BI__builtin_strncmp:
3252   case Builtin::BIstrncmp:
3253     return Builtin::BIstrncmp;
3254 
3255   case Builtin::BI__builtin_strncasecmp:
3256   case Builtin::BIstrncasecmp:
3257     return Builtin::BIstrncasecmp;
3258 
3259   case Builtin::BI__builtin_strncat:
3260   case Builtin::BI__builtin___strncat_chk:
3261   case Builtin::BIstrncat:
3262     return Builtin::BIstrncat;
3263 
3264   case Builtin::BI__builtin_strndup:
3265   case Builtin::BIstrndup:
3266     return Builtin::BIstrndup;
3267 
3268   case Builtin::BI__builtin_strlen:
3269   case Builtin::BIstrlen:
3270     return Builtin::BIstrlen;
3271 
3272   default:
3273     if (isExternC()) {
3274       if (FnInfo->isStr("memset"))
3275         return Builtin::BImemset;
3276       else if (FnInfo->isStr("memcpy"))
3277         return Builtin::BImemcpy;
3278       else if (FnInfo->isStr("memmove"))
3279         return Builtin::BImemmove;
3280       else if (FnInfo->isStr("memcmp"))
3281         return Builtin::BImemcmp;
3282       else if (FnInfo->isStr("strncpy"))
3283         return Builtin::BIstrncpy;
3284       else if (FnInfo->isStr("strncmp"))
3285         return Builtin::BIstrncmp;
3286       else if (FnInfo->isStr("strncasecmp"))
3287         return Builtin::BIstrncasecmp;
3288       else if (FnInfo->isStr("strncat"))
3289         return Builtin::BIstrncat;
3290       else if (FnInfo->isStr("strndup"))
3291         return Builtin::BIstrndup;
3292       else if (FnInfo->isStr("strlen"))
3293         return Builtin::BIstrlen;
3294     }
3295     break;
3296   }
3297   return 0;
3298 }
3299 
3300 //===----------------------------------------------------------------------===//
3301 // FieldDecl Implementation
3302 //===----------------------------------------------------------------------===//
3303 
Create(const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,Expr * BW,bool Mutable,InClassInitStyle InitStyle)3304 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
3305                              SourceLocation StartLoc, SourceLocation IdLoc,
3306                              IdentifierInfo *Id, QualType T,
3307                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3308                              InClassInitStyle InitStyle) {
3309   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3310                                BW, Mutable, InitStyle);
3311 }
3312 
CreateDeserialized(ASTContext & C,unsigned ID)3313 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3314   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3315                                SourceLocation(), nullptr, QualType(), nullptr,
3316                                nullptr, false, ICIS_NoInit);
3317 }
3318 
isAnonymousStructOrUnion() const3319 bool FieldDecl::isAnonymousStructOrUnion() const {
3320   if (!isImplicit() || getDeclName())
3321     return false;
3322 
3323   if (const RecordType *Record = getType()->getAs<RecordType>())
3324     return Record->getDecl()->isAnonymousStructOrUnion();
3325 
3326   return false;
3327 }
3328 
getBitWidthValue(const ASTContext & Ctx) const3329 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3330   assert(isBitField() && "not a bitfield");
3331   Expr *BitWidth = static_cast<Expr *>(InitStorage.getPointer());
3332   return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
3333 }
3334 
getFieldIndex() const3335 unsigned FieldDecl::getFieldIndex() const {
3336   const FieldDecl *Canonical = getCanonicalDecl();
3337   if (Canonical != this)
3338     return Canonical->getFieldIndex();
3339 
3340   if (CachedFieldIndex) return CachedFieldIndex - 1;
3341 
3342   unsigned Index = 0;
3343   const RecordDecl *RD = getParent();
3344 
3345   for (auto *Field : RD->fields()) {
3346     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3347     ++Index;
3348   }
3349 
3350   assert(CachedFieldIndex && "failed to find field in parent");
3351   return CachedFieldIndex - 1;
3352 }
3353 
getSourceRange() const3354 SourceRange FieldDecl::getSourceRange() const {
3355   switch (InitStorage.getInt()) {
3356   // All three of these cases store an optional Expr*.
3357   case ISK_BitWidthOrNothing:
3358   case ISK_InClassCopyInit:
3359   case ISK_InClassListInit:
3360     if (const Expr *E = static_cast<const Expr *>(InitStorage.getPointer()))
3361       return SourceRange(getInnerLocStart(), E->getLocEnd());
3362     // FALLTHROUGH
3363 
3364   case ISK_CapturedVLAType:
3365     return DeclaratorDecl::getSourceRange();
3366   }
3367   llvm_unreachable("bad init storage kind");
3368 }
3369 
setCapturedVLAType(const VariableArrayType * VLAType)3370 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
3371   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
3372          "capturing type in non-lambda or captured record.");
3373   assert(InitStorage.getInt() == ISK_BitWidthOrNothing &&
3374          InitStorage.getPointer() == nullptr &&
3375          "bit width, initializer or captured type already set");
3376   InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
3377                                ISK_CapturedVLAType);
3378 }
3379 
3380 //===----------------------------------------------------------------------===//
3381 // TagDecl Implementation
3382 //===----------------------------------------------------------------------===//
3383 
getOuterLocStart() const3384 SourceLocation TagDecl::getOuterLocStart() const {
3385   return getTemplateOrInnerLocStart(this);
3386 }
3387 
getSourceRange() const3388 SourceRange TagDecl::getSourceRange() const {
3389   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3390   return SourceRange(getOuterLocStart(), E);
3391 }
3392 
getCanonicalDecl()3393 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
3394 
setTypedefNameForAnonDecl(TypedefNameDecl * TDD)3395 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
3396   NamedDeclOrQualifier = TDD;
3397   if (const Type *T = getTypeForDecl()) {
3398     (void)T;
3399     assert(T->isLinkageValid());
3400   }
3401   assert(isLinkageValid());
3402 }
3403 
startDefinition()3404 void TagDecl::startDefinition() {
3405   IsBeingDefined = true;
3406 
3407   if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) {
3408     struct CXXRecordDecl::DefinitionData *Data =
3409       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3410     for (auto I : redecls())
3411       cast<CXXRecordDecl>(I)->DefinitionData = Data;
3412   }
3413 }
3414 
completeDefinition()3415 void TagDecl::completeDefinition() {
3416   assert((!isa<CXXRecordDecl>(this) ||
3417           cast<CXXRecordDecl>(this)->hasDefinition()) &&
3418          "definition completed but not started");
3419 
3420   IsCompleteDefinition = true;
3421   IsBeingDefined = false;
3422 
3423   if (ASTMutationListener *L = getASTMutationListener())
3424     L->CompletedTagDefinition(this);
3425 }
3426 
getDefinition() const3427 TagDecl *TagDecl::getDefinition() const {
3428   if (isCompleteDefinition())
3429     return const_cast<TagDecl *>(this);
3430 
3431   // If it's possible for us to have an out-of-date definition, check now.
3432   if (MayHaveOutOfDateDef) {
3433     if (IdentifierInfo *II = getIdentifier()) {
3434       if (II->isOutOfDate()) {
3435         updateOutOfDate(*II);
3436       }
3437     }
3438   }
3439 
3440   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
3441     return CXXRD->getDefinition();
3442 
3443   for (auto R : redecls())
3444     if (R->isCompleteDefinition())
3445       return R;
3446 
3447   return nullptr;
3448 }
3449 
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)3450 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
3451   if (QualifierLoc) {
3452     // Make sure the extended qualifier info is allocated.
3453     if (!hasExtInfo())
3454       NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
3455     // Set qualifier info.
3456     getExtInfo()->QualifierLoc = QualifierLoc;
3457   } else {
3458     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3459     if (hasExtInfo()) {
3460       if (getExtInfo()->NumTemplParamLists == 0) {
3461         getASTContext().Deallocate(getExtInfo());
3462         NamedDeclOrQualifier = (TypedefNameDecl*)nullptr;
3463       }
3464       else
3465         getExtInfo()->QualifierLoc = QualifierLoc;
3466     }
3467   }
3468 }
3469 
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)3470 void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
3471                                             unsigned NumTPLists,
3472                                             TemplateParameterList **TPLists) {
3473   assert(NumTPLists > 0);
3474   // Make sure the extended decl info is allocated.
3475   if (!hasExtInfo())
3476     // Allocate external info struct.
3477     NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
3478   // Set the template parameter lists info.
3479   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
3480 }
3481 
3482 //===----------------------------------------------------------------------===//
3483 // EnumDecl Implementation
3484 //===----------------------------------------------------------------------===//
3485 
anchor()3486 void EnumDecl::anchor() { }
3487 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,EnumDecl * PrevDecl,bool IsScoped,bool IsScopedUsingClassTag,bool IsFixed)3488 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
3489                            SourceLocation StartLoc, SourceLocation IdLoc,
3490                            IdentifierInfo *Id,
3491                            EnumDecl *PrevDecl, bool IsScoped,
3492                            bool IsScopedUsingClassTag, bool IsFixed) {
3493   EnumDecl *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
3494                                         IsScoped, IsScopedUsingClassTag,
3495                                         IsFixed);
3496   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3497   C.getTypeDeclType(Enum, PrevDecl);
3498   return Enum;
3499 }
3500 
CreateDeserialized(ASTContext & C,unsigned ID)3501 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3502   EnumDecl *Enum =
3503       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
3504                            nullptr, nullptr, false, false, false);
3505   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3506   return Enum;
3507 }
3508 
getIntegerTypeRange() const3509 SourceRange EnumDecl::getIntegerTypeRange() const {
3510   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
3511     return TI->getTypeLoc().getSourceRange();
3512   return SourceRange();
3513 }
3514 
completeDefinition(QualType NewType,QualType NewPromotionType,unsigned NumPositiveBits,unsigned NumNegativeBits)3515 void EnumDecl::completeDefinition(QualType NewType,
3516                                   QualType NewPromotionType,
3517                                   unsigned NumPositiveBits,
3518                                   unsigned NumNegativeBits) {
3519   assert(!isCompleteDefinition() && "Cannot redefine enums!");
3520   if (!IntegerType)
3521     IntegerType = NewType.getTypePtr();
3522   PromotionType = NewPromotionType;
3523   setNumPositiveBits(NumPositiveBits);
3524   setNumNegativeBits(NumNegativeBits);
3525   TagDecl::completeDefinition();
3526 }
3527 
getTemplateSpecializationKind() const3528 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
3529   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
3530     return MSI->getTemplateSpecializationKind();
3531 
3532   return TSK_Undeclared;
3533 }
3534 
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)3535 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3536                                          SourceLocation PointOfInstantiation) {
3537   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
3538   assert(MSI && "Not an instantiated member enumeration?");
3539   MSI->setTemplateSpecializationKind(TSK);
3540   if (TSK != TSK_ExplicitSpecialization &&
3541       PointOfInstantiation.isValid() &&
3542       MSI->getPointOfInstantiation().isInvalid())
3543     MSI->setPointOfInstantiation(PointOfInstantiation);
3544 }
3545 
getInstantiatedFromMemberEnum() const3546 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
3547   if (SpecializationInfo)
3548     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
3549 
3550   return nullptr;
3551 }
3552 
setInstantiationOfMemberEnum(ASTContext & C,EnumDecl * ED,TemplateSpecializationKind TSK)3553 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3554                                             TemplateSpecializationKind TSK) {
3555   assert(!SpecializationInfo && "Member enum is already a specialization");
3556   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
3557 }
3558 
3559 //===----------------------------------------------------------------------===//
3560 // RecordDecl Implementation
3561 //===----------------------------------------------------------------------===//
3562 
RecordDecl(Kind DK,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3563 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
3564                        DeclContext *DC, SourceLocation StartLoc,
3565                        SourceLocation IdLoc, IdentifierInfo *Id,
3566                        RecordDecl *PrevDecl)
3567     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
3568   HasFlexibleArrayMember = false;
3569   AnonymousStructOrUnion = false;
3570   HasObjectMember = false;
3571   HasVolatileMember = false;
3572   LoadedFieldsFromExternalStorage = false;
3573   assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
3574 }
3575 
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3576 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3577                                SourceLocation StartLoc, SourceLocation IdLoc,
3578                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
3579   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
3580                                          StartLoc, IdLoc, Id, PrevDecl);
3581   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3582 
3583   C.getTypeDeclType(R, PrevDecl);
3584   return R;
3585 }
3586 
CreateDeserialized(const ASTContext & C,unsigned ID)3587 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
3588   RecordDecl *R =
3589       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
3590                              SourceLocation(), nullptr, nullptr);
3591   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3592   return R;
3593 }
3594 
isInjectedClassName() const3595 bool RecordDecl::isInjectedClassName() const {
3596   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
3597     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
3598 }
3599 
isLambda() const3600 bool RecordDecl::isLambda() const {
3601   if (auto RD = dyn_cast<CXXRecordDecl>(this))
3602     return RD->isLambda();
3603   return false;
3604 }
3605 
isCapturedRecord() const3606 bool RecordDecl::isCapturedRecord() const {
3607   return hasAttr<CapturedRecordAttr>();
3608 }
3609 
setCapturedRecord()3610 void RecordDecl::setCapturedRecord() {
3611   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
3612 }
3613 
field_begin() const3614 RecordDecl::field_iterator RecordDecl::field_begin() const {
3615   if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
3616     LoadFieldsFromExternalStorage();
3617 
3618   return field_iterator(decl_iterator(FirstDecl));
3619 }
3620 
3621 /// completeDefinition - Notes that the definition of this type is now
3622 /// complete.
completeDefinition()3623 void RecordDecl::completeDefinition() {
3624   assert(!isCompleteDefinition() && "Cannot redefine record!");
3625   TagDecl::completeDefinition();
3626 }
3627 
3628 /// isMsStruct - Get whether or not this record uses ms_struct layout.
3629 /// This which can be turned on with an attribute, pragma, or the
3630 /// -mms-bitfields command-line option.
isMsStruct(const ASTContext & C) const3631 bool RecordDecl::isMsStruct(const ASTContext &C) const {
3632   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
3633 }
3634 
isFieldOrIndirectField(Decl::Kind K)3635 static bool isFieldOrIndirectField(Decl::Kind K) {
3636   return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
3637 }
3638 
LoadFieldsFromExternalStorage() const3639 void RecordDecl::LoadFieldsFromExternalStorage() const {
3640   ExternalASTSource *Source = getASTContext().getExternalSource();
3641   assert(hasExternalLexicalStorage() && Source && "No external storage?");
3642 
3643   // Notify that we have a RecordDecl doing some initialization.
3644   ExternalASTSource::Deserializing TheFields(Source);
3645 
3646   SmallVector<Decl*, 64> Decls;
3647   LoadedFieldsFromExternalStorage = true;
3648   switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField,
3649                                            Decls)) {
3650   case ELR_Success:
3651     break;
3652 
3653   case ELR_AlreadyLoaded:
3654   case ELR_Failure:
3655     return;
3656   }
3657 
3658 #ifndef NDEBUG
3659   // Check that all decls we got were FieldDecls.
3660   for (unsigned i=0, e=Decls.size(); i != e; ++i)
3661     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
3662 #endif
3663 
3664   if (Decls.empty())
3665     return;
3666 
3667   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
3668                                                  /*FieldsAlreadyLoaded=*/false);
3669 }
3670 
mayInsertExtraPadding(bool EmitRemark) const3671 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
3672   ASTContext &Context = getASTContext();
3673   if (!Context.getLangOpts().Sanitize.has(SanitizerKind::Address) ||
3674       !Context.getLangOpts().SanitizeAddressFieldPadding)
3675     return false;
3676   const auto &Blacklist = Context.getSanitizerBlacklist();
3677   const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this);
3678   // We may be able to relax some of these requirements.
3679   int ReasonToReject = -1;
3680   if (!CXXRD || CXXRD->isExternCContext())
3681     ReasonToReject = 0;  // is not C++.
3682   else if (CXXRD->hasAttr<PackedAttr>())
3683     ReasonToReject = 1;  // is packed.
3684   else if (CXXRD->isUnion())
3685     ReasonToReject = 2;  // is a union.
3686   else if (CXXRD->isTriviallyCopyable())
3687     ReasonToReject = 3;  // is trivially copyable.
3688   else if (CXXRD->hasTrivialDestructor())
3689     ReasonToReject = 4;  // has trivial destructor.
3690   else if (CXXRD->isStandardLayout())
3691     ReasonToReject = 5;  // is standard layout.
3692   else if (Blacklist.isBlacklistedLocation(getLocation(), "field-padding"))
3693     ReasonToReject = 6;  // is in a blacklisted file.
3694   else if (Blacklist.isBlacklistedType(getQualifiedNameAsString(),
3695                                        "field-padding"))
3696     ReasonToReject = 7;  // is blacklisted.
3697 
3698   if (EmitRemark) {
3699     if (ReasonToReject >= 0)
3700       Context.getDiagnostics().Report(
3701           getLocation(),
3702           diag::remark_sanitize_address_insert_extra_padding_rejected)
3703           << getQualifiedNameAsString() << ReasonToReject;
3704     else
3705       Context.getDiagnostics().Report(
3706           getLocation(),
3707           diag::remark_sanitize_address_insert_extra_padding_accepted)
3708           << getQualifiedNameAsString();
3709   }
3710   return ReasonToReject < 0;
3711 }
3712 
findFirstNamedDataMember() const3713 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
3714   for (const auto *I : fields()) {
3715     if (I->getIdentifier())
3716       return I;
3717 
3718     if (const RecordType *RT = I->getType()->getAs<RecordType>())
3719       if (const FieldDecl *NamedDataMember =
3720           RT->getDecl()->findFirstNamedDataMember())
3721         return NamedDataMember;
3722   }
3723 
3724   // We didn't find a named data member.
3725   return nullptr;
3726 }
3727 
3728 
3729 //===----------------------------------------------------------------------===//
3730 // BlockDecl Implementation
3731 //===----------------------------------------------------------------------===//
3732 
setParams(ArrayRef<ParmVarDecl * > NewParamInfo)3733 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
3734   assert(!ParamInfo && "Already has param info!");
3735 
3736   // Zero params -> null pointer.
3737   if (!NewParamInfo.empty()) {
3738     NumParams = NewParamInfo.size();
3739     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
3740     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3741   }
3742 }
3743 
setCaptures(ASTContext & Context,const Capture * begin,const Capture * end,bool capturesCXXThis)3744 void BlockDecl::setCaptures(ASTContext &Context,
3745                             const Capture *begin,
3746                             const Capture *end,
3747                             bool capturesCXXThis) {
3748   CapturesCXXThis = capturesCXXThis;
3749 
3750   if (begin == end) {
3751     NumCaptures = 0;
3752     Captures = nullptr;
3753     return;
3754   }
3755 
3756   NumCaptures = end - begin;
3757 
3758   // Avoid new Capture[] because we don't want to provide a default
3759   // constructor.
3760   size_t allocationSize = NumCaptures * sizeof(Capture);
3761   void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
3762   memcpy(buffer, begin, allocationSize);
3763   Captures = static_cast<Capture*>(buffer);
3764 }
3765 
capturesVariable(const VarDecl * variable) const3766 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
3767   for (const auto &I : captures())
3768     // Only auto vars can be captured, so no redeclaration worries.
3769     if (I.getVariable() == variable)
3770       return true;
3771 
3772   return false;
3773 }
3774 
getSourceRange() const3775 SourceRange BlockDecl::getSourceRange() const {
3776   return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
3777 }
3778 
3779 //===----------------------------------------------------------------------===//
3780 // Other Decl Allocation/Deallocation Method Implementations
3781 //===----------------------------------------------------------------------===//
3782 
anchor()3783 void TranslationUnitDecl::anchor() { }
3784 
Create(ASTContext & C)3785 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
3786   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
3787 }
3788 
anchor()3789 void ExternCContextDecl::anchor() { }
3790 
Create(const ASTContext & C,TranslationUnitDecl * DC)3791 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
3792                                                TranslationUnitDecl *DC) {
3793   return new (C, DC) ExternCContextDecl(DC);
3794 }
3795 
anchor()3796 void LabelDecl::anchor() { }
3797 
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II)3798 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3799                              SourceLocation IdentL, IdentifierInfo *II) {
3800   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
3801 }
3802 
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II,SourceLocation GnuLabelL)3803 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3804                              SourceLocation IdentL, IdentifierInfo *II,
3805                              SourceLocation GnuLabelL) {
3806   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
3807   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
3808 }
3809 
CreateDeserialized(ASTContext & C,unsigned ID)3810 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3811   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
3812                                SourceLocation());
3813 }
3814 
setMSAsmLabel(StringRef Name)3815 void LabelDecl::setMSAsmLabel(StringRef Name) {
3816   char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
3817   memcpy(Buffer, Name.data(), Name.size());
3818   Buffer[Name.size()] = '\0';
3819   MSAsmName = Buffer;
3820 }
3821 
anchor()3822 void ValueDecl::anchor() { }
3823 
isWeak() const3824 bool ValueDecl::isWeak() const {
3825   for (const auto *I : attrs())
3826     if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
3827       return true;
3828 
3829   return isWeakImported();
3830 }
3831 
anchor()3832 void ImplicitParamDecl::anchor() { }
3833 
Create(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id,QualType Type)3834 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
3835                                              SourceLocation IdLoc,
3836                                              IdentifierInfo *Id,
3837                                              QualType Type) {
3838   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type);
3839 }
3840 
CreateDeserialized(ASTContext & C,unsigned ID)3841 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
3842                                                          unsigned ID) {
3843   return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr,
3844                                        QualType());
3845 }
3846 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool isInlineSpecified,bool hasWrittenPrototype,bool isConstexprSpecified)3847 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
3848                                    SourceLocation StartLoc,
3849                                    const DeclarationNameInfo &NameInfo,
3850                                    QualType T, TypeSourceInfo *TInfo,
3851                                    StorageClass SC,
3852                                    bool isInlineSpecified,
3853                                    bool hasWrittenPrototype,
3854                                    bool isConstexprSpecified) {
3855   FunctionDecl *New =
3856       new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
3857                                SC, isInlineSpecified, isConstexprSpecified);
3858   New->HasWrittenPrototype = hasWrittenPrototype;
3859   return New;
3860 }
3861 
CreateDeserialized(ASTContext & C,unsigned ID)3862 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3863   return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
3864                                   DeclarationNameInfo(), QualType(), nullptr,
3865                                   SC_None, false, false);
3866 }
3867 
Create(ASTContext & C,DeclContext * DC,SourceLocation L)3868 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3869   return new (C, DC) BlockDecl(DC, L);
3870 }
3871 
CreateDeserialized(ASTContext & C,unsigned ID)3872 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3873   return new (C, ID) BlockDecl(nullptr, SourceLocation());
3874 }
3875 
Create(ASTContext & C,DeclContext * DC,unsigned NumParams)3876 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
3877                                    unsigned NumParams) {
3878   return new (C, DC, NumParams * sizeof(ImplicitParamDecl *))
3879       CapturedDecl(DC, NumParams);
3880 }
3881 
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumParams)3882 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3883                                                unsigned NumParams) {
3884   return new (C, ID, NumParams * sizeof(ImplicitParamDecl *))
3885       CapturedDecl(nullptr, NumParams);
3886 }
3887 
Create(ASTContext & C,EnumDecl * CD,SourceLocation L,IdentifierInfo * Id,QualType T,Expr * E,const llvm::APSInt & V)3888 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
3889                                            SourceLocation L,
3890                                            IdentifierInfo *Id, QualType T,
3891                                            Expr *E, const llvm::APSInt &V) {
3892   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
3893 }
3894 
3895 EnumConstantDecl *
CreateDeserialized(ASTContext & C,unsigned ID)3896 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3897   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
3898                                       QualType(), nullptr, llvm::APSInt());
3899 }
3900 
anchor()3901 void IndirectFieldDecl::anchor() { }
3902 
3903 IndirectFieldDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation L,IdentifierInfo * Id,QualType T,NamedDecl ** CH,unsigned CHS)3904 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
3905                           IdentifierInfo *Id, QualType T, NamedDecl **CH,
3906                           unsigned CHS) {
3907   return new (C, DC) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
3908 }
3909 
CreateDeserialized(ASTContext & C,unsigned ID)3910 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
3911                                                          unsigned ID) {
3912   return new (C, ID) IndirectFieldDecl(nullptr, SourceLocation(),
3913                                        DeclarationName(), QualType(), nullptr,
3914                                        0);
3915 }
3916 
getSourceRange() const3917 SourceRange EnumConstantDecl::getSourceRange() const {
3918   SourceLocation End = getLocation();
3919   if (Init)
3920     End = Init->getLocEnd();
3921   return SourceRange(getLocation(), End);
3922 }
3923 
anchor()3924 void TypeDecl::anchor() { }
3925 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3926 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
3927                                  SourceLocation StartLoc, SourceLocation IdLoc,
3928                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
3929   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
3930 }
3931 
anchor()3932 void TypedefNameDecl::anchor() { }
3933 
getAnonDeclWithTypedefName() const3934 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName() const {
3935   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>())
3936     if (TT->getDecl()->getTypedefNameForAnonDecl() == this)
3937       return TT->getDecl();
3938 
3939   return nullptr;
3940 }
3941 
CreateDeserialized(ASTContext & C,unsigned ID)3942 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3943   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
3944                                  nullptr, nullptr);
3945 }
3946 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3947 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
3948                                      SourceLocation StartLoc,
3949                                      SourceLocation IdLoc, IdentifierInfo *Id,
3950                                      TypeSourceInfo *TInfo) {
3951   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
3952 }
3953 
CreateDeserialized(ASTContext & C,unsigned ID)3954 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3955   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
3956                                    SourceLocation(), nullptr, nullptr);
3957 }
3958 
getSourceRange() const3959 SourceRange TypedefDecl::getSourceRange() const {
3960   SourceLocation RangeEnd = getLocation();
3961   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
3962     if (typeIsPostfix(TInfo->getType()))
3963       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3964   }
3965   return SourceRange(getLocStart(), RangeEnd);
3966 }
3967 
getSourceRange() const3968 SourceRange TypeAliasDecl::getSourceRange() const {
3969   SourceLocation RangeEnd = getLocStart();
3970   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
3971     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3972   return SourceRange(getLocStart(), RangeEnd);
3973 }
3974 
anchor()3975 void FileScopeAsmDecl::anchor() { }
3976 
Create(ASTContext & C,DeclContext * DC,StringLiteral * Str,SourceLocation AsmLoc,SourceLocation RParenLoc)3977 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
3978                                            StringLiteral *Str,
3979                                            SourceLocation AsmLoc,
3980                                            SourceLocation RParenLoc) {
3981   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
3982 }
3983 
CreateDeserialized(ASTContext & C,unsigned ID)3984 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
3985                                                        unsigned ID) {
3986   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
3987                                       SourceLocation());
3988 }
3989 
anchor()3990 void EmptyDecl::anchor() {}
3991 
Create(ASTContext & C,DeclContext * DC,SourceLocation L)3992 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3993   return new (C, DC) EmptyDecl(DC, L);
3994 }
3995 
CreateDeserialized(ASTContext & C,unsigned ID)3996 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3997   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
3998 }
3999 
4000 //===----------------------------------------------------------------------===//
4001 // ImportDecl Implementation
4002 //===----------------------------------------------------------------------===//
4003 
4004 /// \brief Retrieve the number of module identifiers needed to name the given
4005 /// module.
getNumModuleIdentifiers(Module * Mod)4006 static unsigned getNumModuleIdentifiers(Module *Mod) {
4007   unsigned Result = 1;
4008   while (Mod->Parent) {
4009     Mod = Mod->Parent;
4010     ++Result;
4011   }
4012   return Result;
4013 }
4014 
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)4015 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4016                        Module *Imported,
4017                        ArrayRef<SourceLocation> IdentifierLocs)
4018   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
4019     NextLocalImport()
4020 {
4021   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4022   SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
4023   memcpy(StoredLocs, IdentifierLocs.data(),
4024          IdentifierLocs.size() * sizeof(SourceLocation));
4025 }
4026 
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)4027 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4028                        Module *Imported, SourceLocation EndLoc)
4029   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
4030     NextLocalImport()
4031 {
4032   *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
4033 }
4034 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)4035 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
4036                                SourceLocation StartLoc, Module *Imported,
4037                                ArrayRef<SourceLocation> IdentifierLocs) {
4038   return new (C, DC, IdentifierLocs.size() * sizeof(SourceLocation))
4039       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4040 }
4041 
CreateImplicit(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)4042 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
4043                                        SourceLocation StartLoc,
4044                                        Module *Imported,
4045                                        SourceLocation EndLoc) {
4046   ImportDecl *Import =
4047       new (C, DC, sizeof(SourceLocation)) ImportDecl(DC, StartLoc,
4048                                                      Imported, EndLoc);
4049   Import->setImplicit();
4050   return Import;
4051 }
4052 
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumLocations)4053 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4054                                            unsigned NumLocations) {
4055   return new (C, ID, NumLocations * sizeof(SourceLocation))
4056       ImportDecl(EmptyShell());
4057 }
4058 
getIdentifierLocs() const4059 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
4060   if (!ImportedAndComplete.getInt())
4061     return None;
4062 
4063   const SourceLocation *StoredLocs
4064     = reinterpret_cast<const SourceLocation *>(this + 1);
4065   return llvm::makeArrayRef(StoredLocs,
4066                             getNumModuleIdentifiers(getImportedModule()));
4067 }
4068 
getSourceRange() const4069 SourceRange ImportDecl::getSourceRange() const {
4070   if (!ImportedAndComplete.getInt())
4071     return SourceRange(getLocation(),
4072                        *reinterpret_cast<const SourceLocation *>(this + 1));
4073 
4074   return SourceRange(getLocation(), getIdentifierLocs().back());
4075 }
4076