1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <stdlib.h>
6
7 #include "src/v8.h"
8
9 #include "src/ast.h"
10 #include "src/base/platform/platform.h"
11 #include "src/base/sys-info.h"
12 #include "src/base/utils/random-number-generator.h"
13 #include "src/bootstrapper.h"
14 #include "src/codegen.h"
15 #include "src/compilation-cache.h"
16 #include "src/cpu-profiler.h"
17 #include "src/debug.h"
18 #include "src/deoptimizer.h"
19 #include "src/heap/spaces.h"
20 #include "src/heap/sweeper-thread.h"
21 #include "src/heap-profiler.h"
22 #include "src/hydrogen.h"
23 #include "src/ic/stub-cache.h"
24 #include "src/isolate-inl.h"
25 #include "src/lithium-allocator.h"
26 #include "src/log.h"
27 #include "src/messages.h"
28 #include "src/prototype.h"
29 #include "src/regexp-stack.h"
30 #include "src/runtime-profiler.h"
31 #include "src/sampler.h"
32 #include "src/scopeinfo.h"
33 #include "src/serialize.h"
34 #include "src/simulator.h"
35 #include "src/version.h"
36 #include "src/vm-state-inl.h"
37
38
39 namespace v8 {
40 namespace internal {
41
42 base::Atomic32 ThreadId::highest_thread_id_ = 0;
43
AllocateThreadId()44 int ThreadId::AllocateThreadId() {
45 int new_id = base::NoBarrier_AtomicIncrement(&highest_thread_id_, 1);
46 return new_id;
47 }
48
49
GetCurrentThreadId()50 int ThreadId::GetCurrentThreadId() {
51 int thread_id = base::Thread::GetThreadLocalInt(Isolate::thread_id_key_);
52 if (thread_id == 0) {
53 thread_id = AllocateThreadId();
54 base::Thread::SetThreadLocalInt(Isolate::thread_id_key_, thread_id);
55 }
56 return thread_id;
57 }
58
59
ThreadLocalTop()60 ThreadLocalTop::ThreadLocalTop() {
61 InitializeInternal();
62 }
63
64
InitializeInternal()65 void ThreadLocalTop::InitializeInternal() {
66 c_entry_fp_ = 0;
67 handler_ = 0;
68 #ifdef USE_SIMULATOR
69 simulator_ = NULL;
70 #endif
71 js_entry_sp_ = NULL;
72 external_callback_scope_ = NULL;
73 current_vm_state_ = EXTERNAL;
74 try_catch_handler_ = NULL;
75 context_ = NULL;
76 thread_id_ = ThreadId::Invalid();
77 external_caught_exception_ = false;
78 failed_access_check_callback_ = NULL;
79 save_context_ = NULL;
80 catcher_ = NULL;
81 top_lookup_result_ = NULL;
82 promise_on_stack_ = NULL;
83
84 // These members are re-initialized later after deserialization
85 // is complete.
86 pending_exception_ = NULL;
87 has_pending_message_ = false;
88 rethrowing_message_ = false;
89 pending_message_obj_ = NULL;
90 pending_message_script_ = NULL;
91 scheduled_exception_ = NULL;
92 }
93
94
Initialize()95 void ThreadLocalTop::Initialize() {
96 InitializeInternal();
97 #ifdef USE_SIMULATOR
98 simulator_ = Simulator::current(isolate_);
99 #endif
100 thread_id_ = ThreadId::Current();
101 }
102
103
Free()104 void ThreadLocalTop::Free() {
105 // Match unmatched PopPromise calls.
106 while (promise_on_stack_) isolate_->PopPromise();
107 }
108
109
110 base::Thread::LocalStorageKey Isolate::isolate_key_;
111 base::Thread::LocalStorageKey Isolate::thread_id_key_;
112 base::Thread::LocalStorageKey Isolate::per_isolate_thread_data_key_;
113 #ifdef DEBUG
114 base::Thread::LocalStorageKey PerThreadAssertScopeBase::thread_local_key;
115 #endif // DEBUG
116 base::LazyMutex Isolate::thread_data_table_mutex_ = LAZY_MUTEX_INITIALIZER;
117 Isolate::ThreadDataTable* Isolate::thread_data_table_ = NULL;
118 base::Atomic32 Isolate::isolate_counter_ = 0;
119
120 Isolate::PerIsolateThreadData*
FindOrAllocatePerThreadDataForThisThread()121 Isolate::FindOrAllocatePerThreadDataForThisThread() {
122 ThreadId thread_id = ThreadId::Current();
123 PerIsolateThreadData* per_thread = NULL;
124 {
125 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
126 per_thread = thread_data_table_->Lookup(this, thread_id);
127 if (per_thread == NULL) {
128 per_thread = new PerIsolateThreadData(this, thread_id);
129 thread_data_table_->Insert(per_thread);
130 }
131 DCHECK(thread_data_table_->Lookup(this, thread_id) == per_thread);
132 }
133 return per_thread;
134 }
135
136
FindPerThreadDataForThisThread()137 Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThisThread() {
138 ThreadId thread_id = ThreadId::Current();
139 return FindPerThreadDataForThread(thread_id);
140 }
141
142
FindPerThreadDataForThread(ThreadId thread_id)143 Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThread(
144 ThreadId thread_id) {
145 PerIsolateThreadData* per_thread = NULL;
146 {
147 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
148 per_thread = thread_data_table_->Lookup(this, thread_id);
149 }
150 return per_thread;
151 }
152
153
InitializeOncePerProcess()154 void Isolate::InitializeOncePerProcess() {
155 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
156 CHECK(thread_data_table_ == NULL);
157 isolate_key_ = base::Thread::CreateThreadLocalKey();
158 thread_id_key_ = base::Thread::CreateThreadLocalKey();
159 per_isolate_thread_data_key_ = base::Thread::CreateThreadLocalKey();
160 #ifdef DEBUG
161 PerThreadAssertScopeBase::thread_local_key =
162 base::Thread::CreateThreadLocalKey();
163 #endif // DEBUG
164 thread_data_table_ = new Isolate::ThreadDataTable();
165 }
166
167
get_address_from_id(Isolate::AddressId id)168 Address Isolate::get_address_from_id(Isolate::AddressId id) {
169 return isolate_addresses_[id];
170 }
171
172
Iterate(ObjectVisitor * v,char * thread_storage)173 char* Isolate::Iterate(ObjectVisitor* v, char* thread_storage) {
174 ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(thread_storage);
175 Iterate(v, thread);
176 return thread_storage + sizeof(ThreadLocalTop);
177 }
178
179
IterateThread(ThreadVisitor * v,char * t)180 void Isolate::IterateThread(ThreadVisitor* v, char* t) {
181 ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(t);
182 v->VisitThread(this, thread);
183 }
184
185
Iterate(ObjectVisitor * v,ThreadLocalTop * thread)186 void Isolate::Iterate(ObjectVisitor* v, ThreadLocalTop* thread) {
187 // Visit the roots from the top for a given thread.
188 v->VisitPointer(&thread->pending_exception_);
189 v->VisitPointer(&(thread->pending_message_obj_));
190 v->VisitPointer(bit_cast<Object**>(&(thread->pending_message_script_)));
191 v->VisitPointer(bit_cast<Object**>(&(thread->context_)));
192 v->VisitPointer(&thread->scheduled_exception_);
193
194 for (v8::TryCatch* block = thread->try_catch_handler();
195 block != NULL;
196 block = block->next_) {
197 v->VisitPointer(bit_cast<Object**>(&(block->exception_)));
198 v->VisitPointer(bit_cast<Object**>(&(block->message_obj_)));
199 v->VisitPointer(bit_cast<Object**>(&(block->message_script_)));
200 }
201
202 // Iterate over pointers on native execution stack.
203 for (StackFrameIterator it(this, thread); !it.done(); it.Advance()) {
204 it.frame()->Iterate(v);
205 }
206
207 // Iterate pointers in live lookup results.
208 thread->top_lookup_result_->Iterate(v);
209 }
210
211
Iterate(ObjectVisitor * v)212 void Isolate::Iterate(ObjectVisitor* v) {
213 ThreadLocalTop* current_t = thread_local_top();
214 Iterate(v, current_t);
215 }
216
217
IterateDeferredHandles(ObjectVisitor * visitor)218 void Isolate::IterateDeferredHandles(ObjectVisitor* visitor) {
219 for (DeferredHandles* deferred = deferred_handles_head_;
220 deferred != NULL;
221 deferred = deferred->next_) {
222 deferred->Iterate(visitor);
223 }
224 }
225
226
227 #ifdef DEBUG
IsDeferredHandle(Object ** handle)228 bool Isolate::IsDeferredHandle(Object** handle) {
229 // Each DeferredHandles instance keeps the handles to one job in the
230 // concurrent recompilation queue, containing a list of blocks. Each block
231 // contains kHandleBlockSize handles except for the first block, which may
232 // not be fully filled.
233 // We iterate through all the blocks to see whether the argument handle
234 // belongs to one of the blocks. If so, it is deferred.
235 for (DeferredHandles* deferred = deferred_handles_head_;
236 deferred != NULL;
237 deferred = deferred->next_) {
238 List<Object**>* blocks = &deferred->blocks_;
239 for (int i = 0; i < blocks->length(); i++) {
240 Object** block_limit = (i == 0) ? deferred->first_block_limit_
241 : blocks->at(i) + kHandleBlockSize;
242 if (blocks->at(i) <= handle && handle < block_limit) return true;
243 }
244 }
245 return false;
246 }
247 #endif // DEBUG
248
249
RegisterTryCatchHandler(v8::TryCatch * that)250 void Isolate::RegisterTryCatchHandler(v8::TryCatch* that) {
251 thread_local_top()->set_try_catch_handler(that);
252 }
253
254
UnregisterTryCatchHandler(v8::TryCatch * that)255 void Isolate::UnregisterTryCatchHandler(v8::TryCatch* that) {
256 DCHECK(thread_local_top()->try_catch_handler() == that);
257 thread_local_top()->set_try_catch_handler(that->next_);
258 thread_local_top()->catcher_ = NULL;
259 }
260
261
StackTraceString()262 Handle<String> Isolate::StackTraceString() {
263 if (stack_trace_nesting_level_ == 0) {
264 stack_trace_nesting_level_++;
265 HeapStringAllocator allocator;
266 StringStream::ClearMentionedObjectCache(this);
267 StringStream accumulator(&allocator);
268 incomplete_message_ = &accumulator;
269 PrintStack(&accumulator);
270 Handle<String> stack_trace = accumulator.ToString(this);
271 incomplete_message_ = NULL;
272 stack_trace_nesting_level_ = 0;
273 return stack_trace;
274 } else if (stack_trace_nesting_level_ == 1) {
275 stack_trace_nesting_level_++;
276 base::OS::PrintError(
277 "\n\nAttempt to print stack while printing stack (double fault)\n");
278 base::OS::PrintError(
279 "If you are lucky you may find a partial stack dump on stdout.\n\n");
280 incomplete_message_->OutputToStdOut();
281 return factory()->empty_string();
282 } else {
283 base::OS::Abort();
284 // Unreachable
285 return factory()->empty_string();
286 }
287 }
288
289
PushStackTraceAndDie(unsigned int magic,Object * object,Map * map,unsigned int magic2)290 void Isolate::PushStackTraceAndDie(unsigned int magic,
291 Object* object,
292 Map* map,
293 unsigned int magic2) {
294 const int kMaxStackTraceSize = 8192;
295 Handle<String> trace = StackTraceString();
296 uint8_t buffer[kMaxStackTraceSize];
297 int length = Min(kMaxStackTraceSize - 1, trace->length());
298 String::WriteToFlat(*trace, buffer, 0, length);
299 buffer[length] = '\0';
300 // TODO(dcarney): convert buffer to utf8?
301 base::OS::PrintError("Stacktrace (%x-%x) %p %p: %s\n", magic, magic2,
302 static_cast<void*>(object), static_cast<void*>(map),
303 reinterpret_cast<char*>(buffer));
304 base::OS::Abort();
305 }
306
307
308 // Determines whether the given stack frame should be displayed in
309 // a stack trace. The caller is the error constructor that asked
310 // for the stack trace to be collected. The first time a construct
311 // call to this function is encountered it is skipped. The seen_caller
312 // in/out parameter is used to remember if the caller has been seen
313 // yet.
IsVisibleInStackTrace(JSFunction * fun,Object * caller,Object * receiver,bool * seen_caller)314 static bool IsVisibleInStackTrace(JSFunction* fun,
315 Object* caller,
316 Object* receiver,
317 bool* seen_caller) {
318 if ((fun == caller) && !(*seen_caller)) {
319 *seen_caller = true;
320 return false;
321 }
322 // Skip all frames until we've seen the caller.
323 if (!(*seen_caller)) return false;
324 // Also, skip non-visible built-in functions and any call with the builtins
325 // object as receiver, so as to not reveal either the builtins object or
326 // an internal function.
327 // The --builtins-in-stack-traces command line flag allows including
328 // internal call sites in the stack trace for debugging purposes.
329 if (!FLAG_builtins_in_stack_traces) {
330 if (receiver->IsJSBuiltinsObject()) return false;
331 if (fun->IsBuiltin()) {
332 return fun->shared()->native();
333 } else if (fun->IsFromNativeScript() || fun->IsFromExtensionScript()) {
334 return false;
335 }
336 }
337 return true;
338 }
339
340
CaptureSimpleStackTrace(Handle<JSObject> error_object,Handle<Object> caller)341 Handle<Object> Isolate::CaptureSimpleStackTrace(Handle<JSObject> error_object,
342 Handle<Object> caller) {
343 // Get stack trace limit.
344 Handle<Object> error = Object::GetProperty(
345 this, js_builtins_object(), "$Error").ToHandleChecked();
346 if (!error->IsJSObject()) return factory()->undefined_value();
347
348 Handle<String> stackTraceLimit =
349 factory()->InternalizeUtf8String("stackTraceLimit");
350 DCHECK(!stackTraceLimit.is_null());
351 Handle<Object> stack_trace_limit =
352 JSObject::GetDataProperty(Handle<JSObject>::cast(error),
353 stackTraceLimit);
354 if (!stack_trace_limit->IsNumber()) return factory()->undefined_value();
355 int limit = FastD2IChecked(stack_trace_limit->Number());
356 limit = Max(limit, 0); // Ensure that limit is not negative.
357
358 int initial_size = Min(limit, 10);
359 Handle<FixedArray> elements =
360 factory()->NewFixedArrayWithHoles(initial_size * 4 + 1);
361
362 // If the caller parameter is a function we skip frames until we're
363 // under it before starting to collect.
364 bool seen_caller = !caller->IsJSFunction();
365 // First element is reserved to store the number of sloppy frames.
366 int cursor = 1;
367 int frames_seen = 0;
368 int sloppy_frames = 0;
369 bool encountered_strict_function = false;
370 for (JavaScriptFrameIterator iter(this);
371 !iter.done() && frames_seen < limit;
372 iter.Advance()) {
373 JavaScriptFrame* frame = iter.frame();
374 // Set initial size to the maximum inlining level + 1 for the outermost
375 // function.
376 List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
377 frame->Summarize(&frames);
378 for (int i = frames.length() - 1; i >= 0; i--) {
379 Handle<JSFunction> fun = frames[i].function();
380 Handle<Object> recv = frames[i].receiver();
381 // Filter out internal frames that we do not want to show.
382 if (!IsVisibleInStackTrace(*fun, *caller, *recv, &seen_caller)) continue;
383 // Filter out frames from other security contexts.
384 if (!this->context()->HasSameSecurityTokenAs(fun->context())) continue;
385 if (cursor + 4 > elements->length()) {
386 int new_capacity = JSObject::NewElementsCapacity(elements->length());
387 Handle<FixedArray> new_elements =
388 factory()->NewFixedArrayWithHoles(new_capacity);
389 for (int i = 0; i < cursor; i++) {
390 new_elements->set(i, elements->get(i));
391 }
392 elements = new_elements;
393 }
394 DCHECK(cursor + 4 <= elements->length());
395
396
397 Handle<Code> code = frames[i].code();
398 Handle<Smi> offset(Smi::FromInt(frames[i].offset()), this);
399 // The stack trace API should not expose receivers and function
400 // objects on frames deeper than the top-most one with a strict
401 // mode function. The number of sloppy frames is stored as
402 // first element in the result array.
403 if (!encountered_strict_function) {
404 if (fun->shared()->strict_mode() == STRICT) {
405 encountered_strict_function = true;
406 } else {
407 sloppy_frames++;
408 }
409 }
410 elements->set(cursor++, *recv);
411 elements->set(cursor++, *fun);
412 elements->set(cursor++, *code);
413 elements->set(cursor++, *offset);
414 frames_seen++;
415 }
416 }
417 elements->set(0, Smi::FromInt(sloppy_frames));
418 Handle<JSArray> result = factory()->NewJSArrayWithElements(elements);
419 result->set_length(Smi::FromInt(cursor));
420 return result;
421 }
422
423
CaptureAndSetDetailedStackTrace(Handle<JSObject> error_object)424 void Isolate::CaptureAndSetDetailedStackTrace(Handle<JSObject> error_object) {
425 if (capture_stack_trace_for_uncaught_exceptions_) {
426 // Capture stack trace for a detailed exception message.
427 Handle<Name> key = factory()->detailed_stack_trace_symbol();
428 Handle<JSArray> stack_trace = CaptureCurrentStackTrace(
429 stack_trace_for_uncaught_exceptions_frame_limit_,
430 stack_trace_for_uncaught_exceptions_options_);
431 JSObject::SetProperty(error_object, key, stack_trace, STRICT).Assert();
432 }
433 }
434
435
CaptureAndSetSimpleStackTrace(Handle<JSObject> error_object,Handle<Object> caller)436 void Isolate::CaptureAndSetSimpleStackTrace(Handle<JSObject> error_object,
437 Handle<Object> caller) {
438 // Capture stack trace for simple stack trace string formatting.
439 Handle<Name> key = factory()->stack_trace_symbol();
440 Handle<Object> stack_trace = CaptureSimpleStackTrace(error_object, caller);
441 JSObject::SetProperty(error_object, key, stack_trace, STRICT).Assert();
442 }
443
444
CaptureCurrentStackTrace(int frame_limit,StackTrace::StackTraceOptions options)445 Handle<JSArray> Isolate::CaptureCurrentStackTrace(
446 int frame_limit, StackTrace::StackTraceOptions options) {
447 // Ensure no negative values.
448 int limit = Max(frame_limit, 0);
449 Handle<JSArray> stack_trace = factory()->NewJSArray(frame_limit);
450
451 Handle<String> column_key =
452 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("column"));
453 Handle<String> line_key =
454 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("lineNumber"));
455 Handle<String> script_id_key =
456 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("scriptId"));
457 Handle<String> script_name_key =
458 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("scriptName"));
459 Handle<String> script_name_or_source_url_key =
460 factory()->InternalizeOneByteString(
461 STATIC_CHAR_VECTOR("scriptNameOrSourceURL"));
462 Handle<String> function_key =
463 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("functionName"));
464 Handle<String> eval_key =
465 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("isEval"));
466 Handle<String> constructor_key =
467 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("isConstructor"));
468
469 StackTraceFrameIterator it(this);
470 int frames_seen = 0;
471 while (!it.done() && (frames_seen < limit)) {
472 JavaScriptFrame* frame = it.frame();
473 // Set initial size to the maximum inlining level + 1 for the outermost
474 // function.
475 List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
476 frame->Summarize(&frames);
477 for (int i = frames.length() - 1; i >= 0 && frames_seen < limit; i--) {
478 Handle<JSFunction> fun = frames[i].function();
479 // Filter frames from other security contexts.
480 if (!(options & StackTrace::kExposeFramesAcrossSecurityOrigins) &&
481 !this->context()->HasSameSecurityTokenAs(fun->context())) continue;
482
483 // Create a JSObject to hold the information for the StackFrame.
484 Handle<JSObject> stack_frame = factory()->NewJSObject(object_function());
485
486 Handle<Script> script(Script::cast(fun->shared()->script()));
487
488 if (options & StackTrace::kLineNumber) {
489 int script_line_offset = script->line_offset()->value();
490 int position = frames[i].code()->SourcePosition(frames[i].pc());
491 int line_number = Script::GetLineNumber(script, position);
492 // line_number is already shifted by the script_line_offset.
493 int relative_line_number = line_number - script_line_offset;
494 if (options & StackTrace::kColumnOffset && relative_line_number >= 0) {
495 Handle<FixedArray> line_ends(FixedArray::cast(script->line_ends()));
496 int start = (relative_line_number == 0) ? 0 :
497 Smi::cast(line_ends->get(relative_line_number - 1))->value() + 1;
498 int column_offset = position - start;
499 if (relative_line_number == 0) {
500 // For the case where the code is on the same line as the script
501 // tag.
502 column_offset += script->column_offset()->value();
503 }
504 JSObject::AddProperty(
505 stack_frame, column_key,
506 handle(Smi::FromInt(column_offset + 1), this), NONE);
507 }
508 JSObject::AddProperty(
509 stack_frame, line_key,
510 handle(Smi::FromInt(line_number + 1), this), NONE);
511 }
512
513 if (options & StackTrace::kScriptId) {
514 JSObject::AddProperty(
515 stack_frame, script_id_key, handle(script->id(), this), NONE);
516 }
517
518 if (options & StackTrace::kScriptName) {
519 JSObject::AddProperty(
520 stack_frame, script_name_key, handle(script->name(), this), NONE);
521 }
522
523 if (options & StackTrace::kScriptNameOrSourceURL) {
524 Handle<Object> result = Script::GetNameOrSourceURL(script);
525 JSObject::AddProperty(
526 stack_frame, script_name_or_source_url_key, result, NONE);
527 }
528
529 if (options & StackTrace::kFunctionName) {
530 Handle<Object> fun_name(fun->shared()->DebugName(), this);
531 JSObject::AddProperty(stack_frame, function_key, fun_name, NONE);
532 }
533
534 if (options & StackTrace::kIsEval) {
535 Handle<Object> is_eval =
536 script->compilation_type() == Script::COMPILATION_TYPE_EVAL ?
537 factory()->true_value() : factory()->false_value();
538 JSObject::AddProperty(stack_frame, eval_key, is_eval, NONE);
539 }
540
541 if (options & StackTrace::kIsConstructor) {
542 Handle<Object> is_constructor = (frames[i].is_constructor()) ?
543 factory()->true_value() : factory()->false_value();
544 JSObject::AddProperty(
545 stack_frame, constructor_key, is_constructor, NONE);
546 }
547
548 FixedArray::cast(stack_trace->elements())->set(frames_seen, *stack_frame);
549 frames_seen++;
550 }
551 it.Advance();
552 }
553
554 stack_trace->set_length(Smi::FromInt(frames_seen));
555 return stack_trace;
556 }
557
558
PrintStack(FILE * out)559 void Isolate::PrintStack(FILE* out) {
560 if (stack_trace_nesting_level_ == 0) {
561 stack_trace_nesting_level_++;
562 StringStream::ClearMentionedObjectCache(this);
563 HeapStringAllocator allocator;
564 StringStream accumulator(&allocator);
565 incomplete_message_ = &accumulator;
566 PrintStack(&accumulator);
567 accumulator.OutputToFile(out);
568 InitializeLoggingAndCounters();
569 accumulator.Log(this);
570 incomplete_message_ = NULL;
571 stack_trace_nesting_level_ = 0;
572 } else if (stack_trace_nesting_level_ == 1) {
573 stack_trace_nesting_level_++;
574 base::OS::PrintError(
575 "\n\nAttempt to print stack while printing stack (double fault)\n");
576 base::OS::PrintError(
577 "If you are lucky you may find a partial stack dump on stdout.\n\n");
578 incomplete_message_->OutputToFile(out);
579 }
580 }
581
582
PrintFrames(Isolate * isolate,StringStream * accumulator,StackFrame::PrintMode mode)583 static void PrintFrames(Isolate* isolate,
584 StringStream* accumulator,
585 StackFrame::PrintMode mode) {
586 StackFrameIterator it(isolate);
587 for (int i = 0; !it.done(); it.Advance()) {
588 it.frame()->Print(accumulator, mode, i++);
589 }
590 }
591
592
PrintStack(StringStream * accumulator)593 void Isolate::PrintStack(StringStream* accumulator) {
594 if (!IsInitialized()) {
595 accumulator->Add(
596 "\n==== JS stack trace is not available =======================\n\n");
597 accumulator->Add(
598 "\n==== Isolate for the thread is not initialized =============\n\n");
599 return;
600 }
601 // The MentionedObjectCache is not GC-proof at the moment.
602 DisallowHeapAllocation no_gc;
603 DCHECK(StringStream::IsMentionedObjectCacheClear(this));
604
605 // Avoid printing anything if there are no frames.
606 if (c_entry_fp(thread_local_top()) == 0) return;
607
608 accumulator->Add(
609 "\n==== JS stack trace =========================================\n\n");
610 PrintFrames(this, accumulator, StackFrame::OVERVIEW);
611
612 accumulator->Add(
613 "\n==== Details ================================================\n\n");
614 PrintFrames(this, accumulator, StackFrame::DETAILS);
615
616 accumulator->PrintMentionedObjectCache(this);
617 accumulator->Add("=====================\n\n");
618 }
619
620
SetFailedAccessCheckCallback(v8::FailedAccessCheckCallback callback)621 void Isolate::SetFailedAccessCheckCallback(
622 v8::FailedAccessCheckCallback callback) {
623 thread_local_top()->failed_access_check_callback_ = callback;
624 }
625
626
GetAccessCheckInfo(Isolate * isolate,Handle<JSObject> receiver)627 static inline AccessCheckInfo* GetAccessCheckInfo(Isolate* isolate,
628 Handle<JSObject> receiver) {
629 JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
630 if (!constructor->shared()->IsApiFunction()) return NULL;
631
632 Object* data_obj =
633 constructor->shared()->get_api_func_data()->access_check_info();
634 if (data_obj == isolate->heap()->undefined_value()) return NULL;
635
636 return AccessCheckInfo::cast(data_obj);
637 }
638
639
ReportFailedAccessCheck(Handle<JSObject> receiver,v8::AccessType type)640 void Isolate::ReportFailedAccessCheck(Handle<JSObject> receiver,
641 v8::AccessType type) {
642 if (!thread_local_top()->failed_access_check_callback_) {
643 Handle<String> message = factory()->InternalizeUtf8String("no access");
644 Handle<Object> error;
645 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
646 this, error, factory()->NewTypeError(message), /* void */);
647 ScheduleThrow(*error);
648 return;
649 }
650
651 DCHECK(receiver->IsAccessCheckNeeded());
652 DCHECK(context());
653
654 // Get the data object from access check info.
655 HandleScope scope(this);
656 Handle<Object> data;
657 { DisallowHeapAllocation no_gc;
658 AccessCheckInfo* access_check_info = GetAccessCheckInfo(this, receiver);
659 if (!access_check_info) return;
660 data = handle(access_check_info->data(), this);
661 }
662
663 // Leaving JavaScript.
664 VMState<EXTERNAL> state(this);
665 thread_local_top()->failed_access_check_callback_(
666 v8::Utils::ToLocal(receiver),
667 type,
668 v8::Utils::ToLocal(data));
669 }
670
671
672 enum MayAccessDecision {
673 YES, NO, UNKNOWN
674 };
675
676
MayAccessPreCheck(Isolate * isolate,Handle<JSObject> receiver,v8::AccessType type)677 static MayAccessDecision MayAccessPreCheck(Isolate* isolate,
678 Handle<JSObject> receiver,
679 v8::AccessType type) {
680 DisallowHeapAllocation no_gc;
681 // During bootstrapping, callback functions are not enabled yet.
682 if (isolate->bootstrapper()->IsActive()) return YES;
683
684 if (receiver->IsJSGlobalProxy()) {
685 Object* receiver_context = JSGlobalProxy::cast(*receiver)->native_context();
686 if (!receiver_context->IsContext()) return NO;
687
688 // Get the native context of current top context.
689 // avoid using Isolate::native_context() because it uses Handle.
690 Context* native_context =
691 isolate->context()->global_object()->native_context();
692 if (receiver_context == native_context) return YES;
693
694 if (Context::cast(receiver_context)->security_token() ==
695 native_context->security_token())
696 return YES;
697 }
698
699 return UNKNOWN;
700 }
701
702
MayNamedAccess(Handle<JSObject> receiver,Handle<Object> key,v8::AccessType type)703 bool Isolate::MayNamedAccess(Handle<JSObject> receiver,
704 Handle<Object> key,
705 v8::AccessType type) {
706 DCHECK(receiver->IsJSGlobalProxy() || receiver->IsAccessCheckNeeded());
707
708 // Skip checks for hidden properties access. Note, we do not
709 // require existence of a context in this case.
710 if (key.is_identical_to(factory()->hidden_string())) return true;
711
712 // Check for compatibility between the security tokens in the
713 // current lexical context and the accessed object.
714 DCHECK(context());
715
716 MayAccessDecision decision = MayAccessPreCheck(this, receiver, type);
717 if (decision != UNKNOWN) return decision == YES;
718
719 HandleScope scope(this);
720 Handle<Object> data;
721 v8::NamedSecurityCallback callback;
722 { DisallowHeapAllocation no_gc;
723 AccessCheckInfo* access_check_info = GetAccessCheckInfo(this, receiver);
724 if (!access_check_info) return false;
725 Object* fun_obj = access_check_info->named_callback();
726 callback = v8::ToCData<v8::NamedSecurityCallback>(fun_obj);
727 if (!callback) return false;
728 data = handle(access_check_info->data(), this);
729 }
730
731 LOG(this, ApiNamedSecurityCheck(*key));
732
733 // Leaving JavaScript.
734 VMState<EXTERNAL> state(this);
735 return callback(v8::Utils::ToLocal(receiver),
736 v8::Utils::ToLocal(key),
737 type,
738 v8::Utils::ToLocal(data));
739 }
740
741
MayIndexedAccess(Handle<JSObject> receiver,uint32_t index,v8::AccessType type)742 bool Isolate::MayIndexedAccess(Handle<JSObject> receiver,
743 uint32_t index,
744 v8::AccessType type) {
745 DCHECK(receiver->IsJSGlobalProxy() || receiver->IsAccessCheckNeeded());
746 // Check for compatibility between the security tokens in the
747 // current lexical context and the accessed object.
748 DCHECK(context());
749
750 MayAccessDecision decision = MayAccessPreCheck(this, receiver, type);
751 if (decision != UNKNOWN) return decision == YES;
752
753 HandleScope scope(this);
754 Handle<Object> data;
755 v8::IndexedSecurityCallback callback;
756 { DisallowHeapAllocation no_gc;
757 // Get named access check callback
758 AccessCheckInfo* access_check_info = GetAccessCheckInfo(this, receiver);
759 if (!access_check_info) return false;
760 Object* fun_obj = access_check_info->indexed_callback();
761 callback = v8::ToCData<v8::IndexedSecurityCallback>(fun_obj);
762 if (!callback) return false;
763 data = handle(access_check_info->data(), this);
764 }
765
766 LOG(this, ApiIndexedSecurityCheck(index));
767
768 // Leaving JavaScript.
769 VMState<EXTERNAL> state(this);
770 return callback(
771 v8::Utils::ToLocal(receiver), index, type, v8::Utils::ToLocal(data));
772 }
773
774
775 const char* const Isolate::kStackOverflowMessage =
776 "Uncaught RangeError: Maximum call stack size exceeded";
777
778
StackOverflow()779 Object* Isolate::StackOverflow() {
780 HandleScope scope(this);
781 // At this point we cannot create an Error object using its javascript
782 // constructor. Instead, we copy the pre-constructed boilerplate and
783 // attach the stack trace as a hidden property.
784 Handle<String> key = factory()->stack_overflow_string();
785 Handle<JSObject> boilerplate = Handle<JSObject>::cast(
786 Object::GetProperty(js_builtins_object(), key).ToHandleChecked());
787 Handle<JSObject> exception = factory()->CopyJSObject(boilerplate);
788 DoThrow(*exception, NULL);
789
790 CaptureAndSetSimpleStackTrace(exception, factory()->undefined_value());
791 return heap()->exception();
792 }
793
794
TerminateExecution()795 Object* Isolate::TerminateExecution() {
796 DoThrow(heap_.termination_exception(), NULL);
797 return heap()->exception();
798 }
799
800
CancelTerminateExecution()801 void Isolate::CancelTerminateExecution() {
802 if (try_catch_handler()) {
803 try_catch_handler()->has_terminated_ = false;
804 }
805 if (has_pending_exception() &&
806 pending_exception() == heap_.termination_exception()) {
807 thread_local_top()->external_caught_exception_ = false;
808 clear_pending_exception();
809 }
810 if (has_scheduled_exception() &&
811 scheduled_exception() == heap_.termination_exception()) {
812 thread_local_top()->external_caught_exception_ = false;
813 clear_scheduled_exception();
814 }
815 }
816
817
InvokeApiInterruptCallback()818 void Isolate::InvokeApiInterruptCallback() {
819 // Note: callback below should be called outside of execution access lock.
820 InterruptCallback callback = NULL;
821 void* data = NULL;
822 {
823 ExecutionAccess access(this);
824 callback = api_interrupt_callback_;
825 data = api_interrupt_callback_data_;
826 api_interrupt_callback_ = NULL;
827 api_interrupt_callback_data_ = NULL;
828 }
829
830 if (callback != NULL) {
831 VMState<EXTERNAL> state(this);
832 HandleScope handle_scope(this);
833 callback(reinterpret_cast<v8::Isolate*>(this), data);
834 }
835 }
836
837
Throw(Object * exception,MessageLocation * location)838 Object* Isolate::Throw(Object* exception, MessageLocation* location) {
839 DoThrow(exception, location);
840 return heap()->exception();
841 }
842
843
ReThrow(Object * exception)844 Object* Isolate::ReThrow(Object* exception) {
845 bool can_be_caught_externally = false;
846 bool catchable_by_javascript = is_catchable_by_javascript(exception);
847 ShouldReportException(&can_be_caught_externally, catchable_by_javascript);
848
849 thread_local_top()->catcher_ = can_be_caught_externally ?
850 try_catch_handler() : NULL;
851
852 // Set the exception being re-thrown.
853 set_pending_exception(exception);
854 return heap()->exception();
855 }
856
857
ThrowIllegalOperation()858 Object* Isolate::ThrowIllegalOperation() {
859 if (FLAG_stack_trace_on_illegal) PrintStack(stdout);
860 return Throw(heap_.illegal_access_string());
861 }
862
863
ScheduleThrow(Object * exception)864 void Isolate::ScheduleThrow(Object* exception) {
865 // When scheduling a throw we first throw the exception to get the
866 // error reporting if it is uncaught before rescheduling it.
867 Throw(exception);
868 PropagatePendingExceptionToExternalTryCatch();
869 if (has_pending_exception()) {
870 thread_local_top()->scheduled_exception_ = pending_exception();
871 thread_local_top()->external_caught_exception_ = false;
872 clear_pending_exception();
873 }
874 }
875
876
RestorePendingMessageFromTryCatch(v8::TryCatch * handler)877 void Isolate::RestorePendingMessageFromTryCatch(v8::TryCatch* handler) {
878 DCHECK(handler == try_catch_handler());
879 DCHECK(handler->HasCaught());
880 DCHECK(handler->rethrow_);
881 DCHECK(handler->capture_message_);
882 Object* message = reinterpret_cast<Object*>(handler->message_obj_);
883 Object* script = reinterpret_cast<Object*>(handler->message_script_);
884 DCHECK(message->IsJSMessageObject() || message->IsTheHole());
885 DCHECK(script->IsScript() || script->IsTheHole());
886 thread_local_top()->pending_message_obj_ = message;
887 thread_local_top()->pending_message_script_ = script;
888 thread_local_top()->pending_message_start_pos_ = handler->message_start_pos_;
889 thread_local_top()->pending_message_end_pos_ = handler->message_end_pos_;
890 }
891
892
CancelScheduledExceptionFromTryCatch(v8::TryCatch * handler)893 void Isolate::CancelScheduledExceptionFromTryCatch(v8::TryCatch* handler) {
894 DCHECK(has_scheduled_exception());
895 if (scheduled_exception() == handler->exception_) {
896 DCHECK(scheduled_exception() != heap()->termination_exception());
897 clear_scheduled_exception();
898 }
899 }
900
901
PromoteScheduledException()902 Object* Isolate::PromoteScheduledException() {
903 Object* thrown = scheduled_exception();
904 clear_scheduled_exception();
905 // Re-throw the exception to avoid getting repeated error reporting.
906 return ReThrow(thrown);
907 }
908
909
PrintCurrentStackTrace(FILE * out)910 void Isolate::PrintCurrentStackTrace(FILE* out) {
911 StackTraceFrameIterator it(this);
912 while (!it.done()) {
913 HandleScope scope(this);
914 // Find code position if recorded in relocation info.
915 JavaScriptFrame* frame = it.frame();
916 int pos = frame->LookupCode()->SourcePosition(frame->pc());
917 Handle<Object> pos_obj(Smi::FromInt(pos), this);
918 // Fetch function and receiver.
919 Handle<JSFunction> fun(frame->function());
920 Handle<Object> recv(frame->receiver(), this);
921 // Advance to the next JavaScript frame and determine if the
922 // current frame is the top-level frame.
923 it.Advance();
924 Handle<Object> is_top_level = it.done()
925 ? factory()->true_value()
926 : factory()->false_value();
927 // Generate and print stack trace line.
928 Handle<String> line =
929 Execution::GetStackTraceLine(recv, fun, pos_obj, is_top_level);
930 if (line->length() > 0) {
931 line->PrintOn(out);
932 PrintF(out, "\n");
933 }
934 }
935 }
936
937
ComputeLocation(MessageLocation * target)938 void Isolate::ComputeLocation(MessageLocation* target) {
939 *target = MessageLocation(Handle<Script>(heap_.empty_script()), -1, -1);
940 StackTraceFrameIterator it(this);
941 if (!it.done()) {
942 JavaScriptFrame* frame = it.frame();
943 JSFunction* fun = frame->function();
944 Object* script = fun->shared()->script();
945 if (script->IsScript() &&
946 !(Script::cast(script)->source()->IsUndefined())) {
947 int pos = frame->LookupCode()->SourcePosition(frame->pc());
948 // Compute the location from the function and the reloc info.
949 Handle<Script> casted_script(Script::cast(script));
950 *target = MessageLocation(casted_script, pos, pos + 1);
951 }
952 }
953 }
954
955
ShouldReportException(bool * can_be_caught_externally,bool catchable_by_javascript)956 bool Isolate::ShouldReportException(bool* can_be_caught_externally,
957 bool catchable_by_javascript) {
958 // Find the top-most try-catch handler.
959 StackHandler* handler =
960 StackHandler::FromAddress(Isolate::handler(thread_local_top()));
961 while (handler != NULL && !handler->is_catch()) {
962 handler = handler->next();
963 }
964
965 // Get the address of the external handler so we can compare the address to
966 // determine which one is closer to the top of the stack.
967 Address external_handler_address =
968 thread_local_top()->try_catch_handler_address();
969
970 // The exception has been externally caught if and only if there is
971 // an external handler which is on top of the top-most try-catch
972 // handler.
973 *can_be_caught_externally = external_handler_address != NULL &&
974 (handler == NULL || handler->address() > external_handler_address ||
975 !catchable_by_javascript);
976
977 if (*can_be_caught_externally) {
978 // Only report the exception if the external handler is verbose.
979 return try_catch_handler()->is_verbose_;
980 } else {
981 // Report the exception if it isn't caught by JavaScript code.
982 return handler == NULL;
983 }
984 }
985
986
IsErrorObject(Handle<Object> obj)987 bool Isolate::IsErrorObject(Handle<Object> obj) {
988 if (!obj->IsJSObject()) return false;
989
990 Handle<String> error_key =
991 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("$Error"));
992 Handle<Object> error_constructor = Object::GetProperty(
993 js_builtins_object(), error_key).ToHandleChecked();
994
995 DisallowHeapAllocation no_gc;
996 for (PrototypeIterator iter(this, *obj, PrototypeIterator::START_AT_RECEIVER);
997 !iter.IsAtEnd(); iter.Advance()) {
998 if (iter.GetCurrent()->IsJSProxy()) return false;
999 if (JSObject::cast(iter.GetCurrent())->map()->constructor() ==
1000 *error_constructor) {
1001 return true;
1002 }
1003 }
1004 return false;
1005 }
1006
1007 static int fatal_exception_depth = 0;
1008
DoThrow(Object * exception,MessageLocation * location)1009 void Isolate::DoThrow(Object* exception, MessageLocation* location) {
1010 DCHECK(!has_pending_exception());
1011
1012 HandleScope scope(this);
1013 Handle<Object> exception_handle(exception, this);
1014
1015 // Determine reporting and whether the exception is caught externally.
1016 bool catchable_by_javascript = is_catchable_by_javascript(exception);
1017 bool can_be_caught_externally = false;
1018 bool should_report_exception =
1019 ShouldReportException(&can_be_caught_externally, catchable_by_javascript);
1020 bool report_exception = catchable_by_javascript && should_report_exception;
1021 bool try_catch_needs_message =
1022 can_be_caught_externally && try_catch_handler()->capture_message_;
1023 bool bootstrapping = bootstrapper()->IsActive();
1024 bool rethrowing_message = thread_local_top()->rethrowing_message_;
1025
1026 thread_local_top()->rethrowing_message_ = false;
1027
1028 // Notify debugger of exception.
1029 if (catchable_by_javascript) {
1030 debug()->OnThrow(exception_handle, report_exception);
1031 }
1032
1033 // Generate the message if required.
1034 if (!rethrowing_message && (report_exception || try_catch_needs_message)) {
1035 MessageLocation potential_computed_location;
1036 if (location == NULL) {
1037 // If no location was specified we use a computed one instead.
1038 ComputeLocation(&potential_computed_location);
1039 location = &potential_computed_location;
1040 }
1041 // It's not safe to try to make message objects or collect stack traces
1042 // while the bootstrapper is active since the infrastructure may not have
1043 // been properly initialized.
1044 if (!bootstrapping) {
1045 Handle<JSArray> stack_trace_object;
1046 if (capture_stack_trace_for_uncaught_exceptions_) {
1047 if (IsErrorObject(exception_handle)) {
1048 // We fetch the stack trace that corresponds to this error object.
1049 Handle<Name> key = factory()->detailed_stack_trace_symbol();
1050 // Look up as own property. If the lookup fails, the exception is
1051 // probably not a valid Error object. In that case, we fall through
1052 // and capture the stack trace at this throw site.
1053 LookupIterator lookup(exception_handle, key,
1054 LookupIterator::OWN_SKIP_INTERCEPTOR);
1055 Handle<Object> stack_trace_property;
1056 if (Object::GetProperty(&lookup).ToHandle(&stack_trace_property) &&
1057 stack_trace_property->IsJSArray()) {
1058 stack_trace_object = Handle<JSArray>::cast(stack_trace_property);
1059 }
1060 }
1061 if (stack_trace_object.is_null()) {
1062 // Not an error object, we capture at throw site.
1063 stack_trace_object = CaptureCurrentStackTrace(
1064 stack_trace_for_uncaught_exceptions_frame_limit_,
1065 stack_trace_for_uncaught_exceptions_options_);
1066 }
1067 }
1068
1069 Handle<Object> exception_arg = exception_handle;
1070 // If the exception argument is a custom object, turn it into a string
1071 // before throwing as uncaught exception. Note that the pending
1072 // exception object to be set later must not be turned into a string.
1073 if (exception_arg->IsJSObject() && !IsErrorObject(exception_arg)) {
1074 MaybeHandle<Object> maybe_exception =
1075 Execution::ToDetailString(this, exception_arg);
1076 if (!maybe_exception.ToHandle(&exception_arg)) {
1077 exception_arg = factory()->InternalizeOneByteString(
1078 STATIC_CHAR_VECTOR("exception"));
1079 }
1080 }
1081 Handle<Object> message_obj = MessageHandler::MakeMessageObject(
1082 this,
1083 "uncaught_exception",
1084 location,
1085 HandleVector<Object>(&exception_arg, 1),
1086 stack_trace_object);
1087 thread_local_top()->pending_message_obj_ = *message_obj;
1088 if (location != NULL) {
1089 thread_local_top()->pending_message_script_ = *location->script();
1090 thread_local_top()->pending_message_start_pos_ = location->start_pos();
1091 thread_local_top()->pending_message_end_pos_ = location->end_pos();
1092 }
1093
1094 // If the abort-on-uncaught-exception flag is specified, abort on any
1095 // exception not caught by JavaScript, even when an external handler is
1096 // present. This flag is intended for use by JavaScript developers, so
1097 // print a user-friendly stack trace (not an internal one).
1098 if (fatal_exception_depth == 0 &&
1099 FLAG_abort_on_uncaught_exception &&
1100 (report_exception || can_be_caught_externally)) {
1101 fatal_exception_depth++;
1102 PrintF(stderr,
1103 "%s\n\nFROM\n",
1104 MessageHandler::GetLocalizedMessage(this, message_obj).get());
1105 PrintCurrentStackTrace(stderr);
1106 base::OS::Abort();
1107 }
1108 } else if (location != NULL && !location->script().is_null()) {
1109 // We are bootstrapping and caught an error where the location is set
1110 // and we have a script for the location.
1111 // In this case we could have an extension (or an internal error
1112 // somewhere) and we print out the line number at which the error occured
1113 // to the console for easier debugging.
1114 int line_number =
1115 location->script()->GetLineNumber(location->start_pos()) + 1;
1116 if (exception->IsString() && location->script()->name()->IsString()) {
1117 base::OS::PrintError(
1118 "Extension or internal compilation error: %s in %s at line %d.\n",
1119 String::cast(exception)->ToCString().get(),
1120 String::cast(location->script()->name())->ToCString().get(),
1121 line_number);
1122 } else if (location->script()->name()->IsString()) {
1123 base::OS::PrintError(
1124 "Extension or internal compilation error in %s at line %d.\n",
1125 String::cast(location->script()->name())->ToCString().get(),
1126 line_number);
1127 } else {
1128 base::OS::PrintError("Extension or internal compilation error.\n");
1129 }
1130 #ifdef OBJECT_PRINT
1131 // Since comments and empty lines have been stripped from the source of
1132 // builtins, print the actual source here so that line numbers match.
1133 if (location->script()->source()->IsString()) {
1134 Handle<String> src(String::cast(location->script()->source()));
1135 PrintF("Failing script:\n");
1136 int len = src->length();
1137 int line_number = 1;
1138 PrintF("%5d: ", line_number);
1139 for (int i = 0; i < len; i++) {
1140 uint16_t character = src->Get(i);
1141 PrintF("%c", character);
1142 if (character == '\n' && i < len - 2) {
1143 PrintF("%5d: ", ++line_number);
1144 }
1145 }
1146 }
1147 #endif
1148 }
1149 }
1150
1151 // Save the message for reporting if the the exception remains uncaught.
1152 thread_local_top()->has_pending_message_ = report_exception;
1153
1154 // Do not forget to clean catcher_ if currently thrown exception cannot
1155 // be caught. If necessary, ReThrow will update the catcher.
1156 thread_local_top()->catcher_ = can_be_caught_externally ?
1157 try_catch_handler() : NULL;
1158
1159 set_pending_exception(*exception_handle);
1160 }
1161
1162
HasExternalTryCatch()1163 bool Isolate::HasExternalTryCatch() {
1164 DCHECK(has_pending_exception());
1165
1166 return (thread_local_top()->catcher_ != NULL) &&
1167 (try_catch_handler() == thread_local_top()->catcher_);
1168 }
1169
1170
IsFinallyOnTop()1171 bool Isolate::IsFinallyOnTop() {
1172 // Get the address of the external handler so we can compare the address to
1173 // determine which one is closer to the top of the stack.
1174 Address external_handler_address =
1175 thread_local_top()->try_catch_handler_address();
1176 DCHECK(external_handler_address != NULL);
1177
1178 // The exception has been externally caught if and only if there is
1179 // an external handler which is on top of the top-most try-finally
1180 // handler.
1181 // There should be no try-catch blocks as they would prohibit us from
1182 // finding external catcher in the first place (see catcher_ check above).
1183 //
1184 // Note, that finally clause would rethrow an exception unless it's
1185 // aborted by jumps in control flow like return, break, etc. and we'll
1186 // have another chances to set proper v8::TryCatch.
1187 StackHandler* handler =
1188 StackHandler::FromAddress(Isolate::handler(thread_local_top()));
1189 while (handler != NULL && handler->address() < external_handler_address) {
1190 DCHECK(!handler->is_catch());
1191 if (handler->is_finally()) return true;
1192
1193 handler = handler->next();
1194 }
1195
1196 return false;
1197 }
1198
1199
ReportPendingMessages()1200 void Isolate::ReportPendingMessages() {
1201 DCHECK(has_pending_exception());
1202 bool can_clear_message = PropagatePendingExceptionToExternalTryCatch();
1203
1204 HandleScope scope(this);
1205 if (thread_local_top_.pending_exception_ == heap()->termination_exception()) {
1206 // Do nothing: if needed, the exception has been already propagated to
1207 // v8::TryCatch.
1208 } else {
1209 if (thread_local_top_.has_pending_message_) {
1210 thread_local_top_.has_pending_message_ = false;
1211 if (!thread_local_top_.pending_message_obj_->IsTheHole()) {
1212 HandleScope scope(this);
1213 Handle<Object> message_obj(thread_local_top_.pending_message_obj_,
1214 this);
1215 if (!thread_local_top_.pending_message_script_->IsTheHole()) {
1216 Handle<Script> script(
1217 Script::cast(thread_local_top_.pending_message_script_));
1218 int start_pos = thread_local_top_.pending_message_start_pos_;
1219 int end_pos = thread_local_top_.pending_message_end_pos_;
1220 MessageLocation location(script, start_pos, end_pos);
1221 MessageHandler::ReportMessage(this, &location, message_obj);
1222 } else {
1223 MessageHandler::ReportMessage(this, NULL, message_obj);
1224 }
1225 }
1226 }
1227 }
1228 if (can_clear_message) clear_pending_message();
1229 }
1230
1231
GetMessageLocation()1232 MessageLocation Isolate::GetMessageLocation() {
1233 DCHECK(has_pending_exception());
1234
1235 if (thread_local_top_.pending_exception_ != heap()->termination_exception() &&
1236 thread_local_top_.has_pending_message_ &&
1237 !thread_local_top_.pending_message_obj_->IsTheHole() &&
1238 !thread_local_top_.pending_message_obj_->IsTheHole()) {
1239 Handle<Script> script(
1240 Script::cast(thread_local_top_.pending_message_script_));
1241 int start_pos = thread_local_top_.pending_message_start_pos_;
1242 int end_pos = thread_local_top_.pending_message_end_pos_;
1243 return MessageLocation(script, start_pos, end_pos);
1244 }
1245
1246 return MessageLocation();
1247 }
1248
1249
OptionalRescheduleException(bool is_bottom_call)1250 bool Isolate::OptionalRescheduleException(bool is_bottom_call) {
1251 DCHECK(has_pending_exception());
1252 PropagatePendingExceptionToExternalTryCatch();
1253
1254 bool is_termination_exception =
1255 pending_exception() == heap_.termination_exception();
1256
1257 // Do not reschedule the exception if this is the bottom call.
1258 bool clear_exception = is_bottom_call;
1259
1260 if (is_termination_exception) {
1261 if (is_bottom_call) {
1262 thread_local_top()->external_caught_exception_ = false;
1263 clear_pending_exception();
1264 return false;
1265 }
1266 } else if (thread_local_top()->external_caught_exception_) {
1267 // If the exception is externally caught, clear it if there are no
1268 // JavaScript frames on the way to the C++ frame that has the
1269 // external handler.
1270 DCHECK(thread_local_top()->try_catch_handler_address() != NULL);
1271 Address external_handler_address =
1272 thread_local_top()->try_catch_handler_address();
1273 JavaScriptFrameIterator it(this);
1274 if (it.done() || (it.frame()->sp() > external_handler_address)) {
1275 clear_exception = true;
1276 }
1277 }
1278
1279 // Clear the exception if needed.
1280 if (clear_exception) {
1281 thread_local_top()->external_caught_exception_ = false;
1282 clear_pending_exception();
1283 return false;
1284 }
1285
1286 // Reschedule the exception.
1287 thread_local_top()->scheduled_exception_ = pending_exception();
1288 clear_pending_exception();
1289 return true;
1290 }
1291
1292
PushPromise(Handle<JSObject> promise)1293 void Isolate::PushPromise(Handle<JSObject> promise) {
1294 ThreadLocalTop* tltop = thread_local_top();
1295 PromiseOnStack* prev = tltop->promise_on_stack_;
1296 StackHandler* handler = StackHandler::FromAddress(Isolate::handler(tltop));
1297 Handle<JSObject> global_handle =
1298 Handle<JSObject>::cast(global_handles()->Create(*promise));
1299 tltop->promise_on_stack_ = new PromiseOnStack(handler, global_handle, prev);
1300 }
1301
1302
PopPromise()1303 void Isolate::PopPromise() {
1304 ThreadLocalTop* tltop = thread_local_top();
1305 if (tltop->promise_on_stack_ == NULL) return;
1306 PromiseOnStack* prev = tltop->promise_on_stack_->prev();
1307 Handle<Object> global_handle = tltop->promise_on_stack_->promise();
1308 delete tltop->promise_on_stack_;
1309 tltop->promise_on_stack_ = prev;
1310 global_handles()->Destroy(global_handle.location());
1311 }
1312
1313
GetPromiseOnStackOnThrow()1314 Handle<Object> Isolate::GetPromiseOnStackOnThrow() {
1315 Handle<Object> undefined = factory()->undefined_value();
1316 ThreadLocalTop* tltop = thread_local_top();
1317 if (tltop->promise_on_stack_ == NULL) return undefined;
1318 StackHandler* promise_try = tltop->promise_on_stack_->handler();
1319 // Find the top-most try-catch handler.
1320 StackHandler* handler = StackHandler::FromAddress(Isolate::handler(tltop));
1321 do {
1322 if (handler == promise_try) {
1323 // Mark the pushed try-catch handler to prevent a later duplicate event
1324 // triggered with the following reject.
1325 return tltop->promise_on_stack_->promise();
1326 }
1327 handler = handler->next();
1328 // Throwing inside a Promise can be intercepted by an inner try-catch, so
1329 // we stop at the first try-catch handler.
1330 } while (handler != NULL && !handler->is_catch());
1331 return undefined;
1332 }
1333
1334
SetCaptureStackTraceForUncaughtExceptions(bool capture,int frame_limit,StackTrace::StackTraceOptions options)1335 void Isolate::SetCaptureStackTraceForUncaughtExceptions(
1336 bool capture,
1337 int frame_limit,
1338 StackTrace::StackTraceOptions options) {
1339 capture_stack_trace_for_uncaught_exceptions_ = capture;
1340 stack_trace_for_uncaught_exceptions_frame_limit_ = frame_limit;
1341 stack_trace_for_uncaught_exceptions_options_ = options;
1342 }
1343
1344
native_context()1345 Handle<Context> Isolate::native_context() {
1346 return handle(context()->native_context());
1347 }
1348
1349
global_context()1350 Handle<Context> Isolate::global_context() {
1351 return handle(context()->global_object()->global_context());
1352 }
1353
1354
GetCallingNativeContext()1355 Handle<Context> Isolate::GetCallingNativeContext() {
1356 JavaScriptFrameIterator it(this);
1357 if (debug_->in_debug_scope()) {
1358 while (!it.done()) {
1359 JavaScriptFrame* frame = it.frame();
1360 Context* context = Context::cast(frame->context());
1361 if (context->native_context() == *debug_->debug_context()) {
1362 it.Advance();
1363 } else {
1364 break;
1365 }
1366 }
1367 }
1368 if (it.done()) return Handle<Context>::null();
1369 JavaScriptFrame* frame = it.frame();
1370 Context* context = Context::cast(frame->context());
1371 return Handle<Context>(context->native_context());
1372 }
1373
1374
ArchiveThread(char * to)1375 char* Isolate::ArchiveThread(char* to) {
1376 MemCopy(to, reinterpret_cast<char*>(thread_local_top()),
1377 sizeof(ThreadLocalTop));
1378 InitializeThreadLocal();
1379 clear_pending_exception();
1380 clear_pending_message();
1381 clear_scheduled_exception();
1382 return to + sizeof(ThreadLocalTop);
1383 }
1384
1385
RestoreThread(char * from)1386 char* Isolate::RestoreThread(char* from) {
1387 MemCopy(reinterpret_cast<char*>(thread_local_top()), from,
1388 sizeof(ThreadLocalTop));
1389 // This might be just paranoia, but it seems to be needed in case a
1390 // thread_local_top_ is restored on a separate OS thread.
1391 #ifdef USE_SIMULATOR
1392 thread_local_top()->simulator_ = Simulator::current(this);
1393 #endif
1394 DCHECK(context() == NULL || context()->IsContext());
1395 return from + sizeof(ThreadLocalTop);
1396 }
1397
1398
ThreadDataTable()1399 Isolate::ThreadDataTable::ThreadDataTable()
1400 : list_(NULL) {
1401 }
1402
1403
~ThreadDataTable()1404 Isolate::ThreadDataTable::~ThreadDataTable() {
1405 // TODO(svenpanne) The assertion below would fire if an embedder does not
1406 // cleanly dispose all Isolates before disposing v8, so we are conservative
1407 // and leave it out for now.
1408 // DCHECK_EQ(NULL, list_);
1409 }
1410
1411
~PerIsolateThreadData()1412 Isolate::PerIsolateThreadData::~PerIsolateThreadData() {
1413 #if defined(USE_SIMULATOR)
1414 delete simulator_;
1415 #endif
1416 }
1417
1418
1419 Isolate::PerIsolateThreadData*
Lookup(Isolate * isolate,ThreadId thread_id)1420 Isolate::ThreadDataTable::Lookup(Isolate* isolate,
1421 ThreadId thread_id) {
1422 for (PerIsolateThreadData* data = list_; data != NULL; data = data->next_) {
1423 if (data->Matches(isolate, thread_id)) return data;
1424 }
1425 return NULL;
1426 }
1427
1428
Insert(Isolate::PerIsolateThreadData * data)1429 void Isolate::ThreadDataTable::Insert(Isolate::PerIsolateThreadData* data) {
1430 if (list_ != NULL) list_->prev_ = data;
1431 data->next_ = list_;
1432 list_ = data;
1433 }
1434
1435
Remove(PerIsolateThreadData * data)1436 void Isolate::ThreadDataTable::Remove(PerIsolateThreadData* data) {
1437 if (list_ == data) list_ = data->next_;
1438 if (data->next_ != NULL) data->next_->prev_ = data->prev_;
1439 if (data->prev_ != NULL) data->prev_->next_ = data->next_;
1440 delete data;
1441 }
1442
1443
RemoveAllThreads(Isolate * isolate)1444 void Isolate::ThreadDataTable::RemoveAllThreads(Isolate* isolate) {
1445 PerIsolateThreadData* data = list_;
1446 while (data != NULL) {
1447 PerIsolateThreadData* next = data->next_;
1448 if (data->isolate() == isolate) Remove(data);
1449 data = next;
1450 }
1451 }
1452
1453
1454 #ifdef DEBUG
1455 #define TRACE_ISOLATE(tag) \
1456 do { \
1457 if (FLAG_trace_isolates) { \
1458 PrintF("Isolate %p (id %d)" #tag "\n", \
1459 reinterpret_cast<void*>(this), id()); \
1460 } \
1461 } while (false)
1462 #else
1463 #define TRACE_ISOLATE(tag)
1464 #endif
1465
1466
Isolate()1467 Isolate::Isolate()
1468 : embedder_data_(),
1469 state_(UNINITIALIZED),
1470 entry_stack_(NULL),
1471 stack_trace_nesting_level_(0),
1472 incomplete_message_(NULL),
1473 bootstrapper_(NULL),
1474 runtime_profiler_(NULL),
1475 compilation_cache_(NULL),
1476 counters_(NULL),
1477 code_range_(NULL),
1478 logger_(NULL),
1479 stats_table_(NULL),
1480 stub_cache_(NULL),
1481 code_aging_helper_(NULL),
1482 deoptimizer_data_(NULL),
1483 materialized_object_store_(NULL),
1484 capture_stack_trace_for_uncaught_exceptions_(false),
1485 stack_trace_for_uncaught_exceptions_frame_limit_(0),
1486 stack_trace_for_uncaught_exceptions_options_(StackTrace::kOverview),
1487 memory_allocator_(NULL),
1488 keyed_lookup_cache_(NULL),
1489 context_slot_cache_(NULL),
1490 descriptor_lookup_cache_(NULL),
1491 handle_scope_implementer_(NULL),
1492 unicode_cache_(NULL),
1493 runtime_zone_(this),
1494 inner_pointer_to_code_cache_(NULL),
1495 write_iterator_(NULL),
1496 global_handles_(NULL),
1497 eternal_handles_(NULL),
1498 thread_manager_(NULL),
1499 has_installed_extensions_(false),
1500 string_tracker_(NULL),
1501 regexp_stack_(NULL),
1502 date_cache_(NULL),
1503 call_descriptor_data_(NULL),
1504 // TODO(bmeurer) Initialized lazily because it depends on flags; can
1505 // be fixed once the default isolate cleanup is done.
1506 random_number_generator_(NULL),
1507 serializer_enabled_(false),
1508 has_fatal_error_(false),
1509 initialized_from_snapshot_(false),
1510 cpu_profiler_(NULL),
1511 heap_profiler_(NULL),
1512 function_entry_hook_(NULL),
1513 deferred_handles_head_(NULL),
1514 optimizing_compiler_thread_(NULL),
1515 sweeper_thread_(NULL),
1516 num_sweeper_threads_(0),
1517 stress_deopt_count_(0),
1518 next_optimization_id_(0),
1519 use_counter_callback_(NULL) {
1520 {
1521 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
1522 CHECK(thread_data_table_);
1523 }
1524 id_ = base::NoBarrier_AtomicIncrement(&isolate_counter_, 1);
1525 TRACE_ISOLATE(constructor);
1526
1527 memset(isolate_addresses_, 0,
1528 sizeof(isolate_addresses_[0]) * (kIsolateAddressCount + 1));
1529
1530 heap_.isolate_ = this;
1531 stack_guard_.isolate_ = this;
1532
1533 // ThreadManager is initialized early to support locking an isolate
1534 // before it is entered.
1535 thread_manager_ = new ThreadManager();
1536 thread_manager_->isolate_ = this;
1537
1538 #ifdef DEBUG
1539 // heap_histograms_ initializes itself.
1540 memset(&js_spill_information_, 0, sizeof(js_spill_information_));
1541 #endif
1542
1543 handle_scope_data_.Initialize();
1544
1545 #define ISOLATE_INIT_EXECUTE(type, name, initial_value) \
1546 name##_ = (initial_value);
1547 ISOLATE_INIT_LIST(ISOLATE_INIT_EXECUTE)
1548 #undef ISOLATE_INIT_EXECUTE
1549
1550 #define ISOLATE_INIT_ARRAY_EXECUTE(type, name, length) \
1551 memset(name##_, 0, sizeof(type) * length);
1552 ISOLATE_INIT_ARRAY_LIST(ISOLATE_INIT_ARRAY_EXECUTE)
1553 #undef ISOLATE_INIT_ARRAY_EXECUTE
1554
1555 InitializeLoggingAndCounters();
1556 debug_ = new Debug(this);
1557 }
1558
1559
TearDown()1560 void Isolate::TearDown() {
1561 TRACE_ISOLATE(tear_down);
1562
1563 // Temporarily set this isolate as current so that various parts of
1564 // the isolate can access it in their destructors without having a
1565 // direct pointer. We don't use Enter/Exit here to avoid
1566 // initializing the thread data.
1567 PerIsolateThreadData* saved_data = CurrentPerIsolateThreadData();
1568 Isolate* saved_isolate = UncheckedCurrent();
1569 SetIsolateThreadLocals(this, NULL);
1570
1571 Deinit();
1572
1573 {
1574 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
1575 thread_data_table_->RemoveAllThreads(this);
1576 }
1577
1578 if (serialize_partial_snapshot_cache_ != NULL) {
1579 delete[] serialize_partial_snapshot_cache_;
1580 serialize_partial_snapshot_cache_ = NULL;
1581 }
1582
1583 delete this;
1584
1585 // Restore the previous current isolate.
1586 SetIsolateThreadLocals(saved_isolate, saved_data);
1587 }
1588
1589
GlobalTearDown()1590 void Isolate::GlobalTearDown() {
1591 delete thread_data_table_;
1592 thread_data_table_ = NULL;
1593 }
1594
1595
Deinit()1596 void Isolate::Deinit() {
1597 if (state_ == INITIALIZED) {
1598 TRACE_ISOLATE(deinit);
1599
1600 debug()->Unload();
1601
1602 FreeThreadResources();
1603
1604 if (concurrent_recompilation_enabled()) {
1605 optimizing_compiler_thread_->Stop();
1606 delete optimizing_compiler_thread_;
1607 optimizing_compiler_thread_ = NULL;
1608 }
1609
1610 for (int i = 0; i < num_sweeper_threads_; i++) {
1611 sweeper_thread_[i]->Stop();
1612 delete sweeper_thread_[i];
1613 sweeper_thread_[i] = NULL;
1614 }
1615 delete[] sweeper_thread_;
1616 sweeper_thread_ = NULL;
1617
1618 if (FLAG_job_based_sweeping &&
1619 heap_.mark_compact_collector()->sweeping_in_progress()) {
1620 heap_.mark_compact_collector()->EnsureSweepingCompleted();
1621 }
1622
1623 if (FLAG_turbo_stats) GetTStatistics()->Print("TurboFan");
1624 if (FLAG_hydrogen_stats) GetHStatistics()->Print("Hydrogen");
1625
1626 if (FLAG_print_deopt_stress) {
1627 PrintF(stdout, "=== Stress deopt counter: %u\n", stress_deopt_count_);
1628 }
1629
1630 // We must stop the logger before we tear down other components.
1631 Sampler* sampler = logger_->sampler();
1632 if (sampler && sampler->IsActive()) sampler->Stop();
1633
1634 delete deoptimizer_data_;
1635 deoptimizer_data_ = NULL;
1636 builtins_.TearDown();
1637 bootstrapper_->TearDown();
1638
1639 if (runtime_profiler_ != NULL) {
1640 delete runtime_profiler_;
1641 runtime_profiler_ = NULL;
1642 }
1643 heap_.TearDown();
1644 logger_->TearDown();
1645
1646 delete heap_profiler_;
1647 heap_profiler_ = NULL;
1648 delete cpu_profiler_;
1649 cpu_profiler_ = NULL;
1650
1651 // The default isolate is re-initializable due to legacy API.
1652 state_ = UNINITIALIZED;
1653 }
1654 }
1655
1656
PushToPartialSnapshotCache(Object * obj)1657 void Isolate::PushToPartialSnapshotCache(Object* obj) {
1658 int length = serialize_partial_snapshot_cache_length();
1659 int capacity = serialize_partial_snapshot_cache_capacity();
1660
1661 if (length >= capacity) {
1662 int new_capacity = static_cast<int>((capacity + 10) * 1.2);
1663 Object** new_array = new Object*[new_capacity];
1664 for (int i = 0; i < length; i++) {
1665 new_array[i] = serialize_partial_snapshot_cache()[i];
1666 }
1667 if (capacity != 0) delete[] serialize_partial_snapshot_cache();
1668 set_serialize_partial_snapshot_cache(new_array);
1669 set_serialize_partial_snapshot_cache_capacity(new_capacity);
1670 }
1671
1672 serialize_partial_snapshot_cache()[length] = obj;
1673 set_serialize_partial_snapshot_cache_length(length + 1);
1674 }
1675
1676
SetIsolateThreadLocals(Isolate * isolate,PerIsolateThreadData * data)1677 void Isolate::SetIsolateThreadLocals(Isolate* isolate,
1678 PerIsolateThreadData* data) {
1679 base::Thread::SetThreadLocal(isolate_key_, isolate);
1680 base::Thread::SetThreadLocal(per_isolate_thread_data_key_, data);
1681 }
1682
1683
~Isolate()1684 Isolate::~Isolate() {
1685 TRACE_ISOLATE(destructor);
1686
1687 // Has to be called while counters_ are still alive
1688 runtime_zone_.DeleteKeptSegment();
1689
1690 // The entry stack must be empty when we get here.
1691 DCHECK(entry_stack_ == NULL || entry_stack_->previous_item == NULL);
1692
1693 delete entry_stack_;
1694 entry_stack_ = NULL;
1695
1696 delete unicode_cache_;
1697 unicode_cache_ = NULL;
1698
1699 delete date_cache_;
1700 date_cache_ = NULL;
1701
1702 delete[] call_descriptor_data_;
1703 call_descriptor_data_ = NULL;
1704
1705 delete regexp_stack_;
1706 regexp_stack_ = NULL;
1707
1708 delete descriptor_lookup_cache_;
1709 descriptor_lookup_cache_ = NULL;
1710 delete context_slot_cache_;
1711 context_slot_cache_ = NULL;
1712 delete keyed_lookup_cache_;
1713 keyed_lookup_cache_ = NULL;
1714
1715 delete stub_cache_;
1716 stub_cache_ = NULL;
1717 delete code_aging_helper_;
1718 code_aging_helper_ = NULL;
1719 delete stats_table_;
1720 stats_table_ = NULL;
1721
1722 delete materialized_object_store_;
1723 materialized_object_store_ = NULL;
1724
1725 delete logger_;
1726 logger_ = NULL;
1727
1728 delete counters_;
1729 counters_ = NULL;
1730
1731 delete handle_scope_implementer_;
1732 handle_scope_implementer_ = NULL;
1733
1734 delete compilation_cache_;
1735 compilation_cache_ = NULL;
1736 delete bootstrapper_;
1737 bootstrapper_ = NULL;
1738 delete inner_pointer_to_code_cache_;
1739 inner_pointer_to_code_cache_ = NULL;
1740 delete write_iterator_;
1741 write_iterator_ = NULL;
1742
1743 delete thread_manager_;
1744 thread_manager_ = NULL;
1745
1746 delete string_tracker_;
1747 string_tracker_ = NULL;
1748
1749 delete memory_allocator_;
1750 memory_allocator_ = NULL;
1751 delete code_range_;
1752 code_range_ = NULL;
1753 delete global_handles_;
1754 global_handles_ = NULL;
1755 delete eternal_handles_;
1756 eternal_handles_ = NULL;
1757
1758 delete string_stream_debug_object_cache_;
1759 string_stream_debug_object_cache_ = NULL;
1760
1761 delete external_reference_table_;
1762 external_reference_table_ = NULL;
1763
1764 delete random_number_generator_;
1765 random_number_generator_ = NULL;
1766
1767 delete debug_;
1768 debug_ = NULL;
1769 }
1770
1771
InitializeThreadLocal()1772 void Isolate::InitializeThreadLocal() {
1773 thread_local_top_.isolate_ = this;
1774 thread_local_top_.Initialize();
1775 }
1776
1777
PropagatePendingExceptionToExternalTryCatch()1778 bool Isolate::PropagatePendingExceptionToExternalTryCatch() {
1779 DCHECK(has_pending_exception());
1780
1781 bool has_external_try_catch = HasExternalTryCatch();
1782 if (!has_external_try_catch) {
1783 thread_local_top_.external_caught_exception_ = false;
1784 return true;
1785 }
1786
1787 bool catchable_by_js = is_catchable_by_javascript(pending_exception());
1788 if (catchable_by_js && IsFinallyOnTop()) {
1789 thread_local_top_.external_caught_exception_ = false;
1790 return false;
1791 }
1792
1793 thread_local_top_.external_caught_exception_ = true;
1794 if (thread_local_top_.pending_exception_ == heap()->termination_exception()) {
1795 try_catch_handler()->can_continue_ = false;
1796 try_catch_handler()->has_terminated_ = true;
1797 try_catch_handler()->exception_ = heap()->null_value();
1798 } else {
1799 v8::TryCatch* handler = try_catch_handler();
1800 DCHECK(thread_local_top_.pending_message_obj_->IsJSMessageObject() ||
1801 thread_local_top_.pending_message_obj_->IsTheHole());
1802 DCHECK(thread_local_top_.pending_message_script_->IsScript() ||
1803 thread_local_top_.pending_message_script_->IsTheHole());
1804 handler->can_continue_ = true;
1805 handler->has_terminated_ = false;
1806 handler->exception_ = pending_exception();
1807 // Propagate to the external try-catch only if we got an actual message.
1808 if (thread_local_top_.pending_message_obj_->IsTheHole()) return true;
1809
1810 handler->message_obj_ = thread_local_top_.pending_message_obj_;
1811 handler->message_script_ = thread_local_top_.pending_message_script_;
1812 handler->message_start_pos_ = thread_local_top_.pending_message_start_pos_;
1813 handler->message_end_pos_ = thread_local_top_.pending_message_end_pos_;
1814 }
1815 return true;
1816 }
1817
1818
InitializeLoggingAndCounters()1819 void Isolate::InitializeLoggingAndCounters() {
1820 if (logger_ == NULL) {
1821 logger_ = new Logger(this);
1822 }
1823 if (counters_ == NULL) {
1824 counters_ = new Counters(this);
1825 }
1826 }
1827
1828
Init(Deserializer * des)1829 bool Isolate::Init(Deserializer* des) {
1830 DCHECK(state_ != INITIALIZED);
1831 TRACE_ISOLATE(init);
1832
1833 stress_deopt_count_ = FLAG_deopt_every_n_times;
1834
1835 has_fatal_error_ = false;
1836
1837 if (function_entry_hook() != NULL) {
1838 // When function entry hooking is in effect, we have to create the code
1839 // stubs from scratch to get entry hooks, rather than loading the previously
1840 // generated stubs from disk.
1841 // If this assert fires, the initialization path has regressed.
1842 DCHECK(des == NULL);
1843 }
1844
1845 // The initialization process does not handle memory exhaustion.
1846 DisallowAllocationFailure disallow_allocation_failure(this);
1847
1848 memory_allocator_ = new MemoryAllocator(this);
1849 code_range_ = new CodeRange(this);
1850
1851 // Safe after setting Heap::isolate_, and initializing StackGuard
1852 heap_.SetStackLimits();
1853
1854 #define ASSIGN_ELEMENT(CamelName, hacker_name) \
1855 isolate_addresses_[Isolate::k##CamelName##Address] = \
1856 reinterpret_cast<Address>(hacker_name##_address());
1857 FOR_EACH_ISOLATE_ADDRESS_NAME(ASSIGN_ELEMENT)
1858 #undef ASSIGN_ELEMENT
1859
1860 string_tracker_ = new StringTracker();
1861 string_tracker_->isolate_ = this;
1862 compilation_cache_ = new CompilationCache(this);
1863 keyed_lookup_cache_ = new KeyedLookupCache();
1864 context_slot_cache_ = new ContextSlotCache();
1865 descriptor_lookup_cache_ = new DescriptorLookupCache();
1866 unicode_cache_ = new UnicodeCache();
1867 inner_pointer_to_code_cache_ = new InnerPointerToCodeCache(this);
1868 write_iterator_ = new ConsStringIteratorOp();
1869 global_handles_ = new GlobalHandles(this);
1870 eternal_handles_ = new EternalHandles();
1871 bootstrapper_ = new Bootstrapper(this);
1872 handle_scope_implementer_ = new HandleScopeImplementer(this);
1873 stub_cache_ = new StubCache(this);
1874 materialized_object_store_ = new MaterializedObjectStore(this);
1875 regexp_stack_ = new RegExpStack();
1876 regexp_stack_->isolate_ = this;
1877 date_cache_ = new DateCache();
1878 call_descriptor_data_ =
1879 new CallInterfaceDescriptorData[CallDescriptors::NUMBER_OF_DESCRIPTORS];
1880 cpu_profiler_ = new CpuProfiler(this);
1881 heap_profiler_ = new HeapProfiler(heap());
1882
1883 // Enable logging before setting up the heap
1884 logger_->SetUp(this);
1885
1886 // Initialize other runtime facilities
1887 #if defined(USE_SIMULATOR)
1888 #if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || \
1889 V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
1890 Simulator::Initialize(this);
1891 #endif
1892 #endif
1893
1894 code_aging_helper_ = new CodeAgingHelper();
1895
1896 { // NOLINT
1897 // Ensure that the thread has a valid stack guard. The v8::Locker object
1898 // will ensure this too, but we don't have to use lockers if we are only
1899 // using one thread.
1900 ExecutionAccess lock(this);
1901 stack_guard_.InitThread(lock);
1902 }
1903
1904 // SetUp the object heap.
1905 DCHECK(!heap_.HasBeenSetUp());
1906 if (!heap_.SetUp()) {
1907 V8::FatalProcessOutOfMemory("heap setup");
1908 return false;
1909 }
1910
1911 deoptimizer_data_ = new DeoptimizerData(memory_allocator_);
1912
1913 const bool create_heap_objects = (des == NULL);
1914 if (create_heap_objects && !heap_.CreateHeapObjects()) {
1915 V8::FatalProcessOutOfMemory("heap object creation");
1916 return false;
1917 }
1918
1919 if (create_heap_objects) {
1920 // Terminate the cache array with the sentinel so we can iterate.
1921 PushToPartialSnapshotCache(heap_.undefined_value());
1922 }
1923
1924 InitializeThreadLocal();
1925
1926 bootstrapper_->Initialize(create_heap_objects);
1927 builtins_.SetUp(this, create_heap_objects);
1928
1929 if (FLAG_log_internal_timer_events) {
1930 set_event_logger(Logger::DefaultTimerEventsLogger);
1931 } else {
1932 set_event_logger(Logger::EmptyTimerEventsLogger);
1933 }
1934
1935 // Set default value if not yet set.
1936 // TODO(yangguo): move this to ResourceConstraints::ConfigureDefaults
1937 // once ResourceConstraints becomes an argument to the Isolate constructor.
1938 if (max_available_threads_ < 1) {
1939 // Choose the default between 1 and 4.
1940 max_available_threads_ =
1941 Max(Min(base::SysInfo::NumberOfProcessors(), 4), 1);
1942 }
1943
1944 if (!FLAG_job_based_sweeping) {
1945 num_sweeper_threads_ =
1946 SweeperThread::NumberOfThreads(max_available_threads_);
1947 }
1948
1949 if (FLAG_trace_hydrogen || FLAG_trace_hydrogen_stubs) {
1950 PrintF("Concurrent recompilation has been disabled for tracing.\n");
1951 } else if (OptimizingCompilerThread::Enabled(max_available_threads_)) {
1952 optimizing_compiler_thread_ = new OptimizingCompilerThread(this);
1953 optimizing_compiler_thread_->Start();
1954 }
1955
1956 if (num_sweeper_threads_ > 0) {
1957 sweeper_thread_ = new SweeperThread*[num_sweeper_threads_];
1958 for (int i = 0; i < num_sweeper_threads_; i++) {
1959 sweeper_thread_[i] = new SweeperThread(this);
1960 sweeper_thread_[i]->Start();
1961 }
1962 }
1963
1964 // If we are deserializing, read the state into the now-empty heap.
1965 if (!create_heap_objects) {
1966 des->Deserialize(this);
1967 }
1968 stub_cache_->Initialize();
1969
1970 // Finish initialization of ThreadLocal after deserialization is done.
1971 clear_pending_exception();
1972 clear_pending_message();
1973 clear_scheduled_exception();
1974
1975 // Deserializing may put strange things in the root array's copy of the
1976 // stack guard.
1977 heap_.SetStackLimits();
1978
1979 // Quiet the heap NaN if needed on target platform.
1980 if (!create_heap_objects) Assembler::QuietNaN(heap_.nan_value());
1981
1982 runtime_profiler_ = new RuntimeProfiler(this);
1983
1984 // If we are deserializing, log non-function code objects and compiled
1985 // functions found in the snapshot.
1986 if (!create_heap_objects &&
1987 (FLAG_log_code ||
1988 FLAG_ll_prof ||
1989 FLAG_perf_jit_prof ||
1990 FLAG_perf_basic_prof ||
1991 logger_->is_logging_code_events())) {
1992 HandleScope scope(this);
1993 LOG(this, LogCodeObjects());
1994 LOG(this, LogCompiledFunctions());
1995 }
1996
1997 CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, embedder_data_)),
1998 Internals::kIsolateEmbedderDataOffset);
1999 CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, heap_.roots_)),
2000 Internals::kIsolateRootsOffset);
2001 CHECK_EQ(static_cast<int>(
2002 OFFSET_OF(Isolate, heap_.amount_of_external_allocated_memory_)),
2003 Internals::kAmountOfExternalAllocatedMemoryOffset);
2004 CHECK_EQ(static_cast<int>(OFFSET_OF(
2005 Isolate,
2006 heap_.amount_of_external_allocated_memory_at_last_global_gc_)),
2007 Internals::kAmountOfExternalAllocatedMemoryAtLastGlobalGCOffset);
2008
2009 state_ = INITIALIZED;
2010 time_millis_at_init_ = base::OS::TimeCurrentMillis();
2011
2012 if (!create_heap_objects) {
2013 // Now that the heap is consistent, it's OK to generate the code for the
2014 // deopt entry table that might have been referred to by optimized code in
2015 // the snapshot.
2016 HandleScope scope(this);
2017 Deoptimizer::EnsureCodeForDeoptimizationEntry(
2018 this,
2019 Deoptimizer::LAZY,
2020 kDeoptTableSerializeEntryCount - 1);
2021 }
2022
2023 if (!serializer_enabled()) {
2024 // Ensure that all stubs which need to be generated ahead of time, but
2025 // cannot be serialized into the snapshot have been generated.
2026 HandleScope scope(this);
2027 CodeStub::GenerateFPStubs(this);
2028 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(this);
2029 StubFailureTrampolineStub::GenerateAheadOfTime(this);
2030 }
2031
2032 initialized_from_snapshot_ = (des != NULL);
2033
2034 return true;
2035 }
2036
2037
2038 // Initialized lazily to allow early
2039 // v8::V8::SetAddHistogramSampleFunction calls.
stats_table()2040 StatsTable* Isolate::stats_table() {
2041 if (stats_table_ == NULL) {
2042 stats_table_ = new StatsTable;
2043 }
2044 return stats_table_;
2045 }
2046
2047
Enter()2048 void Isolate::Enter() {
2049 Isolate* current_isolate = NULL;
2050 PerIsolateThreadData* current_data = CurrentPerIsolateThreadData();
2051 if (current_data != NULL) {
2052 current_isolate = current_data->isolate_;
2053 DCHECK(current_isolate != NULL);
2054 if (current_isolate == this) {
2055 DCHECK(Current() == this);
2056 DCHECK(entry_stack_ != NULL);
2057 DCHECK(entry_stack_->previous_thread_data == NULL ||
2058 entry_stack_->previous_thread_data->thread_id().Equals(
2059 ThreadId::Current()));
2060 // Same thread re-enters the isolate, no need to re-init anything.
2061 entry_stack_->entry_count++;
2062 return;
2063 }
2064 }
2065
2066 PerIsolateThreadData* data = FindOrAllocatePerThreadDataForThisThread();
2067 DCHECK(data != NULL);
2068 DCHECK(data->isolate_ == this);
2069
2070 EntryStackItem* item = new EntryStackItem(current_data,
2071 current_isolate,
2072 entry_stack_);
2073 entry_stack_ = item;
2074
2075 SetIsolateThreadLocals(this, data);
2076
2077 // In case it's the first time some thread enters the isolate.
2078 set_thread_id(data->thread_id());
2079 }
2080
2081
Exit()2082 void Isolate::Exit() {
2083 DCHECK(entry_stack_ != NULL);
2084 DCHECK(entry_stack_->previous_thread_data == NULL ||
2085 entry_stack_->previous_thread_data->thread_id().Equals(
2086 ThreadId::Current()));
2087
2088 if (--entry_stack_->entry_count > 0) return;
2089
2090 DCHECK(CurrentPerIsolateThreadData() != NULL);
2091 DCHECK(CurrentPerIsolateThreadData()->isolate_ == this);
2092
2093 // Pop the stack.
2094 EntryStackItem* item = entry_stack_;
2095 entry_stack_ = item->previous_item;
2096
2097 PerIsolateThreadData* previous_thread_data = item->previous_thread_data;
2098 Isolate* previous_isolate = item->previous_isolate;
2099
2100 delete item;
2101
2102 // Reinit the current thread for the isolate it was running before this one.
2103 SetIsolateThreadLocals(previous_isolate, previous_thread_data);
2104 }
2105
2106
LinkDeferredHandles(DeferredHandles * deferred)2107 void Isolate::LinkDeferredHandles(DeferredHandles* deferred) {
2108 deferred->next_ = deferred_handles_head_;
2109 if (deferred_handles_head_ != NULL) {
2110 deferred_handles_head_->previous_ = deferred;
2111 }
2112 deferred_handles_head_ = deferred;
2113 }
2114
2115
UnlinkDeferredHandles(DeferredHandles * deferred)2116 void Isolate::UnlinkDeferredHandles(DeferredHandles* deferred) {
2117 #ifdef DEBUG
2118 // In debug mode assert that the linked list is well-formed.
2119 DeferredHandles* deferred_iterator = deferred;
2120 while (deferred_iterator->previous_ != NULL) {
2121 deferred_iterator = deferred_iterator->previous_;
2122 }
2123 DCHECK(deferred_handles_head_ == deferred_iterator);
2124 #endif
2125 if (deferred_handles_head_ == deferred) {
2126 deferred_handles_head_ = deferred_handles_head_->next_;
2127 }
2128 if (deferred->next_ != NULL) {
2129 deferred->next_->previous_ = deferred->previous_;
2130 }
2131 if (deferred->previous_ != NULL) {
2132 deferred->previous_->next_ = deferred->next_;
2133 }
2134 }
2135
2136
GetHStatistics()2137 HStatistics* Isolate::GetHStatistics() {
2138 if (hstatistics() == NULL) set_hstatistics(new HStatistics());
2139 return hstatistics();
2140 }
2141
2142
GetTStatistics()2143 HStatistics* Isolate::GetTStatistics() {
2144 if (tstatistics() == NULL) set_tstatistics(new HStatistics());
2145 return tstatistics();
2146 }
2147
2148
GetHTracer()2149 HTracer* Isolate::GetHTracer() {
2150 if (htracer() == NULL) set_htracer(new HTracer(id()));
2151 return htracer();
2152 }
2153
2154
GetCodeTracer()2155 CodeTracer* Isolate::GetCodeTracer() {
2156 if (code_tracer() == NULL) set_code_tracer(new CodeTracer(id()));
2157 return code_tracer();
2158 }
2159
2160
get_initial_js_array_map(ElementsKind kind)2161 Map* Isolate::get_initial_js_array_map(ElementsKind kind) {
2162 Context* native_context = context()->native_context();
2163 Object* maybe_map_array = native_context->js_array_maps();
2164 if (!maybe_map_array->IsUndefined()) {
2165 Object* maybe_transitioned_map =
2166 FixedArray::cast(maybe_map_array)->get(kind);
2167 if (!maybe_transitioned_map->IsUndefined()) {
2168 return Map::cast(maybe_transitioned_map);
2169 }
2170 }
2171 return NULL;
2172 }
2173
2174
use_crankshaft() const2175 bool Isolate::use_crankshaft() const {
2176 return FLAG_crankshaft &&
2177 !serializer_enabled_ &&
2178 CpuFeatures::SupportsCrankshaft();
2179 }
2180
2181
IsFastArrayConstructorPrototypeChainIntact()2182 bool Isolate::IsFastArrayConstructorPrototypeChainIntact() {
2183 Map* root_array_map =
2184 get_initial_js_array_map(GetInitialFastElementsKind());
2185 DCHECK(root_array_map != NULL);
2186 JSObject* initial_array_proto = JSObject::cast(*initial_array_prototype());
2187
2188 // Check that the array prototype hasn't been altered WRT empty elements.
2189 if (root_array_map->prototype() != initial_array_proto) return false;
2190 if (initial_array_proto->elements() != heap()->empty_fixed_array()) {
2191 return false;
2192 }
2193
2194 // Check that the object prototype hasn't been altered WRT empty elements.
2195 JSObject* initial_object_proto = JSObject::cast(*initial_object_prototype());
2196 PrototypeIterator iter(this, initial_array_proto);
2197 if (iter.IsAtEnd() || iter.GetCurrent() != initial_object_proto) {
2198 return false;
2199 }
2200 if (initial_object_proto->elements() != heap()->empty_fixed_array()) {
2201 return false;
2202 }
2203
2204 iter.Advance();
2205 return iter.IsAtEnd();
2206 }
2207
2208
call_descriptor_data(int index)2209 CallInterfaceDescriptorData* Isolate::call_descriptor_data(int index) {
2210 DCHECK(0 <= index && index < CallDescriptors::NUMBER_OF_DESCRIPTORS);
2211 return &call_descriptor_data_[index];
2212 }
2213
2214
FindCodeObject(Address a)2215 Object* Isolate::FindCodeObject(Address a) {
2216 return inner_pointer_to_code_cache()->GcSafeFindCodeForInnerPointer(a);
2217 }
2218
2219
2220 #ifdef DEBUG
2221 #define ISOLATE_FIELD_OFFSET(type, name, ignored) \
2222 const intptr_t Isolate::name##_debug_offset_ = OFFSET_OF(Isolate, name##_);
2223 ISOLATE_INIT_LIST(ISOLATE_FIELD_OFFSET)
ISOLATE_INIT_ARRAY_LIST(ISOLATE_FIELD_OFFSET)2224 ISOLATE_INIT_ARRAY_LIST(ISOLATE_FIELD_OFFSET)
2225 #undef ISOLATE_FIELD_OFFSET
2226 #endif
2227
2228
2229 Handle<JSObject> Isolate::GetSymbolRegistry() {
2230 if (heap()->symbol_registry()->IsUndefined()) {
2231 Handle<Map> map = factory()->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
2232 Handle<JSObject> registry = factory()->NewJSObjectFromMap(map);
2233 heap()->set_symbol_registry(*registry);
2234
2235 static const char* nested[] = {
2236 "for", "for_api", "for_intern", "keyFor", "private_api", "private_intern"
2237 };
2238 for (unsigned i = 0; i < arraysize(nested); ++i) {
2239 Handle<String> name = factory()->InternalizeUtf8String(nested[i]);
2240 Handle<JSObject> obj = factory()->NewJSObjectFromMap(map);
2241 JSObject::NormalizeProperties(obj, KEEP_INOBJECT_PROPERTIES, 8);
2242 JSObject::SetProperty(registry, name, obj, STRICT).Assert();
2243 }
2244 }
2245 return Handle<JSObject>::cast(factory()->symbol_registry());
2246 }
2247
2248
AddCallCompletedCallback(CallCompletedCallback callback)2249 void Isolate::AddCallCompletedCallback(CallCompletedCallback callback) {
2250 for (int i = 0; i < call_completed_callbacks_.length(); i++) {
2251 if (callback == call_completed_callbacks_.at(i)) return;
2252 }
2253 call_completed_callbacks_.Add(callback);
2254 }
2255
2256
RemoveCallCompletedCallback(CallCompletedCallback callback)2257 void Isolate::RemoveCallCompletedCallback(CallCompletedCallback callback) {
2258 for (int i = 0; i < call_completed_callbacks_.length(); i++) {
2259 if (callback == call_completed_callbacks_.at(i)) {
2260 call_completed_callbacks_.Remove(i);
2261 }
2262 }
2263 }
2264
2265
FireCallCompletedCallback()2266 void Isolate::FireCallCompletedCallback() {
2267 bool has_call_completed_callbacks = !call_completed_callbacks_.is_empty();
2268 bool run_microtasks = autorun_microtasks() && pending_microtask_count();
2269 if (!has_call_completed_callbacks && !run_microtasks) return;
2270
2271 if (!handle_scope_implementer()->CallDepthIsZero()) return;
2272 if (run_microtasks) RunMicrotasks();
2273 // Fire callbacks. Increase call depth to prevent recursive callbacks.
2274 v8::Isolate::SuppressMicrotaskExecutionScope suppress(
2275 reinterpret_cast<v8::Isolate*>(this));
2276 for (int i = 0; i < call_completed_callbacks_.length(); i++) {
2277 call_completed_callbacks_.at(i)();
2278 }
2279 }
2280
2281
EnqueueMicrotask(Handle<Object> microtask)2282 void Isolate::EnqueueMicrotask(Handle<Object> microtask) {
2283 DCHECK(microtask->IsJSFunction() || microtask->IsCallHandlerInfo());
2284 Handle<FixedArray> queue(heap()->microtask_queue(), this);
2285 int num_tasks = pending_microtask_count();
2286 DCHECK(num_tasks <= queue->length());
2287 if (num_tasks == 0) {
2288 queue = factory()->NewFixedArray(8);
2289 heap()->set_microtask_queue(*queue);
2290 } else if (num_tasks == queue->length()) {
2291 queue = FixedArray::CopySize(queue, num_tasks * 2);
2292 heap()->set_microtask_queue(*queue);
2293 }
2294 DCHECK(queue->get(num_tasks)->IsUndefined());
2295 queue->set(num_tasks, *microtask);
2296 set_pending_microtask_count(num_tasks + 1);
2297 }
2298
2299
RunMicrotasks()2300 void Isolate::RunMicrotasks() {
2301 // %RunMicrotasks may be called in mjsunit tests, which violates
2302 // this assertion, hence the check for --allow-natives-syntax.
2303 // TODO(adamk): However, this also fails some layout tests.
2304 //
2305 // DCHECK(FLAG_allow_natives_syntax ||
2306 // handle_scope_implementer()->CallDepthIsZero());
2307
2308 // Increase call depth to prevent recursive callbacks.
2309 v8::Isolate::SuppressMicrotaskExecutionScope suppress(
2310 reinterpret_cast<v8::Isolate*>(this));
2311
2312 while (pending_microtask_count() > 0) {
2313 HandleScope scope(this);
2314 int num_tasks = pending_microtask_count();
2315 Handle<FixedArray> queue(heap()->microtask_queue(), this);
2316 DCHECK(num_tasks <= queue->length());
2317 set_pending_microtask_count(0);
2318 heap()->set_microtask_queue(heap()->empty_fixed_array());
2319
2320 for (int i = 0; i < num_tasks; i++) {
2321 HandleScope scope(this);
2322 Handle<Object> microtask(queue->get(i), this);
2323 if (microtask->IsJSFunction()) {
2324 Handle<JSFunction> microtask_function =
2325 Handle<JSFunction>::cast(microtask);
2326 SaveContext save(this);
2327 set_context(microtask_function->context()->native_context());
2328 MaybeHandle<Object> maybe_exception;
2329 MaybeHandle<Object> result =
2330 Execution::TryCall(microtask_function, factory()->undefined_value(),
2331 0, NULL, &maybe_exception);
2332 // If execution is terminating, just bail out.
2333 Handle<Object> exception;
2334 if (result.is_null() && maybe_exception.is_null()) {
2335 // Clear out any remaining callbacks in the queue.
2336 heap()->set_microtask_queue(heap()->empty_fixed_array());
2337 set_pending_microtask_count(0);
2338 return;
2339 }
2340 } else {
2341 Handle<CallHandlerInfo> callback_info =
2342 Handle<CallHandlerInfo>::cast(microtask);
2343 v8::MicrotaskCallback callback =
2344 v8::ToCData<v8::MicrotaskCallback>(callback_info->callback());
2345 void* data = v8::ToCData<void*>(callback_info->data());
2346 callback(data);
2347 }
2348 }
2349 }
2350 }
2351
2352
SetUseCounterCallback(v8::Isolate::UseCounterCallback callback)2353 void Isolate::SetUseCounterCallback(v8::Isolate::UseCounterCallback callback) {
2354 DCHECK(!use_counter_callback_);
2355 use_counter_callback_ = callback;
2356 }
2357
2358
CountUsage(v8::Isolate::UseCounterFeature feature)2359 void Isolate::CountUsage(v8::Isolate::UseCounterFeature feature) {
2360 if (use_counter_callback_) {
2361 use_counter_callback_(reinterpret_cast<v8::Isolate*>(this), feature);
2362 }
2363 }
2364
2365
JsHasOverflowed() const2366 bool StackLimitCheck::JsHasOverflowed() const {
2367 StackGuard* stack_guard = isolate_->stack_guard();
2368 #ifdef USE_SIMULATOR
2369 // The simulator uses a separate JS stack.
2370 Address jssp_address = Simulator::current(isolate_)->get_sp();
2371 uintptr_t jssp = reinterpret_cast<uintptr_t>(jssp_address);
2372 if (jssp < stack_guard->real_jslimit()) return true;
2373 #endif // USE_SIMULATOR
2374 return GetCurrentStackPosition() < stack_guard->real_climit();
2375 }
2376
2377
Intercept(StackGuard::InterruptFlag flag)2378 bool PostponeInterruptsScope::Intercept(StackGuard::InterruptFlag flag) {
2379 // First check whether the previous scope intercepts.
2380 if (prev_ && prev_->Intercept(flag)) return true;
2381 // Then check whether this scope intercepts.
2382 if ((flag & intercept_mask_)) {
2383 intercepted_flags_ |= flag;
2384 return true;
2385 }
2386 return false;
2387 }
2388
2389 } } // namespace v8::internal
2390