1
2 /*--------------------------------------------------------------------*/
3 /*--- Handle remote gdb protocol. m_gdbserver.c ---*/
4 /*--------------------------------------------------------------------*/
5
6 /*
7 This file is part of Valgrind, a dynamic binary instrumentation
8 framework.
9
10 Copyright (C) 2011-2013 Philippe Waroquiers
11
12 This program is free software; you can redistribute it and/or
13 modify it under the terms of the GNU General Public License as
14 published by the Free Software Foundation; either version 2 of the
15 License, or (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful, but
18 WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
25 02111-1307, USA.
26
27 The GNU General Public License is contained in the file COPYING.
28 */
29
30 #include "pub_core_basics.h"
31 #include "pub_core_vki.h"
32 #include "pub_core_debuglog.h"
33 #include "pub_core_libcproc.h"
34 #include "pub_core_libcprint.h"
35 #include "pub_core_mallocfree.h"
36 #include "pub_core_threadstate.h"
37 #include "pub_core_gdbserver.h"
38 #include "pub_core_options.h"
39 #include "pub_core_transtab.h"
40 #include "pub_core_hashtable.h"
41 #include "pub_core_xarray.h"
42 #include "pub_core_libcassert.h"
43 #include "pub_core_libcbase.h"
44 #include "pub_core_libcsignal.h"
45 #include "pub_core_signals.h"
46 #include "pub_core_machine.h" // VG_(fnptr_to_fnentry)
47 #include "pub_core_debuginfo.h"
48 #include "pub_core_scheduler.h"
49 #include "pub_core_syswrap.h"
50
51 #include "server.h"
52
53 Int VG_(dyn_vgdb_error);
54
55 /* forward declarations */
56 VG_REGPARM(1)
57 void VG_(helperc_CallDebugger) ( HWord iaddr );
58 VG_REGPARM(1)
59 void VG_(helperc_invalidate_if_not_gdbserved) ( Addr addr );
60 static void invalidate_current_ip (ThreadId tid, const HChar *who);
61
62 /* reasons of call to call_gdbserver. */
63 typedef
64 enum {
65 init_reason, // initialises gdbserver resources
66 vgdb_reason, // gdbserver invocation by vgdb doing ptrace
67 core_reason, // gdbserver invocation by core (e.g. error encountered)
68 break_reason, // break encountered
69 watch_reason, // watchpoint detected by tool
70 signal_reason, // signal encountered
71 exit_reason} // process terminated
72 CallReason;
73
ppCallReason(CallReason reason)74 static const HChar* ppCallReason(CallReason reason)
75 {
76 switch (reason) {
77 case init_reason: return "init_reason";
78 case vgdb_reason: return "vgdb_reason";
79 case core_reason: return "core_reason";
80 case break_reason: return "break_reason";
81 case watch_reason: return "watch_reason";
82 case signal_reason: return "signal_reason";
83 case exit_reason: return "exit_reason";
84 default: vg_assert (0);
85 }
86 }
87
88 /* An instruction instrumented for gdbserver looks like this:
89 1. Ist_Mark (0x1234)
90 2. Put (IP, 0x1234)
91 3. helperc_CallDebugger (0x1234)
92 This will give control to gdb if there is a break at 0x1234
93 or if we are single stepping
94 4. ... here the real IR for the instruction at 0x1234
95
96 When there is a break at 0x1234:
97 if user does "continue" or "step" or similar,
98 then - the call to debugger returns
99 - valgrind executes at 3. the real IR(s) for 0x1234
100
101 if as part of helperc_CallDebugger, the user calls
102 some code in gdb e.g print hello_world()
103 then - gdb prepares a dummy stack frame with a specific
104 return address (typically it uses _start) and
105 inserts a break at this address
106 - gdb then puts in EIP the address of hello_world()
107 - gdb then continues (so the helperc_CallDebugger
108 returns)
109 - call_gdbserver() function will then return the
110 control to the scheduler (using VG_MINIMAL_LONGJMP)
111 to allow the block of the new EIP
112 to be executed.
113 - hello_world code is executed.
114 - when hello_world() returns, it returns to
115 _start and encounters the break at _start.
116 - gdb then removes this break, put 0x1234 in EIP
117 and does a "step". This causes to jump from
118 _start to 0x1234, where the call to
119 helperc_CallDebugger is redone.
120 - This is all ok, the user can then give new gdb
121 commands.
122
123 However, when continue is given, address 0x1234 is to
124 be executed: gdb gives a single step, which must not
125 report again the break at 0x1234. To avoid a 2nd report
126 of the same break, the below tells that the next
127 helperc_CallDebugger call must ignore a break/stop at
128 this address.
129 */
130 static Addr ignore_this_break_once = 0;
131
132
133 static void call_gdbserver ( ThreadId tid , CallReason reason);
134
135 /* Describes the address addr (for debugging/printing purposes).
136 Last two results are kept. A third call will replace the
137 oldest result. */
sym(Addr addr,Bool is_code)138 static HChar* sym (Addr addr, Bool is_code)
139 {
140 static HChar *buf[2];
141 static int w = 0;
142 PtrdiffT offset;
143 if (w == 2) w = 0;
144
145 if (is_code) {
146 const HChar *name;
147 name = VG_(describe_IP) (addr, NULL);
148 if (buf[w]) VG_(free)(buf[w]);
149 buf[w] = VG_(strdup)("gdbserver sym", name);
150 } else {
151 const HChar *name;
152 VG_(get_datasym_and_offset) (addr, &name, &offset);
153 if (buf[w]) VG_(free)(buf[w]);
154 buf[w] = VG_(strdup)("gdbserver sym", name);
155 }
156 return buf[w++];
157 }
158
159 /* Each time gdbserver is called, gdbserver_called is incremented
160 gdbserver_exited is incremented when gdbserver is asked to exit */
161 static int gdbserver_called = 0;
162 static int gdbserver_exited = 0;
163
164 /* alloc and free functions for xarray and similar. */
gs_alloc(const HChar * cc,SizeT sz)165 static void* gs_alloc (const HChar* cc, SizeT sz)
166 {
167 return VG_(malloc)(cc, sz);
168 }
gs_free(void * ptr)169 static void gs_free (void* ptr)
170 {
171 VG_(free)(ptr);
172 }
173
174 typedef
175 enum {
176 GS_break,
177 GS_jump
178 }
179 GS_Kind;
180
181 typedef
182 struct _GS_Address {
183 struct _GS_Address* next;
184 Addr addr;
185 GS_Kind kind;
186 }
187 GS_Address;
188
189 /* gs_addresses contains a list of all addresses that have been invalidated
190 because they have been (or must be) instrumented for gdbserver.
191 An entry is added in this table when there is a break at this
192 address (kind == GS_break) or if this address is the jump target of an
193 exit of a block that has been instrumented for gdbserver while
194 single stepping (kind == GS_jump).
195 When gdbserver is not single stepping anymore, all GS_jump entries
196 are removed, their translations are invalidated.
197
198 Note for ARM: addr in GS_Address is the value without the thumb bit set.
199 */
200 static VgHashTable *gs_addresses = NULL;
201
202 // Transform addr in the form stored in the list of addresses.
203 // For the ARM architecture, we store it with the thumb bit set to 0.
HT_addr(Addr addr)204 static Addr HT_addr ( Addr addr )
205 {
206 #if defined(VGA_arm)
207 return addr & ~(Addr)1;
208 #else
209 return addr;
210 #endif
211 }
212
add_gs_address(Addr addr,GS_Kind kind,const HChar * from)213 static void add_gs_address (Addr addr, GS_Kind kind, const HChar* from)
214 {
215 GS_Address *p;
216
217 p = VG_(malloc)(from, sizeof(GS_Address));
218 p->addr = HT_addr (addr);
219 p->kind = kind;
220 VG_(HT_add_node)(gs_addresses, p);
221 /* It should be sufficient to discard a range of 1.
222 We use 2 to ensure the below is not sensitive to the presence
223 of thumb bit in the range of addresses to discard.
224 No need to discard translations for Vg_VgdbFull as all
225 instructions are in any case vgdb-instrumented. */
226 if (VG_(clo_vgdb) != Vg_VgdbFull)
227 VG_(discard_translations) (addr, 2, from);
228 }
229
remove_gs_address(GS_Address * g,const HChar * from)230 static void remove_gs_address (GS_Address* g, const HChar* from)
231 {
232 VG_(HT_remove) (gs_addresses, g->addr);
233 // See add_gs_address for the explanation for condition and the range 2 below.
234 if (VG_(clo_vgdb) != Vg_VgdbFull)
235 VG_(discard_translations) (g->addr, 2, from);
236 VG_(free) (g);
237 }
238
VG_(ppPointKind)239 const HChar* VG_(ppPointKind) (PointKind kind)
240 {
241 switch(kind) {
242 case software_breakpoint: return "software_breakpoint";
243 case hardware_breakpoint: return "hardware_breakpoint";
244 case write_watchpoint: return "write_watchpoint";
245 case read_watchpoint: return "read_watchpoint";
246 case access_watchpoint: return "access_watchpoint";
247 default: return "???wrong PointKind";
248 }
249 }
250
251 typedef
252 struct _GS_Watch {
253 Addr addr;
254 SizeT len;
255 PointKind kind;
256 }
257 GS_Watch;
258
259 /* gs_watches contains a list of all addresses+len+kind that are being
260 watched. */
261 static XArray* gs_watches = NULL;
262
index_gs_watches(Word i)263 static inline GS_Watch* index_gs_watches(Word i)
264 {
265 return *(GS_Watch **) VG_(indexXA) (gs_watches, i);
266 }
267
268 /* Returns the GS_Watch matching addr/len/kind and sets *g_ix to its
269 position in gs_watches.
270 If no matching GS_Watch is found, returns NULL and sets g_ix to -1. */
lookup_gs_watch(Addr addr,SizeT len,PointKind kind,Word * g_ix)271 static GS_Watch* lookup_gs_watch (Addr addr, SizeT len, PointKind kind,
272 Word* g_ix)
273 {
274 const Word n_elems = VG_(sizeXA) (gs_watches);
275 Word i;
276 GS_Watch *g;
277
278 /* Linear search. If we have many watches, this might be optimised
279 by having the array sorted and using VG_(lookupXA) */
280 for (i = 0; i < n_elems; i++) {
281 g = index_gs_watches(i);
282 if (g->addr == addr && g->len == len && g->kind == kind) {
283 // Found.
284 *g_ix = i;
285 return g;
286 }
287 }
288
289 // Not found.
290 *g_ix = -1;
291 return NULL;
292 }
293
294
295 /* protocol spec tells the below must be idempotent. */
breakpoint(Bool insert,CORE_ADDR addr)296 static void breakpoint (Bool insert, CORE_ADDR addr)
297 {
298 GS_Address *g;
299
300 g = VG_(HT_lookup) (gs_addresses, (UWord)HT_addr(addr));
301 if (insert) {
302 /* insert a breakpoint at addr or upgrade its kind */
303 if (g == NULL) {
304 add_gs_address (addr, GS_break, "m_gdbserver breakpoint insert");
305 } else {
306 /* already gdbserved. Normally, it must be because of a jump.
307 However, due to idempotent or if connection with gdb was
308 lost (kept breaks from the previous gdb), if already existing,
309 we just upgrade its kind. */
310 g->kind = GS_break;
311 }
312 } else {
313 /* delete a breakpoint at addr or downgrade its kind */
314 if (g != NULL && g->kind == GS_break) {
315 if (valgrind_single_stepping()) {
316 /* keep gdbserved instrumentation while single stepping */
317 g->kind = GS_jump;
318 } else {
319 remove_gs_address (g, "m_gdbserver breakpoint remove");
320 }
321 } else {
322 dlog (1, "remove break addr %p %s\n",
323 C2v(addr), (g == NULL ?
324 "NULL" :
325 (g->kind == GS_jump ? "GS_jump" : "GS_break")));
326 }
327 }
328 }
329
330 static Bool (*tool_watchpoint) (PointKind kind,
331 Bool insert,
332 Addr addr,
333 SizeT len) = NULL;
VG_(needs_watchpoint)334 void VG_(needs_watchpoint) (Bool (*watchpoint) (PointKind kind,
335 Bool insert,
336 Addr addr,
337 SizeT len))
338 {
339 tool_watchpoint = watchpoint;
340 }
341
VG_(gdbserver_point)342 Bool VG_(gdbserver_point) (PointKind kind, Bool insert,
343 CORE_ADDR addr, int len)
344 {
345 Bool res;
346 GS_Watch *g;
347 Word g_ix;
348 Bool is_code = kind == software_breakpoint || kind == hardware_breakpoint;
349
350 dlog(1, "%s %s at addr %p %s\n",
351 (insert ? "insert" : "remove"),
352 VG_(ppPointKind) (kind),
353 C2v(addr),
354 sym(addr, is_code));
355
356 if (is_code) {
357 breakpoint (insert, addr);
358 return True;
359 }
360
361 vg_assert (kind == access_watchpoint
362 || kind == read_watchpoint
363 || kind == write_watchpoint);
364
365 if (tool_watchpoint == NULL)
366 return False;
367
368 res = (*tool_watchpoint) (kind, insert, addr, len);
369 if (!res)
370 return False; /* error or unsupported */
371
372 // Protocol says insert/remove must be idempotent.
373 // So, we just ignore double insert or (supposed) double delete.
374
375 g = lookup_gs_watch (addr, len, kind, &g_ix);
376 if (insert) {
377 if (g == NULL) {
378 g = VG_(malloc)("gdbserver_point watchpoint", sizeof(GS_Watch));
379 g->addr = addr;
380 g->len = len;
381 g->kind = kind;
382 VG_(addToXA)(gs_watches, &g);
383 } else {
384 dlog(1,
385 "VG_(gdbserver_point) addr %p len %d kind %s already inserted\n",
386 C2v(addr), len, VG_(ppPointKind) (kind));
387 }
388 } else {
389 if (g != NULL) {
390 VG_(removeIndexXA) (gs_watches, g_ix);
391 VG_(free) (g);
392 } else {
393 dlog(1,
394 "VG_(gdbserver_point) addr %p len %d kind %s already deleted?\n",
395 C2v(addr), len, VG_(ppPointKind) (kind));
396 }
397 }
398 return True;
399 }
400
VG_(has_gdbserver_breakpoint)401 Bool VG_(has_gdbserver_breakpoint) (Addr addr)
402 {
403 GS_Address *g;
404 if (!gdbserver_called)
405 return False;
406 g = VG_(HT_lookup) (gs_addresses, (UWord)HT_addr(addr));
407 return (g != NULL && g->kind == GS_break);
408 }
409
VG_(is_watched)410 Bool VG_(is_watched)(PointKind kind, Addr addr, Int szB)
411 {
412 Word n_elems;
413 GS_Watch* g;
414 Word i;
415 Bool watched = False;
416 const ThreadId tid = VG_(running_tid);
417
418 if (!gdbserver_called)
419 return False;
420
421 n_elems = VG_(sizeXA) (gs_watches);
422
423 Addr to = addr + szB; // semi-open interval [addr, to[
424
425 vg_assert (kind == access_watchpoint
426 || kind == read_watchpoint
427 || kind == write_watchpoint);
428 dlog(1, "tid %d VG_(is_watched) %s addr %p szB %d\n",
429 tid, VG_(ppPointKind) (kind), C2v(addr), szB);
430
431 for (i = 0; i < n_elems; i++) {
432 g = index_gs_watches(i);
433 switch (g->kind) {
434 case software_breakpoint:
435 case hardware_breakpoint:
436 break;
437 case access_watchpoint:
438 case read_watchpoint:
439 case write_watchpoint:
440 if (to <= g->addr || addr >= (g->addr + g->len))
441 /* If no overlap, examine next watchpoint: */
442 continue;
443
444 watched = True; /* We have an overlap */
445
446 /* call gdbserver if access kind reported by the tool
447 matches the watchpoint kind. */
448 if (kind == access_watchpoint
449 || g->kind == access_watchpoint
450 || g->kind == kind) {
451 /* Watchpoint encountered.
452 If this is a read watchpoint, we directly call gdbserver
453 to report it to gdb.
454 Otherwise, for a write watchpoint, we have to finish
455 the instruction so as to modify the value.
456 If we do not finish the instruction, then gdb sees no
457 value change and continues.
458 For a read watchpoint, we better call gdbserver directly:
459 in case the current block is not gdbserved, Valgrind
460 will execute instructions till the next block. */
461
462 /* set the watchpoint stop address to the first read or written. */
463 if (g->addr <= addr) {
464 VG_(set_watchpoint_stop_address) (addr);
465 } else {
466 VG_(set_watchpoint_stop_address) (g->addr);
467 }
468
469 if (kind == write_watchpoint) {
470 /* Let Valgrind stop as early as possible after this instruction
471 by switching to Single Stepping mode. */
472 valgrind_set_single_stepping (True);
473 invalidate_current_ip (tid, "m_gdbserver write watchpoint");
474 } else {
475 call_gdbserver (tid, watch_reason);
476 VG_(set_watchpoint_stop_address) ((Addr) 0);
477 }
478 return True; // we are watched here.
479 }
480 break;
481 default:
482 vg_assert (0);
483 }
484 }
485 return watched;
486 }
487
488 /* Returns the reason for which gdbserver instrumentation is needed */
VG_(gdbserver_instrumentation_needed)489 static VgVgdb VG_(gdbserver_instrumentation_needed) (const VexGuestExtents* vge)
490 {
491 GS_Address* g;
492 int e;
493
494 if (!gdbserver_called)
495 return Vg_VgdbNo;
496
497 if (valgrind_single_stepping()) {
498 dlog(2, "gdbserver_instrumentation_needed due to single stepping\n");
499 return Vg_VgdbYes;
500 }
501
502 if (VG_(clo_vgdb) == Vg_VgdbYes && VG_(HT_count_nodes) (gs_addresses) == 0)
503 return Vg_VgdbNo;
504
505 /* We assume we do not have a huge nr of breakpoints.
506 Otherwise, we need something more efficient e.g.
507 a sorted list of breakpoints or associate extents to it or ...
508 */
509 VG_(HT_ResetIter) (gs_addresses);
510 while ((g = VG_(HT_Next) (gs_addresses))) {
511 for (e = 0; e < vge->n_used; e++) {
512 if (g->addr >= HT_addr(vge->base[e])
513 && g->addr < HT_addr(vge->base[e]) + vge->len[e]) {
514 dlog(2,
515 "gdbserver_instrumentation_needed %p %s reason %s\n",
516 C2v(g->addr), sym(g->addr, /* is_code */ True),
517 (g->kind == GS_jump ? "GS_jump" : "GS_break"));
518 return Vg_VgdbYes;
519 }
520 }
521 }
522
523 if (VG_(clo_vgdb) == Vg_VgdbFull) {
524 dlog(4, "gdbserver_instrumentation_needed"
525 " due to VG_(clo_vgdb) == Vg_VgdbFull\n");
526 return Vg_VgdbFull;
527 }
528
529
530 return Vg_VgdbNo;
531 }
532
533 // Clear gdbserved_addresses in gs_addresses.
534 // If clear_only_jumps, clears only the addresses that are served
535 // for jump reasons.
536 // Otherwise, clear all the addresses.
537 // Cleared addresses are invalidated so as to have them re-translated.
clear_gdbserved_addresses(Bool clear_only_jumps)538 static void clear_gdbserved_addresses(Bool clear_only_jumps)
539 {
540 GS_Address** ag;
541 UInt n_elems;
542 int i;
543
544 dlog(1,
545 "clear_gdbserved_addresses: scanning hash table nodes %d\n",
546 VG_(HT_count_nodes) (gs_addresses));
547 ag = (GS_Address**) VG_(HT_to_array) (gs_addresses, &n_elems);
548 for (i = 0; i < n_elems; i++)
549 if (!clear_only_jumps || ag[i]->kind == GS_jump)
550 remove_gs_address (ag[i], "clear_gdbserved_addresses");
551 VG_(free) (ag);
552 }
553
554 // Clear watched addressed in gs_watches, delete gs_watches.
clear_watched_addresses(void)555 static void clear_watched_addresses(void)
556 {
557 GS_Watch* g;
558 const Word n_elems = VG_(sizeXA) (gs_watches);
559 Word i;
560
561 dlog(1,
562 "clear_watched_addresses: %ld elements\n",
563 n_elems);
564
565 for (i = 0; i < n_elems; i++) {
566 g = index_gs_watches(i);
567 if (!VG_(gdbserver_point) (g->kind,
568 /* insert */ False,
569 g->addr,
570 g->len)) {
571 vg_assert (0);
572 }
573 }
574
575 VG_(deleteXA) (gs_watches);
576 gs_watches = NULL;
577 }
578
invalidate_if_jump_not_yet_gdbserved(Addr addr,const HChar * from)579 static void invalidate_if_jump_not_yet_gdbserved (Addr addr, const HChar* from)
580 {
581 if (VG_(HT_lookup) (gs_addresses, (UWord)HT_addr(addr)))
582 return;
583 add_gs_address (addr, GS_jump, from);
584 }
585
invalidate_current_ip(ThreadId tid,const HChar * who)586 static void invalidate_current_ip (ThreadId tid, const HChar *who)
587 {
588 invalidate_if_jump_not_yet_gdbserved (VG_(get_IP) (tid), who);
589 }
590
VG_(gdbserver_init_done)591 Bool VG_(gdbserver_init_done) (void)
592 {
593 return gdbserver_called > 0;
594 }
595
VG_(gdbserver_stop_at)596 Bool VG_(gdbserver_stop_at) (VgdbStopAt stopat)
597 {
598 return gdbserver_called > 0 && VgdbStopAtiS(stopat, VG_(clo_vgdb_stop_at));
599 }
600
VG_(gdbserver_prerun_action)601 void VG_(gdbserver_prerun_action) (ThreadId tid)
602 {
603 // Using VG_(dyn_vgdb_error) allows the user to control if gdbserver
604 // stops after a fork.
605 if (VG_(dyn_vgdb_error) == 0
606 || VgdbStopAtiS(VgdbStopAt_Startup, VG_(clo_vgdb_stop_at))) {
607 /* The below call allows gdb to attach at startup
608 before the first guest instruction is executed. */
609 VG_(umsg)("(action at startup) vgdb me ... \n");
610 VG_(gdbserver)(tid);
611 } else {
612 /* User has activated gdbserver => initialize now the FIFOs
613 to let vgdb/gdb contact us either via the scheduler poll
614 mechanism or via vgdb ptrace-ing valgrind. */
615 if (VG_(gdbserver_activity) (tid))
616 VG_(gdbserver) (tid);
617 }
618 }
619
620 /* when fork is done, various cleanup is needed in the child process.
621 In particular, child must have its own connection to avoid stealing
622 data from its parent */
gdbserver_cleanup_in_child_after_fork(ThreadId me)623 static void gdbserver_cleanup_in_child_after_fork(ThreadId me)
624 {
625 dlog(1, "thread %d gdbserver_cleanup_in_child_after_fork pid %d\n",
626 me, VG_(getpid) ());
627
628 /* finish connection inheritated from parent */
629 remote_finish(reset_after_fork);
630
631 /* ensure next call to gdbserver will be considered as a brand
632 new call that will initialize a fresh gdbserver. */
633 if (gdbserver_called) {
634 gdbserver_called = 0;
635 vg_assert (gs_addresses != NULL);
636 vg_assert (gs_watches != NULL);
637 clear_gdbserved_addresses(/* clear only jumps */ False);
638 VG_(HT_destruct) (gs_addresses, VG_(free));
639 gs_addresses = NULL;
640 clear_watched_addresses();
641 } else {
642 vg_assert (gs_addresses == NULL);
643 vg_assert (gs_watches == NULL);
644 }
645
646
647 if (VG_(clo_trace_children)) {
648 VG_(gdbserver_prerun_action) (me);
649 }
650 }
651
652 /* If reason is init_reason, creates the connection resources (e.g.
653 the FIFOs) to allow a gdb connection to be detected by polling
654 using remote_desc_activity.
655 Otherwise (other reasons):
656 If connection with gdb not yet opened, opens the connection with gdb.
657 reads gdb remote protocol packets and executes the requested commands.
658 */
call_gdbserver(ThreadId tid,CallReason reason)659 static void call_gdbserver ( ThreadId tid , CallReason reason)
660 {
661 ThreadState* tst = VG_(get_ThreadState)(tid);
662 int stepping;
663 Addr saved_pc;
664
665 dlog(1,
666 "entering call_gdbserver %s ... pid %d tid %d status %s "
667 "sched_jmpbuf_valid %d\n",
668 ppCallReason (reason),
669 VG_(getpid) (), tid, VG_(name_of_ThreadStatus)(tst->status),
670 tst->sched_jmpbuf_valid);
671
672 /* If we are about to die, then just run server_main() once to get
673 the resume reply out and return immediately because most of the state
674 of this tid and process is about to be torn down. */
675 if (reason == exit_reason) {
676 server_main();
677 return;
678 }
679
680 vg_assert(VG_(is_valid_tid)(tid));
681 saved_pc = VG_(get_IP) (tid);
682
683 if (gdbserver_exited) {
684 dlog(0, "call_gdbserver called when gdbserver_exited %d\n",
685 gdbserver_exited);
686 return;
687 }
688
689 if (gdbserver_called == 0) {
690 vg_assert (gs_addresses == NULL);
691 vg_assert (gs_watches == NULL);
692 gs_addresses = VG_(HT_construct)( "gdbserved_addresses" );
693 gs_watches = VG_(newXA)(gs_alloc,
694 "gdbserved_watches",
695 gs_free,
696 sizeof(GS_Watch*));
697 VG_(atfork)(NULL, NULL, gdbserver_cleanup_in_child_after_fork);
698 }
699 vg_assert (gs_addresses != NULL);
700 vg_assert (gs_watches != NULL);
701
702 gdbserver_called++;
703
704 /* call gdbserver_init if this is the first call to gdbserver. */
705 if (gdbserver_called == 1)
706 gdbserver_init();
707
708 if (reason == init_reason || gdbserver_called == 1)
709 remote_open(VG_(clo_vgdb_prefix));
710
711 /* if the call reason is to initialize, then return control to
712 valgrind. After this initialization, gdbserver will be called
713 again either if there is an error detected by valgrind or
714 if vgdb sends data to the valgrind process. */
715 if (reason == init_reason) {
716 return;
717 }
718
719 stepping = valgrind_single_stepping();
720
721 server_main();
722
723 ignore_this_break_once = valgrind_get_ignore_break_once();
724 if (ignore_this_break_once)
725 dlog(1, "!!! will ignore_this_break_once %s\n",
726 sym(ignore_this_break_once, /* is_code */ True));
727
728
729 if (valgrind_single_stepping()) {
730 /* we are single stepping. If we were not stepping on entry,
731 then invalidate the current program counter so as to properly
732 do single step. In case the program counter was changed by
733 gdb, this will also invalidate the target address we will
734 jump to. */
735 if (!stepping && tid != 0) {
736 invalidate_current_ip (tid, "m_gdbserver single step");
737 }
738 } else {
739 /* We are not single stepping. If we were stepping on entry,
740 then clear the gdbserved addresses. This will cause all
741 these gdbserved blocks to be invalidated so that they can be
742 re-translated without being gdbserved. */
743 if (stepping)
744 clear_gdbserved_addresses(/* clear only jumps */ True);
745 }
746
747 /* can't do sanity check at beginning. At least the stack
748 check is not yet possible. */
749 if (gdbserver_called > 1)
750 VG_(sanity_check_general) (/* force_expensive */ False);
751
752 /* If the PC has been changed by gdb, then we VG_MINIMAL_LONGJMP to
753 the scheduler to execute the block of the new PC.
754 Otherwise we just return to continue executing the
755 current block. */
756 if (VG_(get_IP) (tid) != saved_pc) {
757 dlog(1, "tid %d %s PC changed from %s to %s\n",
758 tid, VG_(name_of_ThreadStatus) (tst->status),
759 sym(saved_pc, /* is_code */ True),
760 sym(VG_(get_IP) (tid), /* is_code */ True));
761 if (tst->status == VgTs_Yielding) {
762 SysRes sres;
763 VG_(memset)(&sres, 0, sizeof(SysRes));
764 VG_(acquire_BigLock)(tid, "gdbsrv VG_MINIMAL_LONGJMP");
765 }
766 if (tst->sched_jmpbuf_valid) {
767 /* resume scheduler */
768 VG_MINIMAL_LONGJMP(tst->sched_jmpbuf);
769 }
770 /* else continue to run */
771 }
772 /* continue to run */
773 }
774
775 /* busy > 0 when gdbserver is currently being called.
776 busy is used to to avoid vgdb invoking gdbserver
777 while gdbserver by Valgrind. */
778 static volatile int busy = 0;
779
VG_(gdbserver)780 void VG_(gdbserver) ( ThreadId tid )
781 {
782 busy++;
783 /* called by the rest of valgrind for
784 --vgdb-error=0 reason
785 or by scheduler "poll/debug/interrupt" reason
786 or to terminate. */
787 if (tid != 0) {
788 call_gdbserver (tid, core_reason);
789 } else {
790 if (gdbserver_called == 0) {
791 dlog(1, "VG_(gdbserver) called to terminate, nothing to terminate\n");
792 } else if (gdbserver_exited) {
793 dlog(0, "VG_(gdbserver) called to terminate again %d\n",
794 gdbserver_exited);
795 } else {
796 gdbserver_terminate();
797 gdbserver_exited++;
798 }
799 }
800 busy--;
801 }
802
803 // nr of invoke_gdbserver while gdbserver is already executing.
804 static int interrupts_while_busy = 0;
805
806 // nr of invoke_gdbserver while gdbserver is not executing.
807 static int interrupts_non_busy = 0;
808
809 // nr of invoke_gdbserver when some threads are not interruptible.
810 static int interrupts_non_interruptible = 0;
811
812 /* When all threads are blocked in a system call, the Valgrind
813 scheduler cannot poll the shared memory for gdbserver activity. In
814 such a case, vgdb will force the invokation of gdbserver using
815 ptrace. To do that, vgdb 'pushes' a call to invoke_gdbserver
816 on the stack using ptrace. invoke_gdbserver must not return.
817 Instead, it must call give_control_back_to_vgdb.
818 vgdb expects to receive a SIGSTOP, which this function generates.
819 When vgdb gets this SIGSTOP, it knows invoke_gdbserver call
820 is finished and can reset the Valgrind process in the state prior to
821 the 'pushed call' (using ptrace again).
822 This all works well. However, the user must avoid
823 'kill-9ing' vgdb during such a pushed call, otherwise
824 the SIGSTOP generated below will be seen by the Valgrind core,
825 instead of being handled by vgdb. The OS will then handle the SIGSTOP
826 by stopping the Valgrind process.
827 We use SIGSTOP as this process cannot be masked. */
828
give_control_back_to_vgdb(void)829 static void give_control_back_to_vgdb(void)
830 {
831 /* cause a SIGSTOP to be sent to ourself, so that vgdb takes control.
832 vgdb will then restore the stack so as to resume the activity
833 before the ptrace (typically do_syscall_WRK). */
834 if (VG_(kill)(VG_(getpid)(), VKI_SIGSTOP) != 0)
835 vg_assert2(0, "SIGSTOP for vgdb could not be generated\n");
836
837 /* If we arrive here, it means a call was pushed on the stack
838 by vgdb, but during this call, vgdb and/or connection
839 died. Alternatively, it is a bug in the vgdb<=>Valgrind gdbserver
840 ptrace handling. */
841 vg_assert2(0,
842 "vgdb did not took control. Did you kill vgdb ?\n"
843 "busy %d vgdb_interrupted_tid %d\n",
844 busy, vgdb_interrupted_tid);
845 }
846
847 /* Using ptrace calls, vgdb will force an invocation of gdbserver.
848 VG_(invoke_gdbserver) is the entry point called through the
849 vgdb ptrace technique. */
VG_(invoke_gdbserver)850 void VG_(invoke_gdbserver) ( int check )
851 {
852 /* ******* Avoid non-reentrant function call from here .....
853 till the ".... till here" below. */
854
855 /* We need to determine the state of the various threads to decide
856 if we directly invoke gdbserver or if we rather indicate to the
857 scheduler to invoke the gdbserver. To decide that, it is
858 critical to avoid any "coregrind" function call as the ptrace
859 might have stopped the process in the middle of this (possibly)
860 non-rentrant function. So, it is only when all threads are in
861 an "interruptible" state that we can safely invoke
862 gdbserver. Otherwise, we let the valgrind scheduler invoke
863 gdbserver at the next poll. This poll will be made very soon
864 thanks to a call to VG_(force_vgdb_poll). */
865 int n_tid;
866
867 vg_assert (check == 0x8BADF00D);
868
869 if (busy) {
870 interrupts_while_busy++;
871 give_control_back_to_vgdb();
872 }
873 interrupts_non_busy++;
874
875 /* check if all threads are in an "interruptible" state. If yes,
876 we invoke gdbserver. Otherwise, we tell the scheduler to wake up
877 asap. */
878 for (n_tid = 1; n_tid < VG_N_THREADS; n_tid++) {
879 switch (VG_(threads)[n_tid].status) {
880 /* interruptible states. */
881 case VgTs_WaitSys:
882 case VgTs_Yielding:
883 if (vgdb_interrupted_tid == 0) vgdb_interrupted_tid = n_tid;
884 break;
885
886 case VgTs_Empty:
887 case VgTs_Zombie:
888 break;
889
890 /* non interruptible states. */
891 case VgTs_Init:
892 case VgTs_Runnable:
893 interrupts_non_interruptible++;
894 VG_(force_vgdb_poll) ();
895 give_control_back_to_vgdb();
896
897 default: vg_assert(0);
898 }
899 }
900
901 /* .... till here.
902 From here onwards, function calls are ok: it is
903 safe to call valgrind core functions: all threads are blocked in
904 a system call or are yielding or ... */
905 dlog(1, "invoke_gdbserver running_tid %d vgdb_interrupted_tid %d\n",
906 VG_(running_tid), vgdb_interrupted_tid);
907 call_gdbserver (vgdb_interrupted_tid, vgdb_reason);
908 vgdb_interrupted_tid = 0;
909 dlog(1,
910 "exit invoke_gdbserver running_tid %d\n", VG_(running_tid));
911 give_control_back_to_vgdb();
912
913 vg_assert2(0, "end of invoke_gdbserver reached");
914
915 }
916
VG_(gdbserver_activity)917 Bool VG_(gdbserver_activity) (ThreadId tid)
918 {
919 Bool ret;
920 busy++;
921 if (!gdbserver_called)
922 call_gdbserver (tid, init_reason);
923 switch (remote_desc_activity("VG_(gdbserver_activity)")) {
924 case 0: ret = False; break;
925 case 1: ret = True; break;
926 case 2:
927 remote_finish(reset_after_error);
928 call_gdbserver (tid, init_reason);
929 ret = False;
930 break;
931 default: vg_assert (0);
932 }
933 busy--;
934 return ret;
935 }
936
dlog_signal(const HChar * who,const vki_siginfo_t * info,ThreadId tid)937 static void dlog_signal (const HChar *who, const vki_siginfo_t *info,
938 ThreadId tid)
939 {
940 dlog(1, "VG core calling %s "
941 "vki_nr %d %s gdb_nr %d %s tid %d\n",
942 who,
943 info->si_signo, VG_(signame)(info->si_signo),
944 target_signal_from_host (info->si_signo),
945 target_signal_to_name(target_signal_from_host (info->si_signo)),
946 tid);
947
948 }
949
VG_(gdbserver_report_fatal_signal)950 void VG_(gdbserver_report_fatal_signal) (const vki_siginfo_t *info,
951 ThreadId tid)
952 {
953 dlog_signal("VG_(gdbserver_report_fatal_signal)", info, tid);
954
955 if (remote_connected()) {
956 dlog(1, "already connected, assuming already reported\n");
957 return;
958 }
959
960 VG_(umsg)("(action on fatal signal) vgdb me ... \n");
961
962 /* indicate to gdbserver that there is a signal */
963 gdbserver_signal_encountered (info);
964
965 /* let gdbserver do some work, e.g. show the signal to the user */
966 call_gdbserver (tid, signal_reason);
967
968 }
969
VG_(gdbserver_report_signal)970 Bool VG_(gdbserver_report_signal) (vki_siginfo_t *info, ThreadId tid)
971 {
972 dlog_signal("VG_(gdbserver_report_signal)", info, tid);
973
974 /* if gdbserver is currently not connected, then signal
975 is to be given to the process */
976 if (!remote_connected()) {
977 dlog(1, "not connected => pass\n");
978 return True;
979 }
980 /* if gdb has informed gdbserver that this signal can be
981 passed directly without informing gdb, then signal is
982 to be given to the process. */
983 if (pass_signals[target_signal_from_host(info->si_signo)]) {
984 dlog(1, "pass_signals => pass\n");
985 return True;
986 }
987
988 /* indicate to gdbserver that there is a signal */
989 gdbserver_signal_encountered (info);
990
991 /* let gdbserver do some work, e.g. show the signal to the user.
992 User can also decide to ignore the signal or change the signal. */
993 call_gdbserver (tid, signal_reason);
994
995 /* ask gdbserver what is the final decision */
996 if (gdbserver_deliver_signal (info)) {
997 dlog(1, "gdbserver deliver signal\n");
998 return True;
999 } else {
1000 dlog(1, "gdbserver ignore signal\n");
1001 return False;
1002 }
1003 }
1004
VG_(gdbserver_exit)1005 void VG_(gdbserver_exit) (ThreadId tid, VgSchedReturnCode tids_schedretcode)
1006 {
1007 dlog(1, "VG core calling VG_(gdbserver_exit) tid %d will exit\n", tid);
1008 if (remote_connected()) {
1009 /* Make sure vgdb knows we are about to die and why. */
1010 switch(tids_schedretcode) {
1011 case VgSrc_None:
1012 vg_assert (0);
1013 case VgSrc_ExitThread:
1014 case VgSrc_ExitProcess:
1015 gdbserver_process_exit_encountered ('W', VG_(threads)[tid].os_state.exitcode);
1016 call_gdbserver (tid, exit_reason);
1017 break;
1018 case VgSrc_FatalSig:
1019 gdbserver_process_exit_encountered ('X', VG_(threads)[tid].os_state.fatalsig);
1020 call_gdbserver (tid, exit_reason);
1021 break;
1022 default:
1023 vg_assert(0);
1024 }
1025 } else {
1026 dlog(1, "not connected\n");
1027 }
1028
1029 /* Tear down the connection if it still exists. */
1030 VG_(gdbserver) (0);
1031 }
1032
1033 // Check if single_stepping or if there is a break requested at iaddr.
1034 // If yes, call debugger
1035 VG_REGPARM(1)
VG_(helperc_CallDebugger)1036 void VG_(helperc_CallDebugger) ( HWord iaddr )
1037 {
1038 GS_Address* g;
1039
1040 // For Vg_VgdbFull, after a fork, we might have calls to this helper
1041 // while gdbserver is not yet initialized.
1042 if (!gdbserver_called)
1043 return;
1044
1045 if (valgrind_single_stepping() ||
1046 ((g = VG_(HT_lookup) (gs_addresses, (UWord)HT_addr(iaddr))) &&
1047 (g->kind == GS_break))) {
1048 if (iaddr == HT_addr(ignore_this_break_once)) {
1049 dlog(1, "ignoring ignore_this_break_once %s\n",
1050 sym(ignore_this_break_once, /* is_code */ True));
1051 ignore_this_break_once = 0;
1052 } else {
1053 call_gdbserver (VG_(get_running_tid)(), break_reason);
1054 }
1055 }
1056 }
1057
1058 /* software_breakpoint support --------------------------------------*/
1059 /* When a block is instrumented for gdbserver, single step and breaks
1060 will be obeyed in this block. However, if a jump to another block
1061 is executed while single_stepping is active, we must ensure that
1062 this block is also instrumented. For this, when a block is
1063 instrumented for gdbserver while single_stepping, the target of all
1064 the Jump instructions in this block will be checked to verify if
1065 the block is already instrumented for gdbserver. The below will
1066 ensure that if not already instrumented for gdbserver, the target
1067 block translation containing addr will be invalidated. The list of
1068 gdbserved Addr will also be kept so that translations can be
1069 dropped automatically by gdbserver when going out of single step
1070 mode.
1071
1072 Call the below at translation time if the jump target is a constant.
1073 Otherwise, rather use VG_(add_stmt_call_invalidate_if_not_gdbserved).
1074
1075 To instrument the target exit statement, you can call
1076 VG_(add_stmt_call_invalidate_exit_target_if_not_gdbserved) rather
1077 than check the kind of target exit. */
VG_(invalidate_if_not_gdbserved)1078 static void VG_(invalidate_if_not_gdbserved) (Addr addr)
1079 {
1080 if (valgrind_single_stepping())
1081 invalidate_if_jump_not_yet_gdbserved
1082 (addr, "gdbserver target jump (instrument)");
1083 }
1084
1085 // same as VG_(invalidate_if_not_gdbserved) but is intended to be called
1086 // at runtime (only difference is the invalidate reason which traces
1087 // it is at runtime)
1088 VG_REGPARM(1)
VG_(helperc_invalidate_if_not_gdbserved)1089 void VG_(helperc_invalidate_if_not_gdbserved) ( Addr addr )
1090 {
1091 if (valgrind_single_stepping())
1092 invalidate_if_jump_not_yet_gdbserved
1093 (addr, "gdbserver target jump (runtime)");
1094 }
1095
VG_(add_stmt_call_invalidate_if_not_gdbserved)1096 static void VG_(add_stmt_call_invalidate_if_not_gdbserved)
1097 ( IRSB* sb_in,
1098 const VexGuestLayout* layout,
1099 const VexGuestExtents* vge,
1100 IRTemp jmp,
1101 IRSB* irsb)
1102 {
1103
1104 void* fn;
1105 const HChar* nm;
1106 IRExpr** args;
1107 Int nargs;
1108 IRDirty* di;
1109
1110 fn = &VG_(helperc_invalidate_if_not_gdbserved);
1111 nm = "VG_(helperc_invalidate_if_not_gdbserved)";
1112 args = mkIRExprVec_1(IRExpr_RdTmp (jmp));
1113 nargs = 1;
1114
1115 di = unsafeIRDirty_0_N( nargs/*regparms*/, nm,
1116 VG_(fnptr_to_fnentry)( fn ), args );
1117
1118 di->nFxState = 0;
1119
1120 addStmtToIRSB(irsb, IRStmt_Dirty(di));
1121 }
1122
1123 /* software_breakpoint support --------------------------------------*/
1124 /* If a tool wants to allow gdbserver to do something at Addr, then
1125 VG_(add_stmt_call_gdbserver) will add in IRSB a call to a helper
1126 function. This helper function will check if the process must be
1127 stopped at the instruction Addr: either there is a break at Addr or
1128 the process is being single-stepped. Typical usage of the below is to
1129 instrument an Ist_IMark to allow the debugger to interact at any
1130 instruction being executed. As soon as there is one break in a block,
1131 then to allow single stepping in this block (and possible insertions
1132 of other breaks in the same sb_in while the process is stopped), a
1133 debugger statement will be inserted for all instructions of a block. */
VG_(add_stmt_call_gdbserver)1134 static void VG_(add_stmt_call_gdbserver)
1135 (IRSB* sb_in, /* block being translated */
1136 const VexGuestLayout* layout,
1137 const VexGuestExtents* vge,
1138 IRType gWordTy, IRType hWordTy,
1139 Addr iaddr, /* Addr of instruction being instrumented */
1140 UChar delta, /* delta to add to iaddr to obtain IP */
1141 IRSB* irsb) /* irsb block to which call is added */
1142 {
1143 void* fn;
1144 const HChar* nm;
1145 IRExpr** args;
1146 Int nargs;
1147 IRDirty* di;
1148
1149 /* first store the address in the program counter so that the check
1150 done by VG_(helperc_CallDebugger) will be based on the correct
1151 program counter. We might make this more efficient by rather
1152 searching for assignement to program counter and instrumenting
1153 that but the below is easier and I guess that the optimiser will
1154 remove the redundant store. And in any case, when debugging a
1155 piece of code, the efficiency requirement is not critical: very
1156 few blocks will be instrumented for debugging. */
1157
1158 /* For platforms on which the IP can differ from the addr of the instruction
1159 being executed, we need to add the delta to obtain the IP.
1160 This IP will be given to gdb (e.g. if a breakpoint is put at iaddr).
1161
1162 For ARM, this delta will ensure that the thumb bit is set in the
1163 IP when executing thumb code. gdb uses this thumb bit a.o.
1164 to properly guess the next IP for the 'step' and 'stepi' commands. */
1165 vg_assert(delta <= 1);
1166 addStmtToIRSB(irsb, IRStmt_Put(layout->offset_IP ,
1167 mkIRExpr_HWord(iaddr + (Addr)delta)));
1168
1169 fn = &VG_(helperc_CallDebugger);
1170 nm = "VG_(helperc_CallDebugger)";
1171 args = mkIRExprVec_1(mkIRExpr_HWord (iaddr));
1172 nargs = 1;
1173
1174 di = unsafeIRDirty_0_N( nargs/*regparms*/, nm,
1175 VG_(fnptr_to_fnentry)( fn ), args );
1176
1177 /* Note: in fact, a debugger call can read whatever register
1178 or memory. It can also write whatever register or memory.
1179 So, in theory, we have to indicate the whole universe
1180 can be read and modified. It is however not critical
1181 to indicate precisely what is being read/written
1182 as such indications are needed for tool error detection
1183 and we do not want to have errors being detected for
1184 gdb interactions. */
1185
1186 di->nFxState = 2;
1187 di->fxState[0].fx = Ifx_Read;
1188 di->fxState[0].offset = layout->offset_SP;
1189 di->fxState[0].size = layout->sizeof_SP;
1190 di->fxState[0].nRepeats = 0;
1191 di->fxState[0].repeatLen = 0;
1192 di->fxState[1].fx = Ifx_Modify;
1193 di->fxState[1].offset = layout->offset_IP;
1194 di->fxState[1].size = layout->sizeof_IP;
1195 di->fxState[1].nRepeats = 0;
1196 di->fxState[1].repeatLen = 0;
1197
1198 addStmtToIRSB(irsb, IRStmt_Dirty(di));
1199
1200 }
1201
1202
1203 /* Invalidate the target of the exit if needed:
1204 If target is constant, it is invalidated at translation time.
1205 Otherwise, a call to a helper function is generated to invalidate
1206 the translation at run time.
1207 The below is thus calling either VG_(invalidate_if_not_gdbserved)
1208 or VG_(add_stmt_call_invalidate_if_not_gdbserved). */
VG_(add_stmt_call_invalidate_exit_target_if_not_gdbserved)1209 static void VG_(add_stmt_call_invalidate_exit_target_if_not_gdbserved)
1210 (IRSB* sb_in,
1211 const VexGuestLayout* layout,
1212 const VexGuestExtents* vge,
1213 IRType gWordTy,
1214 IRSB* irsb)
1215 {
1216 if (sb_in->next->tag == Iex_Const) {
1217 VG_(invalidate_if_not_gdbserved) (gWordTy == Ity_I64 ?
1218 sb_in->next->Iex.Const.con->Ico.U64
1219 : sb_in->next->Iex.Const.con->Ico.U32);
1220 } else if (sb_in->next->tag == Iex_RdTmp) {
1221 VG_(add_stmt_call_invalidate_if_not_gdbserved)
1222 (sb_in, layout, vge, sb_in->next->Iex.RdTmp.tmp, irsb);
1223 } else {
1224 vg_assert (0); /* unexpected expression tag in exit. */
1225 }
1226 }
1227
VG_(instrument_for_gdbserver_if_needed)1228 IRSB* VG_(instrument_for_gdbserver_if_needed)
1229 (IRSB* sb_in,
1230 const VexGuestLayout* layout,
1231 const VexGuestExtents* vge,
1232 IRType gWordTy, IRType hWordTy)
1233 {
1234 IRSB* sb_out;
1235 Int i;
1236 const VgVgdb instr_needed = VG_(gdbserver_instrumentation_needed) (vge);
1237
1238 if (instr_needed == Vg_VgdbNo)
1239 return sb_in;
1240
1241
1242 /* here, we need to instrument for gdbserver */
1243 sb_out = deepCopyIRSBExceptStmts(sb_in);
1244
1245 for (i = 0; i < sb_in->stmts_used; i++) {
1246 IRStmt* st = sb_in->stmts[i];
1247
1248 if (!st || st->tag == Ist_NoOp) continue;
1249
1250 if (st->tag == Ist_Exit && instr_needed == Vg_VgdbYes) {
1251 VG_(invalidate_if_not_gdbserved)
1252 (hWordTy == Ity_I64 ?
1253 st->Ist.Exit.dst->Ico.U64 :
1254 st->Ist.Exit.dst->Ico.U32);
1255 }
1256 addStmtToIRSB( sb_out, st );
1257 if (st->tag == Ist_IMark) {
1258 /* For an Ist_Mark, add a call to debugger. */
1259 switch (instr_needed) {
1260 case Vg_VgdbNo: vg_assert (0);
1261 case Vg_VgdbYes:
1262 case Vg_VgdbFull:
1263 VG_(add_stmt_call_gdbserver) ( sb_in, layout, vge,
1264 gWordTy, hWordTy,
1265 st->Ist.IMark.addr,
1266 st->Ist.IMark.delta,
1267 sb_out);
1268 /* There is an optimisation possible here for Vg_VgdbFull:
1269 Put a guard ensuring we only call gdbserver if 'FullCallNeeded'.
1270 FullCallNeeded would be set to 1 we have just switched on
1271 Single Stepping or have just encountered a watchpoint
1272 or have just inserted a breakpoint.
1273 (as gdb by default removes and re-insert breakpoints), we would
1274 need to also implement the notion of 'breakpoint pending removal'
1275 to remove at the next 'continue/step' packet. */
1276 break;
1277 default: vg_assert (0);
1278 }
1279 }
1280 }
1281
1282 if (instr_needed == Vg_VgdbYes) {
1283 VG_(add_stmt_call_invalidate_exit_target_if_not_gdbserved) (sb_in,
1284 layout, vge,
1285 gWordTy,
1286 sb_out);
1287 }
1288
1289 return sb_out;
1290 }
1291
1292 struct mon_out_buf {
1293 HChar buf[DATASIZ+1];
1294 int next;
1295 UInt ret;
1296 };
1297
mon_out(HChar c,void * opaque)1298 static void mon_out (HChar c, void *opaque)
1299 {
1300 struct mon_out_buf *b = (struct mon_out_buf *) opaque;
1301 b->ret++;
1302 b->buf[b->next] = c;
1303 b->next++;
1304 if (b->next == DATASIZ) {
1305 b->buf[b->next] = '\0';
1306 monitor_output(b->buf);
1307 b->next = 0;
1308 }
1309 }
VG_(gdb_printf)1310 UInt VG_(gdb_printf) ( const HChar *format, ... )
1311 {
1312 struct mon_out_buf b;
1313
1314 b.next = 0;
1315 b.ret = 0;
1316
1317 va_list vargs;
1318 va_start(vargs, format);
1319 VG_(vcbprintf) (mon_out, &b, format, vargs);
1320 va_end(vargs);
1321
1322 if (b.next > 0) {
1323 b.buf[b.next] = '\0';
1324 monitor_output(b.buf);
1325 }
1326 return b.ret;
1327 }
1328
VG_(keyword_id)1329 Int VG_(keyword_id) (const HChar* keywords, const HChar* input_word,
1330 kwd_report_error report)
1331 {
1332 const Int il = (input_word == NULL ? 0 : VG_(strlen) (input_word));
1333 HChar iw[il+1];
1334 HChar kwds[VG_(strlen)(keywords)+1];
1335 HChar *kwdssaveptr;
1336
1337 HChar* kw; /* current keyword, its length, its position */
1338 Int kwl;
1339 Int kpos = -1;
1340
1341 Int pass;
1342 /* pass 0 = search, optional pass 1 = output message multiple matches */
1343
1344 Int pass1needed = 0;
1345
1346 Int partial_match = -1;
1347 Int full_match = -1;
1348
1349 if (input_word == NULL) {
1350 iw[0] = 0;
1351 partial_match = 0; /* to force an empty string to cause an error */
1352 } else {
1353 VG_(strcpy) (iw, input_word);
1354 }
1355
1356 for (pass = 0; pass < 2; pass++) {
1357 VG_(strcpy) (kwds, keywords);
1358 if (pass == 1)
1359 VG_(gdb_printf) ("%s can match",
1360 (il == 0 ? "<empty string>" : iw));
1361 for (kw = VG_(strtok_r) (kwds, " ", &kwdssaveptr);
1362 kw != NULL;
1363 kw = VG_(strtok_r) (NULL, " ", &kwdssaveptr)) {
1364 kwl = VG_(strlen) (kw);
1365 kpos++;
1366
1367 if (il > kwl) {
1368 ; /* ishtar !~ is */
1369 } else if (il == kwl) {
1370 if (VG_(strcmp) (kw, iw) == 0) {
1371 /* exact match */
1372 if (pass == 1)
1373 VG_(gdb_printf) (" %s", kw);
1374 if (full_match != -1)
1375 pass1needed++;
1376 full_match = kpos;
1377 }
1378 } else {
1379 /* il < kwl */
1380 if (VG_(strncmp) (iw, kw, il) == 0) {
1381 /* partial match */
1382 if (pass == 1)
1383 VG_(gdb_printf) (" %s", kw);
1384 if (partial_match != -1)
1385 pass1needed++;
1386 partial_match = kpos;
1387 }
1388 }
1389 }
1390 /* check for success or for no match at all */
1391 if (pass1needed == 0) {
1392 if (full_match != -1) {
1393 return full_match;
1394 } else {
1395 if (report == kwd_report_all && partial_match == -1) {
1396 VG_(gdb_printf) ("%s does not match any of '%s'\n",
1397 iw, keywords);
1398 }
1399 return partial_match;
1400 }
1401 }
1402
1403 /* here we have duplicated match error */
1404 if (pass == 1 || report == kwd_report_none) {
1405 if (report != kwd_report_none) {
1406 VG_(gdb_printf) ("\n");
1407 }
1408 if (partial_match != -1 || full_match != -1)
1409 return -2;
1410 else
1411 return -1;
1412 }
1413 }
1414 /* UNREACHED */
1415 vg_assert (0);
1416 }
1417
1418 /* True if string can be a 0x number */
is_zero_x(const HChar * s)1419 static Bool is_zero_x (const HChar *s)
1420 {
1421 if (strlen (s) >= 3 && s[0] == '0' && s[1] == 'x')
1422 return True;
1423 else
1424 return False;
1425 }
1426
1427 /* True if string can be a 0b number */
is_zero_b(const HChar * s)1428 static Bool is_zero_b (const HChar *s)
1429 {
1430 if (strlen (s) >= 3 && s[0] == '0' && s[1] == 'b')
1431 return True;
1432 else
1433 return False;
1434 }
1435
VG_(strtok_get_address_and_size)1436 Bool VG_(strtok_get_address_and_size) (Addr* address,
1437 SizeT* szB,
1438 HChar **ssaveptr)
1439 {
1440 HChar* wa;
1441 HChar* ws;
1442 HChar* endptr;
1443 const HChar *ppc;
1444
1445 wa = VG_(strtok_r) (NULL, " ", ssaveptr);
1446 ppc = wa;
1447 if (ppc == NULL || !VG_(parse_Addr) (&ppc, address)) {
1448 VG_(gdb_printf) ("missing or malformed address\n");
1449 *address = (Addr) 0;
1450 *szB = 0;
1451 return False;
1452 }
1453 ws = VG_(strtok_r) (NULL, " ", ssaveptr);
1454 if (ws == NULL) {
1455 /* Do nothing, i.e. keep current value of szB. */ ;
1456 } else if (is_zero_x (ws)) {
1457 *szB = VG_(strtoull16) (ws, &endptr);
1458 } else if (is_zero_b (ws)) {
1459 Int j;
1460 HChar *parsews = ws;
1461 Int n_bits = VG_(strlen) (ws) - 2;
1462 *szB = 0;
1463 ws = NULL; // assume the below loop gives a correct nr.
1464 for (j = 0; j < n_bits; j++) {
1465 if ('0' == parsews[j+2]) { /* do nothing */ }
1466 else if ('1' == parsews[j+2]) *szB |= (1 << (n_bits-j-1));
1467 else {
1468 /* report malformed binary integer */
1469 ws = parsews;
1470 endptr = ws + j + 2;
1471 break;
1472 }
1473 }
1474 } else {
1475 *szB = VG_(strtoull10) (ws, &endptr);
1476 }
1477
1478 if (ws != NULL && *endptr != '\0') {
1479 VG_(gdb_printf) ("malformed integer, expecting "
1480 "hex 0x..... or dec ...... or binary .....b\n");
1481 *address = (Addr) 0;
1482 *szB = 0;
1483 return False;
1484 }
1485 return True;
1486 }
1487
VG_(gdbserver_status_output)1488 void VG_(gdbserver_status_output)(void)
1489 {
1490 const int nr_gdbserved_addresses
1491 = (gs_addresses == NULL ? -1 : VG_(HT_count_nodes) (gs_addresses));
1492 const int nr_watchpoints
1493 = (gs_watches == NULL ? -1 : (int) VG_(sizeXA) (gs_watches));
1494 remote_utils_output_status();
1495 VG_(umsg)
1496 ("nr of calls to gdbserver: %d\n"
1497 "single stepping %d\n"
1498 "interrupts intr_tid %d gs_non_busy %d gs_busy %d tid_non_intr %d\n"
1499 "gdbserved addresses %d (-1 = not initialized)\n"
1500 "watchpoints %d (-1 = not initialized)\n"
1501 "vgdb-error %d\n"
1502 "hostvisibility %s\n",
1503 gdbserver_called,
1504 valgrind_single_stepping(),
1505
1506 vgdb_interrupted_tid,
1507 interrupts_non_busy,
1508 interrupts_while_busy,
1509 interrupts_non_interruptible,
1510
1511 nr_gdbserved_addresses,
1512 nr_watchpoints,
1513 VG_(dyn_vgdb_error),
1514 hostvisibility ? "yes" : "no");
1515 }
1516