1 /* libs/pixelflinger/scanline.cpp
2 **
3 ** Copyright 2006-2011, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 **     http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17 
18 
19 #define LOG_TAG "pixelflinger"
20 
21 #include <assert.h>
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <string.h>
25 
26 #include <cutils/memory.h>
27 #include <cutils/log.h>
28 
29 #ifdef __arm__
30 #include <machine/cpu-features.h>
31 #endif
32 
33 #include "buffer.h"
34 #include "scanline.h"
35 
36 #include "codeflinger/CodeCache.h"
37 #include "codeflinger/GGLAssembler.h"
38 #if defined(__arm__)
39 #include "codeflinger/ARMAssembler.h"
40 #elif defined(__aarch64__)
41 #include "codeflinger/Arm64Assembler.h"
42 #elif defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6
43 #include "codeflinger/MIPSAssembler.h"
44 #endif
45 //#include "codeflinger/ARMAssemblerOptimizer.h"
46 
47 // ----------------------------------------------------------------------------
48 
49 #define ANDROID_CODEGEN_GENERIC     0   // force generic pixel pipeline
50 #define ANDROID_CODEGEN_C           1   // hand-written C, fallback generic
51 #define ANDROID_CODEGEN_ASM         2   // hand-written asm, fallback generic
52 #define ANDROID_CODEGEN_GENERATED   3   // hand-written asm, fallback codegen
53 
54 #ifdef NDEBUG
55 #   define ANDROID_RELEASE
56 #   define ANDROID_CODEGEN      ANDROID_CODEGEN_GENERATED
57 #else
58 #   define ANDROID_DEBUG
59 #   define ANDROID_CODEGEN      ANDROID_CODEGEN_GENERATED
60 #endif
61 
62 #if defined(__arm__) || (defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6) || defined(__aarch64__)
63 #   define ANDROID_ARM_CODEGEN  1
64 #else
65 #   define ANDROID_ARM_CODEGEN  0
66 #endif
67 
68 #define DEBUG__CODEGEN_ONLY     0
69 
70 /* Set to 1 to dump to the log the states that need a new
71  * code-generated scanline callback, i.e. those that don't
72  * have a corresponding shortcut function.
73  */
74 #define DEBUG_NEEDS  0
75 
76 #if defined( __mips__) && !defined(__LP64__) && __mips_isa_rev < 6
77 #define ASSEMBLY_SCRATCH_SIZE   4096
78 #elif defined(__aarch64__)
79 #define ASSEMBLY_SCRATCH_SIZE   8192
80 #else
81 #define ASSEMBLY_SCRATCH_SIZE   2048
82 #endif
83 
84 // ----------------------------------------------------------------------------
85 namespace android {
86 // ----------------------------------------------------------------------------
87 
88 static void init_y(context_t*, int32_t);
89 static void init_y_noop(context_t*, int32_t);
90 static void init_y_packed(context_t*, int32_t);
91 static void init_y_error(context_t*, int32_t);
92 
93 static void step_y__generic(context_t* c);
94 static void step_y__nop(context_t*);
95 static void step_y__smooth(context_t* c);
96 static void step_y__tmu(context_t* c);
97 static void step_y__w(context_t* c);
98 
99 static void scanline(context_t* c);
100 static void scanline_perspective(context_t* c);
101 static void scanline_perspective_single(context_t* c);
102 static void scanline_t32cb16blend(context_t* c);
103 static void scanline_t32cb16blend_dither(context_t* c);
104 static void scanline_t32cb16blend_srca(context_t* c);
105 static void scanline_t32cb16blend_clamp(context_t* c);
106 static void scanline_t32cb16blend_clamp_dither(context_t* c);
107 static void scanline_t32cb16blend_clamp_mod(context_t* c);
108 static void scanline_x32cb16blend_clamp_mod(context_t* c);
109 static void scanline_t32cb16blend_clamp_mod_dither(context_t* c);
110 static void scanline_x32cb16blend_clamp_mod_dither(context_t* c);
111 static void scanline_t32cb16(context_t* c);
112 static void scanline_t32cb16_dither(context_t* c);
113 static void scanline_t32cb16_clamp(context_t* c);
114 static void scanline_t32cb16_clamp_dither(context_t* c);
115 static void scanline_col32cb16blend(context_t* c);
116 static void scanline_t16cb16_clamp(context_t* c);
117 static void scanline_t16cb16blend_clamp_mod(context_t* c);
118 static void scanline_memcpy(context_t* c);
119 static void scanline_memset8(context_t* c);
120 static void scanline_memset16(context_t* c);
121 static void scanline_memset32(context_t* c);
122 static void scanline_noop(context_t* c);
123 static void scanline_set(context_t* c);
124 static void scanline_clear(context_t* c);
125 
126 static void rect_generic(context_t* c, size_t yc);
127 static void rect_memcpy(context_t* c, size_t yc);
128 
129 #if defined( __arm__)
130 extern "C" void scanline_t32cb16blend_arm(uint16_t*, uint32_t*, size_t);
131 extern "C" void scanline_t32cb16_arm(uint16_t *dst, uint32_t *src, size_t ct);
132 extern "C" void scanline_col32cb16blend_neon(uint16_t *dst, uint32_t *col, size_t ct);
133 extern "C" void scanline_col32cb16blend_arm(uint16_t *dst, uint32_t col, size_t ct);
134 #elif defined(__aarch64__)
135 extern "C" void scanline_t32cb16blend_arm64(uint16_t*, uint32_t*, size_t);
136 extern "C" void scanline_col32cb16blend_arm64(uint16_t *dst, uint32_t col, size_t ct);
137 #elif defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6
138 extern "C" void scanline_t32cb16blend_mips(uint16_t*, uint32_t*, size_t);
139 #endif
140 
141 // ----------------------------------------------------------------------------
142 
convertAbgr8888ToRgb565(uint32_t pix)143 static inline uint16_t  convertAbgr8888ToRgb565(uint32_t  pix)
144 {
145     return uint16_t( ((pix << 8) & 0xf800) |
146                       ((pix >> 5) & 0x07e0) |
147                       ((pix >> 19) & 0x001f) );
148 }
149 
150 struct shortcut_t {
151     needs_filter_t  filter;
152     const char*     desc;
153     void            (*scanline)(context_t*);
154     void            (*init_y)(context_t*, int32_t);
155 };
156 
157 // Keep in sync with needs
158 
159 /* To understand the values here, have a look at:
160  *     system/core/include/private/pixelflinger/ggl_context.h
161  *
162  * Especially the lines defining and using GGL_RESERVE_NEEDS
163  *
164  * Quick reminders:
165  *   - the last nibble of the first value is the destination buffer format.
166  *   - the last nibble of the third value is the source texture format
167  *   - formats: 4=rgb565 1=abgr8888 2=xbgr8888
168  *
169  * In the descriptions below:
170  *
171  *   SRC      means we copy the source pixels to the destination
172  *
173  *   SRC_OVER means we blend the source pixels to the destination
174  *            with dstFactor = 1-srcA, srcFactor=1  (premultiplied source).
175  *            This mode is otherwise called 'blend'.
176  *
177  *   SRCA_OVER means we blend the source pixels to the destination
178  *             with dstFactor=srcA*(1-srcA) srcFactor=srcA (non-premul source).
179  *             This mode is otherwise called 'blend_srca'
180  *
181  *   clamp    means we fetch source pixels from a texture with u/v clamping
182  *
183  *   mod      means the source pixels are modulated (multiplied) by the
184  *            a/r/g/b of the current context's color. Typically used for
185  *            fade-in / fade-out.
186  *
187  *   dither   means we dither 32 bit values to 16 bits
188  */
189 static shortcut_t shortcuts[] = {
190     { { { 0x03515104, 0x00000077, { 0x00000A01, 0x00000000 } },
191         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
192         "565 fb, 8888 tx, blend SRC_OVER", scanline_t32cb16blend, init_y_noop },
193     { { { 0x03010104, 0x00000077, { 0x00000A01, 0x00000000 } },
194         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
195         "565 fb, 8888 tx, SRC", scanline_t32cb16, init_y_noop  },
196     /* same as first entry, but with dithering */
197     { { { 0x03515104, 0x00000177, { 0x00000A01, 0x00000000 } },
198         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
199         "565 fb, 8888 tx, blend SRC_OVER dither", scanline_t32cb16blend_dither, init_y_noop },
200     /* same as second entry, but with dithering */
201     { { { 0x03010104, 0x00000177, { 0x00000A01, 0x00000000 } },
202         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
203         "565 fb, 8888 tx, SRC dither", scanline_t32cb16_dither, init_y_noop  },
204     /* this is used during the boot animation - CHEAT: ignore dithering */
205     { { { 0x03545404, 0x00000077, { 0x00000A01, 0x00000000 } },
206         { 0xFFFFFFFF, 0xFFFFFEFF, { 0xFFFFFFFF, 0x0000003F } } },
207         "565 fb, 8888 tx, blend dst:ONE_MINUS_SRCA src:SRCA", scanline_t32cb16blend_srca, init_y_noop },
208     /* special case for arbitrary texture coordinates (think scaling) */
209     { { { 0x03515104, 0x00000077, { 0x00000001, 0x00000000 } },
210         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
211         "565 fb, 8888 tx, SRC_OVER clamp", scanline_t32cb16blend_clamp, init_y },
212     { { { 0x03515104, 0x00000177, { 0x00000001, 0x00000000 } },
213         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
214         "565 fb, 8888 tx, SRC_OVER clamp dither", scanline_t32cb16blend_clamp_dither, init_y },
215     /* another case used during emulation */
216     { { { 0x03515104, 0x00000077, { 0x00001001, 0x00000000 } },
217         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
218         "565 fb, 8888 tx, SRC_OVER clamp modulate", scanline_t32cb16blend_clamp_mod, init_y },
219     /* and this */
220     { { { 0x03515104, 0x00000077, { 0x00001002, 0x00000000 } },
221         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
222         "565 fb, x888 tx, SRC_OVER clamp modulate", scanline_x32cb16blend_clamp_mod, init_y },
223     { { { 0x03515104, 0x00000177, { 0x00001001, 0x00000000 } },
224         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
225         "565 fb, 8888 tx, SRC_OVER clamp modulate dither", scanline_t32cb16blend_clamp_mod_dither, init_y },
226     { { { 0x03515104, 0x00000177, { 0x00001002, 0x00000000 } },
227         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
228         "565 fb, x888 tx, SRC_OVER clamp modulate dither", scanline_x32cb16blend_clamp_mod_dither, init_y },
229     { { { 0x03010104, 0x00000077, { 0x00000001, 0x00000000 } },
230         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
231         "565 fb, 8888 tx, SRC clamp", scanline_t32cb16_clamp, init_y  },
232     { { { 0x03010104, 0x00000077, { 0x00000002, 0x00000000 } },
233         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
234         "565 fb, x888 tx, SRC clamp", scanline_t32cb16_clamp, init_y  },
235     { { { 0x03010104, 0x00000177, { 0x00000001, 0x00000000 } },
236         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
237         "565 fb, 8888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y  },
238     { { { 0x03010104, 0x00000177, { 0x00000002, 0x00000000 } },
239         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
240         "565 fb, x888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y  },
241     { { { 0x03010104, 0x00000077, { 0x00000004, 0x00000000 } },
242         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
243         "565 fb, 565 tx, SRC clamp", scanline_t16cb16_clamp, init_y  },
244     { { { 0x03515104, 0x00000077, { 0x00001004, 0x00000000 } },
245         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
246         "565 fb, 565 tx, SRC_OVER clamp", scanline_t16cb16blend_clamp_mod, init_y  },
247     { { { 0x03515104, 0x00000077, { 0x00000000, 0x00000000 } },
248         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0xFFFFFFFF } } },
249         "565 fb, 8888 fixed color", scanline_col32cb16blend, init_y_packed  },
250     { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
251         { 0x00000000, 0x00000007, { 0x00000000, 0x00000000 } } },
252         "(nop) alpha test", scanline_noop, init_y_noop },
253     { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
254         { 0x00000000, 0x00000070, { 0x00000000, 0x00000000 } } },
255         "(nop) depth test", scanline_noop, init_y_noop },
256     { { { 0x05000000, 0x00000000, { 0x00000000, 0x00000000 } },
257         { 0x0F000000, 0x00000080, { 0x00000000, 0x00000000 } } },
258         "(nop) logic_op", scanline_noop, init_y_noop },
259     { { { 0xF0000000, 0x00000000, { 0x00000000, 0x00000000 } },
260         { 0xF0000000, 0x00000080, { 0x00000000, 0x00000000 } } },
261         "(nop) color mask", scanline_noop, init_y_noop },
262     { { { 0x0F000000, 0x00000077, { 0x00000000, 0x00000000 } },
263         { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } },
264         "(set) logic_op", scanline_set, init_y_noop },
265     { { { 0x00000000, 0x00000077, { 0x00000000, 0x00000000 } },
266         { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } },
267         "(clear) logic_op", scanline_clear, init_y_noop },
268     { { { 0x03000000, 0x00000077, { 0x00000000, 0x00000000 } },
269         { 0xFFFFFF00, 0x000000F7, { 0x00000000, 0x00000000 } } },
270         "(clear) blending 0/0", scanline_clear, init_y_noop },
271     { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
272         { 0x0000003F, 0x00000000, { 0x00000000, 0x00000000 } } },
273         "(error) invalid color-buffer format", scanline_noop, init_y_error },
274 };
275 static const needs_filter_t noblend1to1 = {
276         // (disregard dithering, see below)
277         { 0x03010100, 0x00000077, { 0x00000A00, 0x00000000 } },
278         { 0xFFFFFFC0, 0xFFFFFEFF, { 0xFFFFFFC0, 0x0000003F } }
279 };
280 static  const needs_filter_t fill16noblend = {
281         { 0x03010100, 0x00000077, { 0x00000000, 0x00000000 } },
282         { 0xFFFFFFC0, 0xFFFFFFFF, { 0x0000003F, 0x0000003F } }
283 };
284 
285 // ----------------------------------------------------------------------------
286 
287 #if ANDROID_ARM_CODEGEN
288 
289 #if defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6
290 static CodeCache gCodeCache(32 * 1024);
291 #elif defined(__aarch64__)
292 static CodeCache gCodeCache(48 * 1024);
293 #else
294 static CodeCache gCodeCache(12 * 1024);
295 #endif
296 
297 class ScanlineAssembly : public Assembly {
298     AssemblyKey<needs_t> mKey;
299 public:
ScanlineAssembly(needs_t needs,size_t size)300     ScanlineAssembly(needs_t needs, size_t size)
301         : Assembly(size), mKey(needs) { }
key() const302     const AssemblyKey<needs_t>& key() const { return mKey; }
303 };
304 #endif
305 
306 // ----------------------------------------------------------------------------
307 
ggl_init_scanline(context_t * c)308 void ggl_init_scanline(context_t* c)
309 {
310     c->init_y = init_y;
311     c->step_y = step_y__generic;
312     c->scanline = scanline;
313 }
314 
ggl_uninit_scanline(context_t * c)315 void ggl_uninit_scanline(context_t* c)
316 {
317     if (c->state.buffers.coverage)
318         free(c->state.buffers.coverage);
319 #if ANDROID_ARM_CODEGEN
320     if (c->scanline_as)
321         c->scanline_as->decStrong(c);
322 #endif
323 }
324 
325 // ----------------------------------------------------------------------------
326 
pick_scanline(context_t * c)327 static void pick_scanline(context_t* c)
328 {
329 #if (!defined(DEBUG__CODEGEN_ONLY) || (DEBUG__CODEGEN_ONLY == 0))
330 
331 #if ANDROID_CODEGEN == ANDROID_CODEGEN_GENERIC
332     c->init_y = init_y;
333     c->step_y = step_y__generic;
334     c->scanline = scanline;
335     return;
336 #endif
337 
338     //printf("*** needs [%08lx:%08lx:%08lx:%08lx]\n",
339     //    c->state.needs.n, c->state.needs.p,
340     //    c->state.needs.t[0], c->state.needs.t[1]);
341 
342     // first handle the special case that we cannot test with a filter
343     const uint32_t cb_format = GGL_READ_NEEDS(CB_FORMAT, c->state.needs.n);
344     if (GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0]) == cb_format) {
345         if (c->state.needs.match(noblend1to1)) {
346             // this will match regardless of dithering state, since both
347             // src and dest have the same format anyway, there is no dithering
348             // to be done.
349             const GGLFormat* f =
350                 &(c->formats[GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0])]);
351             if ((f->components == GGL_RGB) ||
352                 (f->components == GGL_RGBA) ||
353                 (f->components == GGL_LUMINANCE) ||
354                 (f->components == GGL_LUMINANCE_ALPHA))
355             {
356                 // format must have all of RGB components
357                 // (so the current color doesn't show through)
358                 c->scanline = scanline_memcpy;
359                 c->init_y = init_y_noop;
360                 return;
361             }
362         }
363     }
364 
365     if (c->state.needs.match(fill16noblend)) {
366         c->init_y = init_y_packed;
367         switch (c->formats[cb_format].size) {
368         case 1: c->scanline = scanline_memset8;  return;
369         case 2: c->scanline = scanline_memset16; return;
370         case 4: c->scanline = scanline_memset32; return;
371         }
372     }
373 
374     const int numFilters = sizeof(shortcuts)/sizeof(shortcut_t);
375     for (int i=0 ; i<numFilters ; i++) {
376         if (c->state.needs.match(shortcuts[i].filter)) {
377             c->scanline = shortcuts[i].scanline;
378             c->init_y = shortcuts[i].init_y;
379             return;
380         }
381     }
382 
383 #if DEBUG_NEEDS
384     ALOGI("Needs: n=0x%08x p=0x%08x t0=0x%08x t1=0x%08x",
385          c->state.needs.n, c->state.needs.p,
386          c->state.needs.t[0], c->state.needs.t[1]);
387 #endif
388 
389 #endif // DEBUG__CODEGEN_ONLY
390 
391     c->init_y = init_y;
392     c->step_y = step_y__generic;
393 
394 #if ANDROID_ARM_CODEGEN
395     // we're going to have to generate some code...
396     // here, generate code for our pixel pipeline
397     const AssemblyKey<needs_t> key(c->state.needs);
398     sp<Assembly> assembly = gCodeCache.lookup(key);
399     if (assembly == 0) {
400         // create a new assembly region
401         sp<ScanlineAssembly> a = new ScanlineAssembly(c->state.needs,
402                 ASSEMBLY_SCRATCH_SIZE);
403         // initialize our assembler
404 #if defined(__arm__)
405         GGLAssembler assembler( new ARMAssembler(a) );
406         //GGLAssembler assembler(
407         //        new ARMAssemblerOptimizer(new ARMAssembler(a)) );
408 #endif
409 #if defined(__mips__)
410         GGLAssembler assembler( new ArmToMipsAssembler(a) );
411 #elif defined(__aarch64__)
412         GGLAssembler assembler( new ArmToArm64Assembler(a) );
413 #endif
414         // generate the scanline code for the given needs
415         bool err = assembler.scanline(c->state.needs, c) != 0;
416         if (ggl_likely(!err)) {
417             // finally, cache this assembly
418             err = gCodeCache.cache(a->key(), a) < 0;
419         }
420         if (ggl_unlikely(err)) {
421             ALOGE("error generating or caching assembly. Reverting to NOP.");
422             c->scanline = scanline_noop;
423             c->init_y = init_y_noop;
424             c->step_y = step_y__nop;
425             return;
426         }
427         assembly = a;
428     }
429 
430     // release the previous assembly
431     if (c->scanline_as) {
432         c->scanline_as->decStrong(c);
433     }
434 
435     //ALOGI("using generated pixel-pipeline");
436     c->scanline_as = assembly.get();
437     c->scanline_as->incStrong(c); //  hold on to assembly
438     c->scanline = (void(*)(context_t* c))assembly->base();
439 #else
440 //    ALOGW("using generic (slow) pixel-pipeline");
441     c->scanline = scanline;
442 #endif
443 }
444 
ggl_pick_scanline(context_t * c)445 void ggl_pick_scanline(context_t* c)
446 {
447     pick_scanline(c);
448     if ((c->state.enables & GGL_ENABLE_W) &&
449         (c->state.enables & GGL_ENABLE_TMUS))
450     {
451         c->span = c->scanline;
452         c->scanline = scanline_perspective;
453         if (!(c->state.enabled_tmu & (c->state.enabled_tmu - 1))) {
454             // only one TMU enabled
455             c->scanline = scanline_perspective_single;
456         }
457     }
458 }
459 
460 // ----------------------------------------------------------------------------
461 
462 static void blending(context_t* c, pixel_t* fragment, pixel_t* fb);
463 static void blend_factor(context_t* c, pixel_t* r, uint32_t factor,
464         const pixel_t* src, const pixel_t* dst);
465 static void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv);
466 
467 #if ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED)
468 
469 // no need to compile the generic-pipeline, it can't be reached
scanline(context_t *)470 void scanline(context_t*)
471 {
472 }
473 
474 #else
475 
rescale(uint32_t & u,uint8_t & su,uint32_t & v,uint8_t & sv)476 void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv)
477 {
478     if (su && sv) {
479         if (su > sv) {
480             v = ggl_expand(v, sv, su);
481             sv = su;
482         } else if (su < sv) {
483             u = ggl_expand(u, su, sv);
484             su = sv;
485         }
486     }
487 }
488 
blending(context_t * c,pixel_t * fragment,pixel_t * fb)489 void blending(context_t* c, pixel_t* fragment, pixel_t* fb)
490 {
491     rescale(fragment->c[0], fragment->s[0], fb->c[0], fb->s[0]);
492     rescale(fragment->c[1], fragment->s[1], fb->c[1], fb->s[1]);
493     rescale(fragment->c[2], fragment->s[2], fb->c[2], fb->s[2]);
494     rescale(fragment->c[3], fragment->s[3], fb->c[3], fb->s[3]);
495 
496     pixel_t sf, df;
497     blend_factor(c, &sf, c->state.blend.src, fragment, fb);
498     blend_factor(c, &df, c->state.blend.dst, fragment, fb);
499 
500     fragment->c[1] =
501             gglMulAddx(fragment->c[1], sf.c[1], gglMulx(fb->c[1], df.c[1]));
502     fragment->c[2] =
503             gglMulAddx(fragment->c[2], sf.c[2], gglMulx(fb->c[2], df.c[2]));
504     fragment->c[3] =
505             gglMulAddx(fragment->c[3], sf.c[3], gglMulx(fb->c[3], df.c[3]));
506 
507     if (c->state.blend.alpha_separate) {
508         blend_factor(c, &sf, c->state.blend.src_alpha, fragment, fb);
509         blend_factor(c, &df, c->state.blend.dst_alpha, fragment, fb);
510     }
511 
512     fragment->c[0] =
513             gglMulAddx(fragment->c[0], sf.c[0], gglMulx(fb->c[0], df.c[0]));
514 
515     // clamp to 1.0
516     if (fragment->c[0] >= (1LU<<fragment->s[0]))
517         fragment->c[0] = (1<<fragment->s[0])-1;
518     if (fragment->c[1] >= (1LU<<fragment->s[1]))
519         fragment->c[1] = (1<<fragment->s[1])-1;
520     if (fragment->c[2] >= (1LU<<fragment->s[2]))
521         fragment->c[2] = (1<<fragment->s[2])-1;
522     if (fragment->c[3] >= (1LU<<fragment->s[3]))
523         fragment->c[3] = (1<<fragment->s[3])-1;
524 }
525 
blendfactor(uint32_t x,uint32_t size,uint32_t def=0)526 static inline int blendfactor(uint32_t x, uint32_t size, uint32_t def = 0)
527 {
528     if (!size)
529         return def;
530 
531     // scale to 16 bits
532     if (size > 16) {
533         x >>= (size - 16);
534     } else if (size < 16) {
535         x = ggl_expand(x, size, 16);
536     }
537     x += x >> 15;
538     return x;
539 }
540 
blend_factor(context_t *,pixel_t * r,uint32_t factor,const pixel_t * src,const pixel_t * dst)541 void blend_factor(context_t* /*c*/, pixel_t* r,
542         uint32_t factor, const pixel_t* src, const pixel_t* dst)
543 {
544     switch (factor) {
545         case GGL_ZERO:
546             r->c[1] =
547             r->c[2] =
548             r->c[3] =
549             r->c[0] = 0;
550             break;
551         case GGL_ONE:
552             r->c[1] =
553             r->c[2] =
554             r->c[3] =
555             r->c[0] = FIXED_ONE;
556             break;
557         case GGL_DST_COLOR:
558             r->c[1] = blendfactor(dst->c[1], dst->s[1]);
559             r->c[2] = blendfactor(dst->c[2], dst->s[2]);
560             r->c[3] = blendfactor(dst->c[3], dst->s[3]);
561             r->c[0] = blendfactor(dst->c[0], dst->s[0]);
562             break;
563         case GGL_SRC_COLOR:
564             r->c[1] = blendfactor(src->c[1], src->s[1]);
565             r->c[2] = blendfactor(src->c[2], src->s[2]);
566             r->c[3] = blendfactor(src->c[3], src->s[3]);
567             r->c[0] = blendfactor(src->c[0], src->s[0]);
568             break;
569         case GGL_ONE_MINUS_DST_COLOR:
570             r->c[1] = FIXED_ONE - blendfactor(dst->c[1], dst->s[1]);
571             r->c[2] = FIXED_ONE - blendfactor(dst->c[2], dst->s[2]);
572             r->c[3] = FIXED_ONE - blendfactor(dst->c[3], dst->s[3]);
573             r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0]);
574             break;
575         case GGL_ONE_MINUS_SRC_COLOR:
576             r->c[1] = FIXED_ONE - blendfactor(src->c[1], src->s[1]);
577             r->c[2] = FIXED_ONE - blendfactor(src->c[2], src->s[2]);
578             r->c[3] = FIXED_ONE - blendfactor(src->c[3], src->s[3]);
579             r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0]);
580             break;
581         case GGL_SRC_ALPHA:
582             r->c[1] =
583             r->c[2] =
584             r->c[3] =
585             r->c[0] = blendfactor(src->c[0], src->s[0], FIXED_ONE);
586             break;
587         case GGL_ONE_MINUS_SRC_ALPHA:
588             r->c[1] =
589             r->c[2] =
590             r->c[3] =
591             r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0], FIXED_ONE);
592             break;
593         case GGL_DST_ALPHA:
594             r->c[1] =
595             r->c[2] =
596             r->c[3] =
597             r->c[0] = blendfactor(dst->c[0], dst->s[0], FIXED_ONE);
598             break;
599         case GGL_ONE_MINUS_DST_ALPHA:
600             r->c[1] =
601             r->c[2] =
602             r->c[3] =
603             r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0], FIXED_ONE);
604             break;
605         case GGL_SRC_ALPHA_SATURATE:
606             // XXX: GGL_SRC_ALPHA_SATURATE
607             break;
608     }
609 }
610 
wrapping(int32_t coord,uint32_t size,int tx_wrap)611 static GGLfixed wrapping(int32_t coord, uint32_t size, int tx_wrap)
612 {
613     GGLfixed d;
614     if (tx_wrap == GGL_REPEAT) {
615         d = (uint32_t(coord)>>16) * size;
616     } else if (tx_wrap == GGL_CLAMP) { // CLAMP_TO_EDGE semantics
617         const GGLfixed clamp_min = FIXED_HALF;
618         const GGLfixed clamp_max = (size << 16) - FIXED_HALF;
619         if (coord < clamp_min)     coord = clamp_min;
620         if (coord > clamp_max)     coord = clamp_max;
621         d = coord;
622     } else { // 1:1
623         const GGLfixed clamp_min = 0;
624         const GGLfixed clamp_max = (size << 16);
625         if (coord < clamp_min)     coord = clamp_min;
626         if (coord > clamp_max)     coord = clamp_max;
627         d = coord;
628     }
629     return d;
630 }
631 
632 static inline
ADJUST_COLOR_ITERATOR(GGLcolor v,GGLcolor dvdx,int len)633 GGLcolor ADJUST_COLOR_ITERATOR(GGLcolor v, GGLcolor dvdx, int len)
634 {
635     const int32_t end = dvdx * (len-1) + v;
636     if (end < 0)
637         v -= end;
638     v &= ~(v>>31);
639     return v;
640 }
641 
scanline(context_t * c)642 void scanline(context_t* c)
643 {
644     const uint32_t enables = c->state.enables;
645     const int xs = c->iterators.xl;
646     const int x1 = c->iterators.xr;
647 	int xc = x1 - xs;
648     const int16_t* covPtr = c->state.buffers.coverage + xs;
649 
650     // All iterated values are sampled at the pixel center
651 
652     // reset iterators for that scanline...
653     GGLcolor r, g, b, a;
654     iterators_t& ci = c->iterators;
655     if (enables & GGL_ENABLE_SMOOTH) {
656         r = (xs * c->shade.drdx) + ci.ydrdy;
657         g = (xs * c->shade.dgdx) + ci.ydgdy;
658         b = (xs * c->shade.dbdx) + ci.ydbdy;
659         a = (xs * c->shade.dadx) + ci.ydady;
660         r = ADJUST_COLOR_ITERATOR(r, c->shade.drdx, xc);
661         g = ADJUST_COLOR_ITERATOR(g, c->shade.dgdx, xc);
662         b = ADJUST_COLOR_ITERATOR(b, c->shade.dbdx, xc);
663         a = ADJUST_COLOR_ITERATOR(a, c->shade.dadx, xc);
664     } else {
665         r = ci.ydrdy;
666         g = ci.ydgdy;
667         b = ci.ydbdy;
668         a = ci.ydady;
669     }
670 
671     // z iterators are 1.31
672     GGLfixed z = (xs * c->shade.dzdx) + ci.ydzdy;
673     GGLfixed f = (xs * c->shade.dfdx) + ci.ydfdy;
674 
675     struct {
676         GGLfixed s, t;
677     } tc[GGL_TEXTURE_UNIT_COUNT];
678     if (enables & GGL_ENABLE_TMUS) {
679         for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
680             if (c->state.texture[i].enable) {
681                 texture_iterators_t& ti = c->state.texture[i].iterators;
682                 if (enables & GGL_ENABLE_W) {
683                     tc[i].s = ti.ydsdy;
684                     tc[i].t = ti.ydtdy;
685                 } else {
686                     tc[i].s = (xs * ti.dsdx) + ti.ydsdy;
687                     tc[i].t = (xs * ti.dtdx) + ti.ydtdy;
688                 }
689             }
690         }
691     }
692 
693     pixel_t fragment;
694     pixel_t texel;
695     pixel_t fb;
696 
697 	uint32_t x = xs;
698 	uint32_t y = c->iterators.y;
699 
700 	while (xc--) {
701 
702         { // just a scope
703 
704 		// read color (convert to 8 bits by keeping only the integer part)
705         fragment.s[1] = fragment.s[2] =
706         fragment.s[3] = fragment.s[0] = 8;
707         fragment.c[1] = r >> (GGL_COLOR_BITS-8);
708         fragment.c[2] = g >> (GGL_COLOR_BITS-8);
709         fragment.c[3] = b >> (GGL_COLOR_BITS-8);
710         fragment.c[0] = a >> (GGL_COLOR_BITS-8);
711 
712 		// texturing
713         if (enables & GGL_ENABLE_TMUS) {
714             for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
715                 texture_t& tx = c->state.texture[i];
716                 if (!tx.enable)
717                     continue;
718                 texture_iterators_t& ti = tx.iterators;
719                 int32_t u, v;
720 
721                 // s-coordinate
722                 if (tx.s_coord != GGL_ONE_TO_ONE) {
723                     const int w = tx.surface.width;
724                     u = wrapping(tc[i].s, w, tx.s_wrap);
725                     tc[i].s += ti.dsdx;
726                 } else {
727                     u = (((tx.shade.is0>>16) + x)<<16) + FIXED_HALF;
728                 }
729 
730                 // t-coordinate
731                 if (tx.t_coord != GGL_ONE_TO_ONE) {
732                     const int h = tx.surface.height;
733                     v = wrapping(tc[i].t, h, tx.t_wrap);
734                     tc[i].t += ti.dtdx;
735                 } else {
736                     v = (((tx.shade.it0>>16) + y)<<16) + FIXED_HALF;
737                 }
738 
739                 // read texture
740                 if (tx.mag_filter == GGL_NEAREST &&
741                     tx.min_filter == GGL_NEAREST)
742                 {
743                     u >>= 16;
744                     v >>= 16;
745                     tx.surface.read(&tx.surface, c, u, v, &texel);
746                 } else {
747                     const int w = tx.surface.width;
748                     const int h = tx.surface.height;
749                     u -= FIXED_HALF;
750                     v -= FIXED_HALF;
751                     int u0 = u >> 16;
752                     int v0 = v >> 16;
753                     int u1 = u0 + 1;
754                     int v1 = v0 + 1;
755                     if (tx.s_wrap == GGL_REPEAT) {
756                         if (u0<0)  u0 += w;
757                         if (u1<0)  u1 += w;
758                         if (u0>=w) u0 -= w;
759                         if (u1>=w) u1 -= w;
760                     } else {
761                         if (u0<0)  u0 = 0;
762                         if (u1<0)  u1 = 0;
763                         if (u0>=w) u0 = w-1;
764                         if (u1>=w) u1 = w-1;
765                     }
766                     if (tx.t_wrap == GGL_REPEAT) {
767                         if (v0<0)  v0 += h;
768                         if (v1<0)  v1 += h;
769                         if (v0>=h) v0 -= h;
770                         if (v1>=h) v1 -= h;
771                     } else {
772                         if (v0<0)  v0 = 0;
773                         if (v1<0)  v1 = 0;
774                         if (v0>=h) v0 = h-1;
775                         if (v1>=h) v1 = h-1;
776                     }
777                     pixel_t texels[4];
778                     uint32_t mm[4];
779                     tx.surface.read(&tx.surface, c, u0, v0, &texels[0]);
780                     tx.surface.read(&tx.surface, c, u0, v1, &texels[1]);
781                     tx.surface.read(&tx.surface, c, u1, v0, &texels[2]);
782                     tx.surface.read(&tx.surface, c, u1, v1, &texels[3]);
783                     u = (u >> 12) & 0xF;
784                     v = (v >> 12) & 0xF;
785                     u += u>>3;
786                     v += v>>3;
787                     mm[0] = (0x10 - u) * (0x10 - v);
788                     mm[1] = (0x10 - u) * v;
789                     mm[2] = u * (0x10 - v);
790                     mm[3] = 0x100 - (mm[0] + mm[1] + mm[2]);
791                     for (int j=0 ; j<4 ; j++) {
792                         texel.s[j] = texels[0].s[j];
793                         if (!texel.s[j]) continue;
794                         texel.s[j] += 8;
795                         texel.c[j] =    texels[0].c[j]*mm[0] +
796                                         texels[1].c[j]*mm[1] +
797                                         texels[2].c[j]*mm[2] +
798                                         texels[3].c[j]*mm[3] ;
799                     }
800                 }
801 
802                 // Texture environnement...
803                 for (int j=0 ; j<4 ; j++) {
804                     uint32_t& Cf = fragment.c[j];
805                     uint32_t& Ct = texel.c[j];
806                     uint8_t& sf  = fragment.s[j];
807                     uint8_t& st  = texel.s[j];
808                     uint32_t At = texel.c[0];
809                     uint8_t sat = texel.s[0];
810                     switch (tx.env) {
811                     case GGL_REPLACE:
812                         if (st) {
813                             Cf = Ct;
814                             sf = st;
815                         }
816                         break;
817                     case GGL_MODULATE:
818                         if (st) {
819                             uint32_t factor = Ct + (Ct>>(st-1));
820                             Cf = (Cf * factor) >> st;
821                         }
822                         break;
823                     case GGL_DECAL:
824                         if (sat) {
825                             rescale(Cf, sf, Ct, st);
826                             Cf += ((Ct - Cf) * (At + (At>>(sat-1)))) >> sat;
827                         }
828                         break;
829                     case GGL_BLEND:
830                         if (st) {
831                             uint32_t Cc = tx.env_color[i];
832                             if (sf>8)       Cc = (Cc * ((1<<sf)-1))>>8;
833                             else if (sf<8)  Cc = (Cc - (Cc>>(8-sf)))>>(8-sf);
834                             uint32_t factor = Ct + (Ct>>(st-1));
835                             Cf = ((((1<<st) - factor) * Cf) + Ct*Cc)>>st;
836                         }
837                         break;
838                     case GGL_ADD:
839                         if (st) {
840                             rescale(Cf, sf, Ct, st);
841                             Cf += Ct;
842                         }
843                         break;
844                     }
845                 }
846             }
847 		}
848 
849         // coverage application
850         if (enables & GGL_ENABLE_AA) {
851             int16_t cf = *covPtr++;
852             fragment.c[0] = (int64_t(fragment.c[0]) * cf) >> 15;
853         }
854 
855         // alpha-test
856         if (enables & GGL_ENABLE_ALPHA_TEST) {
857             GGLcolor ref = c->state.alpha_test.ref;
858             GGLcolor alpha = (uint64_t(fragment.c[0]) *
859                     ((1<<GGL_COLOR_BITS)-1)) / ((1<<fragment.s[0])-1);
860             switch (c->state.alpha_test.func) {
861             case GGL_NEVER:     goto discard;
862             case GGL_LESS:      if (alpha<ref)  break; goto discard;
863             case GGL_EQUAL:     if (alpha==ref) break; goto discard;
864             case GGL_LEQUAL:    if (alpha<=ref) break; goto discard;
865             case GGL_GREATER:   if (alpha>ref)  break; goto discard;
866             case GGL_NOTEQUAL:  if (alpha!=ref) break; goto discard;
867             case GGL_GEQUAL:    if (alpha>=ref) break; goto discard;
868             }
869         }
870 
871         // depth test
872         if (c->state.buffers.depth.format) {
873             if (enables & GGL_ENABLE_DEPTH_TEST) {
874                 surface_t* cb = &(c->state.buffers.depth);
875                 uint16_t* p = (uint16_t*)(cb->data)+(x+(cb->stride*y));
876                 uint16_t zz = uint32_t(z)>>(16);
877                 uint16_t depth = *p;
878                 switch (c->state.depth_test.func) {
879                 case GGL_NEVER:     goto discard;
880                 case GGL_LESS:      if (zz<depth)    break; goto discard;
881                 case GGL_EQUAL:     if (zz==depth)   break; goto discard;
882                 case GGL_LEQUAL:    if (zz<=depth)   break; goto discard;
883                 case GGL_GREATER:   if (zz>depth)    break; goto discard;
884                 case GGL_NOTEQUAL:  if (zz!=depth)   break; goto discard;
885                 case GGL_GEQUAL:    if (zz>=depth)   break; goto discard;
886                 }
887                 // depth buffer is not enabled, if depth-test is not enabled
888 /*
889         fragment.s[1] = fragment.s[2] =
890         fragment.s[3] = fragment.s[0] = 8;
891         fragment.c[1] =
892         fragment.c[2] =
893         fragment.c[3] =
894         fragment.c[0] = 255 - (zz>>8);
895 */
896                 if (c->state.mask.depth) {
897                     *p = zz;
898                 }
899             }
900         }
901 
902         // fog
903         if (enables & GGL_ENABLE_FOG) {
904             for (int i=1 ; i<=3 ; i++) {
905                 GGLfixed fc = (c->state.fog.color[i] * 0x10000) / 0xFF;
906                 uint32_t& c = fragment.c[i];
907                 uint8_t& s  = fragment.s[i];
908                 c = (c * 0x10000) / ((1<<s)-1);
909                 c = gglMulAddx(c, f, gglMulx(fc, 0x10000 - f));
910                 s = 16;
911             }
912         }
913 
914         // blending
915         if (enables & GGL_ENABLE_BLENDING) {
916             fb.c[1] = fb.c[2] = fb.c[3] = fb.c[0] = 0; // placate valgrind
917             fb.s[1] = fb.s[2] = fb.s[3] = fb.s[0] = 0;
918             c->state.buffers.color.read(
919                     &(c->state.buffers.color), c, x, y, &fb);
920             blending( c, &fragment, &fb );
921         }
922 
923 		// write
924         c->state.buffers.color.write(
925                 &(c->state.buffers.color), c, x, y, &fragment);
926         }
927 
928 discard:
929 		// iterate...
930         x += 1;
931         if (enables & GGL_ENABLE_SMOOTH) {
932             r += c->shade.drdx;
933             g += c->shade.dgdx;
934             b += c->shade.dbdx;
935             a += c->shade.dadx;
936         }
937         z += c->shade.dzdx;
938         f += c->shade.dfdx;
939 	}
940 }
941 
942 #endif // ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED)
943 
944 // ----------------------------------------------------------------------------
945 #if 0
946 #pragma mark -
947 #pragma mark Scanline
948 #endif
949 
950 /* Used to parse a 32-bit source texture linearly. Usage is:
951  *
952  * horz_iterator32  hi(context);
953  * while (...) {
954  *    uint32_t  src_pixel = hi.get_pixel32();
955  *    ...
956  * }
957  *
958  * Use only for one-to-one texture mapping.
959  */
960 struct horz_iterator32 {
horz_iterator32android::horz_iterator32961     horz_iterator32(context_t* c) {
962         const int x = c->iterators.xl;
963         const int y = c->iterators.y;
964         texture_t& tx = c->state.texture[0];
965         const int32_t u = (tx.shade.is0>>16) + x;
966         const int32_t v = (tx.shade.it0>>16) + y;
967         m_src = reinterpret_cast<uint32_t*>(tx.surface.data)+(u+(tx.surface.stride*v));
968     }
get_pixel32android::horz_iterator32969     uint32_t  get_pixel32() {
970         return *m_src++;
971     }
972 protected:
973     uint32_t* m_src;
974 };
975 
976 /* A variant for 16-bit source textures. */
977 struct horz_iterator16 {
horz_iterator16android::horz_iterator16978     horz_iterator16(context_t* c) {
979         const int x = c->iterators.xl;
980         const int y = c->iterators.y;
981         texture_t& tx = c->state.texture[0];
982         const int32_t u = (tx.shade.is0>>16) + x;
983         const int32_t v = (tx.shade.it0>>16) + y;
984         m_src = reinterpret_cast<uint16_t*>(tx.surface.data)+(u+(tx.surface.stride*v));
985     }
get_pixel16android::horz_iterator16986     uint16_t  get_pixel16() {
987         return *m_src++;
988     }
989 protected:
990     uint16_t* m_src;
991 };
992 
993 /* A clamp iterator is used to iterate inside a texture with GGL_CLAMP.
994  * After initialization, call get_src16() or get_src32() to get the current
995  * texture pixel value.
996  */
997 struct clamp_iterator {
clamp_iteratorandroid::clamp_iterator998     clamp_iterator(context_t* c) {
999         const int xs = c->iterators.xl;
1000         texture_t& tx = c->state.texture[0];
1001         texture_iterators_t& ti = tx.iterators;
1002         m_s = (xs * ti.dsdx) + ti.ydsdy;
1003         m_t = (xs * ti.dtdx) + ti.ydtdy;
1004         m_ds = ti.dsdx;
1005         m_dt = ti.dtdx;
1006         m_width_m1 = tx.surface.width - 1;
1007         m_height_m1 = tx.surface.height - 1;
1008         m_data = tx.surface.data;
1009         m_stride = tx.surface.stride;
1010     }
get_pixel16android::clamp_iterator1011     uint16_t get_pixel16() {
1012         int  u, v;
1013         get_uv(u, v);
1014         uint16_t* src = reinterpret_cast<uint16_t*>(m_data) + (u + (m_stride*v));
1015         return src[0];
1016     }
get_pixel32android::clamp_iterator1017     uint32_t get_pixel32() {
1018         int  u, v;
1019         get_uv(u, v);
1020         uint32_t* src = reinterpret_cast<uint32_t*>(m_data) + (u + (m_stride*v));
1021         return src[0];
1022     }
1023 private:
get_uvandroid::clamp_iterator1024     void   get_uv(int& u, int& v) {
1025         int  uu = m_s >> 16;
1026         int  vv = m_t >> 16;
1027         if (uu < 0)
1028             uu = 0;
1029         if (uu > m_width_m1)
1030             uu = m_width_m1;
1031         if (vv < 0)
1032             vv = 0;
1033         if (vv > m_height_m1)
1034             vv = m_height_m1;
1035         u = uu;
1036         v = vv;
1037         m_s += m_ds;
1038         m_t += m_dt;
1039     }
1040 
1041     GGLfixed  m_s, m_t;
1042     GGLfixed  m_ds, m_dt;
1043     int       m_width_m1, m_height_m1;
1044     uint8_t*  m_data;
1045     int       m_stride;
1046 };
1047 
1048 /*
1049  * The 'horizontal clamp iterator' variant corresponds to the case where
1050  * the 'v' coordinate doesn't change. This is useful to avoid one mult and
1051  * extra adds / checks per pixels, if the blending/processing operation after
1052  * this is very fast.
1053  */
is_context_horizontal(const context_t * c)1054 static int is_context_horizontal(const context_t* c) {
1055     return (c->state.texture[0].iterators.dtdx == 0);
1056 }
1057 
1058 struct horz_clamp_iterator {
get_pixel16android::horz_clamp_iterator1059     uint16_t  get_pixel16() {
1060         int  u = m_s >> 16;
1061         m_s += m_ds;
1062         if (u < 0)
1063             u = 0;
1064         if (u > m_width_m1)
1065             u = m_width_m1;
1066         const uint16_t* src = reinterpret_cast<const uint16_t*>(m_data);
1067         return src[u];
1068     }
get_pixel32android::horz_clamp_iterator1069     uint32_t  get_pixel32() {
1070         int  u = m_s >> 16;
1071         m_s += m_ds;
1072         if (u < 0)
1073             u = 0;
1074         if (u > m_width_m1)
1075             u = m_width_m1;
1076         const uint32_t* src = reinterpret_cast<const uint32_t*>(m_data);
1077         return src[u];
1078     }
1079 protected:
1080     void init(const context_t* c, int shift);
1081     GGLfixed       m_s;
1082     GGLfixed       m_ds;
1083     int            m_width_m1;
1084     const uint8_t* m_data;
1085 };
1086 
init(const context_t * c,int shift)1087 void horz_clamp_iterator::init(const context_t* c, int shift)
1088 {
1089     const int xs = c->iterators.xl;
1090     const texture_t& tx = c->state.texture[0];
1091     const texture_iterators_t& ti = tx.iterators;
1092     m_s = (xs * ti.dsdx) + ti.ydsdy;
1093     m_ds = ti.dsdx;
1094     m_width_m1 = tx.surface.width-1;
1095     m_data = tx.surface.data;
1096 
1097     GGLfixed t = (xs * ti.dtdx) + ti.ydtdy;
1098     int      v = t >> 16;
1099     if (v < 0)
1100         v = 0;
1101     else if (v >= (int)tx.surface.height)
1102         v = (int)tx.surface.height-1;
1103 
1104     m_data += (tx.surface.stride*v) << shift;
1105 }
1106 
1107 struct horz_clamp_iterator16 : horz_clamp_iterator {
horz_clamp_iterator16android::horz_clamp_iterator161108     horz_clamp_iterator16(const context_t* c) {
1109         init(c,1);
1110     };
1111 };
1112 
1113 struct horz_clamp_iterator32 : horz_clamp_iterator {
horz_clamp_iterator32android::horz_clamp_iterator321114     horz_clamp_iterator32(context_t* c) {
1115         init(c,2);
1116     };
1117 };
1118 
1119 /* This is used to perform dithering operations.
1120  */
1121 struct ditherer {
dithererandroid::ditherer1122     ditherer(const context_t* c) {
1123         const int x = c->iterators.xl;
1124         const int y = c->iterators.y;
1125         m_line = &c->ditherMatrix[ ((y & GGL_DITHER_MASK)<<GGL_DITHER_ORDER_SHIFT) ];
1126         m_index = x & GGL_DITHER_MASK;
1127     }
stepandroid::ditherer1128     void step(void) {
1129         m_index++;
1130     }
get_valueandroid::ditherer1131     int  get_value(void) {
1132         int ret = m_line[m_index & GGL_DITHER_MASK];
1133         m_index++;
1134         return ret;
1135     }
abgr8888ToRgb565android::ditherer1136     uint16_t abgr8888ToRgb565(uint32_t s) {
1137         uint32_t r = s & 0xff;
1138         uint32_t g = (s >> 8) & 0xff;
1139         uint32_t b = (s >> 16) & 0xff;
1140         return rgb888ToRgb565(r,g,b);
1141     }
1142     /* The following assumes that r/g/b are in the 0..255 range each */
rgb888ToRgb565android::ditherer1143     uint16_t rgb888ToRgb565(uint32_t& r, uint32_t& g, uint32_t &b) {
1144         int threshold = get_value();
1145         /* dither in on GGL_DITHER_BITS, and each of r, g, b is on 8 bits */
1146         r += (threshold >> (GGL_DITHER_BITS-8 +5));
1147         g += (threshold >> (GGL_DITHER_BITS-8 +6));
1148         b += (threshold >> (GGL_DITHER_BITS-8 +5));
1149         if (r > 0xff)
1150             r = 0xff;
1151         if (g > 0xff)
1152             g = 0xff;
1153         if (b > 0xff)
1154             b = 0xff;
1155         return uint16_t(((r & 0xf8) << 8) | ((g & 0xfc) << 3) | (b >> 3));
1156     }
1157 protected:
1158     const uint8_t* m_line;
1159     int            m_index;
1160 };
1161 
1162 /* This structure is used to blend (SRC_OVER) 32-bit source pixels
1163  * onto 16-bit destination ones. Usage is simply:
1164  *
1165  *   blender.blend(<32-bit-src-pixel-value>,<ptr-to-16-bit-dest-pixel>)
1166  */
1167 struct blender_32to16 {
blender_32to16android::blender_32to161168     blender_32to16(context_t* /*c*/) { }
writeandroid::blender_32to161169     void write(uint32_t s, uint16_t* dst) {
1170         if (s == 0)
1171             return;
1172         s = GGL_RGBA_TO_HOST(s);
1173         int sA = (s>>24);
1174         if (sA == 0xff) {
1175             *dst = convertAbgr8888ToRgb565(s);
1176         } else {
1177             int f = 0x100 - (sA + (sA>>7));
1178             int sR = (s >> (   3))&0x1F;
1179             int sG = (s >> ( 8+2))&0x3F;
1180             int sB = (s >> (16+3))&0x1F;
1181             uint16_t d = *dst;
1182             int dR = (d>>11)&0x1f;
1183             int dG = (d>>5)&0x3f;
1184             int dB = (d)&0x1f;
1185             sR += (f*dR)>>8;
1186             sG += (f*dG)>>8;
1187             sB += (f*dB)>>8;
1188             *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1189         }
1190     }
writeandroid::blender_32to161191     void write(uint32_t s, uint16_t* dst, ditherer& di) {
1192         if (s == 0) {
1193             di.step();
1194             return;
1195         }
1196         s = GGL_RGBA_TO_HOST(s);
1197         int sA = (s>>24);
1198         if (sA == 0xff) {
1199             *dst = di.abgr8888ToRgb565(s);
1200         } else {
1201             int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
1202             int f = 0x100 - (sA + (sA>>7));
1203             int sR = (s >> (   3))&0x1F;
1204             int sG = (s >> ( 8+2))&0x3F;
1205             int sB = (s >> (16+3))&0x1F;
1206             uint16_t d = *dst;
1207             int dR = (d>>11)&0x1f;
1208             int dG = (d>>5)&0x3f;
1209             int dB = (d)&0x1f;
1210             sR = ((sR << 8) + f*dR + threshold)>>8;
1211             sG = ((sG << 8) + f*dG + threshold)>>8;
1212             sB = ((sB << 8) + f*dB + threshold)>>8;
1213             if (sR > 0x1f) sR = 0x1f;
1214             if (sG > 0x3f) sG = 0x3f;
1215             if (sB > 0x1f) sB = 0x1f;
1216             *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1217         }
1218     }
1219 };
1220 
1221 /* This blender does the same for the 'blend_srca' operation.
1222  * where dstFactor=srcA*(1-srcA) srcFactor=srcA
1223  */
1224 struct blender_32to16_srcA {
blender_32to16_srcAandroid::blender_32to16_srcA1225     blender_32to16_srcA(const context_t* /*c*/) { }
writeandroid::blender_32to16_srcA1226     void write(uint32_t s, uint16_t* dst) {
1227         if (!s) {
1228             return;
1229         }
1230         uint16_t d = *dst;
1231         s = GGL_RGBA_TO_HOST(s);
1232         int sR = (s >> (   3))&0x1F;
1233         int sG = (s >> ( 8+2))&0x3F;
1234         int sB = (s >> (16+3))&0x1F;
1235         int sA = (s>>24);
1236         int f1 = (sA + (sA>>7));
1237         int f2 = 0x100-f1;
1238         int dR = (d>>11)&0x1f;
1239         int dG = (d>>5)&0x3f;
1240         int dB = (d)&0x1f;
1241         sR = (f1*sR + f2*dR)>>8;
1242         sG = (f1*sG + f2*dG)>>8;
1243         sB = (f1*sB + f2*dB)>>8;
1244         *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1245     }
1246 };
1247 
1248 /* Common init code the modulating blenders */
1249 struct blender_modulate {
initandroid::blender_modulate1250     void init(const context_t* c) {
1251         const int r = c->iterators.ydrdy >> (GGL_COLOR_BITS-8);
1252         const int g = c->iterators.ydgdy >> (GGL_COLOR_BITS-8);
1253         const int b = c->iterators.ydbdy >> (GGL_COLOR_BITS-8);
1254         const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8);
1255         m_r = r + (r >> 7);
1256         m_g = g + (g >> 7);
1257         m_b = b + (b >> 7);
1258         m_a = a + (a >> 7);
1259     }
1260 protected:
1261     int m_r, m_g, m_b, m_a;
1262 };
1263 
1264 /* This blender does a normal blend after modulation.
1265  */
1266 struct blender_32to16_modulate : blender_modulate {
blender_32to16_modulateandroid::blender_32to16_modulate1267     blender_32to16_modulate(const context_t* c) {
1268         init(c);
1269     }
writeandroid::blender_32to16_modulate1270     void write(uint32_t s, uint16_t* dst) {
1271         // blend source and destination
1272         if (!s) {
1273             return;
1274         }
1275         s = GGL_RGBA_TO_HOST(s);
1276 
1277         /* We need to modulate s */
1278         uint32_t  sA = (s >> 24);
1279         uint32_t  sB = (s >> 16) & 0xff;
1280         uint32_t  sG = (s >> 8) & 0xff;
1281         uint32_t  sR = s & 0xff;
1282 
1283         sA = (sA*m_a) >> 8;
1284         /* Keep R/G/B scaled to 5.8 or 6.8 fixed float format */
1285         sR = (sR*m_r) >> (8 - 5);
1286         sG = (sG*m_g) >> (8 - 6);
1287         sB = (sB*m_b) >> (8 - 5);
1288 
1289         /* Now do a normal blend */
1290         int f = 0x100 - (sA + (sA>>7));
1291         uint16_t d = *dst;
1292         int dR = (d>>11)&0x1f;
1293         int dG = (d>>5)&0x3f;
1294         int dB = (d)&0x1f;
1295         sR = (sR + f*dR)>>8;
1296         sG = (sG + f*dG)>>8;
1297         sB = (sB + f*dB)>>8;
1298         *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1299     }
writeandroid::blender_32to16_modulate1300     void write(uint32_t s, uint16_t* dst, ditherer& di) {
1301         // blend source and destination
1302         if (!s) {
1303             di.step();
1304             return;
1305         }
1306         s = GGL_RGBA_TO_HOST(s);
1307 
1308         /* We need to modulate s */
1309         uint32_t  sA = (s >> 24);
1310         uint32_t  sB = (s >> 16) & 0xff;
1311         uint32_t  sG = (s >> 8) & 0xff;
1312         uint32_t  sR = s & 0xff;
1313 
1314         sA = (sA*m_a) >> 8;
1315         /* keep R/G/B scaled to 5.8 or 6.8 fixed float format */
1316         sR = (sR*m_r) >> (8 - 5);
1317         sG = (sG*m_g) >> (8 - 6);
1318         sB = (sB*m_b) >> (8 - 5);
1319 
1320         /* Scale threshold to 0.8 fixed float format */
1321         int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
1322         int f = 0x100 - (sA + (sA>>7));
1323         uint16_t d = *dst;
1324         int dR = (d>>11)&0x1f;
1325         int dG = (d>>5)&0x3f;
1326         int dB = (d)&0x1f;
1327         sR = (sR + f*dR + threshold)>>8;
1328         sG = (sG + f*dG + threshold)>>8;
1329         sB = (sB + f*dB + threshold)>>8;
1330         if (sR > 0x1f) sR = 0x1f;
1331         if (sG > 0x3f) sG = 0x3f;
1332         if (sB > 0x1f) sB = 0x1f;
1333         *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1334     }
1335 };
1336 
1337 /* same as 32to16_modulate, except that the input is xRGB, instead of ARGB */
1338 struct blender_x32to16_modulate : blender_modulate {
blender_x32to16_modulateandroid::blender_x32to16_modulate1339     blender_x32to16_modulate(const context_t* c) {
1340         init(c);
1341     }
writeandroid::blender_x32to16_modulate1342     void write(uint32_t s, uint16_t* dst) {
1343         s = GGL_RGBA_TO_HOST(s);
1344 
1345         uint32_t  sB = (s >> 16) & 0xff;
1346         uint32_t  sG = (s >> 8) & 0xff;
1347         uint32_t  sR = s & 0xff;
1348 
1349         /* Keep R/G/B in 5.8 or 6.8 format */
1350         sR = (sR*m_r) >> (8 - 5);
1351         sG = (sG*m_g) >> (8 - 6);
1352         sB = (sB*m_b) >> (8 - 5);
1353 
1354         int f = 0x100 - m_a;
1355         uint16_t d = *dst;
1356         int dR = (d>>11)&0x1f;
1357         int dG = (d>>5)&0x3f;
1358         int dB = (d)&0x1f;
1359         sR = (sR + f*dR)>>8;
1360         sG = (sG + f*dG)>>8;
1361         sB = (sB + f*dB)>>8;
1362         *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1363     }
writeandroid::blender_x32to16_modulate1364     void write(uint32_t s, uint16_t* dst, ditherer& di) {
1365         s = GGL_RGBA_TO_HOST(s);
1366 
1367         uint32_t  sB = (s >> 16) & 0xff;
1368         uint32_t  sG = (s >> 8) & 0xff;
1369         uint32_t  sR = s & 0xff;
1370 
1371         sR = (sR*m_r) >> (8 - 5);
1372         sG = (sG*m_g) >> (8 - 6);
1373         sB = (sB*m_b) >> (8 - 5);
1374 
1375         /* Now do a normal blend */
1376         int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
1377         int f = 0x100 - m_a;
1378         uint16_t d = *dst;
1379         int dR = (d>>11)&0x1f;
1380         int dG = (d>>5)&0x3f;
1381         int dB = (d)&0x1f;
1382         sR = (sR + f*dR + threshold)>>8;
1383         sG = (sG + f*dG + threshold)>>8;
1384         sB = (sB + f*dB + threshold)>>8;
1385         if (sR > 0x1f) sR = 0x1f;
1386         if (sG > 0x3f) sG = 0x3f;
1387         if (sB > 0x1f) sB = 0x1f;
1388         *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1389     }
1390 };
1391 
1392 /* Same as above, but source is 16bit rgb565 */
1393 struct blender_16to16_modulate : blender_modulate {
blender_16to16_modulateandroid::blender_16to16_modulate1394     blender_16to16_modulate(const context_t* c) {
1395         init(c);
1396     }
writeandroid::blender_16to16_modulate1397     void write(uint16_t s16, uint16_t* dst) {
1398         uint32_t  s = s16;
1399 
1400         uint32_t  sR = s >> 11;
1401         uint32_t  sG = (s >> 5) & 0x3f;
1402         uint32_t  sB = s & 0x1f;
1403 
1404         sR = (sR*m_r);
1405         sG = (sG*m_g);
1406         sB = (sB*m_b);
1407 
1408         int f = 0x100 - m_a;
1409         uint16_t d = *dst;
1410         int dR = (d>>11)&0x1f;
1411         int dG = (d>>5)&0x3f;
1412         int dB = (d)&0x1f;
1413         sR = (sR + f*dR)>>8;
1414         sG = (sG + f*dG)>>8;
1415         sB = (sB + f*dB)>>8;
1416         *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1417     }
1418 };
1419 
1420 /* This is used to iterate over a 16-bit destination color buffer.
1421  * Usage is:
1422  *
1423  *   dst_iterator16  di(context);
1424  *   while (di.count--) {
1425  *       <do stuff with dest pixel at di.dst>
1426  *       di.dst++;
1427  *   }
1428  */
1429 struct dst_iterator16 {
dst_iterator16android::dst_iterator161430     dst_iterator16(const context_t* c) {
1431         const int x = c->iterators.xl;
1432         const int width = c->iterators.xr - x;
1433         const int32_t y = c->iterators.y;
1434         const surface_t* cb = &(c->state.buffers.color);
1435         count = width;
1436         dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
1437     }
1438     int        count;
1439     uint16_t*  dst;
1440 };
1441 
1442 
scanline_t32cb16_clamp(context_t * c)1443 static void scanline_t32cb16_clamp(context_t* c)
1444 {
1445     dst_iterator16  di(c);
1446 
1447     if (is_context_horizontal(c)) {
1448         /* Special case for simple horizontal scaling */
1449         horz_clamp_iterator32 ci(c);
1450         while (di.count--) {
1451             uint32_t s = ci.get_pixel32();
1452             *di.dst++ = convertAbgr8888ToRgb565(s);
1453         }
1454     } else {
1455         /* General case */
1456         clamp_iterator ci(c);
1457         while (di.count--) {
1458             uint32_t s = ci.get_pixel32();
1459             *di.dst++ = convertAbgr8888ToRgb565(s);
1460         }
1461     }
1462 }
1463 
scanline_t32cb16_dither(context_t * c)1464 static void scanline_t32cb16_dither(context_t* c)
1465 {
1466     horz_iterator32 si(c);
1467     dst_iterator16  di(c);
1468     ditherer        dither(c);
1469 
1470     while (di.count--) {
1471         uint32_t s = si.get_pixel32();
1472         *di.dst++ = dither.abgr8888ToRgb565(s);
1473     }
1474 }
1475 
scanline_t32cb16_clamp_dither(context_t * c)1476 static void scanline_t32cb16_clamp_dither(context_t* c)
1477 {
1478     dst_iterator16  di(c);
1479     ditherer        dither(c);
1480 
1481     if (is_context_horizontal(c)) {
1482         /* Special case for simple horizontal scaling */
1483         horz_clamp_iterator32 ci(c);
1484         while (di.count--) {
1485             uint32_t s = ci.get_pixel32();
1486             *di.dst++ = dither.abgr8888ToRgb565(s);
1487         }
1488     } else {
1489         /* General case */
1490         clamp_iterator ci(c);
1491         while (di.count--) {
1492             uint32_t s = ci.get_pixel32();
1493             *di.dst++ = dither.abgr8888ToRgb565(s);
1494         }
1495     }
1496 }
1497 
scanline_t32cb16blend_dither(context_t * c)1498 static void scanline_t32cb16blend_dither(context_t* c)
1499 {
1500     dst_iterator16 di(c);
1501     ditherer       dither(c);
1502     blender_32to16 bl(c);
1503     horz_iterator32  hi(c);
1504     while (di.count--) {
1505         uint32_t s = hi.get_pixel32();
1506         bl.write(s, di.dst, dither);
1507         di.dst++;
1508     }
1509 }
1510 
scanline_t32cb16blend_clamp(context_t * c)1511 static void scanline_t32cb16blend_clamp(context_t* c)
1512 {
1513     dst_iterator16  di(c);
1514     blender_32to16  bl(c);
1515 
1516     if (is_context_horizontal(c)) {
1517         horz_clamp_iterator32 ci(c);
1518         while (di.count--) {
1519             uint32_t s = ci.get_pixel32();
1520             bl.write(s, di.dst);
1521             di.dst++;
1522         }
1523     } else {
1524         clamp_iterator ci(c);
1525         while (di.count--) {
1526             uint32_t s = ci.get_pixel32();
1527             bl.write(s, di.dst);
1528             di.dst++;
1529         }
1530     }
1531 }
1532 
scanline_t32cb16blend_clamp_dither(context_t * c)1533 static void scanline_t32cb16blend_clamp_dither(context_t* c)
1534 {
1535     dst_iterator16 di(c);
1536     ditherer       dither(c);
1537     blender_32to16 bl(c);
1538 
1539     clamp_iterator ci(c);
1540     while (di.count--) {
1541         uint32_t s = ci.get_pixel32();
1542         bl.write(s, di.dst, dither);
1543         di.dst++;
1544     }
1545 }
1546 
scanline_t32cb16blend_clamp_mod(context_t * c)1547 void scanline_t32cb16blend_clamp_mod(context_t* c)
1548 {
1549     dst_iterator16 di(c);
1550     blender_32to16_modulate bl(c);
1551 
1552     clamp_iterator ci(c);
1553     while (di.count--) {
1554         uint32_t s = ci.get_pixel32();
1555         bl.write(s, di.dst);
1556         di.dst++;
1557     }
1558 }
1559 
scanline_t32cb16blend_clamp_mod_dither(context_t * c)1560 void scanline_t32cb16blend_clamp_mod_dither(context_t* c)
1561 {
1562     dst_iterator16 di(c);
1563     blender_32to16_modulate bl(c);
1564     ditherer dither(c);
1565 
1566     clamp_iterator ci(c);
1567     while (di.count--) {
1568         uint32_t s = ci.get_pixel32();
1569         bl.write(s, di.dst, dither);
1570         di.dst++;
1571     }
1572 }
1573 
1574 /* Variant of scanline_t32cb16blend_clamp_mod with a xRGB texture */
scanline_x32cb16blend_clamp_mod(context_t * c)1575 void scanline_x32cb16blend_clamp_mod(context_t* c)
1576 {
1577     dst_iterator16 di(c);
1578     blender_x32to16_modulate  bl(c);
1579 
1580     clamp_iterator ci(c);
1581     while (di.count--) {
1582         uint32_t s = ci.get_pixel32();
1583         bl.write(s, di.dst);
1584         di.dst++;
1585     }
1586 }
1587 
scanline_x32cb16blend_clamp_mod_dither(context_t * c)1588 void scanline_x32cb16blend_clamp_mod_dither(context_t* c)
1589 {
1590     dst_iterator16 di(c);
1591     blender_x32to16_modulate  bl(c);
1592     ditherer dither(c);
1593 
1594     clamp_iterator ci(c);
1595     while (di.count--) {
1596         uint32_t s = ci.get_pixel32();
1597         bl.write(s, di.dst, dither);
1598         di.dst++;
1599     }
1600 }
1601 
scanline_t16cb16_clamp(context_t * c)1602 void scanline_t16cb16_clamp(context_t* c)
1603 {
1604     dst_iterator16  di(c);
1605 
1606     /* Special case for simple horizontal scaling */
1607     if (is_context_horizontal(c)) {
1608         horz_clamp_iterator16 ci(c);
1609         while (di.count--) {
1610             *di.dst++ = ci.get_pixel16();
1611         }
1612     } else {
1613         clamp_iterator ci(c);
1614         while (di.count--) {
1615             *di.dst++ = ci.get_pixel16();
1616         }
1617     }
1618 }
1619 
1620 
1621 
1622 template <typename T, typename U>
1623 static inline __attribute__((const))
interpolate(int y,T v0,U dvdx,U dvdy)1624 T interpolate(int y, T v0, U dvdx, U dvdy) {
1625     // interpolates in pixel's centers
1626     // v = v0 + (y + 0.5) * dvdy + (0.5 * dvdx)
1627     return (y * dvdy) + (v0 + ((dvdy + dvdx) >> 1));
1628 }
1629 
1630 // ----------------------------------------------------------------------------
1631 #if 0
1632 #pragma mark -
1633 #endif
1634 
init_y(context_t * c,int32_t ys)1635 void init_y(context_t* c, int32_t ys)
1636 {
1637     const uint32_t enables = c->state.enables;
1638 
1639     // compute iterators...
1640     iterators_t& ci = c->iterators;
1641 
1642     // sample in the center
1643     ci.y = ys;
1644 
1645     if (enables & (GGL_ENABLE_DEPTH_TEST|GGL_ENABLE_W|GGL_ENABLE_FOG)) {
1646         ci.ydzdy = interpolate(ys, c->shade.z0, c->shade.dzdx, c->shade.dzdy);
1647         ci.ydwdy = interpolate(ys, c->shade.w0, c->shade.dwdx, c->shade.dwdy);
1648         ci.ydfdy = interpolate(ys, c->shade.f0, c->shade.dfdx, c->shade.dfdy);
1649     }
1650 
1651     if (ggl_unlikely(enables & GGL_ENABLE_SMOOTH)) {
1652         ci.ydrdy = interpolate(ys, c->shade.r0, c->shade.drdx, c->shade.drdy);
1653         ci.ydgdy = interpolate(ys, c->shade.g0, c->shade.dgdx, c->shade.dgdy);
1654         ci.ydbdy = interpolate(ys, c->shade.b0, c->shade.dbdx, c->shade.dbdy);
1655         ci.ydady = interpolate(ys, c->shade.a0, c->shade.dadx, c->shade.dady);
1656         c->step_y = step_y__smooth;
1657     } else {
1658         ci.ydrdy = c->shade.r0;
1659         ci.ydgdy = c->shade.g0;
1660         ci.ydbdy = c->shade.b0;
1661         ci.ydady = c->shade.a0;
1662         // XXX: do only if needed, or make sure this is fast
1663         c->packed = ggl_pack_color(c, c->state.buffers.color.format,
1664                 ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady);
1665         c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888,
1666                 ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady);
1667     }
1668 
1669     // initialize the variables we need in the shader
1670     generated_vars_t& gen = c->generated_vars;
1671     gen.argb[GGLFormat::ALPHA].c  = ci.ydady;
1672     gen.argb[GGLFormat::ALPHA].dx = c->shade.dadx;
1673     gen.argb[GGLFormat::RED  ].c  = ci.ydrdy;
1674     gen.argb[GGLFormat::RED  ].dx = c->shade.drdx;
1675     gen.argb[GGLFormat::GREEN].c  = ci.ydgdy;
1676     gen.argb[GGLFormat::GREEN].dx = c->shade.dgdx;
1677     gen.argb[GGLFormat::BLUE ].c  = ci.ydbdy;
1678     gen.argb[GGLFormat::BLUE ].dx = c->shade.dbdx;
1679     gen.dzdx = c->shade.dzdx;
1680     gen.f    = ci.ydfdy;
1681     gen.dfdx = c->shade.dfdx;
1682 
1683     if (enables & GGL_ENABLE_TMUS) {
1684         for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1685             texture_t& t = c->state.texture[i];
1686             if (!t.enable) continue;
1687 
1688             texture_iterators_t& ti = t.iterators;
1689             if (t.s_coord == GGL_ONE_TO_ONE && t.t_coord == GGL_ONE_TO_ONE) {
1690                 // we need to set all of these to 0 because in some cases
1691                 // step_y__generic() or step_y__tmu() will be used and
1692                 // therefore will update dtdy, however, in 1:1 mode
1693                 // this is always done by the scanline rasterizer.
1694                 ti.dsdx = ti.dsdy = ti.dtdx = ti.dtdy = 0;
1695                 ti.ydsdy = t.shade.is0;
1696                 ti.ydtdy = t.shade.it0;
1697             } else {
1698                 const int adjustSWrap = ((t.s_wrap==GGL_CLAMP)?0:16);
1699                 const int adjustTWrap = ((t.t_wrap==GGL_CLAMP)?0:16);
1700                 ti.sscale = t.shade.sscale + adjustSWrap;
1701                 ti.tscale = t.shade.tscale + adjustTWrap;
1702                 if (!(enables & GGL_ENABLE_W)) {
1703                     // S coordinate
1704                     const int32_t sscale = ti.sscale;
1705                     const int32_t sy = interpolate(ys,
1706                             t.shade.is0, t.shade.idsdx, t.shade.idsdy);
1707                     if (sscale>=0) {
1708                         ti.ydsdy= sy            << sscale;
1709                         ti.dsdx = t.shade.idsdx << sscale;
1710                         ti.dsdy = t.shade.idsdy << sscale;
1711                     } else {
1712                         ti.ydsdy= sy            >> -sscale;
1713                         ti.dsdx = t.shade.idsdx >> -sscale;
1714                         ti.dsdy = t.shade.idsdy >> -sscale;
1715                     }
1716                     // T coordinate
1717                     const int32_t tscale = ti.tscale;
1718                     const int32_t ty = interpolate(ys,
1719                             t.shade.it0, t.shade.idtdx, t.shade.idtdy);
1720                     if (tscale>=0) {
1721                         ti.ydtdy= ty            << tscale;
1722                         ti.dtdx = t.shade.idtdx << tscale;
1723                         ti.dtdy = t.shade.idtdy << tscale;
1724                     } else {
1725                         ti.ydtdy= ty            >> -tscale;
1726                         ti.dtdx = t.shade.idtdx >> -tscale;
1727                         ti.dtdy = t.shade.idtdy >> -tscale;
1728                     }
1729                 }
1730             }
1731             // mirror for generated code...
1732             generated_tex_vars_t& gen = c->generated_vars.texture[i];
1733             gen.width   = t.surface.width;
1734             gen.height  = t.surface.height;
1735             gen.stride  = t.surface.stride;
1736             gen.data    = uintptr_t(t.surface.data);
1737             gen.dsdx = ti.dsdx;
1738             gen.dtdx = ti.dtdx;
1739         }
1740     }
1741 
1742     // choose the y-stepper
1743     c->step_y = step_y__nop;
1744     if (enables & GGL_ENABLE_FOG) {
1745         c->step_y = step_y__generic;
1746     } else if (enables & GGL_ENABLE_TMUS) {
1747         if (enables & GGL_ENABLE_SMOOTH) {
1748             c->step_y = step_y__generic;
1749         } else if (enables & GGL_ENABLE_W) {
1750             c->step_y = step_y__w;
1751         } else {
1752             c->step_y = step_y__tmu;
1753         }
1754     } else {
1755         if (enables & GGL_ENABLE_SMOOTH) {
1756             c->step_y = step_y__smooth;
1757         }
1758     }
1759 
1760     // choose the rectangle blitter
1761     c->rect = rect_generic;
1762     if ((c->step_y == step_y__nop) &&
1763         (c->scanline == scanline_memcpy))
1764     {
1765         c->rect = rect_memcpy;
1766     }
1767 }
1768 
init_y_packed(context_t * c,int32_t y0)1769 void init_y_packed(context_t* c, int32_t y0)
1770 {
1771     uint8_t f = c->state.buffers.color.format;
1772     c->packed = ggl_pack_color(c, f,
1773             c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0);
1774     c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888,
1775             c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0);
1776     c->iterators.y = y0;
1777     c->step_y = step_y__nop;
1778     // choose the rectangle blitter
1779     c->rect = rect_generic;
1780     if (c->scanline == scanline_memcpy) {
1781         c->rect = rect_memcpy;
1782     }
1783 }
1784 
init_y_noop(context_t * c,int32_t y0)1785 void init_y_noop(context_t* c, int32_t y0)
1786 {
1787     c->iterators.y = y0;
1788     c->step_y = step_y__nop;
1789     // choose the rectangle blitter
1790     c->rect = rect_generic;
1791     if (c->scanline == scanline_memcpy) {
1792         c->rect = rect_memcpy;
1793     }
1794 }
1795 
init_y_error(context_t * c,int32_t y0)1796 void init_y_error(context_t* c, int32_t y0)
1797 {
1798     // woooops, shoud never happen,
1799     // fail gracefully (don't display anything)
1800     init_y_noop(c, y0);
1801     ALOGE("color-buffer has an invalid format!");
1802 }
1803 
1804 // ----------------------------------------------------------------------------
1805 #if 0
1806 #pragma mark -
1807 #endif
1808 
step_y__generic(context_t * c)1809 void step_y__generic(context_t* c)
1810 {
1811     const uint32_t enables = c->state.enables;
1812 
1813     // iterate...
1814     iterators_t& ci = c->iterators;
1815     ci.y += 1;
1816 
1817     if (enables & GGL_ENABLE_SMOOTH) {
1818         ci.ydrdy += c->shade.drdy;
1819         ci.ydgdy += c->shade.dgdy;
1820         ci.ydbdy += c->shade.dbdy;
1821         ci.ydady += c->shade.dady;
1822     }
1823 
1824     const uint32_t mask =
1825             GGL_ENABLE_DEPTH_TEST |
1826             GGL_ENABLE_W |
1827             GGL_ENABLE_FOG;
1828     if (enables & mask) {
1829         ci.ydzdy += c->shade.dzdy;
1830         ci.ydwdy += c->shade.dwdy;
1831         ci.ydfdy += c->shade.dfdy;
1832     }
1833 
1834     if ((enables & GGL_ENABLE_TMUS) && (!(enables & GGL_ENABLE_W))) {
1835         for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1836             if (c->state.texture[i].enable) {
1837                 texture_iterators_t& ti = c->state.texture[i].iterators;
1838                 ti.ydsdy += ti.dsdy;
1839                 ti.ydtdy += ti.dtdy;
1840             }
1841         }
1842     }
1843 }
1844 
step_y__nop(context_t * c)1845 void step_y__nop(context_t* c)
1846 {
1847     c->iterators.y += 1;
1848     c->iterators.ydzdy += c->shade.dzdy;
1849 }
1850 
step_y__smooth(context_t * c)1851 void step_y__smooth(context_t* c)
1852 {
1853     iterators_t& ci = c->iterators;
1854     ci.y += 1;
1855     ci.ydrdy += c->shade.drdy;
1856     ci.ydgdy += c->shade.dgdy;
1857     ci.ydbdy += c->shade.dbdy;
1858     ci.ydady += c->shade.dady;
1859     ci.ydzdy += c->shade.dzdy;
1860 }
1861 
step_y__w(context_t * c)1862 void step_y__w(context_t* c)
1863 {
1864     iterators_t& ci = c->iterators;
1865     ci.y += 1;
1866     ci.ydzdy += c->shade.dzdy;
1867     ci.ydwdy += c->shade.dwdy;
1868 }
1869 
step_y__tmu(context_t * c)1870 void step_y__tmu(context_t* c)
1871 {
1872     iterators_t& ci = c->iterators;
1873     ci.y += 1;
1874     ci.ydzdy += c->shade.dzdy;
1875     for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1876         if (c->state.texture[i].enable) {
1877             texture_iterators_t& ti = c->state.texture[i].iterators;
1878             ti.ydsdy += ti.dsdy;
1879             ti.ydtdy += ti.dtdy;
1880         }
1881     }
1882 }
1883 
1884 // ----------------------------------------------------------------------------
1885 #if 0
1886 #pragma mark -
1887 #endif
1888 
scanline_perspective(context_t * c)1889 void scanline_perspective(context_t* c)
1890 {
1891     struct {
1892         union {
1893             struct {
1894                 int32_t s, sq;
1895                 int32_t t, tq;
1896             } sqtq;
1897             struct {
1898                 int32_t v, q;
1899             } st[2];
1900         };
1901     } tc[GGL_TEXTURE_UNIT_COUNT] __attribute__((aligned(16)));
1902 
1903     // XXX: we should have a special case when dwdx = 0
1904 
1905     // 32 pixels spans works okay. 16 is a lot better,
1906     // but hey, it's a software renderer...
1907     const uint32_t SPAN_BITS = 5;
1908     const uint32_t ys = c->iterators.y;
1909     const uint32_t xs = c->iterators.xl;
1910     const uint32_t x1 = c->iterators.xr;
1911 	const uint32_t xc = x1 - xs;
1912     uint32_t remainder = xc & ((1<<SPAN_BITS)-1);
1913     uint32_t numSpans = xc >> SPAN_BITS;
1914 
1915     const iterators_t& ci = c->iterators;
1916     int32_t w0 = (xs * c->shade.dwdx) + ci.ydwdy;
1917     int32_t q0 = gglRecipQ(w0, 30);
1918     const int iwscale = 32 - gglClz(q0);
1919 
1920     const int32_t dwdx = c->shade.dwdx << SPAN_BITS;
1921     int32_t xl = c->iterators.xl;
1922 
1923     // We process s & t with a loop to reduce the code size
1924     // (and i-cache pressure).
1925 
1926     for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1927         const texture_t& tmu = c->state.texture[i];
1928         if (!tmu.enable) continue;
1929         int32_t s =   tmu.shade.is0 +
1930                      (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) +
1931                      ((tmu.shade.idsdx + tmu.shade.idsdy)>>1);
1932         int32_t t =   tmu.shade.it0 +
1933                      (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) +
1934                      ((tmu.shade.idtdx + tmu.shade.idtdy)>>1);
1935         tc[i].sqtq.s  = s;
1936         tc[i].sqtq.t  = t;
1937         tc[i].sqtq.sq = gglMulx(s, q0, iwscale);
1938         tc[i].sqtq.tq = gglMulx(t, q0, iwscale);
1939     }
1940 
1941     int32_t span = 0;
1942     do {
1943         int32_t w1;
1944         if (ggl_likely(numSpans)) {
1945             w1 = w0 + dwdx;
1946         } else {
1947             if (remainder) {
1948                 // finish off the scanline...
1949                 span = remainder;
1950                 w1 = (c->shade.dwdx * span) + w0;
1951             } else {
1952                 break;
1953             }
1954         }
1955         int32_t q1 = gglRecipQ(w1, 30);
1956         for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1957             texture_t& tmu = c->state.texture[i];
1958             if (!tmu.enable) continue;
1959             texture_iterators_t& ti = tmu.iterators;
1960 
1961             for (int j=0 ; j<2 ; j++) {
1962                 int32_t v = tc[i].st[j].v;
1963                 if (span)   v += (tmu.shade.st[j].dx)*span;
1964                 else        v += (tmu.shade.st[j].dx)<<SPAN_BITS;
1965                 const int32_t v0 = tc[i].st[j].q;
1966                 const int32_t v1 = gglMulx(v, q1, iwscale);
1967                 int32_t dvdx = v1 - v0;
1968                 if (span)   dvdx /= span;
1969                 else        dvdx >>= SPAN_BITS;
1970                 tc[i].st[j].v = v;
1971                 tc[i].st[j].q = v1;
1972 
1973                 const int scale = ti.st[j].scale + (iwscale - 30);
1974                 if (scale >= 0) {
1975                     ti.st[j].ydvdy = v0   << scale;
1976                     ti.st[j].dvdx  = dvdx << scale;
1977                 } else {
1978                     ti.st[j].ydvdy = v0   >> -scale;
1979                     ti.st[j].dvdx  = dvdx >> -scale;
1980                 }
1981             }
1982             generated_tex_vars_t& gen = c->generated_vars.texture[i];
1983             gen.dsdx = ti.st[0].dvdx;
1984             gen.dtdx = ti.st[1].dvdx;
1985         }
1986         c->iterators.xl = xl;
1987         c->iterators.xr = xl = xl + (span ? span : (1<<SPAN_BITS));
1988         w0 = w1;
1989         q0 = q1;
1990         c->span(c);
1991     } while(numSpans--);
1992 }
1993 
scanline_perspective_single(context_t * c)1994 void scanline_perspective_single(context_t* c)
1995 {
1996     // 32 pixels spans works okay. 16 is a lot better,
1997     // but hey, it's a software renderer...
1998     const uint32_t SPAN_BITS = 5;
1999     const uint32_t ys = c->iterators.y;
2000     const uint32_t xs = c->iterators.xl;
2001     const uint32_t x1 = c->iterators.xr;
2002 	const uint32_t xc = x1 - xs;
2003 
2004     const iterators_t& ci = c->iterators;
2005     int32_t w = (xs * c->shade.dwdx) + ci.ydwdy;
2006     int32_t iw = gglRecipQ(w, 30);
2007     const int iwscale = 32 - gglClz(iw);
2008 
2009     const int i = 31 - gglClz(c->state.enabled_tmu);
2010     generated_tex_vars_t& gen = c->generated_vars.texture[i];
2011     texture_t& tmu = c->state.texture[i];
2012     texture_iterators_t& ti = tmu.iterators;
2013     const int sscale = ti.sscale + (iwscale - 30);
2014     const int tscale = ti.tscale + (iwscale - 30);
2015     int32_t s =   tmu.shade.is0 +
2016                  (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) +
2017                  ((tmu.shade.idsdx + tmu.shade.idsdy)>>1);
2018     int32_t t =   tmu.shade.it0 +
2019                  (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) +
2020                  ((tmu.shade.idtdx + tmu.shade.idtdy)>>1);
2021     int32_t s0 = gglMulx(s, iw, iwscale);
2022     int32_t t0 = gglMulx(t, iw, iwscale);
2023     int32_t xl = c->iterators.xl;
2024 
2025     int32_t sq, tq, dsdx, dtdx;
2026     int32_t premainder = xc & ((1<<SPAN_BITS)-1);
2027     uint32_t numSpans = xc >> SPAN_BITS;
2028     if (c->shade.dwdx == 0) {
2029         // XXX: we could choose to do this if the error is small enough
2030         numSpans = 0;
2031         premainder = xc;
2032         goto no_perspective;
2033     }
2034 
2035     if (premainder) {
2036         w += c->shade.dwdx   * premainder;
2037         iw = gglRecipQ(w, 30);
2038 no_perspective:
2039         s += tmu.shade.idsdx * premainder;
2040         t += tmu.shade.idtdx * premainder;
2041         sq = gglMulx(s, iw, iwscale);
2042         tq = gglMulx(t, iw, iwscale);
2043         dsdx = (sq - s0) / premainder;
2044         dtdx = (tq - t0) / premainder;
2045         c->iterators.xl = xl;
2046         c->iterators.xr = xl = xl + premainder;
2047         goto finish;
2048     }
2049 
2050     while (numSpans--) {
2051         w += c->shade.dwdx   << SPAN_BITS;
2052         s += tmu.shade.idsdx << SPAN_BITS;
2053         t += tmu.shade.idtdx << SPAN_BITS;
2054         iw = gglRecipQ(w, 30);
2055         sq = gglMulx(s, iw, iwscale);
2056         tq = gglMulx(t, iw, iwscale);
2057         dsdx = (sq - s0) >> SPAN_BITS;
2058         dtdx = (tq - t0) >> SPAN_BITS;
2059         c->iterators.xl = xl;
2060         c->iterators.xr = xl = xl + (1<<SPAN_BITS);
2061 finish:
2062         if (sscale >= 0) {
2063             ti.ydsdy = s0   << sscale;
2064             ti.dsdx  = dsdx << sscale;
2065         } else {
2066             ti.ydsdy = s0   >>-sscale;
2067             ti.dsdx  = dsdx >>-sscale;
2068         }
2069         if (tscale >= 0) {
2070             ti.ydtdy = t0   << tscale;
2071             ti.dtdx  = dtdx << tscale;
2072         } else {
2073             ti.ydtdy = t0   >>-tscale;
2074             ti.dtdx  = dtdx >>-tscale;
2075         }
2076         s0 = sq;
2077         t0 = tq;
2078         gen.dsdx = ti.dsdx;
2079         gen.dtdx = ti.dtdx;
2080         c->span(c);
2081     }
2082 }
2083 
2084 // ----------------------------------------------------------------------------
2085 
scanline_col32cb16blend(context_t * c)2086 void scanline_col32cb16blend(context_t* c)
2087 {
2088     int32_t x = c->iterators.xl;
2089     size_t ct = c->iterators.xr - x;
2090     int32_t y = c->iterators.y;
2091     surface_t* cb = &(c->state.buffers.color);
2092     union {
2093         uint16_t* dst;
2094         uint32_t* dst32;
2095     };
2096     dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2097 
2098 #if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__))
2099 #if defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
2100     scanline_col32cb16blend_neon(dst, &(c->packed8888), ct);
2101 #else  // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
2102     scanline_col32cb16blend_arm(dst, GGL_RGBA_TO_HOST(c->packed8888), ct);
2103 #endif // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
2104 #elif ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__aarch64__))
2105     scanline_col32cb16blend_arm64(dst, GGL_RGBA_TO_HOST(c->packed8888), ct);
2106 #else
2107     uint32_t s = GGL_RGBA_TO_HOST(c->packed8888);
2108     int sA = (s>>24);
2109     int f = 0x100 - (sA + (sA>>7));
2110     while (ct--) {
2111         uint16_t d = *dst;
2112         int dR = (d>>11)&0x1f;
2113         int dG = (d>>5)&0x3f;
2114         int dB = (d)&0x1f;
2115         int sR = (s >> (   3))&0x1F;
2116         int sG = (s >> ( 8+2))&0x3F;
2117         int sB = (s >> (16+3))&0x1F;
2118         sR += (f*dR)>>8;
2119         sG += (f*dG)>>8;
2120         sB += (f*dB)>>8;
2121         *dst++ = uint16_t((sR<<11)|(sG<<5)|sB);
2122     }
2123 #endif
2124 
2125 }
2126 
scanline_t32cb16(context_t * c)2127 void scanline_t32cb16(context_t* c)
2128 {
2129     int32_t x = c->iterators.xl;
2130     size_t ct = c->iterators.xr - x;
2131     int32_t y = c->iterators.y;
2132     surface_t* cb = &(c->state.buffers.color);
2133     union {
2134         uint16_t* dst;
2135         uint32_t* dst32;
2136     };
2137     dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2138 
2139     surface_t* tex = &(c->state.texture[0].surface);
2140     const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2141     const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2142     uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
2143     int sR, sG, sB;
2144     uint32_t s, d;
2145 
2146     if (ct==1 || uintptr_t(dst)&2) {
2147 last_one:
2148         s = GGL_RGBA_TO_HOST( *src++ );
2149         *dst++ = convertAbgr8888ToRgb565(s);
2150         ct--;
2151     }
2152 
2153     while (ct >= 2) {
2154 #if BYTE_ORDER == BIG_ENDIAN
2155         s = GGL_RGBA_TO_HOST( *src++ );
2156         d = convertAbgr8888ToRgb565_hi16(s);
2157 
2158         s = GGL_RGBA_TO_HOST( *src++ );
2159         d |= convertAbgr8888ToRgb565(s);
2160 #else
2161         s = GGL_RGBA_TO_HOST( *src++ );
2162         d = convertAbgr8888ToRgb565(s);
2163 
2164         s = GGL_RGBA_TO_HOST( *src++ );
2165         d |= convertAbgr8888ToRgb565(s) << 16;
2166 #endif
2167         *dst32++ = d;
2168         ct -= 2;
2169     }
2170 
2171     if (ct > 0) {
2172         goto last_one;
2173     }
2174 }
2175 
scanline_t32cb16blend(context_t * c)2176 void scanline_t32cb16blend(context_t* c)
2177 {
2178 #if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && (defined(__arm__) || (defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6) || defined(__aarch64__)))
2179     int32_t x = c->iterators.xl;
2180     size_t ct = c->iterators.xr - x;
2181     int32_t y = c->iterators.y;
2182     surface_t* cb = &(c->state.buffers.color);
2183     uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2184 
2185     surface_t* tex = &(c->state.texture[0].surface);
2186     const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2187     const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2188     uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
2189 
2190 #ifdef __arm__
2191     scanline_t32cb16blend_arm(dst, src, ct);
2192 #elif defined(__aarch64__)
2193     scanline_t32cb16blend_arm64(dst, src, ct);
2194 #elif defined(__mips__)
2195     scanline_t32cb16blend_mips(dst, src, ct);
2196 #endif
2197 #else
2198     dst_iterator16  di(c);
2199     horz_iterator32  hi(c);
2200     blender_32to16  bl(c);
2201     while (di.count--) {
2202         uint32_t s = hi.get_pixel32();
2203         bl.write(s, di.dst);
2204         di.dst++;
2205     }
2206 #endif
2207 }
2208 
scanline_t32cb16blend_srca(context_t * c)2209 void scanline_t32cb16blend_srca(context_t* c)
2210 {
2211     dst_iterator16  di(c);
2212     horz_iterator32  hi(c);
2213     blender_32to16_srcA  blender(c);
2214 
2215     while (di.count--) {
2216         uint32_t s = hi.get_pixel32();
2217         blender.write(s,di.dst);
2218         di.dst++;
2219     }
2220 }
2221 
scanline_t16cb16blend_clamp_mod(context_t * c)2222 void scanline_t16cb16blend_clamp_mod(context_t* c)
2223 {
2224     const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8);
2225     if (a == 0) {
2226         return;
2227     }
2228 
2229     if (a == 255) {
2230         scanline_t16cb16_clamp(c);
2231         return;
2232     }
2233 
2234     dst_iterator16  di(c);
2235     blender_16to16_modulate  blender(c);
2236     clamp_iterator  ci(c);
2237 
2238     while (di.count--) {
2239         uint16_t s = ci.get_pixel16();
2240         blender.write(s, di.dst);
2241         di.dst++;
2242     }
2243 }
2244 
scanline_memcpy(context_t * c)2245 void scanline_memcpy(context_t* c)
2246 {
2247     int32_t x = c->iterators.xl;
2248     size_t ct = c->iterators.xr - x;
2249     int32_t y = c->iterators.y;
2250     surface_t* cb = &(c->state.buffers.color);
2251     const GGLFormat* fp = &(c->formats[cb->format]);
2252     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2253                             (x + (cb->stride * y)) * fp->size;
2254 
2255     surface_t* tex = &(c->state.texture[0].surface);
2256     const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2257     const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2258     uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) +
2259                             (u + (tex->stride * v)) * fp->size;
2260 
2261     const size_t size = ct * fp->size;
2262     memcpy(dst, src, size);
2263 }
2264 
scanline_memset8(context_t * c)2265 void scanline_memset8(context_t* c)
2266 {
2267     int32_t x = c->iterators.xl;
2268     size_t ct = c->iterators.xr - x;
2269     int32_t y = c->iterators.y;
2270     surface_t* cb = &(c->state.buffers.color);
2271     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + (x+(cb->stride*y));
2272     uint32_t packed = c->packed;
2273     memset(dst, packed, ct);
2274 }
2275 
scanline_memset16(context_t * c)2276 void scanline_memset16(context_t* c)
2277 {
2278     int32_t x = c->iterators.xl;
2279     size_t ct = c->iterators.xr - x;
2280     int32_t y = c->iterators.y;
2281     surface_t* cb = &(c->state.buffers.color);
2282     uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2283     uint32_t packed = c->packed;
2284     android_memset16(dst, packed, ct*2);
2285 }
2286 
scanline_memset32(context_t * c)2287 void scanline_memset32(context_t* c)
2288 {
2289     int32_t x = c->iterators.xl;
2290     size_t ct = c->iterators.xr - x;
2291     int32_t y = c->iterators.y;
2292     surface_t* cb = &(c->state.buffers.color);
2293     uint32_t* dst = reinterpret_cast<uint32_t*>(cb->data) + (x+(cb->stride*y));
2294     uint32_t packed = GGL_HOST_TO_RGBA(c->packed);
2295     android_memset32(dst, packed, ct*4);
2296 }
2297 
scanline_clear(context_t * c)2298 void scanline_clear(context_t* c)
2299 {
2300     int32_t x = c->iterators.xl;
2301     size_t ct = c->iterators.xr - x;
2302     int32_t y = c->iterators.y;
2303     surface_t* cb = &(c->state.buffers.color);
2304     const GGLFormat* fp = &(c->formats[cb->format]);
2305     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2306                             (x + (cb->stride * y)) * fp->size;
2307     const size_t size = ct * fp->size;
2308     memset(dst, 0, size);
2309 }
2310 
scanline_set(context_t * c)2311 void scanline_set(context_t* c)
2312 {
2313     int32_t x = c->iterators.xl;
2314     size_t ct = c->iterators.xr - x;
2315     int32_t y = c->iterators.y;
2316     surface_t* cb = &(c->state.buffers.color);
2317     const GGLFormat* fp = &(c->formats[cb->format]);
2318     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2319                             (x + (cb->stride * y)) * fp->size;
2320     const size_t size = ct * fp->size;
2321     memset(dst, 0xFF, size);
2322 }
2323 
scanline_noop(context_t *)2324 void scanline_noop(context_t* /*c*/)
2325 {
2326 }
2327 
rect_generic(context_t * c,size_t yc)2328 void rect_generic(context_t* c, size_t yc)
2329 {
2330     do {
2331         c->scanline(c);
2332         c->step_y(c);
2333     } while (--yc);
2334 }
2335 
rect_memcpy(context_t * c,size_t yc)2336 void rect_memcpy(context_t* c, size_t yc)
2337 {
2338     int32_t x = c->iterators.xl;
2339     size_t ct = c->iterators.xr - x;
2340     int32_t y = c->iterators.y;
2341     surface_t* cb = &(c->state.buffers.color);
2342     const GGLFormat* fp = &(c->formats[cb->format]);
2343     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2344                             (x + (cb->stride * y)) * fp->size;
2345 
2346     surface_t* tex = &(c->state.texture[0].surface);
2347     const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2348     const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2349     uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) +
2350                             (u + (tex->stride * v)) * fp->size;
2351 
2352     if (cb->stride == tex->stride && ct == size_t(cb->stride)) {
2353         memcpy(dst, src, ct * fp->size * yc);
2354     } else {
2355         const size_t size = ct * fp->size;
2356         const size_t dbpr = cb->stride  * fp->size;
2357         const size_t sbpr = tex->stride * fp->size;
2358         do {
2359             memcpy(dst, src, size);
2360             dst += dbpr;
2361             src += sbpr;
2362         } while (--yc);
2363     }
2364 }
2365 // ----------------------------------------------------------------------------
2366 }; // namespace android
2367 
2368