1 //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements the ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "CXXABI.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Comment.h"
20 #include "clang/AST/CommentCommandTraits.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExternalASTSource.h"
27 #include "clang/AST/Mangle.h"
28 #include "clang/AST/MangleNumberingContext.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/AST/RecursiveASTVisitor.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/AST/VTableBuilder.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/SmallString.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ADT/Triple.h"
39 #include "llvm/Support/Capacity.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <map>
43 
44 using namespace clang;
45 
46 unsigned ASTContext::NumImplicitDefaultConstructors;
47 unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
48 unsigned ASTContext::NumImplicitCopyConstructors;
49 unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
50 unsigned ASTContext::NumImplicitMoveConstructors;
51 unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
52 unsigned ASTContext::NumImplicitCopyAssignmentOperators;
53 unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
54 unsigned ASTContext::NumImplicitMoveAssignmentOperators;
55 unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
56 unsigned ASTContext::NumImplicitDestructors;
57 unsigned ASTContext::NumImplicitDestructorsDeclared;
58 
59 enum FloatingRank {
60   HalfRank, FloatRank, DoubleRank, LongDoubleRank
61 };
62 
getRawCommentForDeclNoCache(const Decl * D) const63 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
64   if (!CommentsLoaded && ExternalSource) {
65     ExternalSource->ReadComments();
66 
67 #ifndef NDEBUG
68     ArrayRef<RawComment *> RawComments = Comments.getComments();
69     assert(std::is_sorted(RawComments.begin(), RawComments.end(),
70                           BeforeThanCompare<RawComment>(SourceMgr)));
71 #endif
72 
73     CommentsLoaded = true;
74   }
75 
76   assert(D);
77 
78   // User can not attach documentation to implicit declarations.
79   if (D->isImplicit())
80     return nullptr;
81 
82   // User can not attach documentation to implicit instantiations.
83   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
84     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85       return nullptr;
86   }
87 
88   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
89     if (VD->isStaticDataMember() &&
90         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
91       return nullptr;
92   }
93 
94   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
95     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
96       return nullptr;
97   }
98 
99   if (const ClassTemplateSpecializationDecl *CTSD =
100           dyn_cast<ClassTemplateSpecializationDecl>(D)) {
101     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
102     if (TSK == TSK_ImplicitInstantiation ||
103         TSK == TSK_Undeclared)
104       return nullptr;
105   }
106 
107   if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
108     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
109       return nullptr;
110   }
111   if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
112     // When tag declaration (but not definition!) is part of the
113     // decl-specifier-seq of some other declaration, it doesn't get comment
114     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
115       return nullptr;
116   }
117   // TODO: handle comments for function parameters properly.
118   if (isa<ParmVarDecl>(D))
119     return nullptr;
120 
121   // TODO: we could look up template parameter documentation in the template
122   // documentation.
123   if (isa<TemplateTypeParmDecl>(D) ||
124       isa<NonTypeTemplateParmDecl>(D) ||
125       isa<TemplateTemplateParmDecl>(D))
126     return nullptr;
127 
128   ArrayRef<RawComment *> RawComments = Comments.getComments();
129 
130   // If there are no comments anywhere, we won't find anything.
131   if (RawComments.empty())
132     return nullptr;
133 
134   // Find declaration location.
135   // For Objective-C declarations we generally don't expect to have multiple
136   // declarators, thus use declaration starting location as the "declaration
137   // location".
138   // For all other declarations multiple declarators are used quite frequently,
139   // so we use the location of the identifier as the "declaration location".
140   SourceLocation DeclLoc;
141   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
142       isa<ObjCPropertyDecl>(D) ||
143       isa<RedeclarableTemplateDecl>(D) ||
144       isa<ClassTemplateSpecializationDecl>(D))
145     DeclLoc = D->getLocStart();
146   else {
147     DeclLoc = D->getLocation();
148     if (DeclLoc.isMacroID()) {
149       if (isa<TypedefDecl>(D)) {
150         // If location of the typedef name is in a macro, it is because being
151         // declared via a macro. Try using declaration's starting location as
152         // the "declaration location".
153         DeclLoc = D->getLocStart();
154       } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
155         // If location of the tag decl is inside a macro, but the spelling of
156         // the tag name comes from a macro argument, it looks like a special
157         // macro like NS_ENUM is being used to define the tag decl.  In that
158         // case, adjust the source location to the expansion loc so that we can
159         // attach the comment to the tag decl.
160         if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
161             TD->isCompleteDefinition())
162           DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
163       }
164     }
165   }
166 
167   // If the declaration doesn't map directly to a location in a file, we
168   // can't find the comment.
169   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
170     return nullptr;
171 
172   // Find the comment that occurs just after this declaration.
173   ArrayRef<RawComment *>::iterator Comment;
174   {
175     // When searching for comments during parsing, the comment we are looking
176     // for is usually among the last two comments we parsed -- check them
177     // first.
178     RawComment CommentAtDeclLoc(
179         SourceMgr, SourceRange(DeclLoc), false,
180         LangOpts.CommentOpts.ParseAllComments);
181     BeforeThanCompare<RawComment> Compare(SourceMgr);
182     ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
183     bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
184     if (!Found && RawComments.size() >= 2) {
185       MaybeBeforeDecl--;
186       Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
187     }
188 
189     if (Found) {
190       Comment = MaybeBeforeDecl + 1;
191       assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
192                                          &CommentAtDeclLoc, Compare));
193     } else {
194       // Slow path.
195       Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
196                                  &CommentAtDeclLoc, Compare);
197     }
198   }
199 
200   // Decompose the location for the declaration and find the beginning of the
201   // file buffer.
202   std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
203 
204   // First check whether we have a trailing comment.
205   if (Comment != RawComments.end() &&
206       (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
207       (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
208        isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
209     std::pair<FileID, unsigned> CommentBeginDecomp
210       = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
211     // Check that Doxygen trailing comment comes after the declaration, starts
212     // on the same line and in the same file as the declaration.
213     if (DeclLocDecomp.first == CommentBeginDecomp.first &&
214         SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
215           == SourceMgr.getLineNumber(CommentBeginDecomp.first,
216                                      CommentBeginDecomp.second)) {
217       return *Comment;
218     }
219   }
220 
221   // The comment just after the declaration was not a trailing comment.
222   // Let's look at the previous comment.
223   if (Comment == RawComments.begin())
224     return nullptr;
225   --Comment;
226 
227   // Check that we actually have a non-member Doxygen comment.
228   if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
229     return nullptr;
230 
231   // Decompose the end of the comment.
232   std::pair<FileID, unsigned> CommentEndDecomp
233     = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
234 
235   // If the comment and the declaration aren't in the same file, then they
236   // aren't related.
237   if (DeclLocDecomp.first != CommentEndDecomp.first)
238     return nullptr;
239 
240   // Get the corresponding buffer.
241   bool Invalid = false;
242   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
243                                                &Invalid).data();
244   if (Invalid)
245     return nullptr;
246 
247   // Extract text between the comment and declaration.
248   StringRef Text(Buffer + CommentEndDecomp.second,
249                  DeclLocDecomp.second - CommentEndDecomp.second);
250 
251   // There should be no other declarations or preprocessor directives between
252   // comment and declaration.
253   if (Text.find_first_of(";{}#@") != StringRef::npos)
254     return nullptr;
255 
256   return *Comment;
257 }
258 
259 namespace {
260 /// If we have a 'templated' declaration for a template, adjust 'D' to
261 /// refer to the actual template.
262 /// If we have an implicit instantiation, adjust 'D' to refer to template.
adjustDeclToTemplate(const Decl * D)263 const Decl *adjustDeclToTemplate(const Decl *D) {
264   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
265     // Is this function declaration part of a function template?
266     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
267       return FTD;
268 
269     // Nothing to do if function is not an implicit instantiation.
270     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
271       return D;
272 
273     // Function is an implicit instantiation of a function template?
274     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
275       return FTD;
276 
277     // Function is instantiated from a member definition of a class template?
278     if (const FunctionDecl *MemberDecl =
279             FD->getInstantiatedFromMemberFunction())
280       return MemberDecl;
281 
282     return D;
283   }
284   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
285     // Static data member is instantiated from a member definition of a class
286     // template?
287     if (VD->isStaticDataMember())
288       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
289         return MemberDecl;
290 
291     return D;
292   }
293   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
294     // Is this class declaration part of a class template?
295     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
296       return CTD;
297 
298     // Class is an implicit instantiation of a class template or partial
299     // specialization?
300     if (const ClassTemplateSpecializationDecl *CTSD =
301             dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
302       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
303         return D;
304       llvm::PointerUnion<ClassTemplateDecl *,
305                          ClassTemplatePartialSpecializationDecl *>
306           PU = CTSD->getSpecializedTemplateOrPartial();
307       return PU.is<ClassTemplateDecl*>() ?
308           static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
309           static_cast<const Decl*>(
310               PU.get<ClassTemplatePartialSpecializationDecl *>());
311     }
312 
313     // Class is instantiated from a member definition of a class template?
314     if (const MemberSpecializationInfo *Info =
315                    CRD->getMemberSpecializationInfo())
316       return Info->getInstantiatedFrom();
317 
318     return D;
319   }
320   if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
321     // Enum is instantiated from a member definition of a class template?
322     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
323       return MemberDecl;
324 
325     return D;
326   }
327   // FIXME: Adjust alias templates?
328   return D;
329 }
330 } // unnamed namespace
331 
getRawCommentForAnyRedecl(const Decl * D,const Decl ** OriginalDecl) const332 const RawComment *ASTContext::getRawCommentForAnyRedecl(
333                                                 const Decl *D,
334                                                 const Decl **OriginalDecl) const {
335   D = adjustDeclToTemplate(D);
336 
337   // Check whether we have cached a comment for this declaration already.
338   {
339     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
340         RedeclComments.find(D);
341     if (Pos != RedeclComments.end()) {
342       const RawCommentAndCacheFlags &Raw = Pos->second;
343       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
344         if (OriginalDecl)
345           *OriginalDecl = Raw.getOriginalDecl();
346         return Raw.getRaw();
347       }
348     }
349   }
350 
351   // Search for comments attached to declarations in the redeclaration chain.
352   const RawComment *RC = nullptr;
353   const Decl *OriginalDeclForRC = nullptr;
354   for (auto I : D->redecls()) {
355     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
356         RedeclComments.find(I);
357     if (Pos != RedeclComments.end()) {
358       const RawCommentAndCacheFlags &Raw = Pos->second;
359       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
360         RC = Raw.getRaw();
361         OriginalDeclForRC = Raw.getOriginalDecl();
362         break;
363       }
364     } else {
365       RC = getRawCommentForDeclNoCache(I);
366       OriginalDeclForRC = I;
367       RawCommentAndCacheFlags Raw;
368       if (RC) {
369         Raw.setRaw(RC);
370         Raw.setKind(RawCommentAndCacheFlags::FromDecl);
371       } else
372         Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
373       Raw.setOriginalDecl(I);
374       RedeclComments[I] = Raw;
375       if (RC)
376         break;
377     }
378   }
379 
380   // If we found a comment, it should be a documentation comment.
381   assert(!RC || RC->isDocumentation());
382 
383   if (OriginalDecl)
384     *OriginalDecl = OriginalDeclForRC;
385 
386   // Update cache for every declaration in the redeclaration chain.
387   RawCommentAndCacheFlags Raw;
388   Raw.setRaw(RC);
389   Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
390   Raw.setOriginalDecl(OriginalDeclForRC);
391 
392   for (auto I : D->redecls()) {
393     RawCommentAndCacheFlags &R = RedeclComments[I];
394     if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
395       R = Raw;
396   }
397 
398   return RC;
399 }
400 
addRedeclaredMethods(const ObjCMethodDecl * ObjCMethod,SmallVectorImpl<const NamedDecl * > & Redeclared)401 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
402                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
403   const DeclContext *DC = ObjCMethod->getDeclContext();
404   if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
405     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
406     if (!ID)
407       return;
408     // Add redeclared method here.
409     for (const auto *Ext : ID->known_extensions()) {
410       if (ObjCMethodDecl *RedeclaredMethod =
411             Ext->getMethod(ObjCMethod->getSelector(),
412                                   ObjCMethod->isInstanceMethod()))
413         Redeclared.push_back(RedeclaredMethod);
414     }
415   }
416 }
417 
cloneFullComment(comments::FullComment * FC,const Decl * D) const418 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
419                                                     const Decl *D) const {
420   comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
421   ThisDeclInfo->CommentDecl = D;
422   ThisDeclInfo->IsFilled = false;
423   ThisDeclInfo->fill();
424   ThisDeclInfo->CommentDecl = FC->getDecl();
425   if (!ThisDeclInfo->TemplateParameters)
426     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
427   comments::FullComment *CFC =
428     new (*this) comments::FullComment(FC->getBlocks(),
429                                       ThisDeclInfo);
430   return CFC;
431 
432 }
433 
getLocalCommentForDeclUncached(const Decl * D) const434 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
435   const RawComment *RC = getRawCommentForDeclNoCache(D);
436   return RC ? RC->parse(*this, nullptr, D) : nullptr;
437 }
438 
getCommentForDecl(const Decl * D,const Preprocessor * PP) const439 comments::FullComment *ASTContext::getCommentForDecl(
440                                               const Decl *D,
441                                               const Preprocessor *PP) const {
442   if (D->isInvalidDecl())
443     return nullptr;
444   D = adjustDeclToTemplate(D);
445 
446   const Decl *Canonical = D->getCanonicalDecl();
447   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
448       ParsedComments.find(Canonical);
449 
450   if (Pos != ParsedComments.end()) {
451     if (Canonical != D) {
452       comments::FullComment *FC = Pos->second;
453       comments::FullComment *CFC = cloneFullComment(FC, D);
454       return CFC;
455     }
456     return Pos->second;
457   }
458 
459   const Decl *OriginalDecl;
460 
461   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
462   if (!RC) {
463     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
464       SmallVector<const NamedDecl*, 8> Overridden;
465       const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
466       if (OMD && OMD->isPropertyAccessor())
467         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
468           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
469             return cloneFullComment(FC, D);
470       if (OMD)
471         addRedeclaredMethods(OMD, Overridden);
472       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
473       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
474         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
475           return cloneFullComment(FC, D);
476     }
477     else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
478       // Attach any tag type's documentation to its typedef if latter
479       // does not have one of its own.
480       QualType QT = TD->getUnderlyingType();
481       if (const TagType *TT = QT->getAs<TagType>())
482         if (const Decl *TD = TT->getDecl())
483           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
484             return cloneFullComment(FC, D);
485     }
486     else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
487       while (IC->getSuperClass()) {
488         IC = IC->getSuperClass();
489         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
490           return cloneFullComment(FC, D);
491       }
492     }
493     else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
494       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
495         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
496           return cloneFullComment(FC, D);
497     }
498     else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
499       if (!(RD = RD->getDefinition()))
500         return nullptr;
501       // Check non-virtual bases.
502       for (const auto &I : RD->bases()) {
503         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
504           continue;
505         QualType Ty = I.getType();
506         if (Ty.isNull())
507           continue;
508         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
509           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
510             continue;
511 
512           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
513             return cloneFullComment(FC, D);
514         }
515       }
516       // Check virtual bases.
517       for (const auto &I : RD->vbases()) {
518         if (I.getAccessSpecifier() != AS_public)
519           continue;
520         QualType Ty = I.getType();
521         if (Ty.isNull())
522           continue;
523         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
524           if (!(VirtualBase= VirtualBase->getDefinition()))
525             continue;
526           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
527             return cloneFullComment(FC, D);
528         }
529       }
530     }
531     return nullptr;
532   }
533 
534   // If the RawComment was attached to other redeclaration of this Decl, we
535   // should parse the comment in context of that other Decl.  This is important
536   // because comments can contain references to parameter names which can be
537   // different across redeclarations.
538   if (D != OriginalDecl)
539     return getCommentForDecl(OriginalDecl, PP);
540 
541   comments::FullComment *FC = RC->parse(*this, PP, D);
542   ParsedComments[Canonical] = FC;
543   return FC;
544 }
545 
546 void
Profile(llvm::FoldingSetNodeID & ID,TemplateTemplateParmDecl * Parm)547 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
548                                                TemplateTemplateParmDecl *Parm) {
549   ID.AddInteger(Parm->getDepth());
550   ID.AddInteger(Parm->getPosition());
551   ID.AddBoolean(Parm->isParameterPack());
552 
553   TemplateParameterList *Params = Parm->getTemplateParameters();
554   ID.AddInteger(Params->size());
555   for (TemplateParameterList::const_iterator P = Params->begin(),
556                                           PEnd = Params->end();
557        P != PEnd; ++P) {
558     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
559       ID.AddInteger(0);
560       ID.AddBoolean(TTP->isParameterPack());
561       continue;
562     }
563 
564     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
565       ID.AddInteger(1);
566       ID.AddBoolean(NTTP->isParameterPack());
567       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
568       if (NTTP->isExpandedParameterPack()) {
569         ID.AddBoolean(true);
570         ID.AddInteger(NTTP->getNumExpansionTypes());
571         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
572           QualType T = NTTP->getExpansionType(I);
573           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
574         }
575       } else
576         ID.AddBoolean(false);
577       continue;
578     }
579 
580     TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
581     ID.AddInteger(2);
582     Profile(ID, TTP);
583   }
584 }
585 
586 TemplateTemplateParmDecl *
getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl * TTP) const587 ASTContext::getCanonicalTemplateTemplateParmDecl(
588                                           TemplateTemplateParmDecl *TTP) const {
589   // Check if we already have a canonical template template parameter.
590   llvm::FoldingSetNodeID ID;
591   CanonicalTemplateTemplateParm::Profile(ID, TTP);
592   void *InsertPos = nullptr;
593   CanonicalTemplateTemplateParm *Canonical
594     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
595   if (Canonical)
596     return Canonical->getParam();
597 
598   // Build a canonical template parameter list.
599   TemplateParameterList *Params = TTP->getTemplateParameters();
600   SmallVector<NamedDecl *, 4> CanonParams;
601   CanonParams.reserve(Params->size());
602   for (TemplateParameterList::const_iterator P = Params->begin(),
603                                           PEnd = Params->end();
604        P != PEnd; ++P) {
605     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
606       CanonParams.push_back(
607                   TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
608                                                SourceLocation(),
609                                                SourceLocation(),
610                                                TTP->getDepth(),
611                                                TTP->getIndex(), nullptr, false,
612                                                TTP->isParameterPack()));
613     else if (NonTypeTemplateParmDecl *NTTP
614              = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
615       QualType T = getCanonicalType(NTTP->getType());
616       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
617       NonTypeTemplateParmDecl *Param;
618       if (NTTP->isExpandedParameterPack()) {
619         SmallVector<QualType, 2> ExpandedTypes;
620         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
621         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
622           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
623           ExpandedTInfos.push_back(
624                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
625         }
626 
627         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
628                                                 SourceLocation(),
629                                                 SourceLocation(),
630                                                 NTTP->getDepth(),
631                                                 NTTP->getPosition(), nullptr,
632                                                 T,
633                                                 TInfo,
634                                                 ExpandedTypes.data(),
635                                                 ExpandedTypes.size(),
636                                                 ExpandedTInfos.data());
637       } else {
638         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
639                                                 SourceLocation(),
640                                                 SourceLocation(),
641                                                 NTTP->getDepth(),
642                                                 NTTP->getPosition(), nullptr,
643                                                 T,
644                                                 NTTP->isParameterPack(),
645                                                 TInfo);
646       }
647       CanonParams.push_back(Param);
648 
649     } else
650       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
651                                            cast<TemplateTemplateParmDecl>(*P)));
652   }
653 
654   TemplateTemplateParmDecl *CanonTTP
655     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
656                                        SourceLocation(), TTP->getDepth(),
657                                        TTP->getPosition(),
658                                        TTP->isParameterPack(),
659                                        nullptr,
660                          TemplateParameterList::Create(*this, SourceLocation(),
661                                                        SourceLocation(),
662                                                        CanonParams.data(),
663                                                        CanonParams.size(),
664                                                        SourceLocation()));
665 
666   // Get the new insert position for the node we care about.
667   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
668   assert(!Canonical && "Shouldn't be in the map!");
669   (void)Canonical;
670 
671   // Create the canonical template template parameter entry.
672   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
673   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
674   return CanonTTP;
675 }
676 
createCXXABI(const TargetInfo & T)677 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
678   if (!LangOpts.CPlusPlus) return nullptr;
679 
680   switch (T.getCXXABI().getKind()) {
681   case TargetCXXABI::GenericARM: // Same as Itanium at this level
682   case TargetCXXABI::iOS:
683   case TargetCXXABI::iOS64:
684   case TargetCXXABI::GenericAArch64:
685   case TargetCXXABI::GenericMIPS:
686   case TargetCXXABI::GenericItanium:
687     return CreateItaniumCXXABI(*this);
688   case TargetCXXABI::Microsoft:
689     return CreateMicrosoftCXXABI(*this);
690   }
691   llvm_unreachable("Invalid CXXABI type!");
692 }
693 
getAddressSpaceMap(const TargetInfo & T,const LangOptions & LOpts)694 static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
695                                              const LangOptions &LOpts) {
696   if (LOpts.FakeAddressSpaceMap) {
697     // The fake address space map must have a distinct entry for each
698     // language-specific address space.
699     static const unsigned FakeAddrSpaceMap[] = {
700       1, // opencl_global
701       2, // opencl_local
702       3, // opencl_constant
703       4, // opencl_generic
704       5, // cuda_device
705       6, // cuda_constant
706       7  // cuda_shared
707     };
708     return &FakeAddrSpaceMap;
709   } else {
710     return &T.getAddressSpaceMap();
711   }
712 }
713 
isAddrSpaceMapManglingEnabled(const TargetInfo & TI,const LangOptions & LangOpts)714 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
715                                           const LangOptions &LangOpts) {
716   switch (LangOpts.getAddressSpaceMapMangling()) {
717   case LangOptions::ASMM_Target:
718     return TI.useAddressSpaceMapMangling();
719   case LangOptions::ASMM_On:
720     return true;
721   case LangOptions::ASMM_Off:
722     return false;
723   }
724   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
725 }
726 
ASTContext(LangOptions & LOpts,SourceManager & SM,IdentifierTable & idents,SelectorTable & sels,Builtin::Context & builtins)727 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
728                        IdentifierTable &idents, SelectorTable &sels,
729                        Builtin::Context &builtins)
730     : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()),
731       DependentTemplateSpecializationTypes(this_()),
732       SubstTemplateTemplateParmPacks(this_()),
733       GlobalNestedNameSpecifier(nullptr), Int128Decl(nullptr),
734       UInt128Decl(nullptr), Float128StubDecl(nullptr),
735       BuiltinVaListDecl(nullptr), ObjCIdDecl(nullptr), ObjCSelDecl(nullptr),
736       ObjCClassDecl(nullptr), ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr),
737       CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr),
738       FILEDecl(nullptr), jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr),
739       ucontext_tDecl(nullptr), BlockDescriptorType(nullptr),
740       BlockDescriptorExtendedType(nullptr), cudaConfigureCallDecl(nullptr),
741       FirstLocalImport(), LastLocalImport(), ExternCContext(nullptr),
742       SourceMgr(SM), LangOpts(LOpts),
743       SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
744       AddrSpaceMap(nullptr), Target(nullptr), PrintingPolicy(LOpts),
745       Idents(idents), Selectors(sels), BuiltinInfo(builtins),
746       DeclarationNames(*this), ExternalSource(nullptr), Listener(nullptr),
747       Comments(SM), CommentsLoaded(false),
748       CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), LastSDM(nullptr, 0) {
749   TUDecl = TranslationUnitDecl::Create(*this);
750 }
751 
~ASTContext()752 ASTContext::~ASTContext() {
753   ReleaseParentMapEntries();
754 
755   // Release the DenseMaps associated with DeclContext objects.
756   // FIXME: Is this the ideal solution?
757   ReleaseDeclContextMaps();
758 
759   // Call all of the deallocation functions on all of their targets.
760   for (DeallocationMap::const_iterator I = Deallocations.begin(),
761            E = Deallocations.end(); I != E; ++I)
762     for (unsigned J = 0, N = I->second.size(); J != N; ++J)
763       (I->first)((I->second)[J]);
764 
765   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
766   // because they can contain DenseMaps.
767   for (llvm::DenseMap<const ObjCContainerDecl*,
768        const ASTRecordLayout*>::iterator
769        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
770     // Increment in loop to prevent using deallocated memory.
771     if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
772       R->Destroy(*this);
773 
774   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
775        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
776     // Increment in loop to prevent using deallocated memory.
777     if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
778       R->Destroy(*this);
779   }
780 
781   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
782                                                     AEnd = DeclAttrs.end();
783        A != AEnd; ++A)
784     A->second->~AttrVec();
785 
786   llvm::DeleteContainerSeconds(MangleNumberingContexts);
787 }
788 
ReleaseParentMapEntries()789 void ASTContext::ReleaseParentMapEntries() {
790   if (!AllParents) return;
791   for (const auto &Entry : *AllParents) {
792     if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
793       delete Entry.second.get<ast_type_traits::DynTypedNode *>();
794     } else {
795       assert(Entry.second.is<ParentVector *>());
796       delete Entry.second.get<ParentVector *>();
797     }
798   }
799 }
800 
AddDeallocation(void (* Callback)(void *),void * Data)801 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
802   Deallocations[Callback].push_back(Data);
803 }
804 
805 void
setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source)806 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
807   ExternalSource = Source;
808 }
809 
PrintStats() const810 void ASTContext::PrintStats() const {
811   llvm::errs() << "\n*** AST Context Stats:\n";
812   llvm::errs() << "  " << Types.size() << " types total.\n";
813 
814   unsigned counts[] = {
815 #define TYPE(Name, Parent) 0,
816 #define ABSTRACT_TYPE(Name, Parent)
817 #include "clang/AST/TypeNodes.def"
818     0 // Extra
819   };
820 
821   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
822     Type *T = Types[i];
823     counts[(unsigned)T->getTypeClass()]++;
824   }
825 
826   unsigned Idx = 0;
827   unsigned TotalBytes = 0;
828 #define TYPE(Name, Parent)                                              \
829   if (counts[Idx])                                                      \
830     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
831                  << " types\n";                                         \
832   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
833   ++Idx;
834 #define ABSTRACT_TYPE(Name, Parent)
835 #include "clang/AST/TypeNodes.def"
836 
837   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
838 
839   // Implicit special member functions.
840   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
841                << NumImplicitDefaultConstructors
842                << " implicit default constructors created\n";
843   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
844                << NumImplicitCopyConstructors
845                << " implicit copy constructors created\n";
846   if (getLangOpts().CPlusPlus)
847     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
848                  << NumImplicitMoveConstructors
849                  << " implicit move constructors created\n";
850   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
851                << NumImplicitCopyAssignmentOperators
852                << " implicit copy assignment operators created\n";
853   if (getLangOpts().CPlusPlus)
854     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
855                  << NumImplicitMoveAssignmentOperators
856                  << " implicit move assignment operators created\n";
857   llvm::errs() << NumImplicitDestructorsDeclared << "/"
858                << NumImplicitDestructors
859                << " implicit destructors created\n";
860 
861   if (ExternalSource) {
862     llvm::errs() << "\n";
863     ExternalSource->PrintStats();
864   }
865 
866   BumpAlloc.PrintStats();
867 }
868 
getExternCContextDecl() const869 ExternCContextDecl *ASTContext::getExternCContextDecl() const {
870   if (!ExternCContext)
871     ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
872 
873   return ExternCContext;
874 }
875 
buildImplicitRecord(StringRef Name,RecordDecl::TagKind TK) const876 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
877                                             RecordDecl::TagKind TK) const {
878   SourceLocation Loc;
879   RecordDecl *NewDecl;
880   if (getLangOpts().CPlusPlus)
881     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
882                                     Loc, &Idents.get(Name));
883   else
884     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
885                                  &Idents.get(Name));
886   NewDecl->setImplicit();
887   NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
888       const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
889   return NewDecl;
890 }
891 
buildImplicitTypedef(QualType T,StringRef Name) const892 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
893                                               StringRef Name) const {
894   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
895   TypedefDecl *NewDecl = TypedefDecl::Create(
896       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
897       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
898   NewDecl->setImplicit();
899   return NewDecl;
900 }
901 
getInt128Decl() const902 TypedefDecl *ASTContext::getInt128Decl() const {
903   if (!Int128Decl)
904     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
905   return Int128Decl;
906 }
907 
getUInt128Decl() const908 TypedefDecl *ASTContext::getUInt128Decl() const {
909   if (!UInt128Decl)
910     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
911   return UInt128Decl;
912 }
913 
getFloat128StubType() const914 TypeDecl *ASTContext::getFloat128StubType() const {
915   assert(LangOpts.CPlusPlus && "should only be called for c++");
916   if (!Float128StubDecl)
917     Float128StubDecl = buildImplicitRecord("__float128");
918 
919   return Float128StubDecl;
920 }
921 
InitBuiltinType(CanQualType & R,BuiltinType::Kind K)922 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
923   BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
924   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
925   Types.push_back(Ty);
926 }
927 
InitBuiltinTypes(const TargetInfo & Target)928 void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
929   assert((!this->Target || this->Target == &Target) &&
930          "Incorrect target reinitialization");
931   assert(VoidTy.isNull() && "Context reinitialized?");
932 
933   this->Target = &Target;
934 
935   ABI.reset(createCXXABI(Target));
936   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
937   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
938 
939   // C99 6.2.5p19.
940   InitBuiltinType(VoidTy,              BuiltinType::Void);
941 
942   // C99 6.2.5p2.
943   InitBuiltinType(BoolTy,              BuiltinType::Bool);
944   // C99 6.2.5p3.
945   if (LangOpts.CharIsSigned)
946     InitBuiltinType(CharTy,            BuiltinType::Char_S);
947   else
948     InitBuiltinType(CharTy,            BuiltinType::Char_U);
949   // C99 6.2.5p4.
950   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
951   InitBuiltinType(ShortTy,             BuiltinType::Short);
952   InitBuiltinType(IntTy,               BuiltinType::Int);
953   InitBuiltinType(LongTy,              BuiltinType::Long);
954   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
955 
956   // C99 6.2.5p6.
957   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
958   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
959   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
960   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
961   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
962 
963   // C99 6.2.5p10.
964   InitBuiltinType(FloatTy,             BuiltinType::Float);
965   InitBuiltinType(DoubleTy,            BuiltinType::Double);
966   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
967 
968   // GNU extension, 128-bit integers.
969   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
970   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
971 
972   // C++ 3.9.1p5
973   if (TargetInfo::isTypeSigned(Target.getWCharType()))
974     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
975   else  // -fshort-wchar makes wchar_t be unsigned.
976     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
977   if (LangOpts.CPlusPlus && LangOpts.WChar)
978     WideCharTy = WCharTy;
979   else {
980     // C99 (or C++ using -fno-wchar).
981     WideCharTy = getFromTargetType(Target.getWCharType());
982   }
983 
984   WIntTy = getFromTargetType(Target.getWIntType());
985 
986   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
987     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
988   else // C99
989     Char16Ty = getFromTargetType(Target.getChar16Type());
990 
991   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
992     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
993   else // C99
994     Char32Ty = getFromTargetType(Target.getChar32Type());
995 
996   // Placeholder type for type-dependent expressions whose type is
997   // completely unknown. No code should ever check a type against
998   // DependentTy and users should never see it; however, it is here to
999   // help diagnose failures to properly check for type-dependent
1000   // expressions.
1001   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
1002 
1003   // Placeholder type for functions.
1004   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1005 
1006   // Placeholder type for bound members.
1007   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1008 
1009   // Placeholder type for pseudo-objects.
1010   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1011 
1012   // "any" type; useful for debugger-like clients.
1013   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1014 
1015   // Placeholder type for unbridged ARC casts.
1016   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1017 
1018   // Placeholder type for builtin functions.
1019   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1020 
1021   // C99 6.2.5p11.
1022   FloatComplexTy      = getComplexType(FloatTy);
1023   DoubleComplexTy     = getComplexType(DoubleTy);
1024   LongDoubleComplexTy = getComplexType(LongDoubleTy);
1025 
1026   // Builtin types for 'id', 'Class', and 'SEL'.
1027   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1028   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1029   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1030 
1031   if (LangOpts.OpenCL) {
1032     InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
1033     InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
1034     InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
1035     InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
1036     InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
1037     InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
1038 
1039     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1040     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1041   }
1042 
1043   // Builtin type for __objc_yes and __objc_no
1044   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1045                        SignedCharTy : BoolTy);
1046 
1047   ObjCConstantStringType = QualType();
1048 
1049   ObjCSuperType = QualType();
1050 
1051   // void * type
1052   VoidPtrTy = getPointerType(VoidTy);
1053 
1054   // nullptr type (C++0x 2.14.7)
1055   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1056 
1057   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1058   InitBuiltinType(HalfTy, BuiltinType::Half);
1059 
1060   // Builtin type used to help define __builtin_va_list.
1061   VaListTagTy = QualType();
1062 }
1063 
getDiagnostics() const1064 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1065   return SourceMgr.getDiagnostics();
1066 }
1067 
getDeclAttrs(const Decl * D)1068 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1069   AttrVec *&Result = DeclAttrs[D];
1070   if (!Result) {
1071     void *Mem = Allocate(sizeof(AttrVec));
1072     Result = new (Mem) AttrVec;
1073   }
1074 
1075   return *Result;
1076 }
1077 
1078 /// \brief Erase the attributes corresponding to the given declaration.
eraseDeclAttrs(const Decl * D)1079 void ASTContext::eraseDeclAttrs(const Decl *D) {
1080   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1081   if (Pos != DeclAttrs.end()) {
1082     Pos->second->~AttrVec();
1083     DeclAttrs.erase(Pos);
1084   }
1085 }
1086 
1087 // FIXME: Remove ?
1088 MemberSpecializationInfo *
getInstantiatedFromStaticDataMember(const VarDecl * Var)1089 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1090   assert(Var->isStaticDataMember() && "Not a static data member");
1091   return getTemplateOrSpecializationInfo(Var)
1092       .dyn_cast<MemberSpecializationInfo *>();
1093 }
1094 
1095 ASTContext::TemplateOrSpecializationInfo
getTemplateOrSpecializationInfo(const VarDecl * Var)1096 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1097   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1098       TemplateOrInstantiation.find(Var);
1099   if (Pos == TemplateOrInstantiation.end())
1100     return TemplateOrSpecializationInfo();
1101 
1102   return Pos->second;
1103 }
1104 
1105 void
setInstantiatedFromStaticDataMember(VarDecl * Inst,VarDecl * Tmpl,TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)1106 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1107                                                 TemplateSpecializationKind TSK,
1108                                           SourceLocation PointOfInstantiation) {
1109   assert(Inst->isStaticDataMember() && "Not a static data member");
1110   assert(Tmpl->isStaticDataMember() && "Not a static data member");
1111   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1112                                             Tmpl, TSK, PointOfInstantiation));
1113 }
1114 
1115 void
setTemplateOrSpecializationInfo(VarDecl * Inst,TemplateOrSpecializationInfo TSI)1116 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1117                                             TemplateOrSpecializationInfo TSI) {
1118   assert(!TemplateOrInstantiation[Inst] &&
1119          "Already noted what the variable was instantiated from");
1120   TemplateOrInstantiation[Inst] = TSI;
1121 }
1122 
getClassScopeSpecializationPattern(const FunctionDecl * FD)1123 FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1124                                                      const FunctionDecl *FD){
1125   assert(FD && "Specialization is 0");
1126   llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1127     = ClassScopeSpecializationPattern.find(FD);
1128   if (Pos == ClassScopeSpecializationPattern.end())
1129     return nullptr;
1130 
1131   return Pos->second;
1132 }
1133 
setClassScopeSpecializationPattern(FunctionDecl * FD,FunctionDecl * Pattern)1134 void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1135                                         FunctionDecl *Pattern) {
1136   assert(FD && "Specialization is 0");
1137   assert(Pattern && "Class scope specialization pattern is 0");
1138   ClassScopeSpecializationPattern[FD] = Pattern;
1139 }
1140 
1141 NamedDecl *
getInstantiatedFromUsingDecl(UsingDecl * UUD)1142 ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1143   llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1144     = InstantiatedFromUsingDecl.find(UUD);
1145   if (Pos == InstantiatedFromUsingDecl.end())
1146     return nullptr;
1147 
1148   return Pos->second;
1149 }
1150 
1151 void
setInstantiatedFromUsingDecl(UsingDecl * Inst,NamedDecl * Pattern)1152 ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1153   assert((isa<UsingDecl>(Pattern) ||
1154           isa<UnresolvedUsingValueDecl>(Pattern) ||
1155           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1156          "pattern decl is not a using decl");
1157   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1158   InstantiatedFromUsingDecl[Inst] = Pattern;
1159 }
1160 
1161 UsingShadowDecl *
getInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst)1162 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1163   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1164     = InstantiatedFromUsingShadowDecl.find(Inst);
1165   if (Pos == InstantiatedFromUsingShadowDecl.end())
1166     return nullptr;
1167 
1168   return Pos->second;
1169 }
1170 
1171 void
setInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst,UsingShadowDecl * Pattern)1172 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1173                                                UsingShadowDecl *Pattern) {
1174   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1175   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1176 }
1177 
getInstantiatedFromUnnamedFieldDecl(FieldDecl * Field)1178 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1179   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1180     = InstantiatedFromUnnamedFieldDecl.find(Field);
1181   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1182     return nullptr;
1183 
1184   return Pos->second;
1185 }
1186 
setInstantiatedFromUnnamedFieldDecl(FieldDecl * Inst,FieldDecl * Tmpl)1187 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1188                                                      FieldDecl *Tmpl) {
1189   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1190   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1191   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1192          "Already noted what unnamed field was instantiated from");
1193 
1194   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1195 }
1196 
1197 ASTContext::overridden_cxx_method_iterator
overridden_methods_begin(const CXXMethodDecl * Method) const1198 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1199   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1200     = OverriddenMethods.find(Method->getCanonicalDecl());
1201   if (Pos == OverriddenMethods.end())
1202     return nullptr;
1203 
1204   return Pos->second.begin();
1205 }
1206 
1207 ASTContext::overridden_cxx_method_iterator
overridden_methods_end(const CXXMethodDecl * Method) const1208 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1209   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1210     = OverriddenMethods.find(Method->getCanonicalDecl());
1211   if (Pos == OverriddenMethods.end())
1212     return nullptr;
1213 
1214   return Pos->second.end();
1215 }
1216 
1217 unsigned
overridden_methods_size(const CXXMethodDecl * Method) const1218 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1219   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1220     = OverriddenMethods.find(Method->getCanonicalDecl());
1221   if (Pos == OverriddenMethods.end())
1222     return 0;
1223 
1224   return Pos->second.size();
1225 }
1226 
addOverriddenMethod(const CXXMethodDecl * Method,const CXXMethodDecl * Overridden)1227 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1228                                      const CXXMethodDecl *Overridden) {
1229   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1230   OverriddenMethods[Method].push_back(Overridden);
1231 }
1232 
getOverriddenMethods(const NamedDecl * D,SmallVectorImpl<const NamedDecl * > & Overridden) const1233 void ASTContext::getOverriddenMethods(
1234                       const NamedDecl *D,
1235                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
1236   assert(D);
1237 
1238   if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1239     Overridden.append(overridden_methods_begin(CXXMethod),
1240                       overridden_methods_end(CXXMethod));
1241     return;
1242   }
1243 
1244   const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1245   if (!Method)
1246     return;
1247 
1248   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1249   Method->getOverriddenMethods(OverDecls);
1250   Overridden.append(OverDecls.begin(), OverDecls.end());
1251 }
1252 
addedLocalImportDecl(ImportDecl * Import)1253 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1254   assert(!Import->NextLocalImport && "Import declaration already in the chain");
1255   assert(!Import->isFromASTFile() && "Non-local import declaration");
1256   if (!FirstLocalImport) {
1257     FirstLocalImport = Import;
1258     LastLocalImport = Import;
1259     return;
1260   }
1261 
1262   LastLocalImport->NextLocalImport = Import;
1263   LastLocalImport = Import;
1264 }
1265 
1266 //===----------------------------------------------------------------------===//
1267 //                         Type Sizing and Analysis
1268 //===----------------------------------------------------------------------===//
1269 
1270 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1271 /// scalar floating point type.
getFloatTypeSemantics(QualType T) const1272 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1273   const BuiltinType *BT = T->getAs<BuiltinType>();
1274   assert(BT && "Not a floating point type!");
1275   switch (BT->getKind()) {
1276   default: llvm_unreachable("Not a floating point type!");
1277   case BuiltinType::Half:       return Target->getHalfFormat();
1278   case BuiltinType::Float:      return Target->getFloatFormat();
1279   case BuiltinType::Double:     return Target->getDoubleFormat();
1280   case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1281   }
1282 }
1283 
getDeclAlign(const Decl * D,bool ForAlignof) const1284 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1285   unsigned Align = Target->getCharWidth();
1286 
1287   bool UseAlignAttrOnly = false;
1288   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1289     Align = AlignFromAttr;
1290 
1291     // __attribute__((aligned)) can increase or decrease alignment
1292     // *except* on a struct or struct member, where it only increases
1293     // alignment unless 'packed' is also specified.
1294     //
1295     // It is an error for alignas to decrease alignment, so we can
1296     // ignore that possibility;  Sema should diagnose it.
1297     if (isa<FieldDecl>(D)) {
1298       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1299         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1300     } else {
1301       UseAlignAttrOnly = true;
1302     }
1303   }
1304   else if (isa<FieldDecl>(D))
1305       UseAlignAttrOnly =
1306         D->hasAttr<PackedAttr>() ||
1307         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1308 
1309   // If we're using the align attribute only, just ignore everything
1310   // else about the declaration and its type.
1311   if (UseAlignAttrOnly) {
1312     // do nothing
1313 
1314   } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1315     QualType T = VD->getType();
1316     if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
1317       if (ForAlignof)
1318         T = RT->getPointeeType();
1319       else
1320         T = getPointerType(RT->getPointeeType());
1321     }
1322     QualType BaseT = getBaseElementType(T);
1323     if (!BaseT->isIncompleteType() && !T->isFunctionType()) {
1324       // Adjust alignments of declarations with array type by the
1325       // large-array alignment on the target.
1326       if (const ArrayType *arrayType = getAsArrayType(T)) {
1327         unsigned MinWidth = Target->getLargeArrayMinWidth();
1328         if (!ForAlignof && MinWidth) {
1329           if (isa<VariableArrayType>(arrayType))
1330             Align = std::max(Align, Target->getLargeArrayAlign());
1331           else if (isa<ConstantArrayType>(arrayType) &&
1332                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1333             Align = std::max(Align, Target->getLargeArrayAlign());
1334         }
1335       }
1336       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1337       if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1338         if (VD->hasGlobalStorage())
1339           Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1340       }
1341     }
1342 
1343     // Fields can be subject to extra alignment constraints, like if
1344     // the field is packed, the struct is packed, or the struct has a
1345     // a max-field-alignment constraint (#pragma pack).  So calculate
1346     // the actual alignment of the field within the struct, and then
1347     // (as we're expected to) constrain that by the alignment of the type.
1348     if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
1349       const RecordDecl *Parent = Field->getParent();
1350       // We can only produce a sensible answer if the record is valid.
1351       if (!Parent->isInvalidDecl()) {
1352         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1353 
1354         // Start with the record's overall alignment.
1355         unsigned FieldAlign = toBits(Layout.getAlignment());
1356 
1357         // Use the GCD of that and the offset within the record.
1358         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1359         if (Offset > 0) {
1360           // Alignment is always a power of 2, so the GCD will be a power of 2,
1361           // which means we get to do this crazy thing instead of Euclid's.
1362           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1363           if (LowBitOfOffset < FieldAlign)
1364             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1365         }
1366 
1367         Align = std::min(Align, FieldAlign);
1368       }
1369     }
1370   }
1371 
1372   return toCharUnitsFromBits(Align);
1373 }
1374 
1375 // getTypeInfoDataSizeInChars - Return the size of a type, in
1376 // chars. If the type is a record, its data size is returned.  This is
1377 // the size of the memcpy that's performed when assigning this type
1378 // using a trivial copy/move assignment operator.
1379 std::pair<CharUnits, CharUnits>
getTypeInfoDataSizeInChars(QualType T) const1380 ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1381   std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1382 
1383   // In C++, objects can sometimes be allocated into the tail padding
1384   // of a base-class subobject.  We decide whether that's possible
1385   // during class layout, so here we can just trust the layout results.
1386   if (getLangOpts().CPlusPlus) {
1387     if (const RecordType *RT = T->getAs<RecordType>()) {
1388       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1389       sizeAndAlign.first = layout.getDataSize();
1390     }
1391   }
1392 
1393   return sizeAndAlign;
1394 }
1395 
1396 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1397 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1398 std::pair<CharUnits, CharUnits>
getConstantArrayInfoInChars(const ASTContext & Context,const ConstantArrayType * CAT)1399 static getConstantArrayInfoInChars(const ASTContext &Context,
1400                                    const ConstantArrayType *CAT) {
1401   std::pair<CharUnits, CharUnits> EltInfo =
1402       Context.getTypeInfoInChars(CAT->getElementType());
1403   uint64_t Size = CAT->getSize().getZExtValue();
1404   assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1405               (uint64_t)(-1)/Size) &&
1406          "Overflow in array type char size evaluation");
1407   uint64_t Width = EltInfo.first.getQuantity() * Size;
1408   unsigned Align = EltInfo.second.getQuantity();
1409   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1410       Context.getTargetInfo().getPointerWidth(0) == 64)
1411     Width = llvm::RoundUpToAlignment(Width, Align);
1412   return std::make_pair(CharUnits::fromQuantity(Width),
1413                         CharUnits::fromQuantity(Align));
1414 }
1415 
1416 std::pair<CharUnits, CharUnits>
getTypeInfoInChars(const Type * T) const1417 ASTContext::getTypeInfoInChars(const Type *T) const {
1418   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
1419     return getConstantArrayInfoInChars(*this, CAT);
1420   TypeInfo Info = getTypeInfo(T);
1421   return std::make_pair(toCharUnitsFromBits(Info.Width),
1422                         toCharUnitsFromBits(Info.Align));
1423 }
1424 
1425 std::pair<CharUnits, CharUnits>
getTypeInfoInChars(QualType T) const1426 ASTContext::getTypeInfoInChars(QualType T) const {
1427   return getTypeInfoInChars(T.getTypePtr());
1428 }
1429 
isAlignmentRequired(const Type * T) const1430 bool ASTContext::isAlignmentRequired(const Type *T) const {
1431   return getTypeInfo(T).AlignIsRequired;
1432 }
1433 
isAlignmentRequired(QualType T) const1434 bool ASTContext::isAlignmentRequired(QualType T) const {
1435   return isAlignmentRequired(T.getTypePtr());
1436 }
1437 
getTypeInfo(const Type * T) const1438 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1439   TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1440   if (I != MemoizedTypeInfo.end())
1441     return I->second;
1442 
1443   // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1444   TypeInfo TI = getTypeInfoImpl(T);
1445   MemoizedTypeInfo[T] = TI;
1446   return TI;
1447 }
1448 
1449 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1450 /// method does not work on incomplete types.
1451 ///
1452 /// FIXME: Pointers into different addr spaces could have different sizes and
1453 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1454 /// should take a QualType, &c.
getTypeInfoImpl(const Type * T) const1455 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1456   uint64_t Width = 0;
1457   unsigned Align = 8;
1458   bool AlignIsRequired = false;
1459   switch (T->getTypeClass()) {
1460 #define TYPE(Class, Base)
1461 #define ABSTRACT_TYPE(Class, Base)
1462 #define NON_CANONICAL_TYPE(Class, Base)
1463 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1464 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1465   case Type::Class:                                                            \
1466   assert(!T->isDependentType() && "should not see dependent types here");      \
1467   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1468 #include "clang/AST/TypeNodes.def"
1469     llvm_unreachable("Should not see dependent types");
1470 
1471   case Type::FunctionNoProto:
1472   case Type::FunctionProto:
1473     // GCC extension: alignof(function) = 32 bits
1474     Width = 0;
1475     Align = 32;
1476     break;
1477 
1478   case Type::IncompleteArray:
1479   case Type::VariableArray:
1480     Width = 0;
1481     Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1482     break;
1483 
1484   case Type::ConstantArray: {
1485     const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1486 
1487     TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
1488     uint64_t Size = CAT->getSize().getZExtValue();
1489     assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1490            "Overflow in array type bit size evaluation");
1491     Width = EltInfo.Width * Size;
1492     Align = EltInfo.Align;
1493     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1494         getTargetInfo().getPointerWidth(0) == 64)
1495       Width = llvm::RoundUpToAlignment(Width, Align);
1496     break;
1497   }
1498   case Type::ExtVector:
1499   case Type::Vector: {
1500     const VectorType *VT = cast<VectorType>(T);
1501     TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1502     Width = EltInfo.Width * VT->getNumElements();
1503     Align = Width;
1504     // If the alignment is not a power of 2, round up to the next power of 2.
1505     // This happens for non-power-of-2 length vectors.
1506     if (Align & (Align-1)) {
1507       Align = llvm::NextPowerOf2(Align);
1508       Width = llvm::RoundUpToAlignment(Width, Align);
1509     }
1510     // Adjust the alignment based on the target max.
1511     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1512     if (TargetVectorAlign && TargetVectorAlign < Align)
1513       Align = TargetVectorAlign;
1514     break;
1515   }
1516 
1517   case Type::Builtin:
1518     switch (cast<BuiltinType>(T)->getKind()) {
1519     default: llvm_unreachable("Unknown builtin type!");
1520     case BuiltinType::Void:
1521       // GCC extension: alignof(void) = 8 bits.
1522       Width = 0;
1523       Align = 8;
1524       break;
1525 
1526     case BuiltinType::Bool:
1527       Width = Target->getBoolWidth();
1528       Align = Target->getBoolAlign();
1529       break;
1530     case BuiltinType::Char_S:
1531     case BuiltinType::Char_U:
1532     case BuiltinType::UChar:
1533     case BuiltinType::SChar:
1534       Width = Target->getCharWidth();
1535       Align = Target->getCharAlign();
1536       break;
1537     case BuiltinType::WChar_S:
1538     case BuiltinType::WChar_U:
1539       Width = Target->getWCharWidth();
1540       Align = Target->getWCharAlign();
1541       break;
1542     case BuiltinType::Char16:
1543       Width = Target->getChar16Width();
1544       Align = Target->getChar16Align();
1545       break;
1546     case BuiltinType::Char32:
1547       Width = Target->getChar32Width();
1548       Align = Target->getChar32Align();
1549       break;
1550     case BuiltinType::UShort:
1551     case BuiltinType::Short:
1552       Width = Target->getShortWidth();
1553       Align = Target->getShortAlign();
1554       break;
1555     case BuiltinType::UInt:
1556     case BuiltinType::Int:
1557       Width = Target->getIntWidth();
1558       Align = Target->getIntAlign();
1559       break;
1560     case BuiltinType::ULong:
1561     case BuiltinType::Long:
1562       Width = Target->getLongWidth();
1563       Align = Target->getLongAlign();
1564       break;
1565     case BuiltinType::ULongLong:
1566     case BuiltinType::LongLong:
1567       Width = Target->getLongLongWidth();
1568       Align = Target->getLongLongAlign();
1569       break;
1570     case BuiltinType::Int128:
1571     case BuiltinType::UInt128:
1572       Width = 128;
1573       Align = 128; // int128_t is 128-bit aligned on all targets.
1574       break;
1575     case BuiltinType::Half:
1576       Width = Target->getHalfWidth();
1577       Align = Target->getHalfAlign();
1578       break;
1579     case BuiltinType::Float:
1580       Width = Target->getFloatWidth();
1581       Align = Target->getFloatAlign();
1582       break;
1583     case BuiltinType::Double:
1584       Width = Target->getDoubleWidth();
1585       Align = Target->getDoubleAlign();
1586       break;
1587     case BuiltinType::LongDouble:
1588       Width = Target->getLongDoubleWidth();
1589       Align = Target->getLongDoubleAlign();
1590       break;
1591     case BuiltinType::NullPtr:
1592       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1593       Align = Target->getPointerAlign(0); //   == sizeof(void*)
1594       break;
1595     case BuiltinType::ObjCId:
1596     case BuiltinType::ObjCClass:
1597     case BuiltinType::ObjCSel:
1598       Width = Target->getPointerWidth(0);
1599       Align = Target->getPointerAlign(0);
1600       break;
1601     case BuiltinType::OCLSampler:
1602       // Samplers are modeled as integers.
1603       Width = Target->getIntWidth();
1604       Align = Target->getIntAlign();
1605       break;
1606     case BuiltinType::OCLEvent:
1607     case BuiltinType::OCLImage1d:
1608     case BuiltinType::OCLImage1dArray:
1609     case BuiltinType::OCLImage1dBuffer:
1610     case BuiltinType::OCLImage2d:
1611     case BuiltinType::OCLImage2dArray:
1612     case BuiltinType::OCLImage3d:
1613       // Currently these types are pointers to opaque types.
1614       Width = Target->getPointerWidth(0);
1615       Align = Target->getPointerAlign(0);
1616       break;
1617     }
1618     break;
1619   case Type::ObjCObjectPointer:
1620     Width = Target->getPointerWidth(0);
1621     Align = Target->getPointerAlign(0);
1622     break;
1623   case Type::BlockPointer: {
1624     unsigned AS = getTargetAddressSpace(
1625         cast<BlockPointerType>(T)->getPointeeType());
1626     Width = Target->getPointerWidth(AS);
1627     Align = Target->getPointerAlign(AS);
1628     break;
1629   }
1630   case Type::LValueReference:
1631   case Type::RValueReference: {
1632     // alignof and sizeof should never enter this code path here, so we go
1633     // the pointer route.
1634     unsigned AS = getTargetAddressSpace(
1635         cast<ReferenceType>(T)->getPointeeType());
1636     Width = Target->getPointerWidth(AS);
1637     Align = Target->getPointerAlign(AS);
1638     break;
1639   }
1640   case Type::Pointer: {
1641     unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1642     Width = Target->getPointerWidth(AS);
1643     Align = Target->getPointerAlign(AS);
1644     break;
1645   }
1646   case Type::MemberPointer: {
1647     const MemberPointerType *MPT = cast<MemberPointerType>(T);
1648     std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1649     break;
1650   }
1651   case Type::Complex: {
1652     // Complex types have the same alignment as their elements, but twice the
1653     // size.
1654     TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
1655     Width = EltInfo.Width * 2;
1656     Align = EltInfo.Align;
1657     break;
1658   }
1659   case Type::ObjCObject:
1660     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1661   case Type::Adjusted:
1662   case Type::Decayed:
1663     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
1664   case Type::ObjCInterface: {
1665     const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1666     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1667     Width = toBits(Layout.getSize());
1668     Align = toBits(Layout.getAlignment());
1669     break;
1670   }
1671   case Type::Record:
1672   case Type::Enum: {
1673     const TagType *TT = cast<TagType>(T);
1674 
1675     if (TT->getDecl()->isInvalidDecl()) {
1676       Width = 8;
1677       Align = 8;
1678       break;
1679     }
1680 
1681     if (const EnumType *ET = dyn_cast<EnumType>(TT)) {
1682       const EnumDecl *ED = ET->getDecl();
1683       TypeInfo Info =
1684           getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
1685       if (unsigned AttrAlign = ED->getMaxAlignment()) {
1686         Info.Align = AttrAlign;
1687         Info.AlignIsRequired = true;
1688       }
1689       return Info;
1690     }
1691 
1692     const RecordType *RT = cast<RecordType>(TT);
1693     const RecordDecl *RD = RT->getDecl();
1694     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
1695     Width = toBits(Layout.getSize());
1696     Align = toBits(Layout.getAlignment());
1697     AlignIsRequired = RD->hasAttr<AlignedAttr>();
1698     break;
1699   }
1700 
1701   case Type::SubstTemplateTypeParm:
1702     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1703                        getReplacementType().getTypePtr());
1704 
1705   case Type::Auto: {
1706     const AutoType *A = cast<AutoType>(T);
1707     assert(!A->getDeducedType().isNull() &&
1708            "cannot request the size of an undeduced or dependent auto type");
1709     return getTypeInfo(A->getDeducedType().getTypePtr());
1710   }
1711 
1712   case Type::Paren:
1713     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1714 
1715   case Type::Typedef: {
1716     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1717     TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1718     // If the typedef has an aligned attribute on it, it overrides any computed
1719     // alignment we have.  This violates the GCC documentation (which says that
1720     // attribute(aligned) can only round up) but matches its implementation.
1721     if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
1722       Align = AttrAlign;
1723       AlignIsRequired = true;
1724     } else {
1725       Align = Info.Align;
1726       AlignIsRequired = Info.AlignIsRequired;
1727     }
1728     Width = Info.Width;
1729     break;
1730   }
1731 
1732   case Type::Elaborated:
1733     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1734 
1735   case Type::Attributed:
1736     return getTypeInfo(
1737                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1738 
1739   case Type::Atomic: {
1740     // Start with the base type information.
1741     TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
1742     Width = Info.Width;
1743     Align = Info.Align;
1744 
1745     // If the size of the type doesn't exceed the platform's max
1746     // atomic promotion width, make the size and alignment more
1747     // favorable to atomic operations:
1748     if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1749       // Round the size up to a power of 2.
1750       if (!llvm::isPowerOf2_64(Width))
1751         Width = llvm::NextPowerOf2(Width);
1752 
1753       // Set the alignment equal to the size.
1754       Align = static_cast<unsigned>(Width);
1755     }
1756   }
1757 
1758   }
1759 
1760   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1761   return TypeInfo(Width, Align, AlignIsRequired);
1762 }
1763 
1764 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
toCharUnitsFromBits(int64_t BitSize) const1765 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1766   return CharUnits::fromQuantity(BitSize / getCharWidth());
1767 }
1768 
1769 /// toBits - Convert a size in characters to a size in characters.
toBits(CharUnits CharSize) const1770 int64_t ASTContext::toBits(CharUnits CharSize) const {
1771   return CharSize.getQuantity() * getCharWidth();
1772 }
1773 
1774 /// getTypeSizeInChars - Return the size of the specified type, in characters.
1775 /// This method does not work on incomplete types.
getTypeSizeInChars(QualType T) const1776 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1777   return getTypeInfoInChars(T).first;
1778 }
getTypeSizeInChars(const Type * T) const1779 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1780   return getTypeInfoInChars(T).first;
1781 }
1782 
1783 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1784 /// characters. This method does not work on incomplete types.
getTypeAlignInChars(QualType T) const1785 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1786   return toCharUnitsFromBits(getTypeAlign(T));
1787 }
getTypeAlignInChars(const Type * T) const1788 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1789   return toCharUnitsFromBits(getTypeAlign(T));
1790 }
1791 
1792 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1793 /// type for the current target in bits.  This can be different than the ABI
1794 /// alignment in cases where it is beneficial for performance to overalign
1795 /// a data type.
getPreferredTypeAlign(const Type * T) const1796 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1797   TypeInfo TI = getTypeInfo(T);
1798   unsigned ABIAlign = TI.Align;
1799 
1800   if (Target->getTriple().getArch() == llvm::Triple::xcore)
1801     return ABIAlign;  // Never overalign on XCore.
1802 
1803   // Double and long long should be naturally aligned if possible.
1804   T = T->getBaseElementTypeUnsafe();
1805   if (const ComplexType *CT = T->getAs<ComplexType>())
1806     T = CT->getElementType().getTypePtr();
1807   if (const EnumType *ET = T->getAs<EnumType>())
1808     T = ET->getDecl()->getIntegerType().getTypePtr();
1809   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1810       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1811       T->isSpecificBuiltinType(BuiltinType::ULongLong))
1812     // Don't increase the alignment if an alignment attribute was specified on a
1813     // typedef declaration.
1814     if (!TI.AlignIsRequired)
1815       return std::max(ABIAlign, (unsigned)getTypeSize(T));
1816 
1817   return ABIAlign;
1818 }
1819 
1820 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
1821 /// to a global variable of the specified type.
getAlignOfGlobalVar(QualType T) const1822 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1823   return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1824 }
1825 
1826 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
1827 /// should be given to a global variable of the specified type.
getAlignOfGlobalVarInChars(QualType T) const1828 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1829   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1830 }
1831 
1832 /// DeepCollectObjCIvars -
1833 /// This routine first collects all declared, but not synthesized, ivars in
1834 /// super class and then collects all ivars, including those synthesized for
1835 /// current class. This routine is used for implementation of current class
1836 /// when all ivars, declared and synthesized are known.
1837 ///
DeepCollectObjCIvars(const ObjCInterfaceDecl * OI,bool leafClass,SmallVectorImpl<const ObjCIvarDecl * > & Ivars) const1838 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1839                                       bool leafClass,
1840                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1841   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1842     DeepCollectObjCIvars(SuperClass, false, Ivars);
1843   if (!leafClass) {
1844     for (const auto *I : OI->ivars())
1845       Ivars.push_back(I);
1846   } else {
1847     ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1848     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1849          Iv= Iv->getNextIvar())
1850       Ivars.push_back(Iv);
1851   }
1852 }
1853 
1854 /// CollectInheritedProtocols - Collect all protocols in current class and
1855 /// those inherited by it.
CollectInheritedProtocols(const Decl * CDecl,llvm::SmallPtrSet<ObjCProtocolDecl *,8> & Protocols)1856 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1857                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1858   if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1859     // We can use protocol_iterator here instead of
1860     // all_referenced_protocol_iterator since we are walking all categories.
1861     for (auto *Proto : OI->all_referenced_protocols()) {
1862       Protocols.insert(Proto->getCanonicalDecl());
1863       for (auto *P : Proto->protocols()) {
1864         Protocols.insert(P->getCanonicalDecl());
1865         CollectInheritedProtocols(P, Protocols);
1866       }
1867     }
1868 
1869     // Categories of this Interface.
1870     for (const auto *Cat : OI->visible_categories())
1871       CollectInheritedProtocols(Cat, Protocols);
1872 
1873     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1874       while (SD) {
1875         CollectInheritedProtocols(SD, Protocols);
1876         SD = SD->getSuperClass();
1877       }
1878   } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1879     for (auto *Proto : OC->protocols()) {
1880       Protocols.insert(Proto->getCanonicalDecl());
1881       for (const auto *P : Proto->protocols())
1882         CollectInheritedProtocols(P, Protocols);
1883     }
1884   } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1885     for (auto *Proto : OP->protocols()) {
1886       Protocols.insert(Proto->getCanonicalDecl());
1887       for (const auto *P : Proto->protocols())
1888         CollectInheritedProtocols(P, Protocols);
1889     }
1890   }
1891 }
1892 
CountNonClassIvars(const ObjCInterfaceDecl * OI) const1893 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1894   unsigned count = 0;
1895   // Count ivars declared in class extension.
1896   for (const auto *Ext : OI->known_extensions())
1897     count += Ext->ivar_size();
1898 
1899   // Count ivar defined in this class's implementation.  This
1900   // includes synthesized ivars.
1901   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1902     count += ImplDecl->ivar_size();
1903 
1904   return count;
1905 }
1906 
isSentinelNullExpr(const Expr * E)1907 bool ASTContext::isSentinelNullExpr(const Expr *E) {
1908   if (!E)
1909     return false;
1910 
1911   // nullptr_t is always treated as null.
1912   if (E->getType()->isNullPtrType()) return true;
1913 
1914   if (E->getType()->isAnyPointerType() &&
1915       E->IgnoreParenCasts()->isNullPointerConstant(*this,
1916                                                 Expr::NPC_ValueDependentIsNull))
1917     return true;
1918 
1919   // Unfortunately, __null has type 'int'.
1920   if (isa<GNUNullExpr>(E)) return true;
1921 
1922   return false;
1923 }
1924 
1925 /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
getObjCImplementation(ObjCInterfaceDecl * D)1926 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1927   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1928     I = ObjCImpls.find(D);
1929   if (I != ObjCImpls.end())
1930     return cast<ObjCImplementationDecl>(I->second);
1931   return nullptr;
1932 }
1933 /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
getObjCImplementation(ObjCCategoryDecl * D)1934 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1935   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1936     I = ObjCImpls.find(D);
1937   if (I != ObjCImpls.end())
1938     return cast<ObjCCategoryImplDecl>(I->second);
1939   return nullptr;
1940 }
1941 
1942 /// \brief Set the implementation of ObjCInterfaceDecl.
setObjCImplementation(ObjCInterfaceDecl * IFaceD,ObjCImplementationDecl * ImplD)1943 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1944                            ObjCImplementationDecl *ImplD) {
1945   assert(IFaceD && ImplD && "Passed null params");
1946   ObjCImpls[IFaceD] = ImplD;
1947 }
1948 /// \brief Set the implementation of ObjCCategoryDecl.
setObjCImplementation(ObjCCategoryDecl * CatD,ObjCCategoryImplDecl * ImplD)1949 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1950                            ObjCCategoryImplDecl *ImplD) {
1951   assert(CatD && ImplD && "Passed null params");
1952   ObjCImpls[CatD] = ImplD;
1953 }
1954 
getObjContainingInterface(const NamedDecl * ND) const1955 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1956                                               const NamedDecl *ND) const {
1957   if (const ObjCInterfaceDecl *ID =
1958           dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1959     return ID;
1960   if (const ObjCCategoryDecl *CD =
1961           dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1962     return CD->getClassInterface();
1963   if (const ObjCImplDecl *IMD =
1964           dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1965     return IMD->getClassInterface();
1966 
1967   return nullptr;
1968 }
1969 
1970 /// \brief Get the copy initialization expression of VarDecl,or NULL if
1971 /// none exists.
getBlockVarCopyInits(const VarDecl * VD)1972 Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1973   assert(VD && "Passed null params");
1974   assert(VD->hasAttr<BlocksAttr>() &&
1975          "getBlockVarCopyInits - not __block var");
1976   llvm::DenseMap<const VarDecl*, Expr*>::iterator
1977     I = BlockVarCopyInits.find(VD);
1978   return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr;
1979 }
1980 
1981 /// \brief Set the copy inialization expression of a block var decl.
setBlockVarCopyInits(VarDecl * VD,Expr * Init)1982 void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1983   assert(VD && Init && "Passed null params");
1984   assert(VD->hasAttr<BlocksAttr>() &&
1985          "setBlockVarCopyInits - not __block var");
1986   BlockVarCopyInits[VD] = Init;
1987 }
1988 
CreateTypeSourceInfo(QualType T,unsigned DataSize) const1989 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1990                                                  unsigned DataSize) const {
1991   if (!DataSize)
1992     DataSize = TypeLoc::getFullDataSizeForType(T);
1993   else
1994     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1995            "incorrect data size provided to CreateTypeSourceInfo!");
1996 
1997   TypeSourceInfo *TInfo =
1998     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1999   new (TInfo) TypeSourceInfo(T);
2000   return TInfo;
2001 }
2002 
getTrivialTypeSourceInfo(QualType T,SourceLocation L) const2003 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2004                                                      SourceLocation L) const {
2005   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2006   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2007   return DI;
2008 }
2009 
2010 const ASTRecordLayout &
getASTObjCInterfaceLayout(const ObjCInterfaceDecl * D) const2011 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2012   return getObjCLayout(D, nullptr);
2013 }
2014 
2015 const ASTRecordLayout &
getASTObjCImplementationLayout(const ObjCImplementationDecl * D) const2016 ASTContext::getASTObjCImplementationLayout(
2017                                         const ObjCImplementationDecl *D) const {
2018   return getObjCLayout(D->getClassInterface(), D);
2019 }
2020 
2021 //===----------------------------------------------------------------------===//
2022 //                   Type creation/memoization methods
2023 //===----------------------------------------------------------------------===//
2024 
2025 QualType
getExtQualType(const Type * baseType,Qualifiers quals) const2026 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2027   unsigned fastQuals = quals.getFastQualifiers();
2028   quals.removeFastQualifiers();
2029 
2030   // Check if we've already instantiated this type.
2031   llvm::FoldingSetNodeID ID;
2032   ExtQuals::Profile(ID, baseType, quals);
2033   void *insertPos = nullptr;
2034   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2035     assert(eq->getQualifiers() == quals);
2036     return QualType(eq, fastQuals);
2037   }
2038 
2039   // If the base type is not canonical, make the appropriate canonical type.
2040   QualType canon;
2041   if (!baseType->isCanonicalUnqualified()) {
2042     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2043     canonSplit.Quals.addConsistentQualifiers(quals);
2044     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2045 
2046     // Re-find the insert position.
2047     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2048   }
2049 
2050   ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2051   ExtQualNodes.InsertNode(eq, insertPos);
2052   return QualType(eq, fastQuals);
2053 }
2054 
2055 QualType
getAddrSpaceQualType(QualType T,unsigned AddressSpace) const2056 ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
2057   QualType CanT = getCanonicalType(T);
2058   if (CanT.getAddressSpace() == AddressSpace)
2059     return T;
2060 
2061   // If we are composing extended qualifiers together, merge together
2062   // into one ExtQuals node.
2063   QualifierCollector Quals;
2064   const Type *TypeNode = Quals.strip(T);
2065 
2066   // If this type already has an address space specified, it cannot get
2067   // another one.
2068   assert(!Quals.hasAddressSpace() &&
2069          "Type cannot be in multiple addr spaces!");
2070   Quals.addAddressSpace(AddressSpace);
2071 
2072   return getExtQualType(TypeNode, Quals);
2073 }
2074 
getObjCGCQualType(QualType T,Qualifiers::GC GCAttr) const2075 QualType ASTContext::getObjCGCQualType(QualType T,
2076                                        Qualifiers::GC GCAttr) const {
2077   QualType CanT = getCanonicalType(T);
2078   if (CanT.getObjCGCAttr() == GCAttr)
2079     return T;
2080 
2081   if (const PointerType *ptr = T->getAs<PointerType>()) {
2082     QualType Pointee = ptr->getPointeeType();
2083     if (Pointee->isAnyPointerType()) {
2084       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2085       return getPointerType(ResultType);
2086     }
2087   }
2088 
2089   // If we are composing extended qualifiers together, merge together
2090   // into one ExtQuals node.
2091   QualifierCollector Quals;
2092   const Type *TypeNode = Quals.strip(T);
2093 
2094   // If this type already has an ObjCGC specified, it cannot get
2095   // another one.
2096   assert(!Quals.hasObjCGCAttr() &&
2097          "Type cannot have multiple ObjCGCs!");
2098   Quals.addObjCGCAttr(GCAttr);
2099 
2100   return getExtQualType(TypeNode, Quals);
2101 }
2102 
adjustFunctionType(const FunctionType * T,FunctionType::ExtInfo Info)2103 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2104                                                    FunctionType::ExtInfo Info) {
2105   if (T->getExtInfo() == Info)
2106     return T;
2107 
2108   QualType Result;
2109   if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2110     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2111   } else {
2112     const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2113     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2114     EPI.ExtInfo = Info;
2115     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2116   }
2117 
2118   return cast<FunctionType>(Result.getTypePtr());
2119 }
2120 
adjustDeducedFunctionResultType(FunctionDecl * FD,QualType ResultType)2121 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2122                                                  QualType ResultType) {
2123   FD = FD->getMostRecentDecl();
2124   while (true) {
2125     const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2126     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2127     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2128     if (FunctionDecl *Next = FD->getPreviousDecl())
2129       FD = Next;
2130     else
2131       break;
2132   }
2133   if (ASTMutationListener *L = getASTMutationListener())
2134     L->DeducedReturnType(FD, ResultType);
2135 }
2136 
2137 /// Get a function type and produce the equivalent function type with the
2138 /// specified exception specification. Type sugar that can be present on a
2139 /// declaration of a function with an exception specification is permitted
2140 /// and preserved. Other type sugar (for instance, typedefs) is not.
getFunctionTypeWithExceptionSpec(ASTContext & Context,QualType Orig,const FunctionProtoType::ExceptionSpecInfo & ESI)2141 static QualType getFunctionTypeWithExceptionSpec(
2142     ASTContext &Context, QualType Orig,
2143     const FunctionProtoType::ExceptionSpecInfo &ESI) {
2144   // Might have some parens.
2145   if (auto *PT = dyn_cast<ParenType>(Orig))
2146     return Context.getParenType(
2147         getFunctionTypeWithExceptionSpec(Context, PT->getInnerType(), ESI));
2148 
2149   // Might have a calling-convention attribute.
2150   if (auto *AT = dyn_cast<AttributedType>(Orig))
2151     return Context.getAttributedType(
2152         AT->getAttrKind(),
2153         getFunctionTypeWithExceptionSpec(Context, AT->getModifiedType(), ESI),
2154         getFunctionTypeWithExceptionSpec(Context, AT->getEquivalentType(),
2155                                          ESI));
2156 
2157   // Anything else must be a function type. Rebuild it with the new exception
2158   // specification.
2159   const FunctionProtoType *Proto = cast<FunctionProtoType>(Orig);
2160   return Context.getFunctionType(
2161       Proto->getReturnType(), Proto->getParamTypes(),
2162       Proto->getExtProtoInfo().withExceptionSpec(ESI));
2163 }
2164 
adjustExceptionSpec(FunctionDecl * FD,const FunctionProtoType::ExceptionSpecInfo & ESI,bool AsWritten)2165 void ASTContext::adjustExceptionSpec(
2166     FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
2167     bool AsWritten) {
2168   // Update the type.
2169   QualType Updated =
2170       getFunctionTypeWithExceptionSpec(*this, FD->getType(), ESI);
2171   FD->setType(Updated);
2172 
2173   if (!AsWritten)
2174     return;
2175 
2176   // Update the type in the type source information too.
2177   if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
2178     // If the type and the type-as-written differ, we may need to update
2179     // the type-as-written too.
2180     if (TSInfo->getType() != FD->getType())
2181       Updated = getFunctionTypeWithExceptionSpec(*this, TSInfo->getType(), ESI);
2182 
2183     // FIXME: When we get proper type location information for exceptions,
2184     // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
2185     // up the TypeSourceInfo;
2186     assert(TypeLoc::getFullDataSizeForType(Updated) ==
2187                TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
2188            "TypeLoc size mismatch from updating exception specification");
2189     TSInfo->overrideType(Updated);
2190   }
2191 }
2192 
2193 /// getComplexType - Return the uniqued reference to the type for a complex
2194 /// number with the specified element type.
getComplexType(QualType T) const2195 QualType ASTContext::getComplexType(QualType T) const {
2196   // Unique pointers, to guarantee there is only one pointer of a particular
2197   // structure.
2198   llvm::FoldingSetNodeID ID;
2199   ComplexType::Profile(ID, T);
2200 
2201   void *InsertPos = nullptr;
2202   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2203     return QualType(CT, 0);
2204 
2205   // If the pointee type isn't canonical, this won't be a canonical type either,
2206   // so fill in the canonical type field.
2207   QualType Canonical;
2208   if (!T.isCanonical()) {
2209     Canonical = getComplexType(getCanonicalType(T));
2210 
2211     // Get the new insert position for the node we care about.
2212     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2213     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2214   }
2215   ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2216   Types.push_back(New);
2217   ComplexTypes.InsertNode(New, InsertPos);
2218   return QualType(New, 0);
2219 }
2220 
2221 /// getPointerType - Return the uniqued reference to the type for a pointer to
2222 /// the specified type.
getPointerType(QualType T) const2223 QualType ASTContext::getPointerType(QualType T) const {
2224   // Unique pointers, to guarantee there is only one pointer of a particular
2225   // structure.
2226   llvm::FoldingSetNodeID ID;
2227   PointerType::Profile(ID, T);
2228 
2229   void *InsertPos = nullptr;
2230   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2231     return QualType(PT, 0);
2232 
2233   // If the pointee type isn't canonical, this won't be a canonical type either,
2234   // so fill in the canonical type field.
2235   QualType Canonical;
2236   if (!T.isCanonical()) {
2237     Canonical = getPointerType(getCanonicalType(T));
2238 
2239     // Get the new insert position for the node we care about.
2240     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2241     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2242   }
2243   PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2244   Types.push_back(New);
2245   PointerTypes.InsertNode(New, InsertPos);
2246   return QualType(New, 0);
2247 }
2248 
getAdjustedType(QualType Orig,QualType New) const2249 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
2250   llvm::FoldingSetNodeID ID;
2251   AdjustedType::Profile(ID, Orig, New);
2252   void *InsertPos = nullptr;
2253   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2254   if (AT)
2255     return QualType(AT, 0);
2256 
2257   QualType Canonical = getCanonicalType(New);
2258 
2259   // Get the new insert position for the node we care about.
2260   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2261   assert(!AT && "Shouldn't be in the map!");
2262 
2263   AT = new (*this, TypeAlignment)
2264       AdjustedType(Type::Adjusted, Orig, New, Canonical);
2265   Types.push_back(AT);
2266   AdjustedTypes.InsertNode(AT, InsertPos);
2267   return QualType(AT, 0);
2268 }
2269 
getDecayedType(QualType T) const2270 QualType ASTContext::getDecayedType(QualType T) const {
2271   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
2272 
2273   QualType Decayed;
2274 
2275   // C99 6.7.5.3p7:
2276   //   A declaration of a parameter as "array of type" shall be
2277   //   adjusted to "qualified pointer to type", where the type
2278   //   qualifiers (if any) are those specified within the [ and ] of
2279   //   the array type derivation.
2280   if (T->isArrayType())
2281     Decayed = getArrayDecayedType(T);
2282 
2283   // C99 6.7.5.3p8:
2284   //   A declaration of a parameter as "function returning type"
2285   //   shall be adjusted to "pointer to function returning type", as
2286   //   in 6.3.2.1.
2287   if (T->isFunctionType())
2288     Decayed = getPointerType(T);
2289 
2290   llvm::FoldingSetNodeID ID;
2291   AdjustedType::Profile(ID, T, Decayed);
2292   void *InsertPos = nullptr;
2293   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2294   if (AT)
2295     return QualType(AT, 0);
2296 
2297   QualType Canonical = getCanonicalType(Decayed);
2298 
2299   // Get the new insert position for the node we care about.
2300   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2301   assert(!AT && "Shouldn't be in the map!");
2302 
2303   AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
2304   Types.push_back(AT);
2305   AdjustedTypes.InsertNode(AT, InsertPos);
2306   return QualType(AT, 0);
2307 }
2308 
2309 /// getBlockPointerType - Return the uniqued reference to the type for
2310 /// a pointer to the specified block.
getBlockPointerType(QualType T) const2311 QualType ASTContext::getBlockPointerType(QualType T) const {
2312   assert(T->isFunctionType() && "block of function types only");
2313   // Unique pointers, to guarantee there is only one block of a particular
2314   // structure.
2315   llvm::FoldingSetNodeID ID;
2316   BlockPointerType::Profile(ID, T);
2317 
2318   void *InsertPos = nullptr;
2319   if (BlockPointerType *PT =
2320         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2321     return QualType(PT, 0);
2322 
2323   // If the block pointee type isn't canonical, this won't be a canonical
2324   // type either so fill in the canonical type field.
2325   QualType Canonical;
2326   if (!T.isCanonical()) {
2327     Canonical = getBlockPointerType(getCanonicalType(T));
2328 
2329     // Get the new insert position for the node we care about.
2330     BlockPointerType *NewIP =
2331       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2332     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2333   }
2334   BlockPointerType *New
2335     = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2336   Types.push_back(New);
2337   BlockPointerTypes.InsertNode(New, InsertPos);
2338   return QualType(New, 0);
2339 }
2340 
2341 /// getLValueReferenceType - Return the uniqued reference to the type for an
2342 /// lvalue reference to the specified type.
2343 QualType
getLValueReferenceType(QualType T,bool SpelledAsLValue) const2344 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2345   assert(getCanonicalType(T) != OverloadTy &&
2346          "Unresolved overloaded function type");
2347 
2348   // Unique pointers, to guarantee there is only one pointer of a particular
2349   // structure.
2350   llvm::FoldingSetNodeID ID;
2351   ReferenceType::Profile(ID, T, SpelledAsLValue);
2352 
2353   void *InsertPos = nullptr;
2354   if (LValueReferenceType *RT =
2355         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2356     return QualType(RT, 0);
2357 
2358   const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2359 
2360   // If the referencee type isn't canonical, this won't be a canonical type
2361   // either, so fill in the canonical type field.
2362   QualType Canonical;
2363   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2364     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2365     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2366 
2367     // Get the new insert position for the node we care about.
2368     LValueReferenceType *NewIP =
2369       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2370     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2371   }
2372 
2373   LValueReferenceType *New
2374     = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2375                                                      SpelledAsLValue);
2376   Types.push_back(New);
2377   LValueReferenceTypes.InsertNode(New, InsertPos);
2378 
2379   return QualType(New, 0);
2380 }
2381 
2382 /// getRValueReferenceType - Return the uniqued reference to the type for an
2383 /// rvalue reference to the specified type.
getRValueReferenceType(QualType T) const2384 QualType ASTContext::getRValueReferenceType(QualType T) const {
2385   // Unique pointers, to guarantee there is only one pointer of a particular
2386   // structure.
2387   llvm::FoldingSetNodeID ID;
2388   ReferenceType::Profile(ID, T, false);
2389 
2390   void *InsertPos = nullptr;
2391   if (RValueReferenceType *RT =
2392         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2393     return QualType(RT, 0);
2394 
2395   const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2396 
2397   // If the referencee type isn't canonical, this won't be a canonical type
2398   // either, so fill in the canonical type field.
2399   QualType Canonical;
2400   if (InnerRef || !T.isCanonical()) {
2401     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2402     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2403 
2404     // Get the new insert position for the node we care about.
2405     RValueReferenceType *NewIP =
2406       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2407     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2408   }
2409 
2410   RValueReferenceType *New
2411     = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2412   Types.push_back(New);
2413   RValueReferenceTypes.InsertNode(New, InsertPos);
2414   return QualType(New, 0);
2415 }
2416 
2417 /// getMemberPointerType - Return the uniqued reference to the type for a
2418 /// member pointer to the specified type, in the specified class.
getMemberPointerType(QualType T,const Type * Cls) const2419 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2420   // Unique pointers, to guarantee there is only one pointer of a particular
2421   // structure.
2422   llvm::FoldingSetNodeID ID;
2423   MemberPointerType::Profile(ID, T, Cls);
2424 
2425   void *InsertPos = nullptr;
2426   if (MemberPointerType *PT =
2427       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2428     return QualType(PT, 0);
2429 
2430   // If the pointee or class type isn't canonical, this won't be a canonical
2431   // type either, so fill in the canonical type field.
2432   QualType Canonical;
2433   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2434     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2435 
2436     // Get the new insert position for the node we care about.
2437     MemberPointerType *NewIP =
2438       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2439     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2440   }
2441   MemberPointerType *New
2442     = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2443   Types.push_back(New);
2444   MemberPointerTypes.InsertNode(New, InsertPos);
2445   return QualType(New, 0);
2446 }
2447 
2448 /// getConstantArrayType - Return the unique reference to the type for an
2449 /// array of the specified element type.
getConstantArrayType(QualType EltTy,const llvm::APInt & ArySizeIn,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals) const2450 QualType ASTContext::getConstantArrayType(QualType EltTy,
2451                                           const llvm::APInt &ArySizeIn,
2452                                           ArrayType::ArraySizeModifier ASM,
2453                                           unsigned IndexTypeQuals) const {
2454   assert((EltTy->isDependentType() ||
2455           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2456          "Constant array of VLAs is illegal!");
2457 
2458   // Convert the array size into a canonical width matching the pointer size for
2459   // the target.
2460   llvm::APInt ArySize(ArySizeIn);
2461   ArySize =
2462     ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2463 
2464   llvm::FoldingSetNodeID ID;
2465   ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2466 
2467   void *InsertPos = nullptr;
2468   if (ConstantArrayType *ATP =
2469       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2470     return QualType(ATP, 0);
2471 
2472   // If the element type isn't canonical or has qualifiers, this won't
2473   // be a canonical type either, so fill in the canonical type field.
2474   QualType Canon;
2475   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2476     SplitQualType canonSplit = getCanonicalType(EltTy).split();
2477     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2478                                  ASM, IndexTypeQuals);
2479     Canon = getQualifiedType(Canon, canonSplit.Quals);
2480 
2481     // Get the new insert position for the node we care about.
2482     ConstantArrayType *NewIP =
2483       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2484     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2485   }
2486 
2487   ConstantArrayType *New = new(*this,TypeAlignment)
2488     ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2489   ConstantArrayTypes.InsertNode(New, InsertPos);
2490   Types.push_back(New);
2491   return QualType(New, 0);
2492 }
2493 
2494 /// getVariableArrayDecayedType - Turns the given type, which may be
2495 /// variably-modified, into the corresponding type with all the known
2496 /// sizes replaced with [*].
getVariableArrayDecayedType(QualType type) const2497 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2498   // Vastly most common case.
2499   if (!type->isVariablyModifiedType()) return type;
2500 
2501   QualType result;
2502 
2503   SplitQualType split = type.getSplitDesugaredType();
2504   const Type *ty = split.Ty;
2505   switch (ty->getTypeClass()) {
2506 #define TYPE(Class, Base)
2507 #define ABSTRACT_TYPE(Class, Base)
2508 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2509 #include "clang/AST/TypeNodes.def"
2510     llvm_unreachable("didn't desugar past all non-canonical types?");
2511 
2512   // These types should never be variably-modified.
2513   case Type::Builtin:
2514   case Type::Complex:
2515   case Type::Vector:
2516   case Type::ExtVector:
2517   case Type::DependentSizedExtVector:
2518   case Type::ObjCObject:
2519   case Type::ObjCInterface:
2520   case Type::ObjCObjectPointer:
2521   case Type::Record:
2522   case Type::Enum:
2523   case Type::UnresolvedUsing:
2524   case Type::TypeOfExpr:
2525   case Type::TypeOf:
2526   case Type::Decltype:
2527   case Type::UnaryTransform:
2528   case Type::DependentName:
2529   case Type::InjectedClassName:
2530   case Type::TemplateSpecialization:
2531   case Type::DependentTemplateSpecialization:
2532   case Type::TemplateTypeParm:
2533   case Type::SubstTemplateTypeParmPack:
2534   case Type::Auto:
2535   case Type::PackExpansion:
2536     llvm_unreachable("type should never be variably-modified");
2537 
2538   // These types can be variably-modified but should never need to
2539   // further decay.
2540   case Type::FunctionNoProto:
2541   case Type::FunctionProto:
2542   case Type::BlockPointer:
2543   case Type::MemberPointer:
2544     return type;
2545 
2546   // These types can be variably-modified.  All these modifications
2547   // preserve structure except as noted by comments.
2548   // TODO: if we ever care about optimizing VLAs, there are no-op
2549   // optimizations available here.
2550   case Type::Pointer:
2551     result = getPointerType(getVariableArrayDecayedType(
2552                               cast<PointerType>(ty)->getPointeeType()));
2553     break;
2554 
2555   case Type::LValueReference: {
2556     const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2557     result = getLValueReferenceType(
2558                  getVariableArrayDecayedType(lv->getPointeeType()),
2559                                     lv->isSpelledAsLValue());
2560     break;
2561   }
2562 
2563   case Type::RValueReference: {
2564     const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2565     result = getRValueReferenceType(
2566                  getVariableArrayDecayedType(lv->getPointeeType()));
2567     break;
2568   }
2569 
2570   case Type::Atomic: {
2571     const AtomicType *at = cast<AtomicType>(ty);
2572     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2573     break;
2574   }
2575 
2576   case Type::ConstantArray: {
2577     const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2578     result = getConstantArrayType(
2579                  getVariableArrayDecayedType(cat->getElementType()),
2580                                   cat->getSize(),
2581                                   cat->getSizeModifier(),
2582                                   cat->getIndexTypeCVRQualifiers());
2583     break;
2584   }
2585 
2586   case Type::DependentSizedArray: {
2587     const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2588     result = getDependentSizedArrayType(
2589                  getVariableArrayDecayedType(dat->getElementType()),
2590                                         dat->getSizeExpr(),
2591                                         dat->getSizeModifier(),
2592                                         dat->getIndexTypeCVRQualifiers(),
2593                                         dat->getBracketsRange());
2594     break;
2595   }
2596 
2597   // Turn incomplete types into [*] types.
2598   case Type::IncompleteArray: {
2599     const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2600     result = getVariableArrayType(
2601                  getVariableArrayDecayedType(iat->getElementType()),
2602                                   /*size*/ nullptr,
2603                                   ArrayType::Normal,
2604                                   iat->getIndexTypeCVRQualifiers(),
2605                                   SourceRange());
2606     break;
2607   }
2608 
2609   // Turn VLA types into [*] types.
2610   case Type::VariableArray: {
2611     const VariableArrayType *vat = cast<VariableArrayType>(ty);
2612     result = getVariableArrayType(
2613                  getVariableArrayDecayedType(vat->getElementType()),
2614                                   /*size*/ nullptr,
2615                                   ArrayType::Star,
2616                                   vat->getIndexTypeCVRQualifiers(),
2617                                   vat->getBracketsRange());
2618     break;
2619   }
2620   }
2621 
2622   // Apply the top-level qualifiers from the original.
2623   return getQualifiedType(result, split.Quals);
2624 }
2625 
2626 /// getVariableArrayType - Returns a non-unique reference to the type for a
2627 /// variable array of the specified element type.
getVariableArrayType(QualType EltTy,Expr * NumElts,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals,SourceRange Brackets) const2628 QualType ASTContext::getVariableArrayType(QualType EltTy,
2629                                           Expr *NumElts,
2630                                           ArrayType::ArraySizeModifier ASM,
2631                                           unsigned IndexTypeQuals,
2632                                           SourceRange Brackets) const {
2633   // Since we don't unique expressions, it isn't possible to unique VLA's
2634   // that have an expression provided for their size.
2635   QualType Canon;
2636 
2637   // Be sure to pull qualifiers off the element type.
2638   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2639     SplitQualType canonSplit = getCanonicalType(EltTy).split();
2640     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2641                                  IndexTypeQuals, Brackets);
2642     Canon = getQualifiedType(Canon, canonSplit.Quals);
2643   }
2644 
2645   VariableArrayType *New = new(*this, TypeAlignment)
2646     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2647 
2648   VariableArrayTypes.push_back(New);
2649   Types.push_back(New);
2650   return QualType(New, 0);
2651 }
2652 
2653 /// getDependentSizedArrayType - Returns a non-unique reference to
2654 /// the type for a dependently-sized array of the specified element
2655 /// type.
getDependentSizedArrayType(QualType elementType,Expr * numElements,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals,SourceRange brackets) const2656 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2657                                                 Expr *numElements,
2658                                                 ArrayType::ArraySizeModifier ASM,
2659                                                 unsigned elementTypeQuals,
2660                                                 SourceRange brackets) const {
2661   assert((!numElements || numElements->isTypeDependent() ||
2662           numElements->isValueDependent()) &&
2663          "Size must be type- or value-dependent!");
2664 
2665   // Dependently-sized array types that do not have a specified number
2666   // of elements will have their sizes deduced from a dependent
2667   // initializer.  We do no canonicalization here at all, which is okay
2668   // because they can't be used in most locations.
2669   if (!numElements) {
2670     DependentSizedArrayType *newType
2671       = new (*this, TypeAlignment)
2672           DependentSizedArrayType(*this, elementType, QualType(),
2673                                   numElements, ASM, elementTypeQuals,
2674                                   brackets);
2675     Types.push_back(newType);
2676     return QualType(newType, 0);
2677   }
2678 
2679   // Otherwise, we actually build a new type every time, but we
2680   // also build a canonical type.
2681 
2682   SplitQualType canonElementType = getCanonicalType(elementType).split();
2683 
2684   void *insertPos = nullptr;
2685   llvm::FoldingSetNodeID ID;
2686   DependentSizedArrayType::Profile(ID, *this,
2687                                    QualType(canonElementType.Ty, 0),
2688                                    ASM, elementTypeQuals, numElements);
2689 
2690   // Look for an existing type with these properties.
2691   DependentSizedArrayType *canonTy =
2692     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2693 
2694   // If we don't have one, build one.
2695   if (!canonTy) {
2696     canonTy = new (*this, TypeAlignment)
2697       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2698                               QualType(), numElements, ASM, elementTypeQuals,
2699                               brackets);
2700     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2701     Types.push_back(canonTy);
2702   }
2703 
2704   // Apply qualifiers from the element type to the array.
2705   QualType canon = getQualifiedType(QualType(canonTy,0),
2706                                     canonElementType.Quals);
2707 
2708   // If we didn't need extra canonicalization for the element type,
2709   // then just use that as our result.
2710   if (QualType(canonElementType.Ty, 0) == elementType)
2711     return canon;
2712 
2713   // Otherwise, we need to build a type which follows the spelling
2714   // of the element type.
2715   DependentSizedArrayType *sugaredType
2716     = new (*this, TypeAlignment)
2717         DependentSizedArrayType(*this, elementType, canon, numElements,
2718                                 ASM, elementTypeQuals, brackets);
2719   Types.push_back(sugaredType);
2720   return QualType(sugaredType, 0);
2721 }
2722 
getIncompleteArrayType(QualType elementType,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals) const2723 QualType ASTContext::getIncompleteArrayType(QualType elementType,
2724                                             ArrayType::ArraySizeModifier ASM,
2725                                             unsigned elementTypeQuals) const {
2726   llvm::FoldingSetNodeID ID;
2727   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2728 
2729   void *insertPos = nullptr;
2730   if (IncompleteArrayType *iat =
2731        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2732     return QualType(iat, 0);
2733 
2734   // If the element type isn't canonical, this won't be a canonical type
2735   // either, so fill in the canonical type field.  We also have to pull
2736   // qualifiers off the element type.
2737   QualType canon;
2738 
2739   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2740     SplitQualType canonSplit = getCanonicalType(elementType).split();
2741     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2742                                    ASM, elementTypeQuals);
2743     canon = getQualifiedType(canon, canonSplit.Quals);
2744 
2745     // Get the new insert position for the node we care about.
2746     IncompleteArrayType *existing =
2747       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2748     assert(!existing && "Shouldn't be in the map!"); (void) existing;
2749   }
2750 
2751   IncompleteArrayType *newType = new (*this, TypeAlignment)
2752     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2753 
2754   IncompleteArrayTypes.InsertNode(newType, insertPos);
2755   Types.push_back(newType);
2756   return QualType(newType, 0);
2757 }
2758 
2759 /// getVectorType - Return the unique reference to a vector type of
2760 /// the specified element type and size. VectorType must be a built-in type.
getVectorType(QualType vecType,unsigned NumElts,VectorType::VectorKind VecKind) const2761 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2762                                    VectorType::VectorKind VecKind) const {
2763   assert(vecType->isBuiltinType());
2764 
2765   // Check if we've already instantiated a vector of this type.
2766   llvm::FoldingSetNodeID ID;
2767   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2768 
2769   void *InsertPos = nullptr;
2770   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2771     return QualType(VTP, 0);
2772 
2773   // If the element type isn't canonical, this won't be a canonical type either,
2774   // so fill in the canonical type field.
2775   QualType Canonical;
2776   if (!vecType.isCanonical()) {
2777     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2778 
2779     // Get the new insert position for the node we care about.
2780     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2781     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2782   }
2783   VectorType *New = new (*this, TypeAlignment)
2784     VectorType(vecType, NumElts, Canonical, VecKind);
2785   VectorTypes.InsertNode(New, InsertPos);
2786   Types.push_back(New);
2787   return QualType(New, 0);
2788 }
2789 
2790 /// getExtVectorType - Return the unique reference to an extended vector type of
2791 /// the specified element type and size. VectorType must be a built-in type.
2792 QualType
getExtVectorType(QualType vecType,unsigned NumElts) const2793 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2794   assert(vecType->isBuiltinType() || vecType->isDependentType());
2795 
2796   // Check if we've already instantiated a vector of this type.
2797   llvm::FoldingSetNodeID ID;
2798   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2799                       VectorType::GenericVector);
2800   void *InsertPos = nullptr;
2801   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2802     return QualType(VTP, 0);
2803 
2804   // If the element type isn't canonical, this won't be a canonical type either,
2805   // so fill in the canonical type field.
2806   QualType Canonical;
2807   if (!vecType.isCanonical()) {
2808     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2809 
2810     // Get the new insert position for the node we care about.
2811     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2812     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2813   }
2814   ExtVectorType *New = new (*this, TypeAlignment)
2815     ExtVectorType(vecType, NumElts, Canonical);
2816   VectorTypes.InsertNode(New, InsertPos);
2817   Types.push_back(New);
2818   return QualType(New, 0);
2819 }
2820 
2821 QualType
getDependentSizedExtVectorType(QualType vecType,Expr * SizeExpr,SourceLocation AttrLoc) const2822 ASTContext::getDependentSizedExtVectorType(QualType vecType,
2823                                            Expr *SizeExpr,
2824                                            SourceLocation AttrLoc) const {
2825   llvm::FoldingSetNodeID ID;
2826   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2827                                        SizeExpr);
2828 
2829   void *InsertPos = nullptr;
2830   DependentSizedExtVectorType *Canon
2831     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2832   DependentSizedExtVectorType *New;
2833   if (Canon) {
2834     // We already have a canonical version of this array type; use it as
2835     // the canonical type for a newly-built type.
2836     New = new (*this, TypeAlignment)
2837       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2838                                   SizeExpr, AttrLoc);
2839   } else {
2840     QualType CanonVecTy = getCanonicalType(vecType);
2841     if (CanonVecTy == vecType) {
2842       New = new (*this, TypeAlignment)
2843         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2844                                     AttrLoc);
2845 
2846       DependentSizedExtVectorType *CanonCheck
2847         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2848       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2849       (void)CanonCheck;
2850       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2851     } else {
2852       QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2853                                                       SourceLocation());
2854       New = new (*this, TypeAlignment)
2855         DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2856     }
2857   }
2858 
2859   Types.push_back(New);
2860   return QualType(New, 0);
2861 }
2862 
2863 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2864 ///
2865 QualType
getFunctionNoProtoType(QualType ResultTy,const FunctionType::ExtInfo & Info) const2866 ASTContext::getFunctionNoProtoType(QualType ResultTy,
2867                                    const FunctionType::ExtInfo &Info) const {
2868   const CallingConv CallConv = Info.getCC();
2869 
2870   // Unique functions, to guarantee there is only one function of a particular
2871   // structure.
2872   llvm::FoldingSetNodeID ID;
2873   FunctionNoProtoType::Profile(ID, ResultTy, Info);
2874 
2875   void *InsertPos = nullptr;
2876   if (FunctionNoProtoType *FT =
2877         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2878     return QualType(FT, 0);
2879 
2880   QualType Canonical;
2881   if (!ResultTy.isCanonical()) {
2882     Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info);
2883 
2884     // Get the new insert position for the node we care about.
2885     FunctionNoProtoType *NewIP =
2886       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2887     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2888   }
2889 
2890   FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2891   FunctionNoProtoType *New = new (*this, TypeAlignment)
2892     FunctionNoProtoType(ResultTy, Canonical, newInfo);
2893   Types.push_back(New);
2894   FunctionNoProtoTypes.InsertNode(New, InsertPos);
2895   return QualType(New, 0);
2896 }
2897 
2898 /// \brief Determine whether \p T is canonical as the result type of a function.
isCanonicalResultType(QualType T)2899 static bool isCanonicalResultType(QualType T) {
2900   return T.isCanonical() &&
2901          (T.getObjCLifetime() == Qualifiers::OCL_None ||
2902           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2903 }
2904 
2905 QualType
getFunctionType(QualType ResultTy,ArrayRef<QualType> ArgArray,const FunctionProtoType::ExtProtoInfo & EPI) const2906 ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2907                             const FunctionProtoType::ExtProtoInfo &EPI) const {
2908   size_t NumArgs = ArgArray.size();
2909 
2910   // Unique functions, to guarantee there is only one function of a particular
2911   // structure.
2912   llvm::FoldingSetNodeID ID;
2913   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2914                              *this);
2915 
2916   void *InsertPos = nullptr;
2917   if (FunctionProtoType *FTP =
2918         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2919     return QualType(FTP, 0);
2920 
2921   // Determine whether the type being created is already canonical or not.
2922   bool isCanonical =
2923     EPI.ExceptionSpec.Type == EST_None && isCanonicalResultType(ResultTy) &&
2924     !EPI.HasTrailingReturn;
2925   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2926     if (!ArgArray[i].isCanonicalAsParam())
2927       isCanonical = false;
2928 
2929   // If this type isn't canonical, get the canonical version of it.
2930   // The exception spec is not part of the canonical type.
2931   QualType Canonical;
2932   if (!isCanonical) {
2933     SmallVector<QualType, 16> CanonicalArgs;
2934     CanonicalArgs.reserve(NumArgs);
2935     for (unsigned i = 0; i != NumArgs; ++i)
2936       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2937 
2938     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2939     CanonicalEPI.HasTrailingReturn = false;
2940     CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
2941 
2942     // Result types do not have ARC lifetime qualifiers.
2943     QualType CanResultTy = getCanonicalType(ResultTy);
2944     if (ResultTy.getQualifiers().hasObjCLifetime()) {
2945       Qualifiers Qs = CanResultTy.getQualifiers();
2946       Qs.removeObjCLifetime();
2947       CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2948     }
2949 
2950     Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2951 
2952     // Get the new insert position for the node we care about.
2953     FunctionProtoType *NewIP =
2954       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2955     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2956   }
2957 
2958   // FunctionProtoType objects are allocated with extra bytes after
2959   // them for three variable size arrays at the end:
2960   //  - parameter types
2961   //  - exception types
2962   //  - consumed-arguments flags
2963   // Instead of the exception types, there could be a noexcept
2964   // expression, or information used to resolve the exception
2965   // specification.
2966   size_t Size = sizeof(FunctionProtoType) +
2967                 NumArgs * sizeof(QualType);
2968   if (EPI.ExceptionSpec.Type == EST_Dynamic) {
2969     Size += EPI.ExceptionSpec.Exceptions.size() * sizeof(QualType);
2970   } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
2971     Size += sizeof(Expr*);
2972   } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
2973     Size += 2 * sizeof(FunctionDecl*);
2974   } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
2975     Size += sizeof(FunctionDecl*);
2976   }
2977   if (EPI.ConsumedParameters)
2978     Size += NumArgs * sizeof(bool);
2979 
2980   FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2981   FunctionProtoType::ExtProtoInfo newEPI = EPI;
2982   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2983   Types.push_back(FTP);
2984   FunctionProtoTypes.InsertNode(FTP, InsertPos);
2985   return QualType(FTP, 0);
2986 }
2987 
2988 #ifndef NDEBUG
NeedsInjectedClassNameType(const RecordDecl * D)2989 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2990   if (!isa<CXXRecordDecl>(D)) return false;
2991   const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2992   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2993     return true;
2994   if (RD->getDescribedClassTemplate() &&
2995       !isa<ClassTemplateSpecializationDecl>(RD))
2996     return true;
2997   return false;
2998 }
2999 #endif
3000 
3001 /// getInjectedClassNameType - Return the unique reference to the
3002 /// injected class name type for the specified templated declaration.
getInjectedClassNameType(CXXRecordDecl * Decl,QualType TST) const3003 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
3004                                               QualType TST) const {
3005   assert(NeedsInjectedClassNameType(Decl));
3006   if (Decl->TypeForDecl) {
3007     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
3008   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
3009     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
3010     Decl->TypeForDecl = PrevDecl->TypeForDecl;
3011     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
3012   } else {
3013     Type *newType =
3014       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
3015     Decl->TypeForDecl = newType;
3016     Types.push_back(newType);
3017   }
3018   return QualType(Decl->TypeForDecl, 0);
3019 }
3020 
3021 /// getTypeDeclType - Return the unique reference to the type for the
3022 /// specified type declaration.
getTypeDeclTypeSlow(const TypeDecl * Decl) const3023 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
3024   assert(Decl && "Passed null for Decl param");
3025   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
3026 
3027   if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
3028     return getTypedefType(Typedef);
3029 
3030   assert(!isa<TemplateTypeParmDecl>(Decl) &&
3031          "Template type parameter types are always available.");
3032 
3033   if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
3034     assert(Record->isFirstDecl() && "struct/union has previous declaration");
3035     assert(!NeedsInjectedClassNameType(Record));
3036     return getRecordType(Record);
3037   } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
3038     assert(Enum->isFirstDecl() && "enum has previous declaration");
3039     return getEnumType(Enum);
3040   } else if (const UnresolvedUsingTypenameDecl *Using =
3041                dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
3042     Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
3043     Decl->TypeForDecl = newType;
3044     Types.push_back(newType);
3045   } else
3046     llvm_unreachable("TypeDecl without a type?");
3047 
3048   return QualType(Decl->TypeForDecl, 0);
3049 }
3050 
3051 /// getTypedefType - Return the unique reference to the type for the
3052 /// specified typedef name decl.
3053 QualType
getTypedefType(const TypedefNameDecl * Decl,QualType Canonical) const3054 ASTContext::getTypedefType(const TypedefNameDecl *Decl,
3055                            QualType Canonical) const {
3056   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3057 
3058   if (Canonical.isNull())
3059     Canonical = getCanonicalType(Decl->getUnderlyingType());
3060   TypedefType *newType = new(*this, TypeAlignment)
3061     TypedefType(Type::Typedef, Decl, Canonical);
3062   Decl->TypeForDecl = newType;
3063   Types.push_back(newType);
3064   return QualType(newType, 0);
3065 }
3066 
getRecordType(const RecordDecl * Decl) const3067 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
3068   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3069 
3070   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
3071     if (PrevDecl->TypeForDecl)
3072       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3073 
3074   RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
3075   Decl->TypeForDecl = newType;
3076   Types.push_back(newType);
3077   return QualType(newType, 0);
3078 }
3079 
getEnumType(const EnumDecl * Decl) const3080 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
3081   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3082 
3083   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
3084     if (PrevDecl->TypeForDecl)
3085       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3086 
3087   EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
3088   Decl->TypeForDecl = newType;
3089   Types.push_back(newType);
3090   return QualType(newType, 0);
3091 }
3092 
getAttributedType(AttributedType::Kind attrKind,QualType modifiedType,QualType equivalentType)3093 QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
3094                                        QualType modifiedType,
3095                                        QualType equivalentType) {
3096   llvm::FoldingSetNodeID id;
3097   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
3098 
3099   void *insertPos = nullptr;
3100   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
3101   if (type) return QualType(type, 0);
3102 
3103   QualType canon = getCanonicalType(equivalentType);
3104   type = new (*this, TypeAlignment)
3105            AttributedType(canon, attrKind, modifiedType, equivalentType);
3106 
3107   Types.push_back(type);
3108   AttributedTypes.InsertNode(type, insertPos);
3109 
3110   return QualType(type, 0);
3111 }
3112 
3113 
3114 /// \brief Retrieve a substitution-result type.
3115 QualType
getSubstTemplateTypeParmType(const TemplateTypeParmType * Parm,QualType Replacement) const3116 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
3117                                          QualType Replacement) const {
3118   assert(Replacement.isCanonical()
3119          && "replacement types must always be canonical");
3120 
3121   llvm::FoldingSetNodeID ID;
3122   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
3123   void *InsertPos = nullptr;
3124   SubstTemplateTypeParmType *SubstParm
3125     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3126 
3127   if (!SubstParm) {
3128     SubstParm = new (*this, TypeAlignment)
3129       SubstTemplateTypeParmType(Parm, Replacement);
3130     Types.push_back(SubstParm);
3131     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3132   }
3133 
3134   return QualType(SubstParm, 0);
3135 }
3136 
3137 /// \brief Retrieve a
getSubstTemplateTypeParmPackType(const TemplateTypeParmType * Parm,const TemplateArgument & ArgPack)3138 QualType ASTContext::getSubstTemplateTypeParmPackType(
3139                                           const TemplateTypeParmType *Parm,
3140                                               const TemplateArgument &ArgPack) {
3141 #ifndef NDEBUG
3142   for (const auto &P : ArgPack.pack_elements()) {
3143     assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
3144     assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
3145   }
3146 #endif
3147 
3148   llvm::FoldingSetNodeID ID;
3149   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3150   void *InsertPos = nullptr;
3151   if (SubstTemplateTypeParmPackType *SubstParm
3152         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3153     return QualType(SubstParm, 0);
3154 
3155   QualType Canon;
3156   if (!Parm->isCanonicalUnqualified()) {
3157     Canon = getCanonicalType(QualType(Parm, 0));
3158     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3159                                              ArgPack);
3160     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3161   }
3162 
3163   SubstTemplateTypeParmPackType *SubstParm
3164     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3165                                                                ArgPack);
3166   Types.push_back(SubstParm);
3167   SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3168   return QualType(SubstParm, 0);
3169 }
3170 
3171 /// \brief Retrieve the template type parameter type for a template
3172 /// parameter or parameter pack with the given depth, index, and (optionally)
3173 /// name.
getTemplateTypeParmType(unsigned Depth,unsigned Index,bool ParameterPack,TemplateTypeParmDecl * TTPDecl) const3174 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3175                                              bool ParameterPack,
3176                                              TemplateTypeParmDecl *TTPDecl) const {
3177   llvm::FoldingSetNodeID ID;
3178   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3179   void *InsertPos = nullptr;
3180   TemplateTypeParmType *TypeParm
3181     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3182 
3183   if (TypeParm)
3184     return QualType(TypeParm, 0);
3185 
3186   if (TTPDecl) {
3187     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3188     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3189 
3190     TemplateTypeParmType *TypeCheck
3191       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3192     assert(!TypeCheck && "Template type parameter canonical type broken");
3193     (void)TypeCheck;
3194   } else
3195     TypeParm = new (*this, TypeAlignment)
3196       TemplateTypeParmType(Depth, Index, ParameterPack);
3197 
3198   Types.push_back(TypeParm);
3199   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3200 
3201   return QualType(TypeParm, 0);
3202 }
3203 
3204 TypeSourceInfo *
getTemplateSpecializationTypeInfo(TemplateName Name,SourceLocation NameLoc,const TemplateArgumentListInfo & Args,QualType Underlying) const3205 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3206                                               SourceLocation NameLoc,
3207                                         const TemplateArgumentListInfo &Args,
3208                                               QualType Underlying) const {
3209   assert(!Name.getAsDependentTemplateName() &&
3210          "No dependent template names here!");
3211   QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3212 
3213   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3214   TemplateSpecializationTypeLoc TL =
3215       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3216   TL.setTemplateKeywordLoc(SourceLocation());
3217   TL.setTemplateNameLoc(NameLoc);
3218   TL.setLAngleLoc(Args.getLAngleLoc());
3219   TL.setRAngleLoc(Args.getRAngleLoc());
3220   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3221     TL.setArgLocInfo(i, Args[i].getLocInfo());
3222   return DI;
3223 }
3224 
3225 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgumentListInfo & Args,QualType Underlying) const3226 ASTContext::getTemplateSpecializationType(TemplateName Template,
3227                                           const TemplateArgumentListInfo &Args,
3228                                           QualType Underlying) const {
3229   assert(!Template.getAsDependentTemplateName() &&
3230          "No dependent template names here!");
3231 
3232   unsigned NumArgs = Args.size();
3233 
3234   SmallVector<TemplateArgument, 4> ArgVec;
3235   ArgVec.reserve(NumArgs);
3236   for (unsigned i = 0; i != NumArgs; ++i)
3237     ArgVec.push_back(Args[i].getArgument());
3238 
3239   return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3240                                        Underlying);
3241 }
3242 
3243 #ifndef NDEBUG
hasAnyPackExpansions(const TemplateArgument * Args,unsigned NumArgs)3244 static bool hasAnyPackExpansions(const TemplateArgument *Args,
3245                                  unsigned NumArgs) {
3246   for (unsigned I = 0; I != NumArgs; ++I)
3247     if (Args[I].isPackExpansion())
3248       return true;
3249 
3250   return true;
3251 }
3252 #endif
3253 
3254 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgument * Args,unsigned NumArgs,QualType Underlying) const3255 ASTContext::getTemplateSpecializationType(TemplateName Template,
3256                                           const TemplateArgument *Args,
3257                                           unsigned NumArgs,
3258                                           QualType Underlying) const {
3259   assert(!Template.getAsDependentTemplateName() &&
3260          "No dependent template names here!");
3261   // Look through qualified template names.
3262   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3263     Template = TemplateName(QTN->getTemplateDecl());
3264 
3265   bool IsTypeAlias =
3266     Template.getAsTemplateDecl() &&
3267     isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3268   QualType CanonType;
3269   if (!Underlying.isNull())
3270     CanonType = getCanonicalType(Underlying);
3271   else {
3272     // We can get here with an alias template when the specialization contains
3273     // a pack expansion that does not match up with a parameter pack.
3274     assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3275            "Caller must compute aliased type");
3276     IsTypeAlias = false;
3277     CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3278                                                        NumArgs);
3279   }
3280 
3281   // Allocate the (non-canonical) template specialization type, but don't
3282   // try to unique it: these types typically have location information that
3283   // we don't unique and don't want to lose.
3284   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3285                        sizeof(TemplateArgument) * NumArgs +
3286                        (IsTypeAlias? sizeof(QualType) : 0),
3287                        TypeAlignment);
3288   TemplateSpecializationType *Spec
3289     = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3290                                          IsTypeAlias ? Underlying : QualType());
3291 
3292   Types.push_back(Spec);
3293   return QualType(Spec, 0);
3294 }
3295 
3296 QualType
getCanonicalTemplateSpecializationType(TemplateName Template,const TemplateArgument * Args,unsigned NumArgs) const3297 ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3298                                                    const TemplateArgument *Args,
3299                                                    unsigned NumArgs) const {
3300   assert(!Template.getAsDependentTemplateName() &&
3301          "No dependent template names here!");
3302 
3303   // Look through qualified template names.
3304   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3305     Template = TemplateName(QTN->getTemplateDecl());
3306 
3307   // Build the canonical template specialization type.
3308   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3309   SmallVector<TemplateArgument, 4> CanonArgs;
3310   CanonArgs.reserve(NumArgs);
3311   for (unsigned I = 0; I != NumArgs; ++I)
3312     CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3313 
3314   // Determine whether this canonical template specialization type already
3315   // exists.
3316   llvm::FoldingSetNodeID ID;
3317   TemplateSpecializationType::Profile(ID, CanonTemplate,
3318                                       CanonArgs.data(), NumArgs, *this);
3319 
3320   void *InsertPos = nullptr;
3321   TemplateSpecializationType *Spec
3322     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3323 
3324   if (!Spec) {
3325     // Allocate a new canonical template specialization type.
3326     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3327                           sizeof(TemplateArgument) * NumArgs),
3328                          TypeAlignment);
3329     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3330                                                 CanonArgs.data(), NumArgs,
3331                                                 QualType(), QualType());
3332     Types.push_back(Spec);
3333     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3334   }
3335 
3336   assert(Spec->isDependentType() &&
3337          "Non-dependent template-id type must have a canonical type");
3338   return QualType(Spec, 0);
3339 }
3340 
3341 QualType
getElaboratedType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,QualType NamedType) const3342 ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3343                               NestedNameSpecifier *NNS,
3344                               QualType NamedType) const {
3345   llvm::FoldingSetNodeID ID;
3346   ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3347 
3348   void *InsertPos = nullptr;
3349   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3350   if (T)
3351     return QualType(T, 0);
3352 
3353   QualType Canon = NamedType;
3354   if (!Canon.isCanonical()) {
3355     Canon = getCanonicalType(NamedType);
3356     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3357     assert(!CheckT && "Elaborated canonical type broken");
3358     (void)CheckT;
3359   }
3360 
3361   T = new (*this, TypeAlignment) ElaboratedType(Keyword, NNS, NamedType, Canon);
3362   Types.push_back(T);
3363   ElaboratedTypes.InsertNode(T, InsertPos);
3364   return QualType(T, 0);
3365 }
3366 
3367 QualType
getParenType(QualType InnerType) const3368 ASTContext::getParenType(QualType InnerType) const {
3369   llvm::FoldingSetNodeID ID;
3370   ParenType::Profile(ID, InnerType);
3371 
3372   void *InsertPos = nullptr;
3373   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3374   if (T)
3375     return QualType(T, 0);
3376 
3377   QualType Canon = InnerType;
3378   if (!Canon.isCanonical()) {
3379     Canon = getCanonicalType(InnerType);
3380     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3381     assert(!CheckT && "Paren canonical type broken");
3382     (void)CheckT;
3383   }
3384 
3385   T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
3386   Types.push_back(T);
3387   ParenTypes.InsertNode(T, InsertPos);
3388   return QualType(T, 0);
3389 }
3390 
getDependentNameType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,QualType Canon) const3391 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3392                                           NestedNameSpecifier *NNS,
3393                                           const IdentifierInfo *Name,
3394                                           QualType Canon) const {
3395   if (Canon.isNull()) {
3396     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3397     ElaboratedTypeKeyword CanonKeyword = Keyword;
3398     if (Keyword == ETK_None)
3399       CanonKeyword = ETK_Typename;
3400 
3401     if (CanonNNS != NNS || CanonKeyword != Keyword)
3402       Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3403   }
3404 
3405   llvm::FoldingSetNodeID ID;
3406   DependentNameType::Profile(ID, Keyword, NNS, Name);
3407 
3408   void *InsertPos = nullptr;
3409   DependentNameType *T
3410     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3411   if (T)
3412     return QualType(T, 0);
3413 
3414   T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
3415   Types.push_back(T);
3416   DependentNameTypes.InsertNode(T, InsertPos);
3417   return QualType(T, 0);
3418 }
3419 
3420 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,const TemplateArgumentListInfo & Args) const3421 ASTContext::getDependentTemplateSpecializationType(
3422                                  ElaboratedTypeKeyword Keyword,
3423                                  NestedNameSpecifier *NNS,
3424                                  const IdentifierInfo *Name,
3425                                  const TemplateArgumentListInfo &Args) const {
3426   // TODO: avoid this copy
3427   SmallVector<TemplateArgument, 16> ArgCopy;
3428   for (unsigned I = 0, E = Args.size(); I != E; ++I)
3429     ArgCopy.push_back(Args[I].getArgument());
3430   return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3431                                                 ArgCopy.size(),
3432                                                 ArgCopy.data());
3433 }
3434 
3435 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,unsigned NumArgs,const TemplateArgument * Args) const3436 ASTContext::getDependentTemplateSpecializationType(
3437                                  ElaboratedTypeKeyword Keyword,
3438                                  NestedNameSpecifier *NNS,
3439                                  const IdentifierInfo *Name,
3440                                  unsigned NumArgs,
3441                                  const TemplateArgument *Args) const {
3442   assert((!NNS || NNS->isDependent()) &&
3443          "nested-name-specifier must be dependent");
3444 
3445   llvm::FoldingSetNodeID ID;
3446   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3447                                                Name, NumArgs, Args);
3448 
3449   void *InsertPos = nullptr;
3450   DependentTemplateSpecializationType *T
3451     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3452   if (T)
3453     return QualType(T, 0);
3454 
3455   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3456 
3457   ElaboratedTypeKeyword CanonKeyword = Keyword;
3458   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3459 
3460   bool AnyNonCanonArgs = false;
3461   SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3462   for (unsigned I = 0; I != NumArgs; ++I) {
3463     CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3464     if (!CanonArgs[I].structurallyEquals(Args[I]))
3465       AnyNonCanonArgs = true;
3466   }
3467 
3468   QualType Canon;
3469   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3470     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3471                                                    Name, NumArgs,
3472                                                    CanonArgs.data());
3473 
3474     // Find the insert position again.
3475     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3476   }
3477 
3478   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3479                         sizeof(TemplateArgument) * NumArgs),
3480                        TypeAlignment);
3481   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3482                                                     Name, NumArgs, Args, Canon);
3483   Types.push_back(T);
3484   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3485   return QualType(T, 0);
3486 }
3487 
getPackExpansionType(QualType Pattern,Optional<unsigned> NumExpansions)3488 QualType ASTContext::getPackExpansionType(QualType Pattern,
3489                                           Optional<unsigned> NumExpansions) {
3490   llvm::FoldingSetNodeID ID;
3491   PackExpansionType::Profile(ID, Pattern, NumExpansions);
3492 
3493   assert(Pattern->containsUnexpandedParameterPack() &&
3494          "Pack expansions must expand one or more parameter packs");
3495   void *InsertPos = nullptr;
3496   PackExpansionType *T
3497     = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3498   if (T)
3499     return QualType(T, 0);
3500 
3501   QualType Canon;
3502   if (!Pattern.isCanonical()) {
3503     Canon = getCanonicalType(Pattern);
3504     // The canonical type might not contain an unexpanded parameter pack, if it
3505     // contains an alias template specialization which ignores one of its
3506     // parameters.
3507     if (Canon->containsUnexpandedParameterPack()) {
3508       Canon = getPackExpansionType(Canon, NumExpansions);
3509 
3510       // Find the insert position again, in case we inserted an element into
3511       // PackExpansionTypes and invalidated our insert position.
3512       PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3513     }
3514   }
3515 
3516   T = new (*this, TypeAlignment)
3517       PackExpansionType(Pattern, Canon, NumExpansions);
3518   Types.push_back(T);
3519   PackExpansionTypes.InsertNode(T, InsertPos);
3520   return QualType(T, 0);
3521 }
3522 
3523 /// CmpProtocolNames - Comparison predicate for sorting protocols
3524 /// alphabetically.
CmpProtocolNames(ObjCProtocolDecl * const * LHS,ObjCProtocolDecl * const * RHS)3525 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
3526                             ObjCProtocolDecl *const *RHS) {
3527   return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
3528 }
3529 
areSortedAndUniqued(ObjCProtocolDecl * const * Protocols,unsigned NumProtocols)3530 static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3531                                 unsigned NumProtocols) {
3532   if (NumProtocols == 0) return true;
3533 
3534   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3535     return false;
3536 
3537   for (unsigned i = 1; i != NumProtocols; ++i)
3538     if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
3539         Protocols[i]->getCanonicalDecl() != Protocols[i])
3540       return false;
3541   return true;
3542 }
3543 
SortAndUniqueProtocols(ObjCProtocolDecl ** Protocols,unsigned & NumProtocols)3544 static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3545                                    unsigned &NumProtocols) {
3546   ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3547 
3548   // Sort protocols, keyed by name.
3549   llvm::array_pod_sort(Protocols, ProtocolsEnd, CmpProtocolNames);
3550 
3551   // Canonicalize.
3552   for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3553     Protocols[I] = Protocols[I]->getCanonicalDecl();
3554 
3555   // Remove duplicates.
3556   ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3557   NumProtocols = ProtocolsEnd-Protocols;
3558 }
3559 
getObjCObjectType(QualType BaseType,ObjCProtocolDecl * const * Protocols,unsigned NumProtocols) const3560 QualType ASTContext::getObjCObjectType(QualType BaseType,
3561                                        ObjCProtocolDecl * const *Protocols,
3562                                        unsigned NumProtocols) const {
3563   // If the base type is an interface and there aren't any protocols
3564   // to add, then the interface type will do just fine.
3565   if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3566     return BaseType;
3567 
3568   // Look in the folding set for an existing type.
3569   llvm::FoldingSetNodeID ID;
3570   ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3571   void *InsertPos = nullptr;
3572   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3573     return QualType(QT, 0);
3574 
3575   // Build the canonical type, which has the canonical base type and
3576   // a sorted-and-uniqued list of protocols.
3577   QualType Canonical;
3578   bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3579   if (!ProtocolsSorted || !BaseType.isCanonical()) {
3580     if (!ProtocolsSorted) {
3581       SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3582                                                      Protocols + NumProtocols);
3583       unsigned UniqueCount = NumProtocols;
3584 
3585       SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3586       Canonical = getObjCObjectType(getCanonicalType(BaseType),
3587                                     &Sorted[0], UniqueCount);
3588     } else {
3589       Canonical = getObjCObjectType(getCanonicalType(BaseType),
3590                                     Protocols, NumProtocols);
3591     }
3592 
3593     // Regenerate InsertPos.
3594     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3595   }
3596 
3597   unsigned Size = sizeof(ObjCObjectTypeImpl);
3598   Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3599   void *Mem = Allocate(Size, TypeAlignment);
3600   ObjCObjectTypeImpl *T =
3601     new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3602 
3603   Types.push_back(T);
3604   ObjCObjectTypes.InsertNode(T, InsertPos);
3605   return QualType(T, 0);
3606 }
3607 
3608 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
3609 /// protocol list adopt all protocols in QT's qualified-id protocol
3610 /// list.
ObjCObjectAdoptsQTypeProtocols(QualType QT,ObjCInterfaceDecl * IC)3611 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
3612                                                 ObjCInterfaceDecl *IC) {
3613   if (!QT->isObjCQualifiedIdType())
3614     return false;
3615 
3616   if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) {
3617     // If both the right and left sides have qualifiers.
3618     for (auto *Proto : OPT->quals()) {
3619       if (!IC->ClassImplementsProtocol(Proto, false))
3620         return false;
3621     }
3622     return true;
3623   }
3624   return false;
3625 }
3626 
3627 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
3628 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
3629 /// of protocols.
QIdProtocolsAdoptObjCObjectProtocols(QualType QT,ObjCInterfaceDecl * IDecl)3630 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
3631                                                 ObjCInterfaceDecl *IDecl) {
3632   if (!QT->isObjCQualifiedIdType())
3633     return false;
3634   const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
3635   if (!OPT)
3636     return false;
3637   if (!IDecl->hasDefinition())
3638     return false;
3639   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
3640   CollectInheritedProtocols(IDecl, InheritedProtocols);
3641   if (InheritedProtocols.empty())
3642     return false;
3643   // Check that if every protocol in list of id<plist> conforms to a protcol
3644   // of IDecl's, then bridge casting is ok.
3645   bool Conforms = false;
3646   for (auto *Proto : OPT->quals()) {
3647     Conforms = false;
3648     for (auto *PI : InheritedProtocols) {
3649       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
3650         Conforms = true;
3651         break;
3652       }
3653     }
3654     if (!Conforms)
3655       break;
3656   }
3657   if (Conforms)
3658     return true;
3659 
3660   for (auto *PI : InheritedProtocols) {
3661     // If both the right and left sides have qualifiers.
3662     bool Adopts = false;
3663     for (auto *Proto : OPT->quals()) {
3664       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
3665       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
3666         break;
3667     }
3668     if (!Adopts)
3669       return false;
3670   }
3671   return true;
3672 }
3673 
3674 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3675 /// the given object type.
getObjCObjectPointerType(QualType ObjectT) const3676 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3677   llvm::FoldingSetNodeID ID;
3678   ObjCObjectPointerType::Profile(ID, ObjectT);
3679 
3680   void *InsertPos = nullptr;
3681   if (ObjCObjectPointerType *QT =
3682               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3683     return QualType(QT, 0);
3684 
3685   // Find the canonical object type.
3686   QualType Canonical;
3687   if (!ObjectT.isCanonical()) {
3688     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3689 
3690     // Regenerate InsertPos.
3691     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3692   }
3693 
3694   // No match.
3695   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3696   ObjCObjectPointerType *QType =
3697     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3698 
3699   Types.push_back(QType);
3700   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3701   return QualType(QType, 0);
3702 }
3703 
3704 /// getObjCInterfaceType - Return the unique reference to the type for the
3705 /// specified ObjC interface decl. The list of protocols is optional.
getObjCInterfaceType(const ObjCInterfaceDecl * Decl,ObjCInterfaceDecl * PrevDecl) const3706 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3707                                           ObjCInterfaceDecl *PrevDecl) const {
3708   if (Decl->TypeForDecl)
3709     return QualType(Decl->TypeForDecl, 0);
3710 
3711   if (PrevDecl) {
3712     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3713     Decl->TypeForDecl = PrevDecl->TypeForDecl;
3714     return QualType(PrevDecl->TypeForDecl, 0);
3715   }
3716 
3717   // Prefer the definition, if there is one.
3718   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3719     Decl = Def;
3720 
3721   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3722   ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3723   Decl->TypeForDecl = T;
3724   Types.push_back(T);
3725   return QualType(T, 0);
3726 }
3727 
3728 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3729 /// TypeOfExprType AST's (since expression's are never shared). For example,
3730 /// multiple declarations that refer to "typeof(x)" all contain different
3731 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
3732 /// on canonical type's (which are always unique).
getTypeOfExprType(Expr * tofExpr) const3733 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3734   TypeOfExprType *toe;
3735   if (tofExpr->isTypeDependent()) {
3736     llvm::FoldingSetNodeID ID;
3737     DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3738 
3739     void *InsertPos = nullptr;
3740     DependentTypeOfExprType *Canon
3741       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3742     if (Canon) {
3743       // We already have a "canonical" version of an identical, dependent
3744       // typeof(expr) type. Use that as our canonical type.
3745       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3746                                           QualType((TypeOfExprType*)Canon, 0));
3747     } else {
3748       // Build a new, canonical typeof(expr) type.
3749       Canon
3750         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3751       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3752       toe = Canon;
3753     }
3754   } else {
3755     QualType Canonical = getCanonicalType(tofExpr->getType());
3756     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3757   }
3758   Types.push_back(toe);
3759   return QualType(toe, 0);
3760 }
3761 
3762 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3763 /// TypeOfType nodes. The only motivation to unique these nodes would be
3764 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3765 /// an issue. This doesn't affect the type checker, since it operates
3766 /// on canonical types (which are always unique).
getTypeOfType(QualType tofType) const3767 QualType ASTContext::getTypeOfType(QualType tofType) const {
3768   QualType Canonical = getCanonicalType(tofType);
3769   TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3770   Types.push_back(tot);
3771   return QualType(tot, 0);
3772 }
3773 
3774 
3775 /// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType
3776 /// nodes. This would never be helpful, since each such type has its own
3777 /// expression, and would not give a significant memory saving, since there
3778 /// is an Expr tree under each such type.
getDecltypeType(Expr * e,QualType UnderlyingType) const3779 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3780   DecltypeType *dt;
3781 
3782   // C++11 [temp.type]p2:
3783   //   If an expression e involves a template parameter, decltype(e) denotes a
3784   //   unique dependent type. Two such decltype-specifiers refer to the same
3785   //   type only if their expressions are equivalent (14.5.6.1).
3786   if (e->isInstantiationDependent()) {
3787     llvm::FoldingSetNodeID ID;
3788     DependentDecltypeType::Profile(ID, *this, e);
3789 
3790     void *InsertPos = nullptr;
3791     DependentDecltypeType *Canon
3792       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3793     if (!Canon) {
3794       // Build a new, canonical typeof(expr) type.
3795       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3796       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3797     }
3798     dt = new (*this, TypeAlignment)
3799         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
3800   } else {
3801     dt = new (*this, TypeAlignment)
3802         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
3803   }
3804   Types.push_back(dt);
3805   return QualType(dt, 0);
3806 }
3807 
3808 /// getUnaryTransformationType - We don't unique these, since the memory
3809 /// savings are minimal and these are rare.
getUnaryTransformType(QualType BaseType,QualType UnderlyingType,UnaryTransformType::UTTKind Kind) const3810 QualType ASTContext::getUnaryTransformType(QualType BaseType,
3811                                            QualType UnderlyingType,
3812                                            UnaryTransformType::UTTKind Kind)
3813     const {
3814   UnaryTransformType *Ty =
3815     new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3816                                                    Kind,
3817                                  UnderlyingType->isDependentType() ?
3818                                  QualType() : getCanonicalType(UnderlyingType));
3819   Types.push_back(Ty);
3820   return QualType(Ty, 0);
3821 }
3822 
3823 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
3824 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3825 /// canonical deduced-but-dependent 'auto' type.
getAutoType(QualType DeducedType,bool IsDecltypeAuto,bool IsDependent) const3826 QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
3827                                  bool IsDependent) const {
3828   if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
3829     return getAutoDeductType();
3830 
3831   // Look in the folding set for an existing type.
3832   void *InsertPos = nullptr;
3833   llvm::FoldingSetNodeID ID;
3834   AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
3835   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3836     return QualType(AT, 0);
3837 
3838   AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3839                                                      IsDecltypeAuto,
3840                                                      IsDependent);
3841   Types.push_back(AT);
3842   if (InsertPos)
3843     AutoTypes.InsertNode(AT, InsertPos);
3844   return QualType(AT, 0);
3845 }
3846 
3847 /// getAtomicType - Return the uniqued reference to the atomic type for
3848 /// the given value type.
getAtomicType(QualType T) const3849 QualType ASTContext::getAtomicType(QualType T) const {
3850   // Unique pointers, to guarantee there is only one pointer of a particular
3851   // structure.
3852   llvm::FoldingSetNodeID ID;
3853   AtomicType::Profile(ID, T);
3854 
3855   void *InsertPos = nullptr;
3856   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3857     return QualType(AT, 0);
3858 
3859   // If the atomic value type isn't canonical, this won't be a canonical type
3860   // either, so fill in the canonical type field.
3861   QualType Canonical;
3862   if (!T.isCanonical()) {
3863     Canonical = getAtomicType(getCanonicalType(T));
3864 
3865     // Get the new insert position for the node we care about.
3866     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3867     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3868   }
3869   AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3870   Types.push_back(New);
3871   AtomicTypes.InsertNode(New, InsertPos);
3872   return QualType(New, 0);
3873 }
3874 
3875 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
getAutoDeductType() const3876 QualType ASTContext::getAutoDeductType() const {
3877   if (AutoDeductTy.isNull())
3878     AutoDeductTy = QualType(
3879       new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
3880                                           /*dependent*/false),
3881       0);
3882   return AutoDeductTy;
3883 }
3884 
3885 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
getAutoRRefDeductType() const3886 QualType ASTContext::getAutoRRefDeductType() const {
3887   if (AutoRRefDeductTy.isNull())
3888     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3889   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3890   return AutoRRefDeductTy;
3891 }
3892 
3893 /// getTagDeclType - Return the unique reference to the type for the
3894 /// specified TagDecl (struct/union/class/enum) decl.
getTagDeclType(const TagDecl * Decl) const3895 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3896   assert (Decl);
3897   // FIXME: What is the design on getTagDeclType when it requires casting
3898   // away const?  mutable?
3899   return getTypeDeclType(const_cast<TagDecl*>(Decl));
3900 }
3901 
3902 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3903 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3904 /// needs to agree with the definition in <stddef.h>.
getSizeType() const3905 CanQualType ASTContext::getSizeType() const {
3906   return getFromTargetType(Target->getSizeType());
3907 }
3908 
3909 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
getIntMaxType() const3910 CanQualType ASTContext::getIntMaxType() const {
3911   return getFromTargetType(Target->getIntMaxType());
3912 }
3913 
3914 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
getUIntMaxType() const3915 CanQualType ASTContext::getUIntMaxType() const {
3916   return getFromTargetType(Target->getUIntMaxType());
3917 }
3918 
3919 /// getSignedWCharType - Return the type of "signed wchar_t".
3920 /// Used when in C++, as a GCC extension.
getSignedWCharType() const3921 QualType ASTContext::getSignedWCharType() const {
3922   // FIXME: derive from "Target" ?
3923   return WCharTy;
3924 }
3925 
3926 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3927 /// Used when in C++, as a GCC extension.
getUnsignedWCharType() const3928 QualType ASTContext::getUnsignedWCharType() const {
3929   // FIXME: derive from "Target" ?
3930   return UnsignedIntTy;
3931 }
3932 
getIntPtrType() const3933 QualType ASTContext::getIntPtrType() const {
3934   return getFromTargetType(Target->getIntPtrType());
3935 }
3936 
getUIntPtrType() const3937 QualType ASTContext::getUIntPtrType() const {
3938   return getCorrespondingUnsignedType(getIntPtrType());
3939 }
3940 
3941 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3942 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
getPointerDiffType() const3943 QualType ASTContext::getPointerDiffType() const {
3944   return getFromTargetType(Target->getPtrDiffType(0));
3945 }
3946 
3947 /// \brief Return the unique type for "pid_t" defined in
3948 /// <sys/types.h>. We need this to compute the correct type for vfork().
getProcessIDType() const3949 QualType ASTContext::getProcessIDType() const {
3950   return getFromTargetType(Target->getProcessIDType());
3951 }
3952 
3953 //===----------------------------------------------------------------------===//
3954 //                              Type Operators
3955 //===----------------------------------------------------------------------===//
3956 
getCanonicalParamType(QualType T) const3957 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3958   // Push qualifiers into arrays, and then discard any remaining
3959   // qualifiers.
3960   T = getCanonicalType(T);
3961   T = getVariableArrayDecayedType(T);
3962   const Type *Ty = T.getTypePtr();
3963   QualType Result;
3964   if (isa<ArrayType>(Ty)) {
3965     Result = getArrayDecayedType(QualType(Ty,0));
3966   } else if (isa<FunctionType>(Ty)) {
3967     Result = getPointerType(QualType(Ty, 0));
3968   } else {
3969     Result = QualType(Ty, 0);
3970   }
3971 
3972   return CanQualType::CreateUnsafe(Result);
3973 }
3974 
getUnqualifiedArrayType(QualType type,Qualifiers & quals)3975 QualType ASTContext::getUnqualifiedArrayType(QualType type,
3976                                              Qualifiers &quals) {
3977   SplitQualType splitType = type.getSplitUnqualifiedType();
3978 
3979   // FIXME: getSplitUnqualifiedType() actually walks all the way to
3980   // the unqualified desugared type and then drops it on the floor.
3981   // We then have to strip that sugar back off with
3982   // getUnqualifiedDesugaredType(), which is silly.
3983   const ArrayType *AT =
3984     dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3985 
3986   // If we don't have an array, just use the results in splitType.
3987   if (!AT) {
3988     quals = splitType.Quals;
3989     return QualType(splitType.Ty, 0);
3990   }
3991 
3992   // Otherwise, recurse on the array's element type.
3993   QualType elementType = AT->getElementType();
3994   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3995 
3996   // If that didn't change the element type, AT has no qualifiers, so we
3997   // can just use the results in splitType.
3998   if (elementType == unqualElementType) {
3999     assert(quals.empty()); // from the recursive call
4000     quals = splitType.Quals;
4001     return QualType(splitType.Ty, 0);
4002   }
4003 
4004   // Otherwise, add in the qualifiers from the outermost type, then
4005   // build the type back up.
4006   quals.addConsistentQualifiers(splitType.Quals);
4007 
4008   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4009     return getConstantArrayType(unqualElementType, CAT->getSize(),
4010                                 CAT->getSizeModifier(), 0);
4011   }
4012 
4013   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
4014     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
4015   }
4016 
4017   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
4018     return getVariableArrayType(unqualElementType,
4019                                 VAT->getSizeExpr(),
4020                                 VAT->getSizeModifier(),
4021                                 VAT->getIndexTypeCVRQualifiers(),
4022                                 VAT->getBracketsRange());
4023   }
4024 
4025   const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
4026   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
4027                                     DSAT->getSizeModifier(), 0,
4028                                     SourceRange());
4029 }
4030 
4031 /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
4032 /// may be similar (C++ 4.4), replaces T1 and T2 with the type that
4033 /// they point to and return true. If T1 and T2 aren't pointer types
4034 /// or pointer-to-member types, or if they are not similar at this
4035 /// level, returns false and leaves T1 and T2 unchanged. Top-level
4036 /// qualifiers on T1 and T2 are ignored. This function will typically
4037 /// be called in a loop that successively "unwraps" pointer and
4038 /// pointer-to-member types to compare them at each level.
UnwrapSimilarPointerTypes(QualType & T1,QualType & T2)4039 bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
4040   const PointerType *T1PtrType = T1->getAs<PointerType>(),
4041                     *T2PtrType = T2->getAs<PointerType>();
4042   if (T1PtrType && T2PtrType) {
4043     T1 = T1PtrType->getPointeeType();
4044     T2 = T2PtrType->getPointeeType();
4045     return true;
4046   }
4047 
4048   const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
4049                           *T2MPType = T2->getAs<MemberPointerType>();
4050   if (T1MPType && T2MPType &&
4051       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
4052                              QualType(T2MPType->getClass(), 0))) {
4053     T1 = T1MPType->getPointeeType();
4054     T2 = T2MPType->getPointeeType();
4055     return true;
4056   }
4057 
4058   if (getLangOpts().ObjC1) {
4059     const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
4060                                 *T2OPType = T2->getAs<ObjCObjectPointerType>();
4061     if (T1OPType && T2OPType) {
4062       T1 = T1OPType->getPointeeType();
4063       T2 = T2OPType->getPointeeType();
4064       return true;
4065     }
4066   }
4067 
4068   // FIXME: Block pointers, too?
4069 
4070   return false;
4071 }
4072 
4073 DeclarationNameInfo
getNameForTemplate(TemplateName Name,SourceLocation NameLoc) const4074 ASTContext::getNameForTemplate(TemplateName Name,
4075                                SourceLocation NameLoc) const {
4076   switch (Name.getKind()) {
4077   case TemplateName::QualifiedTemplate:
4078   case TemplateName::Template:
4079     // DNInfo work in progress: CHECKME: what about DNLoc?
4080     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
4081                                NameLoc);
4082 
4083   case TemplateName::OverloadedTemplate: {
4084     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
4085     // DNInfo work in progress: CHECKME: what about DNLoc?
4086     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
4087   }
4088 
4089   case TemplateName::DependentTemplate: {
4090     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4091     DeclarationName DName;
4092     if (DTN->isIdentifier()) {
4093       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
4094       return DeclarationNameInfo(DName, NameLoc);
4095     } else {
4096       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
4097       // DNInfo work in progress: FIXME: source locations?
4098       DeclarationNameLoc DNLoc;
4099       DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
4100       DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
4101       return DeclarationNameInfo(DName, NameLoc, DNLoc);
4102     }
4103   }
4104 
4105   case TemplateName::SubstTemplateTemplateParm: {
4106     SubstTemplateTemplateParmStorage *subst
4107       = Name.getAsSubstTemplateTemplateParm();
4108     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
4109                                NameLoc);
4110   }
4111 
4112   case TemplateName::SubstTemplateTemplateParmPack: {
4113     SubstTemplateTemplateParmPackStorage *subst
4114       = Name.getAsSubstTemplateTemplateParmPack();
4115     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
4116                                NameLoc);
4117   }
4118   }
4119 
4120   llvm_unreachable("bad template name kind!");
4121 }
4122 
getCanonicalTemplateName(TemplateName Name) const4123 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
4124   switch (Name.getKind()) {
4125   case TemplateName::QualifiedTemplate:
4126   case TemplateName::Template: {
4127     TemplateDecl *Template = Name.getAsTemplateDecl();
4128     if (TemplateTemplateParmDecl *TTP
4129           = dyn_cast<TemplateTemplateParmDecl>(Template))
4130       Template = getCanonicalTemplateTemplateParmDecl(TTP);
4131 
4132     // The canonical template name is the canonical template declaration.
4133     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
4134   }
4135 
4136   case TemplateName::OverloadedTemplate:
4137     llvm_unreachable("cannot canonicalize overloaded template");
4138 
4139   case TemplateName::DependentTemplate: {
4140     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4141     assert(DTN && "Non-dependent template names must refer to template decls.");
4142     return DTN->CanonicalTemplateName;
4143   }
4144 
4145   case TemplateName::SubstTemplateTemplateParm: {
4146     SubstTemplateTemplateParmStorage *subst
4147       = Name.getAsSubstTemplateTemplateParm();
4148     return getCanonicalTemplateName(subst->getReplacement());
4149   }
4150 
4151   case TemplateName::SubstTemplateTemplateParmPack: {
4152     SubstTemplateTemplateParmPackStorage *subst
4153                                   = Name.getAsSubstTemplateTemplateParmPack();
4154     TemplateTemplateParmDecl *canonParameter
4155       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
4156     TemplateArgument canonArgPack
4157       = getCanonicalTemplateArgument(subst->getArgumentPack());
4158     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
4159   }
4160   }
4161 
4162   llvm_unreachable("bad template name!");
4163 }
4164 
hasSameTemplateName(TemplateName X,TemplateName Y)4165 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
4166   X = getCanonicalTemplateName(X);
4167   Y = getCanonicalTemplateName(Y);
4168   return X.getAsVoidPointer() == Y.getAsVoidPointer();
4169 }
4170 
4171 TemplateArgument
getCanonicalTemplateArgument(const TemplateArgument & Arg) const4172 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
4173   switch (Arg.getKind()) {
4174     case TemplateArgument::Null:
4175       return Arg;
4176 
4177     case TemplateArgument::Expression:
4178       return Arg;
4179 
4180     case TemplateArgument::Declaration: {
4181       ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
4182       return TemplateArgument(D, Arg.getParamTypeForDecl());
4183     }
4184 
4185     case TemplateArgument::NullPtr:
4186       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
4187                               /*isNullPtr*/true);
4188 
4189     case TemplateArgument::Template:
4190       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
4191 
4192     case TemplateArgument::TemplateExpansion:
4193       return TemplateArgument(getCanonicalTemplateName(
4194                                          Arg.getAsTemplateOrTemplatePattern()),
4195                               Arg.getNumTemplateExpansions());
4196 
4197     case TemplateArgument::Integral:
4198       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
4199 
4200     case TemplateArgument::Type:
4201       return TemplateArgument(getCanonicalType(Arg.getAsType()));
4202 
4203     case TemplateArgument::Pack: {
4204       if (Arg.pack_size() == 0)
4205         return Arg;
4206 
4207       TemplateArgument *CanonArgs
4208         = new (*this) TemplateArgument[Arg.pack_size()];
4209       unsigned Idx = 0;
4210       for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
4211                                         AEnd = Arg.pack_end();
4212            A != AEnd; (void)++A, ++Idx)
4213         CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
4214 
4215       return TemplateArgument(CanonArgs, Arg.pack_size());
4216     }
4217   }
4218 
4219   // Silence GCC warning
4220   llvm_unreachable("Unhandled template argument kind");
4221 }
4222 
4223 NestedNameSpecifier *
getCanonicalNestedNameSpecifier(NestedNameSpecifier * NNS) const4224 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4225   if (!NNS)
4226     return nullptr;
4227 
4228   switch (NNS->getKind()) {
4229   case NestedNameSpecifier::Identifier:
4230     // Canonicalize the prefix but keep the identifier the same.
4231     return NestedNameSpecifier::Create(*this,
4232                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4233                                        NNS->getAsIdentifier());
4234 
4235   case NestedNameSpecifier::Namespace:
4236     // A namespace is canonical; build a nested-name-specifier with
4237     // this namespace and no prefix.
4238     return NestedNameSpecifier::Create(*this, nullptr,
4239                                  NNS->getAsNamespace()->getOriginalNamespace());
4240 
4241   case NestedNameSpecifier::NamespaceAlias:
4242     // A namespace is canonical; build a nested-name-specifier with
4243     // this namespace and no prefix.
4244     return NestedNameSpecifier::Create(*this, nullptr,
4245                                     NNS->getAsNamespaceAlias()->getNamespace()
4246                                                       ->getOriginalNamespace());
4247 
4248   case NestedNameSpecifier::TypeSpec:
4249   case NestedNameSpecifier::TypeSpecWithTemplate: {
4250     QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4251 
4252     // If we have some kind of dependent-named type (e.g., "typename T::type"),
4253     // break it apart into its prefix and identifier, then reconsititute those
4254     // as the canonical nested-name-specifier. This is required to canonicalize
4255     // a dependent nested-name-specifier involving typedefs of dependent-name
4256     // types, e.g.,
4257     //   typedef typename T::type T1;
4258     //   typedef typename T1::type T2;
4259     if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4260       return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4261                            const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4262 
4263     // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4264     // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4265     // first place?
4266     return NestedNameSpecifier::Create(*this, nullptr, false,
4267                                        const_cast<Type *>(T.getTypePtr()));
4268   }
4269 
4270   case NestedNameSpecifier::Global:
4271   case NestedNameSpecifier::Super:
4272     // The global specifier and __super specifer are canonical and unique.
4273     return NNS;
4274   }
4275 
4276   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4277 }
4278 
4279 
getAsArrayType(QualType T) const4280 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4281   // Handle the non-qualified case efficiently.
4282   if (!T.hasLocalQualifiers()) {
4283     // Handle the common positive case fast.
4284     if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4285       return AT;
4286   }
4287 
4288   // Handle the common negative case fast.
4289   if (!isa<ArrayType>(T.getCanonicalType()))
4290     return nullptr;
4291 
4292   // Apply any qualifiers from the array type to the element type.  This
4293   // implements C99 6.7.3p8: "If the specification of an array type includes
4294   // any type qualifiers, the element type is so qualified, not the array type."
4295 
4296   // If we get here, we either have type qualifiers on the type, or we have
4297   // sugar such as a typedef in the way.  If we have type qualifiers on the type
4298   // we must propagate them down into the element type.
4299 
4300   SplitQualType split = T.getSplitDesugaredType();
4301   Qualifiers qs = split.Quals;
4302 
4303   // If we have a simple case, just return now.
4304   const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4305   if (!ATy || qs.empty())
4306     return ATy;
4307 
4308   // Otherwise, we have an array and we have qualifiers on it.  Push the
4309   // qualifiers into the array element type and return a new array type.
4310   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4311 
4312   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4313     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4314                                                 CAT->getSizeModifier(),
4315                                            CAT->getIndexTypeCVRQualifiers()));
4316   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4317     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4318                                                   IAT->getSizeModifier(),
4319                                            IAT->getIndexTypeCVRQualifiers()));
4320 
4321   if (const DependentSizedArrayType *DSAT
4322         = dyn_cast<DependentSizedArrayType>(ATy))
4323     return cast<ArrayType>(
4324                      getDependentSizedArrayType(NewEltTy,
4325                                                 DSAT->getSizeExpr(),
4326                                                 DSAT->getSizeModifier(),
4327                                               DSAT->getIndexTypeCVRQualifiers(),
4328                                                 DSAT->getBracketsRange()));
4329 
4330   const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4331   return cast<ArrayType>(getVariableArrayType(NewEltTy,
4332                                               VAT->getSizeExpr(),
4333                                               VAT->getSizeModifier(),
4334                                               VAT->getIndexTypeCVRQualifiers(),
4335                                               VAT->getBracketsRange()));
4336 }
4337 
getAdjustedParameterType(QualType T) const4338 QualType ASTContext::getAdjustedParameterType(QualType T) const {
4339   if (T->isArrayType() || T->isFunctionType())
4340     return getDecayedType(T);
4341   return T;
4342 }
4343 
getSignatureParameterType(QualType T) const4344 QualType ASTContext::getSignatureParameterType(QualType T) const {
4345   T = getVariableArrayDecayedType(T);
4346   T = getAdjustedParameterType(T);
4347   return T.getUnqualifiedType();
4348 }
4349 
getExceptionObjectType(QualType T) const4350 QualType ASTContext::getExceptionObjectType(QualType T) const {
4351   // C++ [except.throw]p3:
4352   //   A throw-expression initializes a temporary object, called the exception
4353   //   object, the type of which is determined by removing any top-level
4354   //   cv-qualifiers from the static type of the operand of throw and adjusting
4355   //   the type from "array of T" or "function returning T" to "pointer to T"
4356   //   or "pointer to function returning T", [...]
4357   T = getVariableArrayDecayedType(T);
4358   if (T->isArrayType() || T->isFunctionType())
4359     T = getDecayedType(T);
4360   return T.getUnqualifiedType();
4361 }
4362 
4363 /// getArrayDecayedType - Return the properly qualified result of decaying the
4364 /// specified array type to a pointer.  This operation is non-trivial when
4365 /// handling typedefs etc.  The canonical type of "T" must be an array type,
4366 /// this returns a pointer to a properly qualified element of the array.
4367 ///
4368 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
getArrayDecayedType(QualType Ty) const4369 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4370   // Get the element type with 'getAsArrayType' so that we don't lose any
4371   // typedefs in the element type of the array.  This also handles propagation
4372   // of type qualifiers from the array type into the element type if present
4373   // (C99 6.7.3p8).
4374   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4375   assert(PrettyArrayType && "Not an array type!");
4376 
4377   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4378 
4379   // int x[restrict 4] ->  int *restrict
4380   return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4381 }
4382 
getBaseElementType(const ArrayType * array) const4383 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4384   return getBaseElementType(array->getElementType());
4385 }
4386 
getBaseElementType(QualType type) const4387 QualType ASTContext::getBaseElementType(QualType type) const {
4388   Qualifiers qs;
4389   while (true) {
4390     SplitQualType split = type.getSplitDesugaredType();
4391     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4392     if (!array) break;
4393 
4394     type = array->getElementType();
4395     qs.addConsistentQualifiers(split.Quals);
4396   }
4397 
4398   return getQualifiedType(type, qs);
4399 }
4400 
4401 /// getConstantArrayElementCount - Returns number of constant array elements.
4402 uint64_t
getConstantArrayElementCount(const ConstantArrayType * CA) const4403 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4404   uint64_t ElementCount = 1;
4405   do {
4406     ElementCount *= CA->getSize().getZExtValue();
4407     CA = dyn_cast_or_null<ConstantArrayType>(
4408       CA->getElementType()->getAsArrayTypeUnsafe());
4409   } while (CA);
4410   return ElementCount;
4411 }
4412 
4413 /// getFloatingRank - Return a relative rank for floating point types.
4414 /// This routine will assert if passed a built-in type that isn't a float.
getFloatingRank(QualType T)4415 static FloatingRank getFloatingRank(QualType T) {
4416   if (const ComplexType *CT = T->getAs<ComplexType>())
4417     return getFloatingRank(CT->getElementType());
4418 
4419   assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4420   switch (T->getAs<BuiltinType>()->getKind()) {
4421   default: llvm_unreachable("getFloatingRank(): not a floating type");
4422   case BuiltinType::Half:       return HalfRank;
4423   case BuiltinType::Float:      return FloatRank;
4424   case BuiltinType::Double:     return DoubleRank;
4425   case BuiltinType::LongDouble: return LongDoubleRank;
4426   }
4427 }
4428 
4429 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4430 /// point or a complex type (based on typeDomain/typeSize).
4431 /// 'typeDomain' is a real floating point or complex type.
4432 /// 'typeSize' is a real floating point or complex type.
getFloatingTypeOfSizeWithinDomain(QualType Size,QualType Domain) const4433 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4434                                                        QualType Domain) const {
4435   FloatingRank EltRank = getFloatingRank(Size);
4436   if (Domain->isComplexType()) {
4437     switch (EltRank) {
4438     case HalfRank: llvm_unreachable("Complex half is not supported");
4439     case FloatRank:      return FloatComplexTy;
4440     case DoubleRank:     return DoubleComplexTy;
4441     case LongDoubleRank: return LongDoubleComplexTy;
4442     }
4443   }
4444 
4445   assert(Domain->isRealFloatingType() && "Unknown domain!");
4446   switch (EltRank) {
4447   case HalfRank:       return HalfTy;
4448   case FloatRank:      return FloatTy;
4449   case DoubleRank:     return DoubleTy;
4450   case LongDoubleRank: return LongDoubleTy;
4451   }
4452   llvm_unreachable("getFloatingRank(): illegal value for rank");
4453 }
4454 
4455 /// getFloatingTypeOrder - Compare the rank of the two specified floating
4456 /// point types, ignoring the domain of the type (i.e. 'double' ==
4457 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4458 /// LHS < RHS, return -1.
getFloatingTypeOrder(QualType LHS,QualType RHS) const4459 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4460   FloatingRank LHSR = getFloatingRank(LHS);
4461   FloatingRank RHSR = getFloatingRank(RHS);
4462 
4463   if (LHSR == RHSR)
4464     return 0;
4465   if (LHSR > RHSR)
4466     return 1;
4467   return -1;
4468 }
4469 
4470 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4471 /// routine will assert if passed a built-in type that isn't an integer or enum,
4472 /// or if it is not canonicalized.
getIntegerRank(const Type * T) const4473 unsigned ASTContext::getIntegerRank(const Type *T) const {
4474   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4475 
4476   switch (cast<BuiltinType>(T)->getKind()) {
4477   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4478   case BuiltinType::Bool:
4479     return 1 + (getIntWidth(BoolTy) << 3);
4480   case BuiltinType::Char_S:
4481   case BuiltinType::Char_U:
4482   case BuiltinType::SChar:
4483   case BuiltinType::UChar:
4484     return 2 + (getIntWidth(CharTy) << 3);
4485   case BuiltinType::Short:
4486   case BuiltinType::UShort:
4487     return 3 + (getIntWidth(ShortTy) << 3);
4488   case BuiltinType::Int:
4489   case BuiltinType::UInt:
4490     return 4 + (getIntWidth(IntTy) << 3);
4491   case BuiltinType::Long:
4492   case BuiltinType::ULong:
4493     return 5 + (getIntWidth(LongTy) << 3);
4494   case BuiltinType::LongLong:
4495   case BuiltinType::ULongLong:
4496     return 6 + (getIntWidth(LongLongTy) << 3);
4497   case BuiltinType::Int128:
4498   case BuiltinType::UInt128:
4499     return 7 + (getIntWidth(Int128Ty) << 3);
4500   }
4501 }
4502 
4503 /// \brief Whether this is a promotable bitfield reference according
4504 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4505 ///
4506 /// \returns the type this bit-field will promote to, or NULL if no
4507 /// promotion occurs.
isPromotableBitField(Expr * E) const4508 QualType ASTContext::isPromotableBitField(Expr *E) const {
4509   if (E->isTypeDependent() || E->isValueDependent())
4510     return QualType();
4511 
4512   // FIXME: We should not do this unless E->refersToBitField() is true. This
4513   // matters in C where getSourceBitField() will find bit-fields for various
4514   // cases where the source expression is not a bit-field designator.
4515 
4516   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4517   if (!Field)
4518     return QualType();
4519 
4520   QualType FT = Field->getType();
4521 
4522   uint64_t BitWidth = Field->getBitWidthValue(*this);
4523   uint64_t IntSize = getTypeSize(IntTy);
4524   // C++ [conv.prom]p5:
4525   //   A prvalue for an integral bit-field can be converted to a prvalue of type
4526   //   int if int can represent all the values of the bit-field; otherwise, it
4527   //   can be converted to unsigned int if unsigned int can represent all the
4528   //   values of the bit-field. If the bit-field is larger yet, no integral
4529   //   promotion applies to it.
4530   // C11 6.3.1.1/2:
4531   //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
4532   //   If an int can represent all values of the original type (as restricted by
4533   //   the width, for a bit-field), the value is converted to an int; otherwise,
4534   //   it is converted to an unsigned int.
4535   //
4536   // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
4537   //        We perform that promotion here to match GCC and C++.
4538   if (BitWidth < IntSize)
4539     return IntTy;
4540 
4541   if (BitWidth == IntSize)
4542     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4543 
4544   // Types bigger than int are not subject to promotions, and therefore act
4545   // like the base type. GCC has some weird bugs in this area that we
4546   // deliberately do not follow (GCC follows a pre-standard resolution to
4547   // C's DR315 which treats bit-width as being part of the type, and this leaks
4548   // into their semantics in some cases).
4549   return QualType();
4550 }
4551 
4552 /// getPromotedIntegerType - Returns the type that Promotable will
4553 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4554 /// integer type.
getPromotedIntegerType(QualType Promotable) const4555 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4556   assert(!Promotable.isNull());
4557   assert(Promotable->isPromotableIntegerType());
4558   if (const EnumType *ET = Promotable->getAs<EnumType>())
4559     return ET->getDecl()->getPromotionType();
4560 
4561   if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4562     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4563     // (3.9.1) can be converted to a prvalue of the first of the following
4564     // types that can represent all the values of its underlying type:
4565     // int, unsigned int, long int, unsigned long int, long long int, or
4566     // unsigned long long int [...]
4567     // FIXME: Is there some better way to compute this?
4568     if (BT->getKind() == BuiltinType::WChar_S ||
4569         BT->getKind() == BuiltinType::WChar_U ||
4570         BT->getKind() == BuiltinType::Char16 ||
4571         BT->getKind() == BuiltinType::Char32) {
4572       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4573       uint64_t FromSize = getTypeSize(BT);
4574       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4575                                   LongLongTy, UnsignedLongLongTy };
4576       for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4577         uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4578         if (FromSize < ToSize ||
4579             (FromSize == ToSize &&
4580              FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4581           return PromoteTypes[Idx];
4582       }
4583       llvm_unreachable("char type should fit into long long");
4584     }
4585   }
4586 
4587   // At this point, we should have a signed or unsigned integer type.
4588   if (Promotable->isSignedIntegerType())
4589     return IntTy;
4590   uint64_t PromotableSize = getIntWidth(Promotable);
4591   uint64_t IntSize = getIntWidth(IntTy);
4592   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4593   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4594 }
4595 
4596 /// \brief Recurses in pointer/array types until it finds an objc retainable
4597 /// type and returns its ownership.
getInnerObjCOwnership(QualType T) const4598 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4599   while (!T.isNull()) {
4600     if (T.getObjCLifetime() != Qualifiers::OCL_None)
4601       return T.getObjCLifetime();
4602     if (T->isArrayType())
4603       T = getBaseElementType(T);
4604     else if (const PointerType *PT = T->getAs<PointerType>())
4605       T = PT->getPointeeType();
4606     else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4607       T = RT->getPointeeType();
4608     else
4609       break;
4610   }
4611 
4612   return Qualifiers::OCL_None;
4613 }
4614 
getIntegerTypeForEnum(const EnumType * ET)4615 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
4616   // Incomplete enum types are not treated as integer types.
4617   // FIXME: In C++, enum types are never integer types.
4618   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
4619     return ET->getDecl()->getIntegerType().getTypePtr();
4620   return nullptr;
4621 }
4622 
4623 /// getIntegerTypeOrder - Returns the highest ranked integer type:
4624 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4625 /// LHS < RHS, return -1.
getIntegerTypeOrder(QualType LHS,QualType RHS) const4626 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4627   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4628   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4629 
4630   // Unwrap enums to their underlying type.
4631   if (const EnumType *ET = dyn_cast<EnumType>(LHSC))
4632     LHSC = getIntegerTypeForEnum(ET);
4633   if (const EnumType *ET = dyn_cast<EnumType>(RHSC))
4634     RHSC = getIntegerTypeForEnum(ET);
4635 
4636   if (LHSC == RHSC) return 0;
4637 
4638   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4639   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4640 
4641   unsigned LHSRank = getIntegerRank(LHSC);
4642   unsigned RHSRank = getIntegerRank(RHSC);
4643 
4644   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4645     if (LHSRank == RHSRank) return 0;
4646     return LHSRank > RHSRank ? 1 : -1;
4647   }
4648 
4649   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4650   if (LHSUnsigned) {
4651     // If the unsigned [LHS] type is larger, return it.
4652     if (LHSRank >= RHSRank)
4653       return 1;
4654 
4655     // If the signed type can represent all values of the unsigned type, it
4656     // wins.  Because we are dealing with 2's complement and types that are
4657     // powers of two larger than each other, this is always safe.
4658     return -1;
4659   }
4660 
4661   // If the unsigned [RHS] type is larger, return it.
4662   if (RHSRank >= LHSRank)
4663     return -1;
4664 
4665   // If the signed type can represent all values of the unsigned type, it
4666   // wins.  Because we are dealing with 2's complement and types that are
4667   // powers of two larger than each other, this is always safe.
4668   return 1;
4669 }
4670 
4671 // getCFConstantStringType - Return the type used for constant CFStrings.
getCFConstantStringType() const4672 QualType ASTContext::getCFConstantStringType() const {
4673   if (!CFConstantStringTypeDecl) {
4674     CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString");
4675     CFConstantStringTypeDecl->startDefinition();
4676 
4677     QualType FieldTypes[4];
4678 
4679     // const int *isa;
4680     FieldTypes[0] = getPointerType(IntTy.withConst());
4681     // int flags;
4682     FieldTypes[1] = IntTy;
4683     // const char *str;
4684     FieldTypes[2] = getPointerType(CharTy.withConst());
4685     // long length;
4686     FieldTypes[3] = LongTy;
4687 
4688     // Create fields
4689     for (unsigned i = 0; i < 4; ++i) {
4690       FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4691                                            SourceLocation(),
4692                                            SourceLocation(), nullptr,
4693                                            FieldTypes[i], /*TInfo=*/nullptr,
4694                                            /*BitWidth=*/nullptr,
4695                                            /*Mutable=*/false,
4696                                            ICIS_NoInit);
4697       Field->setAccess(AS_public);
4698       CFConstantStringTypeDecl->addDecl(Field);
4699     }
4700 
4701     CFConstantStringTypeDecl->completeDefinition();
4702   }
4703 
4704   return getTagDeclType(CFConstantStringTypeDecl);
4705 }
4706 
getObjCSuperType() const4707 QualType ASTContext::getObjCSuperType() const {
4708   if (ObjCSuperType.isNull()) {
4709     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
4710     TUDecl->addDecl(ObjCSuperTypeDecl);
4711     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4712   }
4713   return ObjCSuperType;
4714 }
4715 
setCFConstantStringType(QualType T)4716 void ASTContext::setCFConstantStringType(QualType T) {
4717   const RecordType *Rec = T->getAs<RecordType>();
4718   assert(Rec && "Invalid CFConstantStringType");
4719   CFConstantStringTypeDecl = Rec->getDecl();
4720 }
4721 
getBlockDescriptorType() const4722 QualType ASTContext::getBlockDescriptorType() const {
4723   if (BlockDescriptorType)
4724     return getTagDeclType(BlockDescriptorType);
4725 
4726   RecordDecl *RD;
4727   // FIXME: Needs the FlagAppleBlock bit.
4728   RD = buildImplicitRecord("__block_descriptor");
4729   RD->startDefinition();
4730 
4731   QualType FieldTypes[] = {
4732     UnsignedLongTy,
4733     UnsignedLongTy,
4734   };
4735 
4736   static const char *const FieldNames[] = {
4737     "reserved",
4738     "Size"
4739   };
4740 
4741   for (size_t i = 0; i < 2; ++i) {
4742     FieldDecl *Field = FieldDecl::Create(
4743         *this, RD, SourceLocation(), SourceLocation(),
4744         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4745         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
4746     Field->setAccess(AS_public);
4747     RD->addDecl(Field);
4748   }
4749 
4750   RD->completeDefinition();
4751 
4752   BlockDescriptorType = RD;
4753 
4754   return getTagDeclType(BlockDescriptorType);
4755 }
4756 
getBlockDescriptorExtendedType() const4757 QualType ASTContext::getBlockDescriptorExtendedType() const {
4758   if (BlockDescriptorExtendedType)
4759     return getTagDeclType(BlockDescriptorExtendedType);
4760 
4761   RecordDecl *RD;
4762   // FIXME: Needs the FlagAppleBlock bit.
4763   RD = buildImplicitRecord("__block_descriptor_withcopydispose");
4764   RD->startDefinition();
4765 
4766   QualType FieldTypes[] = {
4767     UnsignedLongTy,
4768     UnsignedLongTy,
4769     getPointerType(VoidPtrTy),
4770     getPointerType(VoidPtrTy)
4771   };
4772 
4773   static const char *const FieldNames[] = {
4774     "reserved",
4775     "Size",
4776     "CopyFuncPtr",
4777     "DestroyFuncPtr"
4778   };
4779 
4780   for (size_t i = 0; i < 4; ++i) {
4781     FieldDecl *Field = FieldDecl::Create(
4782         *this, RD, SourceLocation(), SourceLocation(),
4783         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4784         /*BitWidth=*/nullptr,
4785         /*Mutable=*/false, ICIS_NoInit);
4786     Field->setAccess(AS_public);
4787     RD->addDecl(Field);
4788   }
4789 
4790   RD->completeDefinition();
4791 
4792   BlockDescriptorExtendedType = RD;
4793   return getTagDeclType(BlockDescriptorExtendedType);
4794 }
4795 
4796 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4797 /// requires copy/dispose. Note that this must match the logic
4798 /// in buildByrefHelpers.
BlockRequiresCopying(QualType Ty,const VarDecl * D)4799 bool ASTContext::BlockRequiresCopying(QualType Ty,
4800                                       const VarDecl *D) {
4801   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4802     const Expr *copyExpr = getBlockVarCopyInits(D);
4803     if (!copyExpr && record->hasTrivialDestructor()) return false;
4804 
4805     return true;
4806   }
4807 
4808   if (!Ty->isObjCRetainableType()) return false;
4809 
4810   Qualifiers qs = Ty.getQualifiers();
4811 
4812   // If we have lifetime, that dominates.
4813   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4814     assert(getLangOpts().ObjCAutoRefCount);
4815 
4816     switch (lifetime) {
4817       case Qualifiers::OCL_None: llvm_unreachable("impossible");
4818 
4819       // These are just bits as far as the runtime is concerned.
4820       case Qualifiers::OCL_ExplicitNone:
4821       case Qualifiers::OCL_Autoreleasing:
4822         return false;
4823 
4824       // Tell the runtime that this is ARC __weak, called by the
4825       // byref routines.
4826       case Qualifiers::OCL_Weak:
4827       // ARC __strong __block variables need to be retained.
4828       case Qualifiers::OCL_Strong:
4829         return true;
4830     }
4831     llvm_unreachable("fell out of lifetime switch!");
4832   }
4833   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4834           Ty->isObjCObjectPointerType());
4835 }
4836 
getByrefLifetime(QualType Ty,Qualifiers::ObjCLifetime & LifeTime,bool & HasByrefExtendedLayout) const4837 bool ASTContext::getByrefLifetime(QualType Ty,
4838                               Qualifiers::ObjCLifetime &LifeTime,
4839                               bool &HasByrefExtendedLayout) const {
4840 
4841   if (!getLangOpts().ObjC1 ||
4842       getLangOpts().getGC() != LangOptions::NonGC)
4843     return false;
4844 
4845   HasByrefExtendedLayout = false;
4846   if (Ty->isRecordType()) {
4847     HasByrefExtendedLayout = true;
4848     LifeTime = Qualifiers::OCL_None;
4849   }
4850   else if (getLangOpts().ObjCAutoRefCount)
4851     LifeTime = Ty.getObjCLifetime();
4852   // MRR.
4853   else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4854     LifeTime = Qualifiers::OCL_ExplicitNone;
4855   else
4856     LifeTime = Qualifiers::OCL_None;
4857   return true;
4858 }
4859 
getObjCInstanceTypeDecl()4860 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4861   if (!ObjCInstanceTypeDecl)
4862     ObjCInstanceTypeDecl =
4863         buildImplicitTypedef(getObjCIdType(), "instancetype");
4864   return ObjCInstanceTypeDecl;
4865 }
4866 
4867 // This returns true if a type has been typedefed to BOOL:
4868 // typedef <type> BOOL;
isTypeTypedefedAsBOOL(QualType T)4869 static bool isTypeTypedefedAsBOOL(QualType T) {
4870   if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4871     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4872       return II->isStr("BOOL");
4873 
4874   return false;
4875 }
4876 
4877 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
4878 /// purpose.
getObjCEncodingTypeSize(QualType type) const4879 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4880   if (!type->isIncompleteArrayType() && type->isIncompleteType())
4881     return CharUnits::Zero();
4882 
4883   CharUnits sz = getTypeSizeInChars(type);
4884 
4885   // Make all integer and enum types at least as large as an int
4886   if (sz.isPositive() && type->isIntegralOrEnumerationType())
4887     sz = std::max(sz, getTypeSizeInChars(IntTy));
4888   // Treat arrays as pointers, since that's how they're passed in.
4889   else if (type->isArrayType())
4890     sz = getTypeSizeInChars(VoidPtrTy);
4891   return sz;
4892 }
4893 
isMSStaticDataMemberInlineDefinition(const VarDecl * VD) const4894 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
4895   return getLangOpts().MSVCCompat && VD->isStaticDataMember() &&
4896          VD->getType()->isIntegralOrEnumerationType() &&
4897          !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
4898 }
4899 
4900 static inline
charUnitsToString(const CharUnits & CU)4901 std::string charUnitsToString(const CharUnits &CU) {
4902   return llvm::itostr(CU.getQuantity());
4903 }
4904 
4905 /// getObjCEncodingForBlock - Return the encoded type for this block
4906 /// declaration.
getObjCEncodingForBlock(const BlockExpr * Expr) const4907 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4908   std::string S;
4909 
4910   const BlockDecl *Decl = Expr->getBlockDecl();
4911   QualType BlockTy =
4912       Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4913   // Encode result type.
4914   if (getLangOpts().EncodeExtendedBlockSig)
4915     getObjCEncodingForMethodParameter(
4916         Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S,
4917         true /*Extended*/);
4918   else
4919     getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S);
4920   // Compute size of all parameters.
4921   // Start with computing size of a pointer in number of bytes.
4922   // FIXME: There might(should) be a better way of doing this computation!
4923   SourceLocation Loc;
4924   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4925   CharUnits ParmOffset = PtrSize;
4926   for (auto PI : Decl->params()) {
4927     QualType PType = PI->getType();
4928     CharUnits sz = getObjCEncodingTypeSize(PType);
4929     if (sz.isZero())
4930       continue;
4931     assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4932     ParmOffset += sz;
4933   }
4934   // Size of the argument frame
4935   S += charUnitsToString(ParmOffset);
4936   // Block pointer and offset.
4937   S += "@?0";
4938 
4939   // Argument types.
4940   ParmOffset = PtrSize;
4941   for (auto PVDecl : Decl->params()) {
4942     QualType PType = PVDecl->getOriginalType();
4943     if (const ArrayType *AT =
4944           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4945       // Use array's original type only if it has known number of
4946       // elements.
4947       if (!isa<ConstantArrayType>(AT))
4948         PType = PVDecl->getType();
4949     } else if (PType->isFunctionType())
4950       PType = PVDecl->getType();
4951     if (getLangOpts().EncodeExtendedBlockSig)
4952       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4953                                       S, true /*Extended*/);
4954     else
4955       getObjCEncodingForType(PType, S);
4956     S += charUnitsToString(ParmOffset);
4957     ParmOffset += getObjCEncodingTypeSize(PType);
4958   }
4959 
4960   return S;
4961 }
4962 
getObjCEncodingForFunctionDecl(const FunctionDecl * Decl,std::string & S)4963 bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4964                                                 std::string& S) {
4965   // Encode result type.
4966   getObjCEncodingForType(Decl->getReturnType(), S);
4967   CharUnits ParmOffset;
4968   // Compute size of all parameters.
4969   for (auto PI : Decl->params()) {
4970     QualType PType = PI->getType();
4971     CharUnits sz = getObjCEncodingTypeSize(PType);
4972     if (sz.isZero())
4973       continue;
4974 
4975     assert (sz.isPositive() &&
4976         "getObjCEncodingForFunctionDecl - Incomplete param type");
4977     ParmOffset += sz;
4978   }
4979   S += charUnitsToString(ParmOffset);
4980   ParmOffset = CharUnits::Zero();
4981 
4982   // Argument types.
4983   for (auto PVDecl : Decl->params()) {
4984     QualType PType = PVDecl->getOriginalType();
4985     if (const ArrayType *AT =
4986           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4987       // Use array's original type only if it has known number of
4988       // elements.
4989       if (!isa<ConstantArrayType>(AT))
4990         PType = PVDecl->getType();
4991     } else if (PType->isFunctionType())
4992       PType = PVDecl->getType();
4993     getObjCEncodingForType(PType, S);
4994     S += charUnitsToString(ParmOffset);
4995     ParmOffset += getObjCEncodingTypeSize(PType);
4996   }
4997 
4998   return false;
4999 }
5000 
5001 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
5002 /// method parameter or return type. If Extended, include class names and
5003 /// block object types.
getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,QualType T,std::string & S,bool Extended) const5004 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
5005                                                    QualType T, std::string& S,
5006                                                    bool Extended) const {
5007   // Encode type qualifer, 'in', 'inout', etc. for the parameter.
5008   getObjCEncodingForTypeQualifier(QT, S);
5009   // Encode parameter type.
5010   getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
5011                              true     /*OutermostType*/,
5012                              false    /*EncodingProperty*/,
5013                              false    /*StructField*/,
5014                              Extended /*EncodeBlockParameters*/,
5015                              Extended /*EncodeClassNames*/);
5016 }
5017 
5018 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
5019 /// declaration.
getObjCEncodingForMethodDecl(const ObjCMethodDecl * Decl,std::string & S,bool Extended) const5020 bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
5021                                               std::string& S,
5022                                               bool Extended) const {
5023   // FIXME: This is not very efficient.
5024   // Encode return type.
5025   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
5026                                     Decl->getReturnType(), S, Extended);
5027   // Compute size of all parameters.
5028   // Start with computing size of a pointer in number of bytes.
5029   // FIXME: There might(should) be a better way of doing this computation!
5030   SourceLocation Loc;
5031   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
5032   // The first two arguments (self and _cmd) are pointers; account for
5033   // their size.
5034   CharUnits ParmOffset = 2 * PtrSize;
5035   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5036        E = Decl->sel_param_end(); PI != E; ++PI) {
5037     QualType PType = (*PI)->getType();
5038     CharUnits sz = getObjCEncodingTypeSize(PType);
5039     if (sz.isZero())
5040       continue;
5041 
5042     assert (sz.isPositive() &&
5043         "getObjCEncodingForMethodDecl - Incomplete param type");
5044     ParmOffset += sz;
5045   }
5046   S += charUnitsToString(ParmOffset);
5047   S += "@0:";
5048   S += charUnitsToString(PtrSize);
5049 
5050   // Argument types.
5051   ParmOffset = 2 * PtrSize;
5052   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5053        E = Decl->sel_param_end(); PI != E; ++PI) {
5054     const ParmVarDecl *PVDecl = *PI;
5055     QualType PType = PVDecl->getOriginalType();
5056     if (const ArrayType *AT =
5057           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
5058       // Use array's original type only if it has known number of
5059       // elements.
5060       if (!isa<ConstantArrayType>(AT))
5061         PType = PVDecl->getType();
5062     } else if (PType->isFunctionType())
5063       PType = PVDecl->getType();
5064     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
5065                                       PType, S, Extended);
5066     S += charUnitsToString(ParmOffset);
5067     ParmOffset += getObjCEncodingTypeSize(PType);
5068   }
5069 
5070   return false;
5071 }
5072 
5073 ObjCPropertyImplDecl *
getObjCPropertyImplDeclForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container) const5074 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
5075                                       const ObjCPropertyDecl *PD,
5076                                       const Decl *Container) const {
5077   if (!Container)
5078     return nullptr;
5079   if (const ObjCCategoryImplDecl *CID =
5080       dyn_cast<ObjCCategoryImplDecl>(Container)) {
5081     for (auto *PID : CID->property_impls())
5082       if (PID->getPropertyDecl() == PD)
5083         return PID;
5084   } else {
5085     const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
5086     for (auto *PID : OID->property_impls())
5087       if (PID->getPropertyDecl() == PD)
5088         return PID;
5089   }
5090   return nullptr;
5091 }
5092 
5093 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
5094 /// property declaration. If non-NULL, Container must be either an
5095 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
5096 /// NULL when getting encodings for protocol properties.
5097 /// Property attributes are stored as a comma-delimited C string. The simple
5098 /// attributes readonly and bycopy are encoded as single characters. The
5099 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
5100 /// encoded as single characters, followed by an identifier. Property types
5101 /// are also encoded as a parametrized attribute. The characters used to encode
5102 /// these attributes are defined by the following enumeration:
5103 /// @code
5104 /// enum PropertyAttributes {
5105 /// kPropertyReadOnly = 'R',   // property is read-only.
5106 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
5107 /// kPropertyByref = '&',  // property is a reference to the value last assigned
5108 /// kPropertyDynamic = 'D',    // property is dynamic
5109 /// kPropertyGetter = 'G',     // followed by getter selector name
5110 /// kPropertySetter = 'S',     // followed by setter selector name
5111 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
5112 /// kPropertyType = 'T'              // followed by old-style type encoding.
5113 /// kPropertyWeak = 'W'              // 'weak' property
5114 /// kPropertyStrong = 'P'            // property GC'able
5115 /// kPropertyNonAtomic = 'N'         // property non-atomic
5116 /// };
5117 /// @endcode
getObjCEncodingForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container,std::string & S) const5118 void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
5119                                                 const Decl *Container,
5120                                                 std::string& S) const {
5121   // Collect information from the property implementation decl(s).
5122   bool Dynamic = false;
5123   ObjCPropertyImplDecl *SynthesizePID = nullptr;
5124 
5125   if (ObjCPropertyImplDecl *PropertyImpDecl =
5126       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
5127     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
5128       Dynamic = true;
5129     else
5130       SynthesizePID = PropertyImpDecl;
5131   }
5132 
5133   // FIXME: This is not very efficient.
5134   S = "T";
5135 
5136   // Encode result type.
5137   // GCC has some special rules regarding encoding of properties which
5138   // closely resembles encoding of ivars.
5139   getObjCEncodingForPropertyType(PD->getType(), S);
5140 
5141   if (PD->isReadOnly()) {
5142     S += ",R";
5143     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
5144       S += ",C";
5145     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
5146       S += ",&";
5147     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
5148       S += ",W";
5149   } else {
5150     switch (PD->getSetterKind()) {
5151     case ObjCPropertyDecl::Assign: break;
5152     case ObjCPropertyDecl::Copy:   S += ",C"; break;
5153     case ObjCPropertyDecl::Retain: S += ",&"; break;
5154     case ObjCPropertyDecl::Weak:   S += ",W"; break;
5155     }
5156   }
5157 
5158   // It really isn't clear at all what this means, since properties
5159   // are "dynamic by default".
5160   if (Dynamic)
5161     S += ",D";
5162 
5163   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
5164     S += ",N";
5165 
5166   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
5167     S += ",G";
5168     S += PD->getGetterName().getAsString();
5169   }
5170 
5171   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
5172     S += ",S";
5173     S += PD->getSetterName().getAsString();
5174   }
5175 
5176   if (SynthesizePID) {
5177     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
5178     S += ",V";
5179     S += OID->getNameAsString();
5180   }
5181 
5182   // FIXME: OBJCGC: weak & strong
5183 }
5184 
5185 /// getLegacyIntegralTypeEncoding -
5186 /// Another legacy compatibility encoding: 32-bit longs are encoded as
5187 /// 'l' or 'L' , but not always.  For typedefs, we need to use
5188 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
5189 ///
getLegacyIntegralTypeEncoding(QualType & PointeeTy) const5190 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
5191   if (isa<TypedefType>(PointeeTy.getTypePtr())) {
5192     if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
5193       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
5194         PointeeTy = UnsignedIntTy;
5195       else
5196         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
5197           PointeeTy = IntTy;
5198     }
5199   }
5200 }
5201 
getObjCEncodingForType(QualType T,std::string & S,const FieldDecl * Field,QualType * NotEncodedT) const5202 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
5203                                         const FieldDecl *Field,
5204                                         QualType *NotEncodedT) const {
5205   // We follow the behavior of gcc, expanding structures which are
5206   // directly pointed to, and expanding embedded structures. Note that
5207   // these rules are sufficient to prevent recursive encoding of the
5208   // same type.
5209   getObjCEncodingForTypeImpl(T, S, true, true, Field,
5210                              true /* outermost type */, false, false,
5211                              false, false, false, NotEncodedT);
5212 }
5213 
getObjCEncodingForPropertyType(QualType T,std::string & S) const5214 void ASTContext::getObjCEncodingForPropertyType(QualType T,
5215                                                 std::string& S) const {
5216   // Encode result type.
5217   // GCC has some special rules regarding encoding of properties which
5218   // closely resembles encoding of ivars.
5219   getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
5220                              true /* outermost type */,
5221                              true /* encoding property */);
5222 }
5223 
getObjCEncodingForPrimitiveKind(const ASTContext * C,BuiltinType::Kind kind)5224 static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
5225                                             BuiltinType::Kind kind) {
5226     switch (kind) {
5227     case BuiltinType::Void:       return 'v';
5228     case BuiltinType::Bool:       return 'B';
5229     case BuiltinType::Char_U:
5230     case BuiltinType::UChar:      return 'C';
5231     case BuiltinType::Char16:
5232     case BuiltinType::UShort:     return 'S';
5233     case BuiltinType::Char32:
5234     case BuiltinType::UInt:       return 'I';
5235     case BuiltinType::ULong:
5236         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5237     case BuiltinType::UInt128:    return 'T';
5238     case BuiltinType::ULongLong:  return 'Q';
5239     case BuiltinType::Char_S:
5240     case BuiltinType::SChar:      return 'c';
5241     case BuiltinType::Short:      return 's';
5242     case BuiltinType::WChar_S:
5243     case BuiltinType::WChar_U:
5244     case BuiltinType::Int:        return 'i';
5245     case BuiltinType::Long:
5246       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5247     case BuiltinType::LongLong:   return 'q';
5248     case BuiltinType::Int128:     return 't';
5249     case BuiltinType::Float:      return 'f';
5250     case BuiltinType::Double:     return 'd';
5251     case BuiltinType::LongDouble: return 'D';
5252     case BuiltinType::NullPtr:    return '*'; // like char*
5253 
5254     case BuiltinType::Half:
5255       // FIXME: potentially need @encodes for these!
5256       return ' ';
5257 
5258     case BuiltinType::ObjCId:
5259     case BuiltinType::ObjCClass:
5260     case BuiltinType::ObjCSel:
5261       llvm_unreachable("@encoding ObjC primitive type");
5262 
5263     // OpenCL and placeholder types don't need @encodings.
5264     case BuiltinType::OCLImage1d:
5265     case BuiltinType::OCLImage1dArray:
5266     case BuiltinType::OCLImage1dBuffer:
5267     case BuiltinType::OCLImage2d:
5268     case BuiltinType::OCLImage2dArray:
5269     case BuiltinType::OCLImage3d:
5270     case BuiltinType::OCLEvent:
5271     case BuiltinType::OCLSampler:
5272     case BuiltinType::Dependent:
5273 #define BUILTIN_TYPE(KIND, ID)
5274 #define PLACEHOLDER_TYPE(KIND, ID) \
5275     case BuiltinType::KIND:
5276 #include "clang/AST/BuiltinTypes.def"
5277       llvm_unreachable("invalid builtin type for @encode");
5278     }
5279     llvm_unreachable("invalid BuiltinType::Kind value");
5280 }
5281 
ObjCEncodingForEnumType(const ASTContext * C,const EnumType * ET)5282 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5283   EnumDecl *Enum = ET->getDecl();
5284 
5285   // The encoding of an non-fixed enum type is always 'i', regardless of size.
5286   if (!Enum->isFixed())
5287     return 'i';
5288 
5289   // The encoding of a fixed enum type matches its fixed underlying type.
5290   const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5291   return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5292 }
5293 
EncodeBitField(const ASTContext * Ctx,std::string & S,QualType T,const FieldDecl * FD)5294 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5295                            QualType T, const FieldDecl *FD) {
5296   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5297   S += 'b';
5298   // The NeXT runtime encodes bit fields as b followed by the number of bits.
5299   // The GNU runtime requires more information; bitfields are encoded as b,
5300   // then the offset (in bits) of the first element, then the type of the
5301   // bitfield, then the size in bits.  For example, in this structure:
5302   //
5303   // struct
5304   // {
5305   //    int integer;
5306   //    int flags:2;
5307   // };
5308   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5309   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
5310   // information is not especially sensible, but we're stuck with it for
5311   // compatibility with GCC, although providing it breaks anything that
5312   // actually uses runtime introspection and wants to work on both runtimes...
5313   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5314     const RecordDecl *RD = FD->getParent();
5315     const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5316     S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5317     if (const EnumType *ET = T->getAs<EnumType>())
5318       S += ObjCEncodingForEnumType(Ctx, ET);
5319     else {
5320       const BuiltinType *BT = T->castAs<BuiltinType>();
5321       S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5322     }
5323   }
5324   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5325 }
5326 
5327 // FIXME: Use SmallString for accumulating string.
getObjCEncodingForTypeImpl(QualType T,std::string & S,bool ExpandPointedToStructures,bool ExpandStructures,const FieldDecl * FD,bool OutermostType,bool EncodingProperty,bool StructField,bool EncodeBlockParameters,bool EncodeClassNames,bool EncodePointerToObjCTypedef,QualType * NotEncodedT) const5328 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5329                                             bool ExpandPointedToStructures,
5330                                             bool ExpandStructures,
5331                                             const FieldDecl *FD,
5332                                             bool OutermostType,
5333                                             bool EncodingProperty,
5334                                             bool StructField,
5335                                             bool EncodeBlockParameters,
5336                                             bool EncodeClassNames,
5337                                             bool EncodePointerToObjCTypedef,
5338                                             QualType *NotEncodedT) const {
5339   CanQualType CT = getCanonicalType(T);
5340   switch (CT->getTypeClass()) {
5341   case Type::Builtin:
5342   case Type::Enum:
5343     if (FD && FD->isBitField())
5344       return EncodeBitField(this, S, T, FD);
5345     if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5346       S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5347     else
5348       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5349     return;
5350 
5351   case Type::Complex: {
5352     const ComplexType *CT = T->castAs<ComplexType>();
5353     S += 'j';
5354     getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr);
5355     return;
5356   }
5357 
5358   case Type::Atomic: {
5359     const AtomicType *AT = T->castAs<AtomicType>();
5360     S += 'A';
5361     getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr);
5362     return;
5363   }
5364 
5365   // encoding for pointer or reference types.
5366   case Type::Pointer:
5367   case Type::LValueReference:
5368   case Type::RValueReference: {
5369     QualType PointeeTy;
5370     if (isa<PointerType>(CT)) {
5371       const PointerType *PT = T->castAs<PointerType>();
5372       if (PT->isObjCSelType()) {
5373         S += ':';
5374         return;
5375       }
5376       PointeeTy = PT->getPointeeType();
5377     } else {
5378       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5379     }
5380 
5381     bool isReadOnly = false;
5382     // For historical/compatibility reasons, the read-only qualifier of the
5383     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5384     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5385     // Also, do not emit the 'r' for anything but the outermost type!
5386     if (isa<TypedefType>(T.getTypePtr())) {
5387       if (OutermostType && T.isConstQualified()) {
5388         isReadOnly = true;
5389         S += 'r';
5390       }
5391     } else if (OutermostType) {
5392       QualType P = PointeeTy;
5393       while (P->getAs<PointerType>())
5394         P = P->getAs<PointerType>()->getPointeeType();
5395       if (P.isConstQualified()) {
5396         isReadOnly = true;
5397         S += 'r';
5398       }
5399     }
5400     if (isReadOnly) {
5401       // Another legacy compatibility encoding. Some ObjC qualifier and type
5402       // combinations need to be rearranged.
5403       // Rewrite "in const" from "nr" to "rn"
5404       if (StringRef(S).endswith("nr"))
5405         S.replace(S.end()-2, S.end(), "rn");
5406     }
5407 
5408     if (PointeeTy->isCharType()) {
5409       // char pointer types should be encoded as '*' unless it is a
5410       // type that has been typedef'd to 'BOOL'.
5411       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5412         S += '*';
5413         return;
5414       }
5415     } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5416       // GCC binary compat: Need to convert "struct objc_class *" to "#".
5417       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5418         S += '#';
5419         return;
5420       }
5421       // GCC binary compat: Need to convert "struct objc_object *" to "@".
5422       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5423         S += '@';
5424         return;
5425       }
5426       // fall through...
5427     }
5428     S += '^';
5429     getLegacyIntegralTypeEncoding(PointeeTy);
5430 
5431     getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5432                                nullptr, false, false, false, false, false, false,
5433                                NotEncodedT);
5434     return;
5435   }
5436 
5437   case Type::ConstantArray:
5438   case Type::IncompleteArray:
5439   case Type::VariableArray: {
5440     const ArrayType *AT = cast<ArrayType>(CT);
5441 
5442     if (isa<IncompleteArrayType>(AT) && !StructField) {
5443       // Incomplete arrays are encoded as a pointer to the array element.
5444       S += '^';
5445 
5446       getObjCEncodingForTypeImpl(AT->getElementType(), S,
5447                                  false, ExpandStructures, FD);
5448     } else {
5449       S += '[';
5450 
5451       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
5452         S += llvm::utostr(CAT->getSize().getZExtValue());
5453       else {
5454         //Variable length arrays are encoded as a regular array with 0 elements.
5455         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5456                "Unknown array type!");
5457         S += '0';
5458       }
5459 
5460       getObjCEncodingForTypeImpl(AT->getElementType(), S,
5461                                  false, ExpandStructures, FD,
5462                                  false, false, false, false, false, false,
5463                                  NotEncodedT);
5464       S += ']';
5465     }
5466     return;
5467   }
5468 
5469   case Type::FunctionNoProto:
5470   case Type::FunctionProto:
5471     S += '?';
5472     return;
5473 
5474   case Type::Record: {
5475     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5476     S += RDecl->isUnion() ? '(' : '{';
5477     // Anonymous structures print as '?'
5478     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5479       S += II->getName();
5480       if (ClassTemplateSpecializationDecl *Spec
5481           = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5482         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5483         llvm::raw_string_ostream OS(S);
5484         TemplateSpecializationType::PrintTemplateArgumentList(OS,
5485                                             TemplateArgs.data(),
5486                                             TemplateArgs.size(),
5487                                             (*this).getPrintingPolicy());
5488       }
5489     } else {
5490       S += '?';
5491     }
5492     if (ExpandStructures) {
5493       S += '=';
5494       if (!RDecl->isUnion()) {
5495         getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
5496       } else {
5497         for (const auto *Field : RDecl->fields()) {
5498           if (FD) {
5499             S += '"';
5500             S += Field->getNameAsString();
5501             S += '"';
5502           }
5503 
5504           // Special case bit-fields.
5505           if (Field->isBitField()) {
5506             getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5507                                        Field);
5508           } else {
5509             QualType qt = Field->getType();
5510             getLegacyIntegralTypeEncoding(qt);
5511             getObjCEncodingForTypeImpl(qt, S, false, true,
5512                                        FD, /*OutermostType*/false,
5513                                        /*EncodingProperty*/false,
5514                                        /*StructField*/true,
5515                                        false, false, false, NotEncodedT);
5516           }
5517         }
5518       }
5519     }
5520     S += RDecl->isUnion() ? ')' : '}';
5521     return;
5522   }
5523 
5524   case Type::BlockPointer: {
5525     const BlockPointerType *BT = T->castAs<BlockPointerType>();
5526     S += "@?"; // Unlike a pointer-to-function, which is "^?".
5527     if (EncodeBlockParameters) {
5528       const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5529 
5530       S += '<';
5531       // Block return type
5532       getObjCEncodingForTypeImpl(
5533           FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures,
5534           FD, false /* OutermostType */, EncodingProperty,
5535           false /* StructField */, EncodeBlockParameters, EncodeClassNames, false,
5536                                  NotEncodedT);
5537       // Block self
5538       S += "@?";
5539       // Block parameters
5540       if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5541         for (const auto &I : FPT->param_types())
5542           getObjCEncodingForTypeImpl(
5543               I, S, ExpandPointedToStructures, ExpandStructures, FD,
5544               false /* OutermostType */, EncodingProperty,
5545               false /* StructField */, EncodeBlockParameters, EncodeClassNames,
5546                                      false, NotEncodedT);
5547       }
5548       S += '>';
5549     }
5550     return;
5551   }
5552 
5553   case Type::ObjCObject: {
5554     // hack to match legacy encoding of *id and *Class
5555     QualType Ty = getObjCObjectPointerType(CT);
5556     if (Ty->isObjCIdType()) {
5557       S += "{objc_object=}";
5558       return;
5559     }
5560     else if (Ty->isObjCClassType()) {
5561       S += "{objc_class=}";
5562       return;
5563     }
5564   }
5565 
5566   case Type::ObjCInterface: {
5567     // Ignore protocol qualifiers when mangling at this level.
5568     T = T->castAs<ObjCObjectType>()->getBaseType();
5569 
5570     // The assumption seems to be that this assert will succeed
5571     // because nested levels will have filtered out 'id' and 'Class'.
5572     const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5573     // @encode(class_name)
5574     ObjCInterfaceDecl *OI = OIT->getDecl();
5575     S += '{';
5576     const IdentifierInfo *II = OI->getIdentifier();
5577     S += II->getName();
5578     S += '=';
5579     SmallVector<const ObjCIvarDecl*, 32> Ivars;
5580     DeepCollectObjCIvars(OI, true, Ivars);
5581     for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5582       const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5583       if (Field->isBitField())
5584         getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5585       else
5586         getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5587                                    false, false, false, false, false,
5588                                    EncodePointerToObjCTypedef,
5589                                    NotEncodedT);
5590     }
5591     S += '}';
5592     return;
5593   }
5594 
5595   case Type::ObjCObjectPointer: {
5596     const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5597     if (OPT->isObjCIdType()) {
5598       S += '@';
5599       return;
5600     }
5601 
5602     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5603       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5604       // Since this is a binary compatibility issue, need to consult with runtime
5605       // folks. Fortunately, this is a *very* obsure construct.
5606       S += '#';
5607       return;
5608     }
5609 
5610     if (OPT->isObjCQualifiedIdType()) {
5611       getObjCEncodingForTypeImpl(getObjCIdType(), S,
5612                                  ExpandPointedToStructures,
5613                                  ExpandStructures, FD);
5614       if (FD || EncodingProperty || EncodeClassNames) {
5615         // Note that we do extended encoding of protocol qualifer list
5616         // Only when doing ivar or property encoding.
5617         S += '"';
5618         for (const auto *I : OPT->quals()) {
5619           S += '<';
5620           S += I->getNameAsString();
5621           S += '>';
5622         }
5623         S += '"';
5624       }
5625       return;
5626     }
5627 
5628     QualType PointeeTy = OPT->getPointeeType();
5629     if (!EncodingProperty &&
5630         isa<TypedefType>(PointeeTy.getTypePtr()) &&
5631         !EncodePointerToObjCTypedef) {
5632       // Another historical/compatibility reason.
5633       // We encode the underlying type which comes out as
5634       // {...};
5635       S += '^';
5636       if (FD && OPT->getInterfaceDecl()) {
5637         // Prevent recursive encoding of fields in some rare cases.
5638         ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
5639         SmallVector<const ObjCIvarDecl*, 32> Ivars;
5640         DeepCollectObjCIvars(OI, true, Ivars);
5641         for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5642           if (cast<FieldDecl>(Ivars[i]) == FD) {
5643             S += '{';
5644             S += OI->getIdentifier()->getName();
5645             S += '}';
5646             return;
5647           }
5648         }
5649       }
5650       getObjCEncodingForTypeImpl(PointeeTy, S,
5651                                  false, ExpandPointedToStructures,
5652                                  nullptr,
5653                                  false, false, false, false, false,
5654                                  /*EncodePointerToObjCTypedef*/true);
5655       return;
5656     }
5657 
5658     S += '@';
5659     if (OPT->getInterfaceDecl() &&
5660         (FD || EncodingProperty || EncodeClassNames)) {
5661       S += '"';
5662       S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5663       for (const auto *I : OPT->quals()) {
5664         S += '<';
5665         S += I->getNameAsString();
5666         S += '>';
5667       }
5668       S += '"';
5669     }
5670     return;
5671   }
5672 
5673   // gcc just blithely ignores member pointers.
5674   // FIXME: we shoul do better than that.  'M' is available.
5675   case Type::MemberPointer:
5676   // This matches gcc's encoding, even though technically it is insufficient.
5677   //FIXME. We should do a better job than gcc.
5678   case Type::Vector:
5679   case Type::ExtVector:
5680   // Until we have a coherent encoding of these three types, issue warning.
5681     { if (NotEncodedT)
5682         *NotEncodedT = T;
5683       return;
5684     }
5685 
5686   // We could see an undeduced auto type here during error recovery.
5687   // Just ignore it.
5688   case Type::Auto:
5689     return;
5690 
5691 
5692 #define ABSTRACT_TYPE(KIND, BASE)
5693 #define TYPE(KIND, BASE)
5694 #define DEPENDENT_TYPE(KIND, BASE) \
5695   case Type::KIND:
5696 #define NON_CANONICAL_TYPE(KIND, BASE) \
5697   case Type::KIND:
5698 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5699   case Type::KIND:
5700 #include "clang/AST/TypeNodes.def"
5701     llvm_unreachable("@encode for dependent type!");
5702   }
5703   llvm_unreachable("bad type kind!");
5704 }
5705 
getObjCEncodingForStructureImpl(RecordDecl * RDecl,std::string & S,const FieldDecl * FD,bool includeVBases,QualType * NotEncodedT) const5706 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5707                                                  std::string &S,
5708                                                  const FieldDecl *FD,
5709                                                  bool includeVBases,
5710                                                  QualType *NotEncodedT) const {
5711   assert(RDecl && "Expected non-null RecordDecl");
5712   assert(!RDecl->isUnion() && "Should not be called for unions");
5713   if (!RDecl->getDefinition())
5714     return;
5715 
5716   CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5717   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5718   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5719 
5720   if (CXXRec) {
5721     for (const auto &BI : CXXRec->bases()) {
5722       if (!BI.isVirtual()) {
5723         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5724         if (base->isEmpty())
5725           continue;
5726         uint64_t offs = toBits(layout.getBaseClassOffset(base));
5727         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5728                                   std::make_pair(offs, base));
5729       }
5730     }
5731   }
5732 
5733   unsigned i = 0;
5734   for (auto *Field : RDecl->fields()) {
5735     uint64_t offs = layout.getFieldOffset(i);
5736     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5737                               std::make_pair(offs, Field));
5738     ++i;
5739   }
5740 
5741   if (CXXRec && includeVBases) {
5742     for (const auto &BI : CXXRec->vbases()) {
5743       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5744       if (base->isEmpty())
5745         continue;
5746       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5747       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
5748           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5749         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5750                                   std::make_pair(offs, base));
5751     }
5752   }
5753 
5754   CharUnits size;
5755   if (CXXRec) {
5756     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5757   } else {
5758     size = layout.getSize();
5759   }
5760 
5761 #ifndef NDEBUG
5762   uint64_t CurOffs = 0;
5763 #endif
5764   std::multimap<uint64_t, NamedDecl *>::iterator
5765     CurLayObj = FieldOrBaseOffsets.begin();
5766 
5767   if (CXXRec && CXXRec->isDynamicClass() &&
5768       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5769     if (FD) {
5770       S += "\"_vptr$";
5771       std::string recname = CXXRec->getNameAsString();
5772       if (recname.empty()) recname = "?";
5773       S += recname;
5774       S += '"';
5775     }
5776     S += "^^?";
5777 #ifndef NDEBUG
5778     CurOffs += getTypeSize(VoidPtrTy);
5779 #endif
5780   }
5781 
5782   if (!RDecl->hasFlexibleArrayMember()) {
5783     // Mark the end of the structure.
5784     uint64_t offs = toBits(size);
5785     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5786                               std::make_pair(offs, nullptr));
5787   }
5788 
5789   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5790 #ifndef NDEBUG
5791     assert(CurOffs <= CurLayObj->first);
5792     if (CurOffs < CurLayObj->first) {
5793       uint64_t padding = CurLayObj->first - CurOffs;
5794       // FIXME: There doesn't seem to be a way to indicate in the encoding that
5795       // packing/alignment of members is different that normal, in which case
5796       // the encoding will be out-of-sync with the real layout.
5797       // If the runtime switches to just consider the size of types without
5798       // taking into account alignment, we could make padding explicit in the
5799       // encoding (e.g. using arrays of chars). The encoding strings would be
5800       // longer then though.
5801       CurOffs += padding;
5802     }
5803 #endif
5804 
5805     NamedDecl *dcl = CurLayObj->second;
5806     if (!dcl)
5807       break; // reached end of structure.
5808 
5809     if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5810       // We expand the bases without their virtual bases since those are going
5811       // in the initial structure. Note that this differs from gcc which
5812       // expands virtual bases each time one is encountered in the hierarchy,
5813       // making the encoding type bigger than it really is.
5814       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
5815                                       NotEncodedT);
5816       assert(!base->isEmpty());
5817 #ifndef NDEBUG
5818       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5819 #endif
5820     } else {
5821       FieldDecl *field = cast<FieldDecl>(dcl);
5822       if (FD) {
5823         S += '"';
5824         S += field->getNameAsString();
5825         S += '"';
5826       }
5827 
5828       if (field->isBitField()) {
5829         EncodeBitField(this, S, field->getType(), field);
5830 #ifndef NDEBUG
5831         CurOffs += field->getBitWidthValue(*this);
5832 #endif
5833       } else {
5834         QualType qt = field->getType();
5835         getLegacyIntegralTypeEncoding(qt);
5836         getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5837                                    /*OutermostType*/false,
5838                                    /*EncodingProperty*/false,
5839                                    /*StructField*/true,
5840                                    false, false, false, NotEncodedT);
5841 #ifndef NDEBUG
5842         CurOffs += getTypeSize(field->getType());
5843 #endif
5844       }
5845     }
5846   }
5847 }
5848 
getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,std::string & S) const5849 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5850                                                  std::string& S) const {
5851   if (QT & Decl::OBJC_TQ_In)
5852     S += 'n';
5853   if (QT & Decl::OBJC_TQ_Inout)
5854     S += 'N';
5855   if (QT & Decl::OBJC_TQ_Out)
5856     S += 'o';
5857   if (QT & Decl::OBJC_TQ_Bycopy)
5858     S += 'O';
5859   if (QT & Decl::OBJC_TQ_Byref)
5860     S += 'R';
5861   if (QT & Decl::OBJC_TQ_Oneway)
5862     S += 'V';
5863 }
5864 
getObjCIdDecl() const5865 TypedefDecl *ASTContext::getObjCIdDecl() const {
5866   if (!ObjCIdDecl) {
5867     QualType T = getObjCObjectType(ObjCBuiltinIdTy, nullptr, 0);
5868     T = getObjCObjectPointerType(T);
5869     ObjCIdDecl = buildImplicitTypedef(T, "id");
5870   }
5871   return ObjCIdDecl;
5872 }
5873 
getObjCSelDecl() const5874 TypedefDecl *ASTContext::getObjCSelDecl() const {
5875   if (!ObjCSelDecl) {
5876     QualType T = getPointerType(ObjCBuiltinSelTy);
5877     ObjCSelDecl = buildImplicitTypedef(T, "SEL");
5878   }
5879   return ObjCSelDecl;
5880 }
5881 
getObjCClassDecl() const5882 TypedefDecl *ASTContext::getObjCClassDecl() const {
5883   if (!ObjCClassDecl) {
5884     QualType T = getObjCObjectType(ObjCBuiltinClassTy, nullptr, 0);
5885     T = getObjCObjectPointerType(T);
5886     ObjCClassDecl = buildImplicitTypedef(T, "Class");
5887   }
5888   return ObjCClassDecl;
5889 }
5890 
getObjCProtocolDecl() const5891 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5892   if (!ObjCProtocolClassDecl) {
5893     ObjCProtocolClassDecl
5894       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5895                                   SourceLocation(),
5896                                   &Idents.get("Protocol"),
5897                                   /*PrevDecl=*/nullptr,
5898                                   SourceLocation(), true);
5899   }
5900 
5901   return ObjCProtocolClassDecl;
5902 }
5903 
5904 //===----------------------------------------------------------------------===//
5905 // __builtin_va_list Construction Functions
5906 //===----------------------------------------------------------------------===//
5907 
CreateCharPtrBuiltinVaListDecl(const ASTContext * Context)5908 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5909   // typedef char* __builtin_va_list;
5910   QualType T = Context->getPointerType(Context->CharTy);
5911   return Context->buildImplicitTypedef(T, "__builtin_va_list");
5912 }
5913 
CreateVoidPtrBuiltinVaListDecl(const ASTContext * Context)5914 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5915   // typedef void* __builtin_va_list;
5916   QualType T = Context->getPointerType(Context->VoidTy);
5917   return Context->buildImplicitTypedef(T, "__builtin_va_list");
5918 }
5919 
5920 static TypedefDecl *
CreateAArch64ABIBuiltinVaListDecl(const ASTContext * Context)5921 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5922   // struct __va_list
5923   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
5924   if (Context->getLangOpts().CPlusPlus) {
5925     // namespace std { struct __va_list {
5926     NamespaceDecl *NS;
5927     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5928                                Context->getTranslationUnitDecl(),
5929                                /*Inline*/ false, SourceLocation(),
5930                                SourceLocation(), &Context->Idents.get("std"),
5931                                /*PrevDecl*/ nullptr);
5932     NS->setImplicit();
5933     VaListTagDecl->setDeclContext(NS);
5934   }
5935 
5936   VaListTagDecl->startDefinition();
5937 
5938   const size_t NumFields = 5;
5939   QualType FieldTypes[NumFields];
5940   const char *FieldNames[NumFields];
5941 
5942   // void *__stack;
5943   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5944   FieldNames[0] = "__stack";
5945 
5946   // void *__gr_top;
5947   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5948   FieldNames[1] = "__gr_top";
5949 
5950   // void *__vr_top;
5951   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5952   FieldNames[2] = "__vr_top";
5953 
5954   // int __gr_offs;
5955   FieldTypes[3] = Context->IntTy;
5956   FieldNames[3] = "__gr_offs";
5957 
5958   // int __vr_offs;
5959   FieldTypes[4] = Context->IntTy;
5960   FieldNames[4] = "__vr_offs";
5961 
5962   // Create fields
5963   for (unsigned i = 0; i < NumFields; ++i) {
5964     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5965                                          VaListTagDecl,
5966                                          SourceLocation(),
5967                                          SourceLocation(),
5968                                          &Context->Idents.get(FieldNames[i]),
5969                                          FieldTypes[i], /*TInfo=*/nullptr,
5970                                          /*BitWidth=*/nullptr,
5971                                          /*Mutable=*/false,
5972                                          ICIS_NoInit);
5973     Field->setAccess(AS_public);
5974     VaListTagDecl->addDecl(Field);
5975   }
5976   VaListTagDecl->completeDefinition();
5977   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5978   Context->VaListTagTy = VaListTagType;
5979 
5980   // } __builtin_va_list;
5981   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
5982 }
5983 
CreatePowerABIBuiltinVaListDecl(const ASTContext * Context)5984 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5985   // typedef struct __va_list_tag {
5986   RecordDecl *VaListTagDecl;
5987 
5988   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
5989   VaListTagDecl->startDefinition();
5990 
5991   const size_t NumFields = 5;
5992   QualType FieldTypes[NumFields];
5993   const char *FieldNames[NumFields];
5994 
5995   //   unsigned char gpr;
5996   FieldTypes[0] = Context->UnsignedCharTy;
5997   FieldNames[0] = "gpr";
5998 
5999   //   unsigned char fpr;
6000   FieldTypes[1] = Context->UnsignedCharTy;
6001   FieldNames[1] = "fpr";
6002 
6003   //   unsigned short reserved;
6004   FieldTypes[2] = Context->UnsignedShortTy;
6005   FieldNames[2] = "reserved";
6006 
6007   //   void* overflow_arg_area;
6008   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6009   FieldNames[3] = "overflow_arg_area";
6010 
6011   //   void* reg_save_area;
6012   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
6013   FieldNames[4] = "reg_save_area";
6014 
6015   // Create fields
6016   for (unsigned i = 0; i < NumFields; ++i) {
6017     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
6018                                          SourceLocation(),
6019                                          SourceLocation(),
6020                                          &Context->Idents.get(FieldNames[i]),
6021                                          FieldTypes[i], /*TInfo=*/nullptr,
6022                                          /*BitWidth=*/nullptr,
6023                                          /*Mutable=*/false,
6024                                          ICIS_NoInit);
6025     Field->setAccess(AS_public);
6026     VaListTagDecl->addDecl(Field);
6027   }
6028   VaListTagDecl->completeDefinition();
6029   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6030   Context->VaListTagTy = VaListTagType;
6031 
6032   // } __va_list_tag;
6033   TypedefDecl *VaListTagTypedefDecl =
6034       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6035 
6036   QualType VaListTagTypedefType =
6037     Context->getTypedefType(VaListTagTypedefDecl);
6038 
6039   // typedef __va_list_tag __builtin_va_list[1];
6040   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6041   QualType VaListTagArrayType
6042     = Context->getConstantArrayType(VaListTagTypedefType,
6043                                     Size, ArrayType::Normal, 0);
6044   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6045 }
6046 
6047 static TypedefDecl *
CreateX86_64ABIBuiltinVaListDecl(const ASTContext * Context)6048 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
6049   // typedef struct __va_list_tag {
6050   RecordDecl *VaListTagDecl;
6051   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6052   VaListTagDecl->startDefinition();
6053 
6054   const size_t NumFields = 4;
6055   QualType FieldTypes[NumFields];
6056   const char *FieldNames[NumFields];
6057 
6058   //   unsigned gp_offset;
6059   FieldTypes[0] = Context->UnsignedIntTy;
6060   FieldNames[0] = "gp_offset";
6061 
6062   //   unsigned fp_offset;
6063   FieldTypes[1] = Context->UnsignedIntTy;
6064   FieldNames[1] = "fp_offset";
6065 
6066   //   void* overflow_arg_area;
6067   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6068   FieldNames[2] = "overflow_arg_area";
6069 
6070   //   void* reg_save_area;
6071   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6072   FieldNames[3] = "reg_save_area";
6073 
6074   // Create fields
6075   for (unsigned i = 0; i < NumFields; ++i) {
6076     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6077                                          VaListTagDecl,
6078                                          SourceLocation(),
6079                                          SourceLocation(),
6080                                          &Context->Idents.get(FieldNames[i]),
6081                                          FieldTypes[i], /*TInfo=*/nullptr,
6082                                          /*BitWidth=*/nullptr,
6083                                          /*Mutable=*/false,
6084                                          ICIS_NoInit);
6085     Field->setAccess(AS_public);
6086     VaListTagDecl->addDecl(Field);
6087   }
6088   VaListTagDecl->completeDefinition();
6089   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6090   Context->VaListTagTy = VaListTagType;
6091 
6092   // } __va_list_tag;
6093   TypedefDecl *VaListTagTypedefDecl =
6094       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6095 
6096   QualType VaListTagTypedefType =
6097     Context->getTypedefType(VaListTagTypedefDecl);
6098 
6099   // typedef __va_list_tag __builtin_va_list[1];
6100   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6101   QualType VaListTagArrayType
6102     = Context->getConstantArrayType(VaListTagTypedefType,
6103                                       Size, ArrayType::Normal,0);
6104   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6105 }
6106 
CreatePNaClABIBuiltinVaListDecl(const ASTContext * Context)6107 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
6108   // typedef int __builtin_va_list[4];
6109   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
6110   QualType IntArrayType
6111     = Context->getConstantArrayType(Context->IntTy,
6112 				    Size, ArrayType::Normal, 0);
6113   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
6114 }
6115 
6116 static TypedefDecl *
CreateAAPCSABIBuiltinVaListDecl(const ASTContext * Context)6117 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
6118   // struct __va_list
6119   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
6120   if (Context->getLangOpts().CPlusPlus) {
6121     // namespace std { struct __va_list {
6122     NamespaceDecl *NS;
6123     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
6124                                Context->getTranslationUnitDecl(),
6125                                /*Inline*/false, SourceLocation(),
6126                                SourceLocation(), &Context->Idents.get("std"),
6127                                /*PrevDecl*/ nullptr);
6128     NS->setImplicit();
6129     VaListDecl->setDeclContext(NS);
6130   }
6131 
6132   VaListDecl->startDefinition();
6133 
6134   // void * __ap;
6135   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6136                                        VaListDecl,
6137                                        SourceLocation(),
6138                                        SourceLocation(),
6139                                        &Context->Idents.get("__ap"),
6140                                        Context->getPointerType(Context->VoidTy),
6141                                        /*TInfo=*/nullptr,
6142                                        /*BitWidth=*/nullptr,
6143                                        /*Mutable=*/false,
6144                                        ICIS_NoInit);
6145   Field->setAccess(AS_public);
6146   VaListDecl->addDecl(Field);
6147 
6148   // };
6149   VaListDecl->completeDefinition();
6150 
6151   // typedef struct __va_list __builtin_va_list;
6152   QualType T = Context->getRecordType(VaListDecl);
6153   return Context->buildImplicitTypedef(T, "__builtin_va_list");
6154 }
6155 
6156 static TypedefDecl *
CreateSystemZBuiltinVaListDecl(const ASTContext * Context)6157 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
6158   // typedef struct __va_list_tag {
6159   RecordDecl *VaListTagDecl;
6160   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6161   VaListTagDecl->startDefinition();
6162 
6163   const size_t NumFields = 4;
6164   QualType FieldTypes[NumFields];
6165   const char *FieldNames[NumFields];
6166 
6167   //   long __gpr;
6168   FieldTypes[0] = Context->LongTy;
6169   FieldNames[0] = "__gpr";
6170 
6171   //   long __fpr;
6172   FieldTypes[1] = Context->LongTy;
6173   FieldNames[1] = "__fpr";
6174 
6175   //   void *__overflow_arg_area;
6176   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6177   FieldNames[2] = "__overflow_arg_area";
6178 
6179   //   void *__reg_save_area;
6180   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6181   FieldNames[3] = "__reg_save_area";
6182 
6183   // Create fields
6184   for (unsigned i = 0; i < NumFields; ++i) {
6185     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6186                                          VaListTagDecl,
6187                                          SourceLocation(),
6188                                          SourceLocation(),
6189                                          &Context->Idents.get(FieldNames[i]),
6190                                          FieldTypes[i], /*TInfo=*/nullptr,
6191                                          /*BitWidth=*/nullptr,
6192                                          /*Mutable=*/false,
6193                                          ICIS_NoInit);
6194     Field->setAccess(AS_public);
6195     VaListTagDecl->addDecl(Field);
6196   }
6197   VaListTagDecl->completeDefinition();
6198   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6199   Context->VaListTagTy = VaListTagType;
6200 
6201   // } __va_list_tag;
6202   TypedefDecl *VaListTagTypedefDecl =
6203       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6204   QualType VaListTagTypedefType =
6205     Context->getTypedefType(VaListTagTypedefDecl);
6206 
6207   // typedef __va_list_tag __builtin_va_list[1];
6208   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6209   QualType VaListTagArrayType
6210     = Context->getConstantArrayType(VaListTagTypedefType,
6211                                       Size, ArrayType::Normal,0);
6212 
6213   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6214 }
6215 
CreateVaListDecl(const ASTContext * Context,TargetInfo::BuiltinVaListKind Kind)6216 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6217                                      TargetInfo::BuiltinVaListKind Kind) {
6218   switch (Kind) {
6219   case TargetInfo::CharPtrBuiltinVaList:
6220     return CreateCharPtrBuiltinVaListDecl(Context);
6221   case TargetInfo::VoidPtrBuiltinVaList:
6222     return CreateVoidPtrBuiltinVaListDecl(Context);
6223   case TargetInfo::AArch64ABIBuiltinVaList:
6224     return CreateAArch64ABIBuiltinVaListDecl(Context);
6225   case TargetInfo::PowerABIBuiltinVaList:
6226     return CreatePowerABIBuiltinVaListDecl(Context);
6227   case TargetInfo::X86_64ABIBuiltinVaList:
6228     return CreateX86_64ABIBuiltinVaListDecl(Context);
6229   case TargetInfo::PNaClABIBuiltinVaList:
6230     return CreatePNaClABIBuiltinVaListDecl(Context);
6231   case TargetInfo::AAPCSABIBuiltinVaList:
6232     return CreateAAPCSABIBuiltinVaListDecl(Context);
6233   case TargetInfo::SystemZBuiltinVaList:
6234     return CreateSystemZBuiltinVaListDecl(Context);
6235   }
6236 
6237   llvm_unreachable("Unhandled __builtin_va_list type kind");
6238 }
6239 
getBuiltinVaListDecl() const6240 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6241   if (!BuiltinVaListDecl) {
6242     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6243     assert(BuiltinVaListDecl->isImplicit());
6244   }
6245 
6246   return BuiltinVaListDecl;
6247 }
6248 
getVaListTagType() const6249 QualType ASTContext::getVaListTagType() const {
6250   // Force the creation of VaListTagTy by building the __builtin_va_list
6251   // declaration.
6252   if (VaListTagTy.isNull())
6253     (void) getBuiltinVaListDecl();
6254 
6255   return VaListTagTy;
6256 }
6257 
setObjCConstantStringInterface(ObjCInterfaceDecl * Decl)6258 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6259   assert(ObjCConstantStringType.isNull() &&
6260          "'NSConstantString' type already set!");
6261 
6262   ObjCConstantStringType = getObjCInterfaceType(Decl);
6263 }
6264 
6265 /// \brief Retrieve the template name that corresponds to a non-empty
6266 /// lookup.
6267 TemplateName
getOverloadedTemplateName(UnresolvedSetIterator Begin,UnresolvedSetIterator End) const6268 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6269                                       UnresolvedSetIterator End) const {
6270   unsigned size = End - Begin;
6271   assert(size > 1 && "set is not overloaded!");
6272 
6273   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6274                           size * sizeof(FunctionTemplateDecl*));
6275   OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6276 
6277   NamedDecl **Storage = OT->getStorage();
6278   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6279     NamedDecl *D = *I;
6280     assert(isa<FunctionTemplateDecl>(D) ||
6281            (isa<UsingShadowDecl>(D) &&
6282             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6283     *Storage++ = D;
6284   }
6285 
6286   return TemplateName(OT);
6287 }
6288 
6289 /// \brief Retrieve the template name that represents a qualified
6290 /// template name such as \c std::vector.
6291 TemplateName
getQualifiedTemplateName(NestedNameSpecifier * NNS,bool TemplateKeyword,TemplateDecl * Template) const6292 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6293                                      bool TemplateKeyword,
6294                                      TemplateDecl *Template) const {
6295   assert(NNS && "Missing nested-name-specifier in qualified template name");
6296 
6297   // FIXME: Canonicalization?
6298   llvm::FoldingSetNodeID ID;
6299   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6300 
6301   void *InsertPos = nullptr;
6302   QualifiedTemplateName *QTN =
6303     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6304   if (!QTN) {
6305     QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6306         QualifiedTemplateName(NNS, TemplateKeyword, Template);
6307     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6308   }
6309 
6310   return TemplateName(QTN);
6311 }
6312 
6313 /// \brief Retrieve the template name that represents a dependent
6314 /// template name such as \c MetaFun::template apply.
6315 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,const IdentifierInfo * Name) const6316 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6317                                      const IdentifierInfo *Name) const {
6318   assert((!NNS || NNS->isDependent()) &&
6319          "Nested name specifier must be dependent");
6320 
6321   llvm::FoldingSetNodeID ID;
6322   DependentTemplateName::Profile(ID, NNS, Name);
6323 
6324   void *InsertPos = nullptr;
6325   DependentTemplateName *QTN =
6326     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6327 
6328   if (QTN)
6329     return TemplateName(QTN);
6330 
6331   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6332   if (CanonNNS == NNS) {
6333     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6334         DependentTemplateName(NNS, Name);
6335   } else {
6336     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6337     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6338         DependentTemplateName(NNS, Name, Canon);
6339     DependentTemplateName *CheckQTN =
6340       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6341     assert(!CheckQTN && "Dependent type name canonicalization broken");
6342     (void)CheckQTN;
6343   }
6344 
6345   DependentTemplateNames.InsertNode(QTN, InsertPos);
6346   return TemplateName(QTN);
6347 }
6348 
6349 /// \brief Retrieve the template name that represents a dependent
6350 /// template name such as \c MetaFun::template operator+.
6351 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,OverloadedOperatorKind Operator) const6352 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6353                                      OverloadedOperatorKind Operator) const {
6354   assert((!NNS || NNS->isDependent()) &&
6355          "Nested name specifier must be dependent");
6356 
6357   llvm::FoldingSetNodeID ID;
6358   DependentTemplateName::Profile(ID, NNS, Operator);
6359 
6360   void *InsertPos = nullptr;
6361   DependentTemplateName *QTN
6362     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6363 
6364   if (QTN)
6365     return TemplateName(QTN);
6366 
6367   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6368   if (CanonNNS == NNS) {
6369     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6370         DependentTemplateName(NNS, Operator);
6371   } else {
6372     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6373     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6374         DependentTemplateName(NNS, Operator, Canon);
6375 
6376     DependentTemplateName *CheckQTN
6377       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6378     assert(!CheckQTN && "Dependent template name canonicalization broken");
6379     (void)CheckQTN;
6380   }
6381 
6382   DependentTemplateNames.InsertNode(QTN, InsertPos);
6383   return TemplateName(QTN);
6384 }
6385 
6386 TemplateName
getSubstTemplateTemplateParm(TemplateTemplateParmDecl * param,TemplateName replacement) const6387 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6388                                          TemplateName replacement) const {
6389   llvm::FoldingSetNodeID ID;
6390   SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6391 
6392   void *insertPos = nullptr;
6393   SubstTemplateTemplateParmStorage *subst
6394     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6395 
6396   if (!subst) {
6397     subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6398     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6399   }
6400 
6401   return TemplateName(subst);
6402 }
6403 
6404 TemplateName
getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack) const6405 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6406                                        const TemplateArgument &ArgPack) const {
6407   ASTContext &Self = const_cast<ASTContext &>(*this);
6408   llvm::FoldingSetNodeID ID;
6409   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6410 
6411   void *InsertPos = nullptr;
6412   SubstTemplateTemplateParmPackStorage *Subst
6413     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6414 
6415   if (!Subst) {
6416     Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6417                                                            ArgPack.pack_size(),
6418                                                          ArgPack.pack_begin());
6419     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6420   }
6421 
6422   return TemplateName(Subst);
6423 }
6424 
6425 /// getFromTargetType - Given one of the integer types provided by
6426 /// TargetInfo, produce the corresponding type. The unsigned @p Type
6427 /// is actually a value of type @c TargetInfo::IntType.
getFromTargetType(unsigned Type) const6428 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6429   switch (Type) {
6430   case TargetInfo::NoInt: return CanQualType();
6431   case TargetInfo::SignedChar: return SignedCharTy;
6432   case TargetInfo::UnsignedChar: return UnsignedCharTy;
6433   case TargetInfo::SignedShort: return ShortTy;
6434   case TargetInfo::UnsignedShort: return UnsignedShortTy;
6435   case TargetInfo::SignedInt: return IntTy;
6436   case TargetInfo::UnsignedInt: return UnsignedIntTy;
6437   case TargetInfo::SignedLong: return LongTy;
6438   case TargetInfo::UnsignedLong: return UnsignedLongTy;
6439   case TargetInfo::SignedLongLong: return LongLongTy;
6440   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6441   }
6442 
6443   llvm_unreachable("Unhandled TargetInfo::IntType value");
6444 }
6445 
6446 //===----------------------------------------------------------------------===//
6447 //                        Type Predicates.
6448 //===----------------------------------------------------------------------===//
6449 
6450 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6451 /// garbage collection attribute.
6452 ///
getObjCGCAttrKind(QualType Ty) const6453 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6454   if (getLangOpts().getGC() == LangOptions::NonGC)
6455     return Qualifiers::GCNone;
6456 
6457   assert(getLangOpts().ObjC1);
6458   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6459 
6460   // Default behaviour under objective-C's gc is for ObjC pointers
6461   // (or pointers to them) be treated as though they were declared
6462   // as __strong.
6463   if (GCAttrs == Qualifiers::GCNone) {
6464     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6465       return Qualifiers::Strong;
6466     else if (Ty->isPointerType())
6467       return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6468   } else {
6469     // It's not valid to set GC attributes on anything that isn't a
6470     // pointer.
6471 #ifndef NDEBUG
6472     QualType CT = Ty->getCanonicalTypeInternal();
6473     while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6474       CT = AT->getElementType();
6475     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6476 #endif
6477   }
6478   return GCAttrs;
6479 }
6480 
6481 //===----------------------------------------------------------------------===//
6482 //                        Type Compatibility Testing
6483 //===----------------------------------------------------------------------===//
6484 
6485 /// areCompatVectorTypes - Return true if the two specified vector types are
6486 /// compatible.
areCompatVectorTypes(const VectorType * LHS,const VectorType * RHS)6487 static bool areCompatVectorTypes(const VectorType *LHS,
6488                                  const VectorType *RHS) {
6489   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6490   return LHS->getElementType() == RHS->getElementType() &&
6491          LHS->getNumElements() == RHS->getNumElements();
6492 }
6493 
areCompatibleVectorTypes(QualType FirstVec,QualType SecondVec)6494 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6495                                           QualType SecondVec) {
6496   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6497   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6498 
6499   if (hasSameUnqualifiedType(FirstVec, SecondVec))
6500     return true;
6501 
6502   // Treat Neon vector types and most AltiVec vector types as if they are the
6503   // equivalent GCC vector types.
6504   const VectorType *First = FirstVec->getAs<VectorType>();
6505   const VectorType *Second = SecondVec->getAs<VectorType>();
6506   if (First->getNumElements() == Second->getNumElements() &&
6507       hasSameType(First->getElementType(), Second->getElementType()) &&
6508       First->getVectorKind() != VectorType::AltiVecPixel &&
6509       First->getVectorKind() != VectorType::AltiVecBool &&
6510       Second->getVectorKind() != VectorType::AltiVecPixel &&
6511       Second->getVectorKind() != VectorType::AltiVecBool)
6512     return true;
6513 
6514   return false;
6515 }
6516 
6517 //===----------------------------------------------------------------------===//
6518 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6519 //===----------------------------------------------------------------------===//
6520 
6521 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6522 /// inheritance hierarchy of 'rProto'.
6523 bool
ProtocolCompatibleWithProtocol(ObjCProtocolDecl * lProto,ObjCProtocolDecl * rProto) const6524 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6525                                            ObjCProtocolDecl *rProto) const {
6526   if (declaresSameEntity(lProto, rProto))
6527     return true;
6528   for (auto *PI : rProto->protocols())
6529     if (ProtocolCompatibleWithProtocol(lProto, PI))
6530       return true;
6531   return false;
6532 }
6533 
6534 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6535 /// Class<pr1, ...>.
ObjCQualifiedClassTypesAreCompatible(QualType lhs,QualType rhs)6536 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6537                                                       QualType rhs) {
6538   const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6539   const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6540   assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6541 
6542   for (auto *lhsProto : lhsQID->quals()) {
6543     bool match = false;
6544     for (auto *rhsProto : rhsOPT->quals()) {
6545       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6546         match = true;
6547         break;
6548       }
6549     }
6550     if (!match)
6551       return false;
6552   }
6553   return true;
6554 }
6555 
6556 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6557 /// ObjCQualifiedIDType.
ObjCQualifiedIdTypesAreCompatible(QualType lhs,QualType rhs,bool compare)6558 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6559                                                    bool compare) {
6560   // Allow id<P..> and an 'id' or void* type in all cases.
6561   if (lhs->isVoidPointerType() ||
6562       lhs->isObjCIdType() || lhs->isObjCClassType())
6563     return true;
6564   else if (rhs->isVoidPointerType() ||
6565            rhs->isObjCIdType() || rhs->isObjCClassType())
6566     return true;
6567 
6568   if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6569     const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6570 
6571     if (!rhsOPT) return false;
6572 
6573     if (rhsOPT->qual_empty()) {
6574       // If the RHS is a unqualified interface pointer "NSString*",
6575       // make sure we check the class hierarchy.
6576       if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6577         for (auto *I : lhsQID->quals()) {
6578           // when comparing an id<P> on lhs with a static type on rhs,
6579           // see if static class implements all of id's protocols, directly or
6580           // through its super class and categories.
6581           if (!rhsID->ClassImplementsProtocol(I, true))
6582             return false;
6583         }
6584       }
6585       // If there are no qualifiers and no interface, we have an 'id'.
6586       return true;
6587     }
6588     // Both the right and left sides have qualifiers.
6589     for (auto *lhsProto : lhsQID->quals()) {
6590       bool match = false;
6591 
6592       // when comparing an id<P> on lhs with a static type on rhs,
6593       // see if static class implements all of id's protocols, directly or
6594       // through its super class and categories.
6595       for (auto *rhsProto : rhsOPT->quals()) {
6596         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6597             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6598           match = true;
6599           break;
6600         }
6601       }
6602       // If the RHS is a qualified interface pointer "NSString<P>*",
6603       // make sure we check the class hierarchy.
6604       if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6605         for (auto *I : lhsQID->quals()) {
6606           // when comparing an id<P> on lhs with a static type on rhs,
6607           // see if static class implements all of id's protocols, directly or
6608           // through its super class and categories.
6609           if (rhsID->ClassImplementsProtocol(I, true)) {
6610             match = true;
6611             break;
6612           }
6613         }
6614       }
6615       if (!match)
6616         return false;
6617     }
6618 
6619     return true;
6620   }
6621 
6622   const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6623   assert(rhsQID && "One of the LHS/RHS should be id<x>");
6624 
6625   if (const ObjCObjectPointerType *lhsOPT =
6626         lhs->getAsObjCInterfacePointerType()) {
6627     // If both the right and left sides have qualifiers.
6628     for (auto *lhsProto : lhsOPT->quals()) {
6629       bool match = false;
6630 
6631       // when comparing an id<P> on rhs with a static type on lhs,
6632       // see if static class implements all of id's protocols, directly or
6633       // through its super class and categories.
6634       // First, lhs protocols in the qualifier list must be found, direct
6635       // or indirect in rhs's qualifier list or it is a mismatch.
6636       for (auto *rhsProto : rhsQID->quals()) {
6637         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6638             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6639           match = true;
6640           break;
6641         }
6642       }
6643       if (!match)
6644         return false;
6645     }
6646 
6647     // Static class's protocols, or its super class or category protocols
6648     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6649     if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6650       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6651       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6652       // This is rather dubious but matches gcc's behavior. If lhs has
6653       // no type qualifier and its class has no static protocol(s)
6654       // assume that it is mismatch.
6655       if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6656         return false;
6657       for (auto *lhsProto : LHSInheritedProtocols) {
6658         bool match = false;
6659         for (auto *rhsProto : rhsQID->quals()) {
6660           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6661               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6662             match = true;
6663             break;
6664           }
6665         }
6666         if (!match)
6667           return false;
6668       }
6669     }
6670     return true;
6671   }
6672   return false;
6673 }
6674 
6675 /// canAssignObjCInterfaces - Return true if the two interface types are
6676 /// compatible for assignment from RHS to LHS.  This handles validation of any
6677 /// protocol qualifiers on the LHS or RHS.
6678 ///
canAssignObjCInterfaces(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT)6679 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6680                                          const ObjCObjectPointerType *RHSOPT) {
6681   const ObjCObjectType* LHS = LHSOPT->getObjectType();
6682   const ObjCObjectType* RHS = RHSOPT->getObjectType();
6683 
6684   // If either type represents the built-in 'id' or 'Class' types, return true.
6685   if (LHS->isObjCUnqualifiedIdOrClass() ||
6686       RHS->isObjCUnqualifiedIdOrClass())
6687     return true;
6688 
6689   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6690     return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6691                                              QualType(RHSOPT,0),
6692                                              false);
6693 
6694   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6695     return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6696                                                 QualType(RHSOPT,0));
6697 
6698   // If we have 2 user-defined types, fall into that path.
6699   if (LHS->getInterface() && RHS->getInterface())
6700     return canAssignObjCInterfaces(LHS, RHS);
6701 
6702   return false;
6703 }
6704 
6705 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6706 /// for providing type-safety for objective-c pointers used to pass/return
6707 /// arguments in block literals. When passed as arguments, passing 'A*' where
6708 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6709 /// not OK. For the return type, the opposite is not OK.
canAssignObjCInterfacesInBlockPointer(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,bool BlockReturnType)6710 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6711                                          const ObjCObjectPointerType *LHSOPT,
6712                                          const ObjCObjectPointerType *RHSOPT,
6713                                          bool BlockReturnType) {
6714   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6715     return true;
6716 
6717   if (LHSOPT->isObjCBuiltinType()) {
6718     return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6719   }
6720 
6721   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6722     return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6723                                              QualType(RHSOPT,0),
6724                                              false);
6725 
6726   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6727   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6728   if (LHS && RHS)  { // We have 2 user-defined types.
6729     if (LHS != RHS) {
6730       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6731         return BlockReturnType;
6732       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6733         return !BlockReturnType;
6734     }
6735     else
6736       return true;
6737   }
6738   return false;
6739 }
6740 
6741 /// getIntersectionOfProtocols - This routine finds the intersection of set
6742 /// of protocols inherited from two distinct objective-c pointer objects.
6743 /// It is used to build composite qualifier list of the composite type of
6744 /// the conditional expression involving two objective-c pointer objects.
6745 static
getIntersectionOfProtocols(ASTContext & Context,const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,SmallVectorImpl<ObjCProtocolDecl * > & IntersectionOfProtocols)6746 void getIntersectionOfProtocols(ASTContext &Context,
6747                                 const ObjCObjectPointerType *LHSOPT,
6748                                 const ObjCObjectPointerType *RHSOPT,
6749       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6750 
6751   const ObjCObjectType* LHS = LHSOPT->getObjectType();
6752   const ObjCObjectType* RHS = RHSOPT->getObjectType();
6753   assert(LHS->getInterface() && "LHS must have an interface base");
6754   assert(RHS->getInterface() && "RHS must have an interface base");
6755 
6756   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6757   unsigned LHSNumProtocols = LHS->getNumProtocols();
6758   if (LHSNumProtocols > 0)
6759     InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6760   else {
6761     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6762     Context.CollectInheritedProtocols(LHS->getInterface(),
6763                                       LHSInheritedProtocols);
6764     InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6765                                 LHSInheritedProtocols.end());
6766   }
6767 
6768   unsigned RHSNumProtocols = RHS->getNumProtocols();
6769   if (RHSNumProtocols > 0) {
6770     ObjCProtocolDecl **RHSProtocols =
6771       const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6772     for (unsigned i = 0; i < RHSNumProtocols; ++i)
6773       if (InheritedProtocolSet.count(RHSProtocols[i]))
6774         IntersectionOfProtocols.push_back(RHSProtocols[i]);
6775   } else {
6776     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6777     Context.CollectInheritedProtocols(RHS->getInterface(),
6778                                       RHSInheritedProtocols);
6779     for (ObjCProtocolDecl *ProtDecl : RHSInheritedProtocols)
6780       if (InheritedProtocolSet.count(ProtDecl))
6781         IntersectionOfProtocols.push_back(ProtDecl);
6782   }
6783 }
6784 
6785 /// areCommonBaseCompatible - Returns common base class of the two classes if
6786 /// one found. Note that this is O'2 algorithm. But it will be called as the
6787 /// last type comparison in a ?-exp of ObjC pointer types before a
6788 /// warning is issued. So, its invokation is extremely rare.
areCommonBaseCompatible(const ObjCObjectPointerType * Lptr,const ObjCObjectPointerType * Rptr)6789 QualType ASTContext::areCommonBaseCompatible(
6790                                           const ObjCObjectPointerType *Lptr,
6791                                           const ObjCObjectPointerType *Rptr) {
6792   const ObjCObjectType *LHS = Lptr->getObjectType();
6793   const ObjCObjectType *RHS = Rptr->getObjectType();
6794   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6795   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6796   if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6797     return QualType();
6798 
6799   do {
6800     LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6801     if (canAssignObjCInterfaces(LHS, RHS)) {
6802       SmallVector<ObjCProtocolDecl *, 8> Protocols;
6803       getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6804 
6805       QualType Result = QualType(LHS, 0);
6806       if (!Protocols.empty())
6807         Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6808       Result = getObjCObjectPointerType(Result);
6809       return Result;
6810     }
6811   } while ((LDecl = LDecl->getSuperClass()));
6812 
6813   return QualType();
6814 }
6815 
canAssignObjCInterfaces(const ObjCObjectType * LHS,const ObjCObjectType * RHS)6816 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6817                                          const ObjCObjectType *RHS) {
6818   assert(LHS->getInterface() && "LHS is not an interface type");
6819   assert(RHS->getInterface() && "RHS is not an interface type");
6820 
6821   // Verify that the base decls are compatible: the RHS must be a subclass of
6822   // the LHS.
6823   if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6824     return false;
6825 
6826   // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6827   // protocol qualified at all, then we are good.
6828   if (LHS->getNumProtocols() == 0)
6829     return true;
6830 
6831   // Okay, we know the LHS has protocol qualifiers. But RHS may or may not.
6832   // More detailed analysis is required.
6833   // OK, if LHS is same or a superclass of RHS *and*
6834   // this LHS, or as RHS's super class is assignment compatible with LHS.
6835   bool IsSuperClass =
6836     LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6837   if (IsSuperClass) {
6838     // OK if conversion of LHS to SuperClass results in narrowing of types
6839     // ; i.e., SuperClass may implement at least one of the protocols
6840     // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6841     // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6842     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6843     CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6844     // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
6845     // qualifiers.
6846     for (auto *RHSPI : RHS->quals())
6847       SuperClassInheritedProtocols.insert(RHSPI->getCanonicalDecl());
6848     // If there is no protocols associated with RHS, it is not a match.
6849     if (SuperClassInheritedProtocols.empty())
6850       return false;
6851 
6852     for (const auto *LHSProto : LHS->quals()) {
6853       bool SuperImplementsProtocol = false;
6854       for (auto *SuperClassProto : SuperClassInheritedProtocols)
6855         if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6856           SuperImplementsProtocol = true;
6857           break;
6858         }
6859       if (!SuperImplementsProtocol)
6860         return false;
6861     }
6862     return true;
6863   }
6864   return false;
6865 }
6866 
areComparableObjCPointerTypes(QualType LHS,QualType RHS)6867 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6868   // get the "pointed to" types
6869   const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6870   const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6871 
6872   if (!LHSOPT || !RHSOPT)
6873     return false;
6874 
6875   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6876          canAssignObjCInterfaces(RHSOPT, LHSOPT);
6877 }
6878 
canBindObjCObjectType(QualType To,QualType From)6879 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6880   return canAssignObjCInterfaces(
6881                 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6882                 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6883 }
6884 
6885 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6886 /// both shall have the identically qualified version of a compatible type.
6887 /// C99 6.2.7p1: Two types have compatible types if their types are the
6888 /// same. See 6.7.[2,3,5] for additional rules.
typesAreCompatible(QualType LHS,QualType RHS,bool CompareUnqualified)6889 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6890                                     bool CompareUnqualified) {
6891   if (getLangOpts().CPlusPlus)
6892     return hasSameType(LHS, RHS);
6893 
6894   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6895 }
6896 
propertyTypesAreCompatible(QualType LHS,QualType RHS)6897 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6898   return typesAreCompatible(LHS, RHS);
6899 }
6900 
typesAreBlockPointerCompatible(QualType LHS,QualType RHS)6901 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6902   return !mergeTypes(LHS, RHS, true).isNull();
6903 }
6904 
6905 /// mergeTransparentUnionType - if T is a transparent union type and a member
6906 /// of T is compatible with SubType, return the merged type, else return
6907 /// QualType()
mergeTransparentUnionType(QualType T,QualType SubType,bool OfBlockPointer,bool Unqualified)6908 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6909                                                bool OfBlockPointer,
6910                                                bool Unqualified) {
6911   if (const RecordType *UT = T->getAsUnionType()) {
6912     RecordDecl *UD = UT->getDecl();
6913     if (UD->hasAttr<TransparentUnionAttr>()) {
6914       for (const auto *I : UD->fields()) {
6915         QualType ET = I->getType().getUnqualifiedType();
6916         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6917         if (!MT.isNull())
6918           return MT;
6919       }
6920     }
6921   }
6922 
6923   return QualType();
6924 }
6925 
6926 /// mergeFunctionParameterTypes - merge two types which appear as function
6927 /// parameter types
mergeFunctionParameterTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)6928 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
6929                                                  bool OfBlockPointer,
6930                                                  bool Unqualified) {
6931   // GNU extension: two types are compatible if they appear as a function
6932   // argument, one of the types is a transparent union type and the other
6933   // type is compatible with a union member
6934   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6935                                               Unqualified);
6936   if (!lmerge.isNull())
6937     return lmerge;
6938 
6939   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6940                                               Unqualified);
6941   if (!rmerge.isNull())
6942     return rmerge;
6943 
6944   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6945 }
6946 
mergeFunctionTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)6947 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6948                                         bool OfBlockPointer,
6949                                         bool Unqualified) {
6950   const FunctionType *lbase = lhs->getAs<FunctionType>();
6951   const FunctionType *rbase = rhs->getAs<FunctionType>();
6952   const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6953   const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6954   bool allLTypes = true;
6955   bool allRTypes = true;
6956 
6957   // Check return type
6958   QualType retType;
6959   if (OfBlockPointer) {
6960     QualType RHS = rbase->getReturnType();
6961     QualType LHS = lbase->getReturnType();
6962     bool UnqualifiedResult = Unqualified;
6963     if (!UnqualifiedResult)
6964       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6965     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6966   }
6967   else
6968     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
6969                          Unqualified);
6970   if (retType.isNull()) return QualType();
6971 
6972   if (Unqualified)
6973     retType = retType.getUnqualifiedType();
6974 
6975   CanQualType LRetType = getCanonicalType(lbase->getReturnType());
6976   CanQualType RRetType = getCanonicalType(rbase->getReturnType());
6977   if (Unqualified) {
6978     LRetType = LRetType.getUnqualifiedType();
6979     RRetType = RRetType.getUnqualifiedType();
6980   }
6981 
6982   if (getCanonicalType(retType) != LRetType)
6983     allLTypes = false;
6984   if (getCanonicalType(retType) != RRetType)
6985     allRTypes = false;
6986 
6987   // FIXME: double check this
6988   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6989   //                           rbase->getRegParmAttr() != 0 &&
6990   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6991   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6992   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6993 
6994   // Compatible functions must have compatible calling conventions
6995   if (lbaseInfo.getCC() != rbaseInfo.getCC())
6996     return QualType();
6997 
6998   // Regparm is part of the calling convention.
6999   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
7000     return QualType();
7001   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
7002     return QualType();
7003 
7004   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
7005     return QualType();
7006 
7007   // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
7008   bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
7009 
7010   if (lbaseInfo.getNoReturn() != NoReturn)
7011     allLTypes = false;
7012   if (rbaseInfo.getNoReturn() != NoReturn)
7013     allRTypes = false;
7014 
7015   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
7016 
7017   if (lproto && rproto) { // two C99 style function prototypes
7018     assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
7019            "C++ shouldn't be here");
7020     // Compatible functions must have the same number of parameters
7021     if (lproto->getNumParams() != rproto->getNumParams())
7022       return QualType();
7023 
7024     // Variadic and non-variadic functions aren't compatible
7025     if (lproto->isVariadic() != rproto->isVariadic())
7026       return QualType();
7027 
7028     if (lproto->getTypeQuals() != rproto->getTypeQuals())
7029       return QualType();
7030 
7031     if (LangOpts.ObjCAutoRefCount &&
7032         !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
7033       return QualType();
7034 
7035     // Check parameter type compatibility
7036     SmallVector<QualType, 10> types;
7037     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
7038       QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
7039       QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
7040       QualType paramType = mergeFunctionParameterTypes(
7041           lParamType, rParamType, OfBlockPointer, Unqualified);
7042       if (paramType.isNull())
7043         return QualType();
7044 
7045       if (Unqualified)
7046         paramType = paramType.getUnqualifiedType();
7047 
7048       types.push_back(paramType);
7049       if (Unqualified) {
7050         lParamType = lParamType.getUnqualifiedType();
7051         rParamType = rParamType.getUnqualifiedType();
7052       }
7053 
7054       if (getCanonicalType(paramType) != getCanonicalType(lParamType))
7055         allLTypes = false;
7056       if (getCanonicalType(paramType) != getCanonicalType(rParamType))
7057         allRTypes = false;
7058     }
7059 
7060     if (allLTypes) return lhs;
7061     if (allRTypes) return rhs;
7062 
7063     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
7064     EPI.ExtInfo = einfo;
7065     return getFunctionType(retType, types, EPI);
7066   }
7067 
7068   if (lproto) allRTypes = false;
7069   if (rproto) allLTypes = false;
7070 
7071   const FunctionProtoType *proto = lproto ? lproto : rproto;
7072   if (proto) {
7073     assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
7074     if (proto->isVariadic()) return QualType();
7075     // Check that the types are compatible with the types that
7076     // would result from default argument promotions (C99 6.7.5.3p15).
7077     // The only types actually affected are promotable integer
7078     // types and floats, which would be passed as a different
7079     // type depending on whether the prototype is visible.
7080     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
7081       QualType paramTy = proto->getParamType(i);
7082 
7083       // Look at the converted type of enum types, since that is the type used
7084       // to pass enum values.
7085       if (const EnumType *Enum = paramTy->getAs<EnumType>()) {
7086         paramTy = Enum->getDecl()->getIntegerType();
7087         if (paramTy.isNull())
7088           return QualType();
7089       }
7090 
7091       if (paramTy->isPromotableIntegerType() ||
7092           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
7093         return QualType();
7094     }
7095 
7096     if (allLTypes) return lhs;
7097     if (allRTypes) return rhs;
7098 
7099     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
7100     EPI.ExtInfo = einfo;
7101     return getFunctionType(retType, proto->getParamTypes(), EPI);
7102   }
7103 
7104   if (allLTypes) return lhs;
7105   if (allRTypes) return rhs;
7106   return getFunctionNoProtoType(retType, einfo);
7107 }
7108 
7109 /// Given that we have an enum type and a non-enum type, try to merge them.
mergeEnumWithInteger(ASTContext & Context,const EnumType * ET,QualType other,bool isBlockReturnType)7110 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7111                                      QualType other, bool isBlockReturnType) {
7112   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7113   // a signed integer type, or an unsigned integer type.
7114   // Compatibility is based on the underlying type, not the promotion
7115   // type.
7116   QualType underlyingType = ET->getDecl()->getIntegerType();
7117   if (underlyingType.isNull()) return QualType();
7118   if (Context.hasSameType(underlyingType, other))
7119     return other;
7120 
7121   // In block return types, we're more permissive and accept any
7122   // integral type of the same size.
7123   if (isBlockReturnType && other->isIntegerType() &&
7124       Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7125     return other;
7126 
7127   return QualType();
7128 }
7129 
mergeTypes(QualType LHS,QualType RHS,bool OfBlockPointer,bool Unqualified,bool BlockReturnType)7130 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7131                                 bool OfBlockPointer,
7132                                 bool Unqualified, bool BlockReturnType) {
7133   // C++ [expr]: If an expression initially has the type "reference to T", the
7134   // type is adjusted to "T" prior to any further analysis, the expression
7135   // designates the object or function denoted by the reference, and the
7136   // expression is an lvalue unless the reference is an rvalue reference and
7137   // the expression is a function call (possibly inside parentheses).
7138   assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7139   assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7140 
7141   if (Unqualified) {
7142     LHS = LHS.getUnqualifiedType();
7143     RHS = RHS.getUnqualifiedType();
7144   }
7145 
7146   QualType LHSCan = getCanonicalType(LHS),
7147            RHSCan = getCanonicalType(RHS);
7148 
7149   // If two types are identical, they are compatible.
7150   if (LHSCan == RHSCan)
7151     return LHS;
7152 
7153   // If the qualifiers are different, the types aren't compatible... mostly.
7154   Qualifiers LQuals = LHSCan.getLocalQualifiers();
7155   Qualifiers RQuals = RHSCan.getLocalQualifiers();
7156   if (LQuals != RQuals) {
7157     // If any of these qualifiers are different, we have a type
7158     // mismatch.
7159     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7160         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7161         LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7162       return QualType();
7163 
7164     // Exactly one GC qualifier difference is allowed: __strong is
7165     // okay if the other type has no GC qualifier but is an Objective
7166     // C object pointer (i.e. implicitly strong by default).  We fix
7167     // this by pretending that the unqualified type was actually
7168     // qualified __strong.
7169     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7170     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7171     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7172 
7173     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7174       return QualType();
7175 
7176     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7177       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7178     }
7179     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7180       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7181     }
7182     return QualType();
7183   }
7184 
7185   // Okay, qualifiers are equal.
7186 
7187   Type::TypeClass LHSClass = LHSCan->getTypeClass();
7188   Type::TypeClass RHSClass = RHSCan->getTypeClass();
7189 
7190   // We want to consider the two function types to be the same for these
7191   // comparisons, just force one to the other.
7192   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7193   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7194 
7195   // Same as above for arrays
7196   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7197     LHSClass = Type::ConstantArray;
7198   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7199     RHSClass = Type::ConstantArray;
7200 
7201   // ObjCInterfaces are just specialized ObjCObjects.
7202   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7203   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7204 
7205   // Canonicalize ExtVector -> Vector.
7206   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7207   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7208 
7209   // If the canonical type classes don't match.
7210   if (LHSClass != RHSClass) {
7211     // Note that we only have special rules for turning block enum
7212     // returns into block int returns, not vice-versa.
7213     if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7214       return mergeEnumWithInteger(*this, ETy, RHS, false);
7215     }
7216     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7217       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7218     }
7219     // allow block pointer type to match an 'id' type.
7220     if (OfBlockPointer && !BlockReturnType) {
7221        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7222          return LHS;
7223       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7224         return RHS;
7225     }
7226 
7227     return QualType();
7228   }
7229 
7230   // The canonical type classes match.
7231   switch (LHSClass) {
7232 #define TYPE(Class, Base)
7233 #define ABSTRACT_TYPE(Class, Base)
7234 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7235 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7236 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
7237 #include "clang/AST/TypeNodes.def"
7238     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7239 
7240   case Type::Auto:
7241   case Type::LValueReference:
7242   case Type::RValueReference:
7243   case Type::MemberPointer:
7244     llvm_unreachable("C++ should never be in mergeTypes");
7245 
7246   case Type::ObjCInterface:
7247   case Type::IncompleteArray:
7248   case Type::VariableArray:
7249   case Type::FunctionProto:
7250   case Type::ExtVector:
7251     llvm_unreachable("Types are eliminated above");
7252 
7253   case Type::Pointer:
7254   {
7255     // Merge two pointer types, while trying to preserve typedef info
7256     QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7257     QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7258     if (Unqualified) {
7259       LHSPointee = LHSPointee.getUnqualifiedType();
7260       RHSPointee = RHSPointee.getUnqualifiedType();
7261     }
7262     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7263                                      Unqualified);
7264     if (ResultType.isNull()) return QualType();
7265     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7266       return LHS;
7267     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7268       return RHS;
7269     return getPointerType(ResultType);
7270   }
7271   case Type::BlockPointer:
7272   {
7273     // Merge two block pointer types, while trying to preserve typedef info
7274     QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7275     QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7276     if (Unqualified) {
7277       LHSPointee = LHSPointee.getUnqualifiedType();
7278       RHSPointee = RHSPointee.getUnqualifiedType();
7279     }
7280     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7281                                      Unqualified);
7282     if (ResultType.isNull()) return QualType();
7283     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7284       return LHS;
7285     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7286       return RHS;
7287     return getBlockPointerType(ResultType);
7288   }
7289   case Type::Atomic:
7290   {
7291     // Merge two pointer types, while trying to preserve typedef info
7292     QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7293     QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7294     if (Unqualified) {
7295       LHSValue = LHSValue.getUnqualifiedType();
7296       RHSValue = RHSValue.getUnqualifiedType();
7297     }
7298     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7299                                      Unqualified);
7300     if (ResultType.isNull()) return QualType();
7301     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7302       return LHS;
7303     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7304       return RHS;
7305     return getAtomicType(ResultType);
7306   }
7307   case Type::ConstantArray:
7308   {
7309     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7310     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7311     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7312       return QualType();
7313 
7314     QualType LHSElem = getAsArrayType(LHS)->getElementType();
7315     QualType RHSElem = getAsArrayType(RHS)->getElementType();
7316     if (Unqualified) {
7317       LHSElem = LHSElem.getUnqualifiedType();
7318       RHSElem = RHSElem.getUnqualifiedType();
7319     }
7320 
7321     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7322     if (ResultType.isNull()) return QualType();
7323     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7324       return LHS;
7325     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7326       return RHS;
7327     if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7328                                           ArrayType::ArraySizeModifier(), 0);
7329     if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7330                                           ArrayType::ArraySizeModifier(), 0);
7331     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7332     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7333     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7334       return LHS;
7335     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7336       return RHS;
7337     if (LVAT) {
7338       // FIXME: This isn't correct! But tricky to implement because
7339       // the array's size has to be the size of LHS, but the type
7340       // has to be different.
7341       return LHS;
7342     }
7343     if (RVAT) {
7344       // FIXME: This isn't correct! But tricky to implement because
7345       // the array's size has to be the size of RHS, but the type
7346       // has to be different.
7347       return RHS;
7348     }
7349     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7350     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7351     return getIncompleteArrayType(ResultType,
7352                                   ArrayType::ArraySizeModifier(), 0);
7353   }
7354   case Type::FunctionNoProto:
7355     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7356   case Type::Record:
7357   case Type::Enum:
7358     return QualType();
7359   case Type::Builtin:
7360     // Only exactly equal builtin types are compatible, which is tested above.
7361     return QualType();
7362   case Type::Complex:
7363     // Distinct complex types are incompatible.
7364     return QualType();
7365   case Type::Vector:
7366     // FIXME: The merged type should be an ExtVector!
7367     if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7368                              RHSCan->getAs<VectorType>()))
7369       return LHS;
7370     return QualType();
7371   case Type::ObjCObject: {
7372     // Check if the types are assignment compatible.
7373     // FIXME: This should be type compatibility, e.g. whether
7374     // "LHS x; RHS x;" at global scope is legal.
7375     const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7376     const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7377     if (canAssignObjCInterfaces(LHSIface, RHSIface))
7378       return LHS;
7379 
7380     return QualType();
7381   }
7382   case Type::ObjCObjectPointer: {
7383     if (OfBlockPointer) {
7384       if (canAssignObjCInterfacesInBlockPointer(
7385                                           LHS->getAs<ObjCObjectPointerType>(),
7386                                           RHS->getAs<ObjCObjectPointerType>(),
7387                                           BlockReturnType))
7388         return LHS;
7389       return QualType();
7390     }
7391     if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7392                                 RHS->getAs<ObjCObjectPointerType>()))
7393       return LHS;
7394 
7395     return QualType();
7396   }
7397   }
7398 
7399   llvm_unreachable("Invalid Type::Class!");
7400 }
7401 
FunctionTypesMatchOnNSConsumedAttrs(const FunctionProtoType * FromFunctionType,const FunctionProtoType * ToFunctionType)7402 bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7403                    const FunctionProtoType *FromFunctionType,
7404                    const FunctionProtoType *ToFunctionType) {
7405   if (FromFunctionType->hasAnyConsumedParams() !=
7406       ToFunctionType->hasAnyConsumedParams())
7407     return false;
7408   FunctionProtoType::ExtProtoInfo FromEPI =
7409     FromFunctionType->getExtProtoInfo();
7410   FunctionProtoType::ExtProtoInfo ToEPI =
7411     ToFunctionType->getExtProtoInfo();
7412   if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters)
7413     for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) {
7414       if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i])
7415         return false;
7416     }
7417   return true;
7418 }
7419 
7420 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7421 /// 'RHS' attributes and returns the merged version; including for function
7422 /// return types.
mergeObjCGCQualifiers(QualType LHS,QualType RHS)7423 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7424   QualType LHSCan = getCanonicalType(LHS),
7425   RHSCan = getCanonicalType(RHS);
7426   // If two types are identical, they are compatible.
7427   if (LHSCan == RHSCan)
7428     return LHS;
7429   if (RHSCan->isFunctionType()) {
7430     if (!LHSCan->isFunctionType())
7431       return QualType();
7432     QualType OldReturnType =
7433         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
7434     QualType NewReturnType =
7435         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
7436     QualType ResReturnType =
7437       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7438     if (ResReturnType.isNull())
7439       return QualType();
7440     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7441       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7442       // In either case, use OldReturnType to build the new function type.
7443       const FunctionType *F = LHS->getAs<FunctionType>();
7444       if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7445         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7446         EPI.ExtInfo = getFunctionExtInfo(LHS);
7447         QualType ResultType =
7448             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
7449         return ResultType;
7450       }
7451     }
7452     return QualType();
7453   }
7454 
7455   // If the qualifiers are different, the types can still be merged.
7456   Qualifiers LQuals = LHSCan.getLocalQualifiers();
7457   Qualifiers RQuals = RHSCan.getLocalQualifiers();
7458   if (LQuals != RQuals) {
7459     // If any of these qualifiers are different, we have a type mismatch.
7460     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7461         LQuals.getAddressSpace() != RQuals.getAddressSpace())
7462       return QualType();
7463 
7464     // Exactly one GC qualifier difference is allowed: __strong is
7465     // okay if the other type has no GC qualifier but is an Objective
7466     // C object pointer (i.e. implicitly strong by default).  We fix
7467     // this by pretending that the unqualified type was actually
7468     // qualified __strong.
7469     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7470     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7471     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7472 
7473     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7474       return QualType();
7475 
7476     if (GC_L == Qualifiers::Strong)
7477       return LHS;
7478     if (GC_R == Qualifiers::Strong)
7479       return RHS;
7480     return QualType();
7481   }
7482 
7483   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7484     QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7485     QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7486     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7487     if (ResQT == LHSBaseQT)
7488       return LHS;
7489     if (ResQT == RHSBaseQT)
7490       return RHS;
7491   }
7492   return QualType();
7493 }
7494 
7495 //===----------------------------------------------------------------------===//
7496 //                         Integer Predicates
7497 //===----------------------------------------------------------------------===//
7498 
getIntWidth(QualType T) const7499 unsigned ASTContext::getIntWidth(QualType T) const {
7500   if (const EnumType *ET = T->getAs<EnumType>())
7501     T = ET->getDecl()->getIntegerType();
7502   if (T->isBooleanType())
7503     return 1;
7504   // For builtin types, just use the standard type sizing method
7505   return (unsigned)getTypeSize(T);
7506 }
7507 
getCorrespondingUnsignedType(QualType T) const7508 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7509   assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7510 
7511   // Turn <4 x signed int> -> <4 x unsigned int>
7512   if (const VectorType *VTy = T->getAs<VectorType>())
7513     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7514                          VTy->getNumElements(), VTy->getVectorKind());
7515 
7516   // For enums, we return the unsigned version of the base type.
7517   if (const EnumType *ETy = T->getAs<EnumType>())
7518     T = ETy->getDecl()->getIntegerType();
7519 
7520   const BuiltinType *BTy = T->getAs<BuiltinType>();
7521   assert(BTy && "Unexpected signed integer type");
7522   switch (BTy->getKind()) {
7523   case BuiltinType::Char_S:
7524   case BuiltinType::SChar:
7525     return UnsignedCharTy;
7526   case BuiltinType::Short:
7527     return UnsignedShortTy;
7528   case BuiltinType::Int:
7529     return UnsignedIntTy;
7530   case BuiltinType::Long:
7531     return UnsignedLongTy;
7532   case BuiltinType::LongLong:
7533     return UnsignedLongLongTy;
7534   case BuiltinType::Int128:
7535     return UnsignedInt128Ty;
7536   default:
7537     llvm_unreachable("Unexpected signed integer type");
7538   }
7539 }
7540 
~ASTMutationListener()7541 ASTMutationListener::~ASTMutationListener() { }
7542 
DeducedReturnType(const FunctionDecl * FD,QualType ReturnType)7543 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
7544                                             QualType ReturnType) {}
7545 
7546 //===----------------------------------------------------------------------===//
7547 //                          Builtin Type Computation
7548 //===----------------------------------------------------------------------===//
7549 
7550 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7551 /// pointer over the consumed characters.  This returns the resultant type.  If
7552 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7553 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7554 /// a vector of "i*".
7555 ///
7556 /// RequiresICE is filled in on return to indicate whether the value is required
7557 /// to be an Integer Constant Expression.
DecodeTypeFromStr(const char * & Str,const ASTContext & Context,ASTContext::GetBuiltinTypeError & Error,bool & RequiresICE,bool AllowTypeModifiers)7558 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7559                                   ASTContext::GetBuiltinTypeError &Error,
7560                                   bool &RequiresICE,
7561                                   bool AllowTypeModifiers) {
7562   // Modifiers.
7563   int HowLong = 0;
7564   bool Signed = false, Unsigned = false;
7565   RequiresICE = false;
7566 
7567   // Read the prefixed modifiers first.
7568   bool Done = false;
7569   while (!Done) {
7570     switch (*Str++) {
7571     default: Done = true; --Str; break;
7572     case 'I':
7573       RequiresICE = true;
7574       break;
7575     case 'S':
7576       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7577       assert(!Signed && "Can't use 'S' modifier multiple times!");
7578       Signed = true;
7579       break;
7580     case 'U':
7581       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7582       assert(!Unsigned && "Can't use 'U' modifier multiple times!");
7583       Unsigned = true;
7584       break;
7585     case 'L':
7586       assert(HowLong <= 2 && "Can't have LLLL modifier");
7587       ++HowLong;
7588       break;
7589     case 'W':
7590       // This modifier represents int64 type.
7591       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
7592       switch (Context.getTargetInfo().getInt64Type()) {
7593       default:
7594         llvm_unreachable("Unexpected integer type");
7595       case TargetInfo::SignedLong:
7596         HowLong = 1;
7597         break;
7598       case TargetInfo::SignedLongLong:
7599         HowLong = 2;
7600         break;
7601       }
7602     }
7603   }
7604 
7605   QualType Type;
7606 
7607   // Read the base type.
7608   switch (*Str++) {
7609   default: llvm_unreachable("Unknown builtin type letter!");
7610   case 'v':
7611     assert(HowLong == 0 && !Signed && !Unsigned &&
7612            "Bad modifiers used with 'v'!");
7613     Type = Context.VoidTy;
7614     break;
7615   case 'h':
7616     assert(HowLong == 0 && !Signed && !Unsigned &&
7617            "Bad modifiers used with 'h'!");
7618     Type = Context.HalfTy;
7619     break;
7620   case 'f':
7621     assert(HowLong == 0 && !Signed && !Unsigned &&
7622            "Bad modifiers used with 'f'!");
7623     Type = Context.FloatTy;
7624     break;
7625   case 'd':
7626     assert(HowLong < 2 && !Signed && !Unsigned &&
7627            "Bad modifiers used with 'd'!");
7628     if (HowLong)
7629       Type = Context.LongDoubleTy;
7630     else
7631       Type = Context.DoubleTy;
7632     break;
7633   case 's':
7634     assert(HowLong == 0 && "Bad modifiers used with 's'!");
7635     if (Unsigned)
7636       Type = Context.UnsignedShortTy;
7637     else
7638       Type = Context.ShortTy;
7639     break;
7640   case 'i':
7641     if (HowLong == 3)
7642       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7643     else if (HowLong == 2)
7644       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7645     else if (HowLong == 1)
7646       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7647     else
7648       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7649     break;
7650   case 'c':
7651     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7652     if (Signed)
7653       Type = Context.SignedCharTy;
7654     else if (Unsigned)
7655       Type = Context.UnsignedCharTy;
7656     else
7657       Type = Context.CharTy;
7658     break;
7659   case 'b': // boolean
7660     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7661     Type = Context.BoolTy;
7662     break;
7663   case 'z':  // size_t.
7664     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7665     Type = Context.getSizeType();
7666     break;
7667   case 'F':
7668     Type = Context.getCFConstantStringType();
7669     break;
7670   case 'G':
7671     Type = Context.getObjCIdType();
7672     break;
7673   case 'H':
7674     Type = Context.getObjCSelType();
7675     break;
7676   case 'M':
7677     Type = Context.getObjCSuperType();
7678     break;
7679   case 'a':
7680     Type = Context.getBuiltinVaListType();
7681     assert(!Type.isNull() && "builtin va list type not initialized!");
7682     break;
7683   case 'A':
7684     // This is a "reference" to a va_list; however, what exactly
7685     // this means depends on how va_list is defined. There are two
7686     // different kinds of va_list: ones passed by value, and ones
7687     // passed by reference.  An example of a by-value va_list is
7688     // x86, where va_list is a char*. An example of by-ref va_list
7689     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7690     // we want this argument to be a char*&; for x86-64, we want
7691     // it to be a __va_list_tag*.
7692     Type = Context.getBuiltinVaListType();
7693     assert(!Type.isNull() && "builtin va list type not initialized!");
7694     if (Type->isArrayType())
7695       Type = Context.getArrayDecayedType(Type);
7696     else
7697       Type = Context.getLValueReferenceType(Type);
7698     break;
7699   case 'V': {
7700     char *End;
7701     unsigned NumElements = strtoul(Str, &End, 10);
7702     assert(End != Str && "Missing vector size");
7703     Str = End;
7704 
7705     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7706                                              RequiresICE, false);
7707     assert(!RequiresICE && "Can't require vector ICE");
7708 
7709     // TODO: No way to make AltiVec vectors in builtins yet.
7710     Type = Context.getVectorType(ElementType, NumElements,
7711                                  VectorType::GenericVector);
7712     break;
7713   }
7714   case 'E': {
7715     char *End;
7716 
7717     unsigned NumElements = strtoul(Str, &End, 10);
7718     assert(End != Str && "Missing vector size");
7719 
7720     Str = End;
7721 
7722     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7723                                              false);
7724     Type = Context.getExtVectorType(ElementType, NumElements);
7725     break;
7726   }
7727   case 'X': {
7728     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7729                                              false);
7730     assert(!RequiresICE && "Can't require complex ICE");
7731     Type = Context.getComplexType(ElementType);
7732     break;
7733   }
7734   case 'Y' : {
7735     Type = Context.getPointerDiffType();
7736     break;
7737   }
7738   case 'P':
7739     Type = Context.getFILEType();
7740     if (Type.isNull()) {
7741       Error = ASTContext::GE_Missing_stdio;
7742       return QualType();
7743     }
7744     break;
7745   case 'J':
7746     if (Signed)
7747       Type = Context.getsigjmp_bufType();
7748     else
7749       Type = Context.getjmp_bufType();
7750 
7751     if (Type.isNull()) {
7752       Error = ASTContext::GE_Missing_setjmp;
7753       return QualType();
7754     }
7755     break;
7756   case 'K':
7757     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7758     Type = Context.getucontext_tType();
7759 
7760     if (Type.isNull()) {
7761       Error = ASTContext::GE_Missing_ucontext;
7762       return QualType();
7763     }
7764     break;
7765   case 'p':
7766     Type = Context.getProcessIDType();
7767     break;
7768   }
7769 
7770   // If there are modifiers and if we're allowed to parse them, go for it.
7771   Done = !AllowTypeModifiers;
7772   while (!Done) {
7773     switch (char c = *Str++) {
7774     default: Done = true; --Str; break;
7775     case '*':
7776     case '&': {
7777       // Both pointers and references can have their pointee types
7778       // qualified with an address space.
7779       char *End;
7780       unsigned AddrSpace = strtoul(Str, &End, 10);
7781       if (End != Str && AddrSpace != 0) {
7782         Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7783         Str = End;
7784       }
7785       if (c == '*')
7786         Type = Context.getPointerType(Type);
7787       else
7788         Type = Context.getLValueReferenceType(Type);
7789       break;
7790     }
7791     // FIXME: There's no way to have a built-in with an rvalue ref arg.
7792     case 'C':
7793       Type = Type.withConst();
7794       break;
7795     case 'D':
7796       Type = Context.getVolatileType(Type);
7797       break;
7798     case 'R':
7799       Type = Type.withRestrict();
7800       break;
7801     }
7802   }
7803 
7804   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7805          "Integer constant 'I' type must be an integer");
7806 
7807   return Type;
7808 }
7809 
7810 /// GetBuiltinType - Return the type for the specified builtin.
GetBuiltinType(unsigned Id,GetBuiltinTypeError & Error,unsigned * IntegerConstantArgs) const7811 QualType ASTContext::GetBuiltinType(unsigned Id,
7812                                     GetBuiltinTypeError &Error,
7813                                     unsigned *IntegerConstantArgs) const {
7814   const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7815 
7816   SmallVector<QualType, 8> ArgTypes;
7817 
7818   bool RequiresICE = false;
7819   Error = GE_None;
7820   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7821                                        RequiresICE, true);
7822   if (Error != GE_None)
7823     return QualType();
7824 
7825   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7826 
7827   while (TypeStr[0] && TypeStr[0] != '.') {
7828     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7829     if (Error != GE_None)
7830       return QualType();
7831 
7832     // If this argument is required to be an IntegerConstantExpression and the
7833     // caller cares, fill in the bitmask we return.
7834     if (RequiresICE && IntegerConstantArgs)
7835       *IntegerConstantArgs |= 1 << ArgTypes.size();
7836 
7837     // Do array -> pointer decay.  The builtin should use the decayed type.
7838     if (Ty->isArrayType())
7839       Ty = getArrayDecayedType(Ty);
7840 
7841     ArgTypes.push_back(Ty);
7842   }
7843 
7844   if (Id == Builtin::BI__GetExceptionInfo)
7845     return QualType();
7846 
7847   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7848          "'.' should only occur at end of builtin type list!");
7849 
7850   FunctionType::ExtInfo EI(CC_C);
7851   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7852 
7853   bool Variadic = (TypeStr[0] == '.');
7854 
7855   // We really shouldn't be making a no-proto type here, especially in C++.
7856   if (ArgTypes.empty() && Variadic)
7857     return getFunctionNoProtoType(ResType, EI);
7858 
7859   FunctionProtoType::ExtProtoInfo EPI;
7860   EPI.ExtInfo = EI;
7861   EPI.Variadic = Variadic;
7862 
7863   return getFunctionType(ResType, ArgTypes, EPI);
7864 }
7865 
basicGVALinkageForFunction(const ASTContext & Context,const FunctionDecl * FD)7866 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
7867                                              const FunctionDecl *FD) {
7868   if (!FD->isExternallyVisible())
7869     return GVA_Internal;
7870 
7871   GVALinkage External = GVA_StrongExternal;
7872   switch (FD->getTemplateSpecializationKind()) {
7873   case TSK_Undeclared:
7874   case TSK_ExplicitSpecialization:
7875     External = GVA_StrongExternal;
7876     break;
7877 
7878   case TSK_ExplicitInstantiationDefinition:
7879     return GVA_StrongODR;
7880 
7881   // C++11 [temp.explicit]p10:
7882   //   [ Note: The intent is that an inline function that is the subject of
7883   //   an explicit instantiation declaration will still be implicitly
7884   //   instantiated when used so that the body can be considered for
7885   //   inlining, but that no out-of-line copy of the inline function would be
7886   //   generated in the translation unit. -- end note ]
7887   case TSK_ExplicitInstantiationDeclaration:
7888     return GVA_AvailableExternally;
7889 
7890   case TSK_ImplicitInstantiation:
7891     External = GVA_DiscardableODR;
7892     break;
7893   }
7894 
7895   if (!FD->isInlined())
7896     return External;
7897 
7898   if ((!Context.getLangOpts().CPlusPlus && !Context.getLangOpts().MSVCCompat &&
7899        !FD->hasAttr<DLLExportAttr>()) ||
7900       FD->hasAttr<GNUInlineAttr>()) {
7901     // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
7902 
7903     // GNU or C99 inline semantics. Determine whether this symbol should be
7904     // externally visible.
7905     if (FD->isInlineDefinitionExternallyVisible())
7906       return External;
7907 
7908     // C99 inline semantics, where the symbol is not externally visible.
7909     return GVA_AvailableExternally;
7910   }
7911 
7912   // Functions specified with extern and inline in -fms-compatibility mode
7913   // forcibly get emitted.  While the body of the function cannot be later
7914   // replaced, the function definition cannot be discarded.
7915   if (FD->isMSExternInline())
7916     return GVA_StrongODR;
7917 
7918   return GVA_DiscardableODR;
7919 }
7920 
adjustGVALinkageForDLLAttribute(GVALinkage L,const Decl * D)7921 static GVALinkage adjustGVALinkageForDLLAttribute(GVALinkage L, const Decl *D) {
7922   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
7923   // dllexport/dllimport on inline functions.
7924   if (D->hasAttr<DLLImportAttr>()) {
7925     if (L == GVA_DiscardableODR || L == GVA_StrongODR)
7926       return GVA_AvailableExternally;
7927   } else if (D->hasAttr<DLLExportAttr>()) {
7928     if (L == GVA_DiscardableODR)
7929       return GVA_StrongODR;
7930   }
7931   return L;
7932 }
7933 
GetGVALinkageForFunction(const FunctionDecl * FD) const7934 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
7935   return adjustGVALinkageForDLLAttribute(basicGVALinkageForFunction(*this, FD),
7936                                          FD);
7937 }
7938 
basicGVALinkageForVariable(const ASTContext & Context,const VarDecl * VD)7939 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
7940                                              const VarDecl *VD) {
7941   if (!VD->isExternallyVisible())
7942     return GVA_Internal;
7943 
7944   if (VD->isStaticLocal()) {
7945     GVALinkage StaticLocalLinkage = GVA_DiscardableODR;
7946     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
7947     while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
7948       LexicalContext = LexicalContext->getLexicalParent();
7949 
7950     // Let the static local variable inherit its linkage from the nearest
7951     // enclosing function.
7952     if (LexicalContext)
7953       StaticLocalLinkage =
7954           Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
7955 
7956     // GVA_StrongODR function linkage is stronger than what we need,
7957     // downgrade to GVA_DiscardableODR.
7958     // This allows us to discard the variable if we never end up needing it.
7959     return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR
7960                                                : StaticLocalLinkage;
7961   }
7962 
7963   // MSVC treats in-class initialized static data members as definitions.
7964   // By giving them non-strong linkage, out-of-line definitions won't
7965   // cause link errors.
7966   if (Context.isMSStaticDataMemberInlineDefinition(VD))
7967     return GVA_DiscardableODR;
7968 
7969   switch (VD->getTemplateSpecializationKind()) {
7970   case TSK_Undeclared:
7971   case TSK_ExplicitSpecialization:
7972     return GVA_StrongExternal;
7973 
7974   case TSK_ExplicitInstantiationDefinition:
7975     return GVA_StrongODR;
7976 
7977   case TSK_ExplicitInstantiationDeclaration:
7978     return GVA_AvailableExternally;
7979 
7980   case TSK_ImplicitInstantiation:
7981     return GVA_DiscardableODR;
7982   }
7983 
7984   llvm_unreachable("Invalid Linkage!");
7985 }
7986 
GetGVALinkageForVariable(const VarDecl * VD)7987 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7988   return adjustGVALinkageForDLLAttribute(basicGVALinkageForVariable(*this, VD),
7989                                          VD);
7990 }
7991 
DeclMustBeEmitted(const Decl * D)7992 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7993   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7994     if (!VD->isFileVarDecl())
7995       return false;
7996     // Global named register variables (GNU extension) are never emitted.
7997     if (VD->getStorageClass() == SC_Register)
7998       return false;
7999   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8000     // We never need to emit an uninstantiated function template.
8001     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
8002       return false;
8003   } else if (isa<OMPThreadPrivateDecl>(D))
8004     return true;
8005   else
8006     return false;
8007 
8008   // If this is a member of a class template, we do not need to emit it.
8009   if (D->getDeclContext()->isDependentContext())
8010     return false;
8011 
8012   // Weak references don't produce any output by themselves.
8013   if (D->hasAttr<WeakRefAttr>())
8014     return false;
8015 
8016   // Aliases and used decls are required.
8017   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
8018     return true;
8019 
8020   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8021     // Forward declarations aren't required.
8022     if (!FD->doesThisDeclarationHaveABody())
8023       return FD->doesDeclarationForceExternallyVisibleDefinition();
8024 
8025     // Constructors and destructors are required.
8026     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
8027       return true;
8028 
8029     // The key function for a class is required.  This rule only comes
8030     // into play when inline functions can be key functions, though.
8031     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
8032       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
8033         const CXXRecordDecl *RD = MD->getParent();
8034         if (MD->isOutOfLine() && RD->isDynamicClass()) {
8035           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
8036           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
8037             return true;
8038         }
8039       }
8040     }
8041 
8042     GVALinkage Linkage = GetGVALinkageForFunction(FD);
8043 
8044     // static, static inline, always_inline, and extern inline functions can
8045     // always be deferred.  Normal inline functions can be deferred in C99/C++.
8046     // Implicit template instantiations can also be deferred in C++.
8047     if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally ||
8048         Linkage == GVA_DiscardableODR)
8049       return false;
8050     return true;
8051   }
8052 
8053   const VarDecl *VD = cast<VarDecl>(D);
8054   assert(VD->isFileVarDecl() && "Expected file scoped var");
8055 
8056   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
8057       !isMSStaticDataMemberInlineDefinition(VD))
8058     return false;
8059 
8060   // Variables that can be needed in other TUs are required.
8061   GVALinkage L = GetGVALinkageForVariable(VD);
8062   if (L != GVA_Internal && L != GVA_AvailableExternally &&
8063       L != GVA_DiscardableODR)
8064     return true;
8065 
8066   // Variables that have destruction with side-effects are required.
8067   if (VD->getType().isDestructedType())
8068     return true;
8069 
8070   // Variables that have initialization with side-effects are required.
8071   if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
8072     return true;
8073 
8074   return false;
8075 }
8076 
getDefaultCallingConvention(bool IsVariadic,bool IsCXXMethod) const8077 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
8078                                                     bool IsCXXMethod) const {
8079   // Pass through to the C++ ABI object
8080   if (IsCXXMethod)
8081     return ABI->getDefaultMethodCallConv(IsVariadic);
8082 
8083   if (LangOpts.MRTD && !IsVariadic) return CC_X86StdCall;
8084 
8085   return Target->getDefaultCallingConv(TargetInfo::CCMT_Unknown);
8086 }
8087 
isNearlyEmpty(const CXXRecordDecl * RD) const8088 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
8089   // Pass through to the C++ ABI object
8090   return ABI->isNearlyEmpty(RD);
8091 }
8092 
getVTableContext()8093 VTableContextBase *ASTContext::getVTableContext() {
8094   if (!VTContext.get()) {
8095     if (Target->getCXXABI().isMicrosoft())
8096       VTContext.reset(new MicrosoftVTableContext(*this));
8097     else
8098       VTContext.reset(new ItaniumVTableContext(*this));
8099   }
8100   return VTContext.get();
8101 }
8102 
createMangleContext()8103 MangleContext *ASTContext::createMangleContext() {
8104   switch (Target->getCXXABI().getKind()) {
8105   case TargetCXXABI::GenericAArch64:
8106   case TargetCXXABI::GenericItanium:
8107   case TargetCXXABI::GenericARM:
8108   case TargetCXXABI::GenericMIPS:
8109   case TargetCXXABI::iOS:
8110   case TargetCXXABI::iOS64:
8111     return ItaniumMangleContext::create(*this, getDiagnostics());
8112   case TargetCXXABI::Microsoft:
8113     return MicrosoftMangleContext::create(*this, getDiagnostics());
8114   }
8115   llvm_unreachable("Unsupported ABI");
8116 }
8117 
~CXXABI()8118 CXXABI::~CXXABI() {}
8119 
getSideTableAllocatedMemory() const8120 size_t ASTContext::getSideTableAllocatedMemory() const {
8121   return ASTRecordLayouts.getMemorySize() +
8122          llvm::capacity_in_bytes(ObjCLayouts) +
8123          llvm::capacity_in_bytes(KeyFunctions) +
8124          llvm::capacity_in_bytes(ObjCImpls) +
8125          llvm::capacity_in_bytes(BlockVarCopyInits) +
8126          llvm::capacity_in_bytes(DeclAttrs) +
8127          llvm::capacity_in_bytes(TemplateOrInstantiation) +
8128          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
8129          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
8130          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
8131          llvm::capacity_in_bytes(OverriddenMethods) +
8132          llvm::capacity_in_bytes(Types) +
8133          llvm::capacity_in_bytes(VariableArrayTypes) +
8134          llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
8135 }
8136 
8137 /// getIntTypeForBitwidth -
8138 /// sets integer QualTy according to specified details:
8139 /// bitwidth, signed/unsigned.
8140 /// Returns empty type if there is no appropriate target types.
getIntTypeForBitwidth(unsigned DestWidth,unsigned Signed) const8141 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
8142                                            unsigned Signed) const {
8143   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
8144   CanQualType QualTy = getFromTargetType(Ty);
8145   if (!QualTy && DestWidth == 128)
8146     return Signed ? Int128Ty : UnsignedInt128Ty;
8147   return QualTy;
8148 }
8149 
8150 /// getRealTypeForBitwidth -
8151 /// sets floating point QualTy according to specified bitwidth.
8152 /// Returns empty type if there is no appropriate target types.
getRealTypeForBitwidth(unsigned DestWidth) const8153 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
8154   TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
8155   switch (Ty) {
8156   case TargetInfo::Float:
8157     return FloatTy;
8158   case TargetInfo::Double:
8159     return DoubleTy;
8160   case TargetInfo::LongDouble:
8161     return LongDoubleTy;
8162   case TargetInfo::NoFloat:
8163     return QualType();
8164   }
8165 
8166   llvm_unreachable("Unhandled TargetInfo::RealType value");
8167 }
8168 
setManglingNumber(const NamedDecl * ND,unsigned Number)8169 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
8170   if (Number > 1)
8171     MangleNumbers[ND] = Number;
8172 }
8173 
getManglingNumber(const NamedDecl * ND) const8174 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
8175   llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I =
8176     MangleNumbers.find(ND);
8177   return I != MangleNumbers.end() ? I->second : 1;
8178 }
8179 
setStaticLocalNumber(const VarDecl * VD,unsigned Number)8180 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
8181   if (Number > 1)
8182     StaticLocalNumbers[VD] = Number;
8183 }
8184 
getStaticLocalNumber(const VarDecl * VD) const8185 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
8186   llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I =
8187       StaticLocalNumbers.find(VD);
8188   return I != StaticLocalNumbers.end() ? I->second : 1;
8189 }
8190 
8191 MangleNumberingContext &
getManglingNumberContext(const DeclContext * DC)8192 ASTContext::getManglingNumberContext(const DeclContext *DC) {
8193   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
8194   MangleNumberingContext *&MCtx = MangleNumberingContexts[DC];
8195   if (!MCtx)
8196     MCtx = createMangleNumberingContext();
8197   return *MCtx;
8198 }
8199 
createMangleNumberingContext() const8200 MangleNumberingContext *ASTContext::createMangleNumberingContext() const {
8201   return ABI->createMangleNumberingContext();
8202 }
8203 
8204 const CXXConstructorDecl *
getCopyConstructorForExceptionObject(CXXRecordDecl * RD)8205 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
8206   return ABI->getCopyConstructorForExceptionObject(
8207       cast<CXXRecordDecl>(RD->getFirstDecl()));
8208 }
8209 
addCopyConstructorForExceptionObject(CXXRecordDecl * RD,CXXConstructorDecl * CD)8210 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
8211                                                       CXXConstructorDecl *CD) {
8212   return ABI->addCopyConstructorForExceptionObject(
8213       cast<CXXRecordDecl>(RD->getFirstDecl()),
8214       cast<CXXConstructorDecl>(CD->getFirstDecl()));
8215 }
8216 
addDefaultArgExprForConstructor(const CXXConstructorDecl * CD,unsigned ParmIdx,Expr * DAE)8217 void ASTContext::addDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
8218                                                  unsigned ParmIdx, Expr *DAE) {
8219   ABI->addDefaultArgExprForConstructor(
8220       cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx, DAE);
8221 }
8222 
getDefaultArgExprForConstructor(const CXXConstructorDecl * CD,unsigned ParmIdx)8223 Expr *ASTContext::getDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
8224                                                   unsigned ParmIdx) {
8225   return ABI->getDefaultArgExprForConstructor(
8226       cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx);
8227 }
8228 
setParameterIndex(const ParmVarDecl * D,unsigned int index)8229 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8230   ParamIndices[D] = index;
8231 }
8232 
getParameterIndex(const ParmVarDecl * D) const8233 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8234   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8235   assert(I != ParamIndices.end() &&
8236          "ParmIndices lacks entry set by ParmVarDecl");
8237   return I->second;
8238 }
8239 
8240 APValue *
getMaterializedTemporaryValue(const MaterializeTemporaryExpr * E,bool MayCreate)8241 ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
8242                                           bool MayCreate) {
8243   assert(E && E->getStorageDuration() == SD_Static &&
8244          "don't need to cache the computed value for this temporary");
8245   if (MayCreate)
8246     return &MaterializedTemporaryValues[E];
8247 
8248   llvm::DenseMap<const MaterializeTemporaryExpr *, APValue>::iterator I =
8249       MaterializedTemporaryValues.find(E);
8250   return I == MaterializedTemporaryValues.end() ? nullptr : &I->second;
8251 }
8252 
AtomicUsesUnsupportedLibcall(const AtomicExpr * E) const8253 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
8254   const llvm::Triple &T = getTargetInfo().getTriple();
8255   if (!T.isOSDarwin())
8256     return false;
8257 
8258   if (!(T.isiOS() && T.isOSVersionLT(7)) &&
8259       !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
8260     return false;
8261 
8262   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
8263   CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
8264   uint64_t Size = sizeChars.getQuantity();
8265   CharUnits alignChars = getTypeAlignInChars(AtomicTy);
8266   unsigned Align = alignChars.getQuantity();
8267   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
8268   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
8269 }
8270 
8271 namespace {
8272 
8273   /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
8274   /// parents as defined by the \c RecursiveASTVisitor.
8275   ///
8276   /// Note that the relationship described here is purely in terms of AST
8277   /// traversal - there are other relationships (for example declaration context)
8278   /// in the AST that are better modeled by special matchers.
8279   ///
8280   /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
8281   class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
8282 
8283   public:
8284     /// \brief Builds and returns the translation unit's parent map.
8285     ///
8286     ///  The caller takes ownership of the returned \c ParentMap.
buildMap(TranslationUnitDecl & TU)8287     static ASTContext::ParentMap *buildMap(TranslationUnitDecl &TU) {
8288       ParentMapASTVisitor Visitor(new ASTContext::ParentMap);
8289       Visitor.TraverseDecl(&TU);
8290       return Visitor.Parents;
8291     }
8292 
8293   private:
8294     typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
8295 
ParentMapASTVisitor(ASTContext::ParentMap * Parents)8296     ParentMapASTVisitor(ASTContext::ParentMap *Parents) : Parents(Parents) {
8297     }
8298 
shouldVisitTemplateInstantiations() const8299     bool shouldVisitTemplateInstantiations() const {
8300       return true;
8301     }
shouldVisitImplicitCode() const8302     bool shouldVisitImplicitCode() const {
8303       return true;
8304     }
8305     // Disables data recursion. We intercept Traverse* methods in the RAV, which
8306     // are not triggered during data recursion.
shouldUseDataRecursionFor(clang::Stmt * S) const8307     bool shouldUseDataRecursionFor(clang::Stmt *S) const {
8308       return false;
8309     }
8310 
8311     template <typename T>
TraverseNode(T * Node,bool (VisitorBase::* traverse)(T *))8312     bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) {
8313       if (!Node)
8314         return true;
8315       if (ParentStack.size() > 0) {
8316         // FIXME: Currently we add the same parent multiple times, but only
8317         // when no memoization data is available for the type.
8318         // For example when we visit all subexpressions of template
8319         // instantiations; this is suboptimal, but benign: the only way to
8320         // visit those is with hasAncestor / hasParent, and those do not create
8321         // new matches.
8322         // The plan is to enable DynTypedNode to be storable in a map or hash
8323         // map. The main problem there is to implement hash functions /
8324         // comparison operators for all types that DynTypedNode supports that
8325         // do not have pointer identity.
8326         auto &NodeOrVector = (*Parents)[Node];
8327         if (NodeOrVector.isNull()) {
8328           NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back());
8329         } else {
8330           if (NodeOrVector.template is<ast_type_traits::DynTypedNode *>()) {
8331             auto *Node =
8332                 NodeOrVector.template get<ast_type_traits::DynTypedNode *>();
8333             auto *Vector = new ASTContext::ParentVector(1, *Node);
8334             NodeOrVector = Vector;
8335             delete Node;
8336           }
8337           assert(NodeOrVector.template is<ASTContext::ParentVector *>());
8338 
8339           auto *Vector =
8340               NodeOrVector.template get<ASTContext::ParentVector *>();
8341           // Skip duplicates for types that have memoization data.
8342           // We must check that the type has memoization data before calling
8343           // std::find() because DynTypedNode::operator== can't compare all
8344           // types.
8345           bool Found = ParentStack.back().getMemoizationData() &&
8346                        std::find(Vector->begin(), Vector->end(),
8347                                  ParentStack.back()) != Vector->end();
8348           if (!Found)
8349             Vector->push_back(ParentStack.back());
8350         }
8351       }
8352       ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node));
8353       bool Result = (this ->* traverse) (Node);
8354       ParentStack.pop_back();
8355       return Result;
8356     }
8357 
TraverseDecl(Decl * DeclNode)8358     bool TraverseDecl(Decl *DeclNode) {
8359       return TraverseNode(DeclNode, &VisitorBase::TraverseDecl);
8360     }
8361 
TraverseStmt(Stmt * StmtNode)8362     bool TraverseStmt(Stmt *StmtNode) {
8363       return TraverseNode(StmtNode, &VisitorBase::TraverseStmt);
8364     }
8365 
8366     ASTContext::ParentMap *Parents;
8367     llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
8368 
8369     friend class RecursiveASTVisitor<ParentMapASTVisitor>;
8370   };
8371 
8372 } // end namespace
8373 
8374 ArrayRef<ast_type_traits::DynTypedNode>
getParents(const ast_type_traits::DynTypedNode & Node)8375 ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
8376   assert(Node.getMemoizationData() &&
8377          "Invariant broken: only nodes that support memoization may be "
8378          "used in the parent map.");
8379   if (!AllParents) {
8380     // We always need to run over the whole translation unit, as
8381     // hasAncestor can escape any subtree.
8382     AllParents.reset(
8383         ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()));
8384   }
8385   ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData());
8386   if (I == AllParents->end()) {
8387     return None;
8388   }
8389   if (auto *N = I->second.dyn_cast<ast_type_traits::DynTypedNode *>()) {
8390     return llvm::makeArrayRef(N, 1);
8391   }
8392   return *I->second.get<ParentVector *>();
8393 }
8394 
8395 bool
ObjCMethodsAreEqual(const ObjCMethodDecl * MethodDecl,const ObjCMethodDecl * MethodImpl)8396 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
8397                                 const ObjCMethodDecl *MethodImpl) {
8398   // No point trying to match an unavailable/deprecated mothod.
8399   if (MethodDecl->hasAttr<UnavailableAttr>()
8400       || MethodDecl->hasAttr<DeprecatedAttr>())
8401     return false;
8402   if (MethodDecl->getObjCDeclQualifier() !=
8403       MethodImpl->getObjCDeclQualifier())
8404     return false;
8405   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
8406     return false;
8407 
8408   if (MethodDecl->param_size() != MethodImpl->param_size())
8409     return false;
8410 
8411   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
8412        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
8413        EF = MethodDecl->param_end();
8414        IM != EM && IF != EF; ++IM, ++IF) {
8415     const ParmVarDecl *DeclVar = (*IF);
8416     const ParmVarDecl *ImplVar = (*IM);
8417     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
8418       return false;
8419     if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
8420       return false;
8421   }
8422   return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
8423 
8424 }
8425 
8426 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
8427 // doesn't include ASTContext.h
8428 template
8429 clang::LazyGenerationalUpdatePtr<
8430     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
8431 clang::LazyGenerationalUpdatePtr<
8432     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
8433         const clang::ASTContext &Ctx, Decl *Value);
8434