1 // Copyright (c) 1994-2006 Sun Microsystems Inc. 2 // All Rights Reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // - Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // 11 // - Redistribution in binary form must reproduce the above copyright 12 // notice, this list of conditions and the following disclaimer in the 13 // documentation and/or other materials provided with the distribution. 14 // 15 // - Neither the name of Sun Microsystems or the names of contributors may 16 // be used to endorse or promote products derived from this software without 17 // specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // The original source code covered by the above license above has been 32 // modified significantly by Google Inc. 33 // Copyright 2012 the V8 project authors. All rights reserved. 34 35 36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_ 37 #define V8_MIPS_ASSEMBLER_MIPS_H_ 38 39 #include <stdio.h> 40 #include "src/assembler.h" 41 #include "src/mips64/constants-mips64.h" 42 #include "src/serialize.h" 43 44 namespace v8 { 45 namespace internal { 46 47 // CPU Registers. 48 // 49 // 1) We would prefer to use an enum, but enum values are assignment- 50 // compatible with int, which has caused code-generation bugs. 51 // 52 // 2) We would prefer to use a class instead of a struct but we don't like 53 // the register initialization to depend on the particular initialization 54 // order (which appears to be different on OS X, Linux, and Windows for the 55 // installed versions of C++ we tried). Using a struct permits C-style 56 // "initialization". Also, the Register objects cannot be const as this 57 // forces initialization stubs in MSVC, making us dependent on initialization 58 // order. 59 // 60 // 3) By not using an enum, we are possibly preventing the compiler from 61 // doing certain constant folds, which may significantly reduce the 62 // code generated for some assembly instructions (because they boil down 63 // to a few constants). If this is a problem, we could change the code 64 // such that we use an enum in optimized mode, and the struct in debug 65 // mode. This way we get the compile-time error checking in debug mode 66 // and best performance in optimized code. 67 68 69 // ----------------------------------------------------------------------------- 70 // Implementation of Register and FPURegister. 71 72 // Core register. 73 struct Register { 74 static const int kNumRegisters = v8::internal::kNumRegisters; 75 static const int kMaxNumAllocatableRegisters = 14; // v0 through t6 and cp. 76 static const int kSizeInBytes = 8; 77 static const int kCpRegister = 23; // cp (s7) is the 23rd register. 78 79 inline static int NumAllocatableRegisters(); 80 ToAllocationIndexRegister81 static int ToAllocationIndex(Register reg) { 82 DCHECK((reg.code() - 2) < (kMaxNumAllocatableRegisters - 1) || 83 reg.is(from_code(kCpRegister))); 84 return reg.is(from_code(kCpRegister)) ? 85 kMaxNumAllocatableRegisters - 1 : // Return last index for 'cp'. 86 reg.code() - 2; // zero_reg and 'at' are skipped. 87 } 88 FromAllocationIndexRegister89 static Register FromAllocationIndex(int index) { 90 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters); 91 return index == kMaxNumAllocatableRegisters - 1 ? 92 from_code(kCpRegister) : // Last index is always the 'cp' register. 93 from_code(index + 2); // zero_reg and 'at' are skipped. 94 } 95 AllocationIndexToStringRegister96 static const char* AllocationIndexToString(int index) { 97 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters); 98 const char* const names[] = { 99 "v0", 100 "v1", 101 "a0", 102 "a1", 103 "a2", 104 "a3", 105 "a4", 106 "a5", 107 "a6", 108 "a7", 109 "t0", 110 "t1", 111 "t2", 112 "s7", 113 }; 114 return names[index]; 115 } 116 from_codeRegister117 static Register from_code(int code) { 118 Register r = { code }; 119 return r; 120 } 121 is_validRegister122 bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; } isRegister123 bool is(Register reg) const { return code_ == reg.code_; } codeRegister124 int code() const { 125 DCHECK(is_valid()); 126 return code_; 127 } bitRegister128 int bit() const { 129 DCHECK(is_valid()); 130 return 1 << code_; 131 } 132 133 // Unfortunately we can't make this private in a struct. 134 int code_; 135 }; 136 137 #define REGISTER(N, C) \ 138 const int kRegister_ ## N ## _Code = C; \ 139 const Register N = { C } 140 141 REGISTER(no_reg, -1); 142 // Always zero. 143 REGISTER(zero_reg, 0); 144 // at: Reserved for synthetic instructions. 145 REGISTER(at, 1); 146 // v0, v1: Used when returning multiple values from subroutines. 147 REGISTER(v0, 2); 148 REGISTER(v1, 3); 149 // a0 - a4: Used to pass non-FP parameters. 150 REGISTER(a0, 4); 151 REGISTER(a1, 5); 152 REGISTER(a2, 6); 153 REGISTER(a3, 7); 154 // a4 - a7 t0 - t3: Can be used without reservation, act as temporary registers 155 // and are allowed to be destroyed by subroutines. 156 REGISTER(a4, 8); 157 REGISTER(a5, 9); 158 REGISTER(a6, 10); 159 REGISTER(a7, 11); 160 REGISTER(t0, 12); 161 REGISTER(t1, 13); 162 REGISTER(t2, 14); 163 REGISTER(t3, 15); 164 // s0 - s7: Subroutine register variables. Subroutines that write to these 165 // registers must restore their values before exiting so that the caller can 166 // expect the values to be preserved. 167 REGISTER(s0, 16); 168 REGISTER(s1, 17); 169 REGISTER(s2, 18); 170 REGISTER(s3, 19); 171 REGISTER(s4, 20); 172 REGISTER(s5, 21); 173 REGISTER(s6, 22); 174 REGISTER(s7, 23); 175 REGISTER(t8, 24); 176 REGISTER(t9, 25); 177 // k0, k1: Reserved for system calls and interrupt handlers. 178 REGISTER(k0, 26); 179 REGISTER(k1, 27); 180 // gp: Reserved. 181 REGISTER(gp, 28); 182 // sp: Stack pointer. 183 REGISTER(sp, 29); 184 // fp: Frame pointer. 185 REGISTER(fp, 30); 186 // ra: Return address pointer. 187 REGISTER(ra, 31); 188 189 #undef REGISTER 190 191 192 int ToNumber(Register reg); 193 194 Register ToRegister(int num); 195 196 // Coprocessor register. 197 struct FPURegister { 198 static const int kMaxNumRegisters = v8::internal::kNumFPURegisters; 199 200 // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers 201 // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to 202 // number of Double regs (64-bit regs, or FPU-reg-pairs). 203 204 // A few double registers are reserved: one as a scratch register and one to 205 // hold 0.0. 206 // f28: 0.0 207 // f30: scratch register. 208 static const int kNumReservedRegisters = 2; 209 static const int kMaxNumAllocatableRegisters = kMaxNumRegisters / 2 - 210 kNumReservedRegisters; 211 212 inline static int NumRegisters(); 213 inline static int NumAllocatableRegisters(); 214 inline static int ToAllocationIndex(FPURegister reg); 215 static const char* AllocationIndexToString(int index); 216 FromAllocationIndexFPURegister217 static FPURegister FromAllocationIndex(int index) { 218 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters); 219 return from_code(index * 2); 220 } 221 from_codeFPURegister222 static FPURegister from_code(int code) { 223 FPURegister r = { code }; 224 return r; 225 } 226 is_validFPURegister227 bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters ; } isFPURegister228 bool is(FPURegister creg) const { return code_ == creg.code_; } lowFPURegister229 FPURegister low() const { 230 // TODO(plind): Create DCHECK for FR=0 mode. This usage suspect for FR=1. 231 // Find low reg of a Double-reg pair, which is the reg itself. 232 DCHECK(code_ % 2 == 0); // Specified Double reg must be even. 233 FPURegister reg; 234 reg.code_ = code_; 235 DCHECK(reg.is_valid()); 236 return reg; 237 } highFPURegister238 FPURegister high() const { 239 // TODO(plind): Create DCHECK for FR=0 mode. This usage illegal in FR=1. 240 // Find high reg of a Doubel-reg pair, which is reg + 1. 241 DCHECK(code_ % 2 == 0); // Specified Double reg must be even. 242 FPURegister reg; 243 reg.code_ = code_ + 1; 244 DCHECK(reg.is_valid()); 245 return reg; 246 } 247 codeFPURegister248 int code() const { 249 DCHECK(is_valid()); 250 return code_; 251 } bitFPURegister252 int bit() const { 253 DCHECK(is_valid()); 254 return 1 << code_; 255 } setcodeFPURegister256 void setcode(int f) { 257 code_ = f; 258 DCHECK(is_valid()); 259 } 260 // Unfortunately we can't make this private in a struct. 261 int code_; 262 }; 263 264 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32 265 // 32-bit registers, f0 through f31. When used as 'double' they are used 266 // in pairs, starting with the even numbered register. So a double operation 267 // on f0 really uses f0 and f1. 268 // (Modern mips hardware also supports 32 64-bit registers, via setting 269 // (privileged) Status Register FR bit to 1. This is used by the N32 ABI, 270 // but it is not in common use. Someday we will want to support this in v8.) 271 272 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers. 273 typedef FPURegister DoubleRegister; 274 typedef FPURegister FloatRegister; 275 276 const FPURegister no_freg = { -1 }; 277 278 const FPURegister f0 = { 0 }; // Return value in hard float mode. 279 const FPURegister f1 = { 1 }; 280 const FPURegister f2 = { 2 }; 281 const FPURegister f3 = { 3 }; 282 const FPURegister f4 = { 4 }; 283 const FPURegister f5 = { 5 }; 284 const FPURegister f6 = { 6 }; 285 const FPURegister f7 = { 7 }; 286 const FPURegister f8 = { 8 }; 287 const FPURegister f9 = { 9 }; 288 const FPURegister f10 = { 10 }; 289 const FPURegister f11 = { 11 }; 290 const FPURegister f12 = { 12 }; // Arg 0 in hard float mode. 291 const FPURegister f13 = { 13 }; 292 const FPURegister f14 = { 14 }; // Arg 1 in hard float mode. 293 const FPURegister f15 = { 15 }; 294 const FPURegister f16 = { 16 }; 295 const FPURegister f17 = { 17 }; 296 const FPURegister f18 = { 18 }; 297 const FPURegister f19 = { 19 }; 298 const FPURegister f20 = { 20 }; 299 const FPURegister f21 = { 21 }; 300 const FPURegister f22 = { 22 }; 301 const FPURegister f23 = { 23 }; 302 const FPURegister f24 = { 24 }; 303 const FPURegister f25 = { 25 }; 304 const FPURegister f26 = { 26 }; 305 const FPURegister f27 = { 27 }; 306 const FPURegister f28 = { 28 }; 307 const FPURegister f29 = { 29 }; 308 const FPURegister f30 = { 30 }; 309 const FPURegister f31 = { 31 }; 310 311 // Register aliases. 312 // cp is assumed to be a callee saved register. 313 // Defined using #define instead of "static const Register&" because Clang 314 // complains otherwise when a compilation unit that includes this header 315 // doesn't use the variables. 316 #define kRootRegister s6 317 #define cp s7 318 #define kLithiumScratchReg s3 319 #define kLithiumScratchReg2 s4 320 #define kLithiumScratchDouble f30 321 #define kDoubleRegZero f28 322 323 // FPU (coprocessor 1) control registers. 324 // Currently only FCSR (#31) is implemented. 325 struct FPUControlRegister { is_validFPUControlRegister326 bool is_valid() const { return code_ == kFCSRRegister; } isFPUControlRegister327 bool is(FPUControlRegister creg) const { return code_ == creg.code_; } codeFPUControlRegister328 int code() const { 329 DCHECK(is_valid()); 330 return code_; 331 } bitFPUControlRegister332 int bit() const { 333 DCHECK(is_valid()); 334 return 1 << code_; 335 } setcodeFPUControlRegister336 void setcode(int f) { 337 code_ = f; 338 DCHECK(is_valid()); 339 } 340 // Unfortunately we can't make this private in a struct. 341 int code_; 342 }; 343 344 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister }; 345 const FPUControlRegister FCSR = { kFCSRRegister }; 346 347 348 // ----------------------------------------------------------------------------- 349 // Machine instruction Operands. 350 const int kSmiShift = kSmiTagSize + kSmiShiftSize; 351 const uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1; 352 // Class Operand represents a shifter operand in data processing instructions. 353 class Operand BASE_EMBEDDED { 354 public: 355 // Immediate. 356 INLINE(explicit Operand(int64_t immediate, 357 RelocInfo::Mode rmode = RelocInfo::NONE64)); 358 INLINE(explicit Operand(const ExternalReference& f)); 359 INLINE(explicit Operand(const char* s)); 360 INLINE(explicit Operand(Object** opp)); 361 INLINE(explicit Operand(Context** cpp)); 362 explicit Operand(Handle<Object> handle); 363 INLINE(explicit Operand(Smi* value)); 364 365 // Register. 366 INLINE(explicit Operand(Register rm)); 367 368 // Return true if this is a register operand. 369 INLINE(bool is_reg() const); 370 immediate()371 inline int64_t immediate() const { 372 DCHECK(!is_reg()); 373 return imm64_; 374 } 375 rm()376 Register rm() const { return rm_; } 377 378 private: 379 Register rm_; 380 int64_t imm64_; // Valid if rm_ == no_reg. 381 RelocInfo::Mode rmode_; 382 383 friend class Assembler; 384 friend class MacroAssembler; 385 }; 386 387 388 // On MIPS we have only one adressing mode with base_reg + offset. 389 // Class MemOperand represents a memory operand in load and store instructions. 390 class MemOperand : public Operand { 391 public: 392 // Immediate value attached to offset. 393 enum OffsetAddend { 394 offset_minus_one = -1, 395 offset_zero = 0 396 }; 397 398 explicit MemOperand(Register rn, int64_t offset = 0); 399 explicit MemOperand(Register rn, int64_t unit, int64_t multiplier, 400 OffsetAddend offset_addend = offset_zero); offset()401 int32_t offset() const { return offset_; } 402 OffsetIsInt16Encodable()403 bool OffsetIsInt16Encodable() const { 404 return is_int16(offset_); 405 } 406 407 private: 408 int32_t offset_; 409 410 friend class Assembler; 411 }; 412 413 414 class Assembler : public AssemblerBase { 415 public: 416 // Create an assembler. Instructions and relocation information are emitted 417 // into a buffer, with the instructions starting from the beginning and the 418 // relocation information starting from the end of the buffer. See CodeDesc 419 // for a detailed comment on the layout (globals.h). 420 // 421 // If the provided buffer is NULL, the assembler allocates and grows its own 422 // buffer, and buffer_size determines the initial buffer size. The buffer is 423 // owned by the assembler and deallocated upon destruction of the assembler. 424 // 425 // If the provided buffer is not NULL, the assembler uses the provided buffer 426 // for code generation and assumes its size to be buffer_size. If the buffer 427 // is too small, a fatal error occurs. No deallocation of the buffer is done 428 // upon destruction of the assembler. 429 Assembler(Isolate* isolate, void* buffer, int buffer_size); ~Assembler()430 virtual ~Assembler() { } 431 432 // GetCode emits any pending (non-emitted) code and fills the descriptor 433 // desc. GetCode() is idempotent; it returns the same result if no other 434 // Assembler functions are invoked in between GetCode() calls. 435 void GetCode(CodeDesc* desc); 436 437 // Label operations & relative jumps (PPUM Appendix D). 438 // 439 // Takes a branch opcode (cc) and a label (L) and generates 440 // either a backward branch or a forward branch and links it 441 // to the label fixup chain. Usage: 442 // 443 // Label L; // unbound label 444 // j(cc, &L); // forward branch to unbound label 445 // bind(&L); // bind label to the current pc 446 // j(cc, &L); // backward branch to bound label 447 // bind(&L); // illegal: a label may be bound only once 448 // 449 // Note: The same Label can be used for forward and backward branches 450 // but it may be bound only once. 451 void bind(Label* L); // Binds an unbound label L to current code position. 452 // Determines if Label is bound and near enough so that branch instruction 453 // can be used to reach it, instead of jump instruction. 454 bool is_near(Label* L); 455 456 // Returns the branch offset to the given label from the current code 457 // position. Links the label to the current position if it is still unbound. 458 // Manages the jump elimination optimization if the second parameter is true. 459 int32_t branch_offset(Label* L, bool jump_elimination_allowed); 460 int32_t branch_offset_compact(Label* L, bool jump_elimination_allowed); 461 int32_t branch_offset21(Label* L, bool jump_elimination_allowed); 462 int32_t branch_offset21_compact(Label* L, bool jump_elimination_allowed); shifted_branch_offset(Label * L,bool jump_elimination_allowed)463 int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) { 464 int32_t o = branch_offset(L, jump_elimination_allowed); 465 DCHECK((o & 3) == 0); // Assert the offset is aligned. 466 return o >> 2; 467 } shifted_branch_offset_compact(Label * L,bool jump_elimination_allowed)468 int32_t shifted_branch_offset_compact(Label* L, 469 bool jump_elimination_allowed) { 470 int32_t o = branch_offset_compact(L, jump_elimination_allowed); 471 DCHECK((o & 3) == 0); // Assert the offset is aligned. 472 return o >> 2; 473 } 474 uint64_t jump_address(Label* L); 475 476 // Puts a labels target address at the given position. 477 // The high 8 bits are set to zero. 478 void label_at_put(Label* L, int at_offset); 479 480 // Read/Modify the code target address in the branch/call instruction at pc. 481 static Address target_address_at(Address pc); 482 static void set_target_address_at(Address pc, 483 Address target, 484 ICacheFlushMode icache_flush_mode = 485 FLUSH_ICACHE_IF_NEEDED); 486 // On MIPS there is no Constant Pool so we skip that parameter. INLINE(static Address target_address_at (Address pc,ConstantPoolArray * constant_pool))487 INLINE(static Address target_address_at(Address pc, 488 ConstantPoolArray* constant_pool)) { 489 return target_address_at(pc); 490 } INLINE(static void set_target_address_at (Address pc,ConstantPoolArray * constant_pool,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))491 INLINE(static void set_target_address_at(Address pc, 492 ConstantPoolArray* constant_pool, 493 Address target, 494 ICacheFlushMode icache_flush_mode = 495 FLUSH_ICACHE_IF_NEEDED)) { 496 set_target_address_at(pc, target, icache_flush_mode); 497 } INLINE(static Address target_address_at (Address pc,Code * code))498 INLINE(static Address target_address_at(Address pc, Code* code)) { 499 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL; 500 return target_address_at(pc, constant_pool); 501 } INLINE(static void set_target_address_at (Address pc,Code * code,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))502 INLINE(static void set_target_address_at(Address pc, 503 Code* code, 504 Address target, 505 ICacheFlushMode icache_flush_mode = 506 FLUSH_ICACHE_IF_NEEDED)) { 507 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL; 508 set_target_address_at(pc, constant_pool, target, icache_flush_mode); 509 } 510 511 // Return the code target address at a call site from the return address 512 // of that call in the instruction stream. 513 inline static Address target_address_from_return_address(Address pc); 514 515 // Return the code target address of the patch debug break slot 516 inline static Address break_address_from_return_address(Address pc); 517 518 static void JumpLabelToJumpRegister(Address pc); 519 520 static void QuietNaN(HeapObject* nan); 521 522 // This sets the branch destination (which gets loaded at the call address). 523 // This is for calls and branches within generated code. The serializer 524 // has already deserialized the lui/ori instructions etc. deserialization_set_special_target_at(Address instruction_payload,Code * code,Address target)525 inline static void deserialization_set_special_target_at( 526 Address instruction_payload, Code* code, Address target) { 527 set_target_address_at( 528 instruction_payload - kInstructionsFor64BitConstant * kInstrSize, 529 code, 530 target); 531 } 532 533 // Size of an instruction. 534 static const int kInstrSize = sizeof(Instr); 535 536 // Difference between address of current opcode and target address offset. 537 static const int kBranchPCOffset = 4; 538 539 // Here we are patching the address in the LUI/ORI instruction pair. 540 // These values are used in the serialization process and must be zero for 541 // MIPS platform, as Code, Embedded Object or External-reference pointers 542 // are split across two consecutive instructions and don't exist separately 543 // in the code, so the serializer should not step forwards in memory after 544 // a target is resolved and written. 545 static const int kSpecialTargetSize = 0; 546 547 // Number of consecutive instructions used to store 32bit/64bit constant. 548 // Before jump-optimizations, this constant was used in 549 // RelocInfo::target_address_address() function to tell serializer address of 550 // the instruction that follows LUI/ORI instruction pair. Now, with new jump 551 // optimization, where jump-through-register instruction that usually 552 // follows LUI/ORI pair is substituted with J/JAL, this constant equals 553 // to 3 instructions (LUI+ORI+J/JAL/JR/JALR). 554 static const int kInstructionsFor32BitConstant = 3; 555 static const int kInstructionsFor64BitConstant = 5; 556 557 // Distance between the instruction referring to the address of the call 558 // target and the return address. 559 static const int kCallTargetAddressOffset = 6 * kInstrSize; 560 561 // Distance between start of patched return sequence and the emitted address 562 // to jump to. 563 static const int kPatchReturnSequenceAddressOffset = 0; 564 565 // Distance between start of patched debug break slot and the emitted address 566 // to jump to. 567 static const int kPatchDebugBreakSlotAddressOffset = 0 * kInstrSize; 568 569 // Difference between address of current opcode and value read from pc 570 // register. 571 static const int kPcLoadDelta = 4; 572 573 static const int kPatchDebugBreakSlotReturnOffset = 6 * kInstrSize; 574 575 // Number of instructions used for the JS return sequence. The constant is 576 // used by the debugger to patch the JS return sequence. 577 static const int kJSReturnSequenceInstructions = 7; 578 static const int kDebugBreakSlotInstructions = 6; 579 static const int kDebugBreakSlotLength = 580 kDebugBreakSlotInstructions * kInstrSize; 581 582 583 // --------------------------------------------------------------------------- 584 // Code generation. 585 586 // Insert the smallest number of nop instructions 587 // possible to align the pc offset to a multiple 588 // of m. m must be a power of 2 (>= 4). 589 void Align(int m); 590 // Aligns code to something that's optimal for a jump target for the platform. 591 void CodeTargetAlign(); 592 593 // Different nop operations are used by the code generator to detect certain 594 // states of the generated code. 595 enum NopMarkerTypes { 596 NON_MARKING_NOP = 0, 597 DEBUG_BREAK_NOP, 598 // IC markers. 599 PROPERTY_ACCESS_INLINED, 600 PROPERTY_ACCESS_INLINED_CONTEXT, 601 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE, 602 // Helper values. 603 LAST_CODE_MARKER, 604 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED, 605 // Code aging 606 CODE_AGE_MARKER_NOP = 6, 607 CODE_AGE_SEQUENCE_NOP 608 }; 609 610 // Type == 0 is the default non-marking nop. For mips this is a 611 // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero 612 // marking, to avoid conflict with ssnop and ehb instructions. 613 void nop(unsigned int type = 0) { 614 DCHECK(type < 32); 615 Register nop_rt_reg = (type == 0) ? zero_reg : at; 616 sll(zero_reg, nop_rt_reg, type, true); 617 } 618 619 620 // --------Branch-and-jump-instructions---------- 621 // We don't use likely variant of instructions. 622 void b(int16_t offset); b(Label * L)623 void b(Label* L) { b(branch_offset(L, false)>>2); } 624 void bal(int16_t offset); bal(Label * L)625 void bal(Label* L) { bal(branch_offset(L, false)>>2); } 626 627 void beq(Register rs, Register rt, int16_t offset); beq(Register rs,Register rt,Label * L)628 void beq(Register rs, Register rt, Label* L) { 629 beq(rs, rt, branch_offset(L, false) >> 2); 630 } 631 void bgez(Register rs, int16_t offset); 632 void bgezc(Register rt, int16_t offset); bgezc(Register rt,Label * L)633 void bgezc(Register rt, Label* L) { 634 bgezc(rt, branch_offset_compact(L, false)>>2); 635 } 636 void bgeuc(Register rs, Register rt, int16_t offset); bgeuc(Register rs,Register rt,Label * L)637 void bgeuc(Register rs, Register rt, Label* L) { 638 bgeuc(rs, rt, branch_offset_compact(L, false)>>2); 639 } 640 void bgec(Register rs, Register rt, int16_t offset); bgec(Register rs,Register rt,Label * L)641 void bgec(Register rs, Register rt, Label* L) { 642 bgec(rs, rt, branch_offset_compact(L, false)>>2); 643 } 644 void bgezal(Register rs, int16_t offset); 645 void bgezalc(Register rt, int16_t offset); bgezalc(Register rt,Label * L)646 void bgezalc(Register rt, Label* L) { 647 bgezalc(rt, branch_offset_compact(L, false)>>2); 648 } 649 void bgezall(Register rs, int16_t offset); bgezall(Register rs,Label * L)650 void bgezall(Register rs, Label* L) { 651 bgezall(rs, branch_offset(L, false)>>2); 652 } 653 void bgtz(Register rs, int16_t offset); 654 void bgtzc(Register rt, int16_t offset); bgtzc(Register rt,Label * L)655 void bgtzc(Register rt, Label* L) { 656 bgtzc(rt, branch_offset_compact(L, false)>>2); 657 } 658 void blez(Register rs, int16_t offset); 659 void blezc(Register rt, int16_t offset); blezc(Register rt,Label * L)660 void blezc(Register rt, Label* L) { 661 blezc(rt, branch_offset_compact(L, false)>>2); 662 } 663 void bltz(Register rs, int16_t offset); 664 void bltzc(Register rt, int16_t offset); bltzc(Register rt,Label * L)665 void bltzc(Register rt, Label* L) { 666 bltzc(rt, branch_offset_compact(L, false)>>2); 667 } 668 void bltuc(Register rs, Register rt, int16_t offset); bltuc(Register rs,Register rt,Label * L)669 void bltuc(Register rs, Register rt, Label* L) { 670 bltuc(rs, rt, branch_offset_compact(L, false)>>2); 671 } 672 void bltc(Register rs, Register rt, int16_t offset); bltc(Register rs,Register rt,Label * L)673 void bltc(Register rs, Register rt, Label* L) { 674 bltc(rs, rt, branch_offset_compact(L, false)>>2); 675 } 676 677 void bltzal(Register rs, int16_t offset); 678 void blezalc(Register rt, int16_t offset); blezalc(Register rt,Label * L)679 void blezalc(Register rt, Label* L) { 680 blezalc(rt, branch_offset_compact(L, false)>>2); 681 } 682 void bltzalc(Register rt, int16_t offset); bltzalc(Register rt,Label * L)683 void bltzalc(Register rt, Label* L) { 684 bltzalc(rt, branch_offset_compact(L, false)>>2); 685 } 686 void bgtzalc(Register rt, int16_t offset); bgtzalc(Register rt,Label * L)687 void bgtzalc(Register rt, Label* L) { 688 bgtzalc(rt, branch_offset_compact(L, false)>>2); 689 } 690 void beqzalc(Register rt, int16_t offset); beqzalc(Register rt,Label * L)691 void beqzalc(Register rt, Label* L) { 692 beqzalc(rt, branch_offset_compact(L, false)>>2); 693 } 694 void beqc(Register rs, Register rt, int16_t offset); beqc(Register rs,Register rt,Label * L)695 void beqc(Register rs, Register rt, Label* L) { 696 beqc(rs, rt, branch_offset_compact(L, false)>>2); 697 } 698 void beqzc(Register rs, int32_t offset); beqzc(Register rs,Label * L)699 void beqzc(Register rs, Label* L) { 700 beqzc(rs, branch_offset21_compact(L, false)>>2); 701 } 702 void bnezalc(Register rt, int16_t offset); bnezalc(Register rt,Label * L)703 void bnezalc(Register rt, Label* L) { 704 bnezalc(rt, branch_offset_compact(L, false)>>2); 705 } 706 void bnec(Register rs, Register rt, int16_t offset); bnec(Register rs,Register rt,Label * L)707 void bnec(Register rs, Register rt, Label* L) { 708 bnec(rs, rt, branch_offset_compact(L, false)>>2); 709 } 710 void bnezc(Register rt, int32_t offset); bnezc(Register rt,Label * L)711 void bnezc(Register rt, Label* L) { 712 bnezc(rt, branch_offset21_compact(L, false)>>2); 713 } 714 void bne(Register rs, Register rt, int16_t offset); bne(Register rs,Register rt,Label * L)715 void bne(Register rs, Register rt, Label* L) { 716 bne(rs, rt, branch_offset(L, false)>>2); 717 } 718 void bovc(Register rs, Register rt, int16_t offset); bovc(Register rs,Register rt,Label * L)719 void bovc(Register rs, Register rt, Label* L) { 720 bovc(rs, rt, branch_offset_compact(L, false)>>2); 721 } 722 void bnvc(Register rs, Register rt, int16_t offset); bnvc(Register rs,Register rt,Label * L)723 void bnvc(Register rs, Register rt, Label* L) { 724 bnvc(rs, rt, branch_offset_compact(L, false)>>2); 725 } 726 727 // Never use the int16_t b(l)cond version with a branch offset 728 // instead of using the Label* version. 729 730 // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits. 731 void j(int64_t target); 732 void jal(int64_t target); 733 void jalr(Register rs, Register rd = ra); 734 void jr(Register target); 735 void j_or_jr(int64_t target, Register rs); 736 void jal_or_jalr(int64_t target, Register rs); 737 738 739 // -------Data-processing-instructions--------- 740 741 // Arithmetic. 742 void addu(Register rd, Register rs, Register rt); 743 void subu(Register rd, Register rs, Register rt); 744 745 void div(Register rs, Register rt); 746 void divu(Register rs, Register rt); 747 void ddiv(Register rs, Register rt); 748 void ddivu(Register rs, Register rt); 749 void div(Register rd, Register rs, Register rt); 750 void divu(Register rd, Register rs, Register rt); 751 void ddiv(Register rd, Register rs, Register rt); 752 void ddivu(Register rd, Register rs, Register rt); 753 void mod(Register rd, Register rs, Register rt); 754 void modu(Register rd, Register rs, Register rt); 755 void dmod(Register rd, Register rs, Register rt); 756 void dmodu(Register rd, Register rs, Register rt); 757 758 void mul(Register rd, Register rs, Register rt); 759 void muh(Register rd, Register rs, Register rt); 760 void mulu(Register rd, Register rs, Register rt); 761 void muhu(Register rd, Register rs, Register rt); 762 void mult(Register rs, Register rt); 763 void multu(Register rs, Register rt); 764 void dmul(Register rd, Register rs, Register rt); 765 void dmuh(Register rd, Register rs, Register rt); 766 void dmulu(Register rd, Register rs, Register rt); 767 void dmuhu(Register rd, Register rs, Register rt); 768 void daddu(Register rd, Register rs, Register rt); 769 void dsubu(Register rd, Register rs, Register rt); 770 void dmult(Register rs, Register rt); 771 void dmultu(Register rs, Register rt); 772 773 void addiu(Register rd, Register rs, int32_t j); 774 void daddiu(Register rd, Register rs, int32_t j); 775 776 // Logical. 777 void and_(Register rd, Register rs, Register rt); 778 void or_(Register rd, Register rs, Register rt); 779 void xor_(Register rd, Register rs, Register rt); 780 void nor(Register rd, Register rs, Register rt); 781 782 void andi(Register rd, Register rs, int32_t j); 783 void ori(Register rd, Register rs, int32_t j); 784 void xori(Register rd, Register rs, int32_t j); 785 void lui(Register rd, int32_t j); 786 void aui(Register rs, Register rt, int32_t j); 787 void daui(Register rs, Register rt, int32_t j); 788 void dahi(Register rs, int32_t j); 789 void dati(Register rs, int32_t j); 790 791 // Shifts. 792 // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop 793 // and may cause problems in normal code. coming_from_nop makes sure this 794 // doesn't happen. 795 void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false); 796 void sllv(Register rd, Register rt, Register rs); 797 void srl(Register rd, Register rt, uint16_t sa); 798 void srlv(Register rd, Register rt, Register rs); 799 void sra(Register rt, Register rd, uint16_t sa); 800 void srav(Register rt, Register rd, Register rs); 801 void rotr(Register rd, Register rt, uint16_t sa); 802 void rotrv(Register rd, Register rt, Register rs); 803 void dsll(Register rd, Register rt, uint16_t sa); 804 void dsllv(Register rd, Register rt, Register rs); 805 void dsrl(Register rd, Register rt, uint16_t sa); 806 void dsrlv(Register rd, Register rt, Register rs); 807 void drotr(Register rd, Register rt, uint16_t sa); 808 void drotrv(Register rd, Register rt, Register rs); 809 void dsra(Register rt, Register rd, uint16_t sa); 810 void dsrav(Register rd, Register rt, Register rs); 811 void dsll32(Register rt, Register rd, uint16_t sa); 812 void dsrl32(Register rt, Register rd, uint16_t sa); 813 void dsra32(Register rt, Register rd, uint16_t sa); 814 815 816 // ------------Memory-instructions------------- 817 818 void lb(Register rd, const MemOperand& rs); 819 void lbu(Register rd, const MemOperand& rs); 820 void lh(Register rd, const MemOperand& rs); 821 void lhu(Register rd, const MemOperand& rs); 822 void lw(Register rd, const MemOperand& rs); 823 void lwu(Register rd, const MemOperand& rs); 824 void lwl(Register rd, const MemOperand& rs); 825 void lwr(Register rd, const MemOperand& rs); 826 void sb(Register rd, const MemOperand& rs); 827 void sh(Register rd, const MemOperand& rs); 828 void sw(Register rd, const MemOperand& rs); 829 void swl(Register rd, const MemOperand& rs); 830 void swr(Register rd, const MemOperand& rs); 831 void ldl(Register rd, const MemOperand& rs); 832 void ldr(Register rd, const MemOperand& rs); 833 void sdl(Register rd, const MemOperand& rs); 834 void sdr(Register rd, const MemOperand& rs); 835 void ld(Register rd, const MemOperand& rs); 836 void sd(Register rd, const MemOperand& rs); 837 838 839 // ----------------Prefetch-------------------- 840 841 void pref(int32_t hint, const MemOperand& rs); 842 843 844 // -------------Misc-instructions-------------- 845 846 // Break / Trap instructions. 847 void break_(uint32_t code, bool break_as_stop = false); 848 void stop(const char* msg, uint32_t code = kMaxStopCode); 849 void tge(Register rs, Register rt, uint16_t code); 850 void tgeu(Register rs, Register rt, uint16_t code); 851 void tlt(Register rs, Register rt, uint16_t code); 852 void tltu(Register rs, Register rt, uint16_t code); 853 void teq(Register rs, Register rt, uint16_t code); 854 void tne(Register rs, Register rt, uint16_t code); 855 856 // Move from HI/LO register. 857 void mfhi(Register rd); 858 void mflo(Register rd); 859 860 // Set on less than. 861 void slt(Register rd, Register rs, Register rt); 862 void sltu(Register rd, Register rs, Register rt); 863 void slti(Register rd, Register rs, int32_t j); 864 void sltiu(Register rd, Register rs, int32_t j); 865 866 // Conditional move. 867 void movz(Register rd, Register rs, Register rt); 868 void movn(Register rd, Register rs, Register rt); 869 void movt(Register rd, Register rs, uint16_t cc = 0); 870 void movf(Register rd, Register rs, uint16_t cc = 0); 871 872 void sel(SecondaryField fmt, FPURegister fd, FPURegister ft, 873 FPURegister fs, uint8_t sel); 874 void seleqz(Register rs, Register rt, Register rd); 875 void seleqz(SecondaryField fmt, FPURegister fd, FPURegister ft, 876 FPURegister fs); 877 void selnez(Register rs, Register rt, Register rd); 878 void selnez(SecondaryField fmt, FPURegister fd, FPURegister ft, 879 FPURegister fs); 880 881 // Bit twiddling. 882 void clz(Register rd, Register rs); 883 void ins_(Register rt, Register rs, uint16_t pos, uint16_t size); 884 void ext_(Register rt, Register rs, uint16_t pos, uint16_t size); 885 886 // --------Coprocessor-instructions---------------- 887 888 // Load, store, and move. 889 void lwc1(FPURegister fd, const MemOperand& src); 890 void ldc1(FPURegister fd, const MemOperand& src); 891 892 void swc1(FPURegister fs, const MemOperand& dst); 893 void sdc1(FPURegister fs, const MemOperand& dst); 894 895 void mtc1(Register rt, FPURegister fs); 896 void mthc1(Register rt, FPURegister fs); 897 void dmtc1(Register rt, FPURegister fs); 898 899 void mfc1(Register rt, FPURegister fs); 900 void mfhc1(Register rt, FPURegister fs); 901 void dmfc1(Register rt, FPURegister fs); 902 903 void ctc1(Register rt, FPUControlRegister fs); 904 void cfc1(Register rt, FPUControlRegister fs); 905 906 // Arithmetic. 907 void add_d(FPURegister fd, FPURegister fs, FPURegister ft); 908 void sub_d(FPURegister fd, FPURegister fs, FPURegister ft); 909 void mul_d(FPURegister fd, FPURegister fs, FPURegister ft); 910 void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); 911 void div_d(FPURegister fd, FPURegister fs, FPURegister ft); 912 void abs_d(FPURegister fd, FPURegister fs); 913 void mov_d(FPURegister fd, FPURegister fs); 914 void neg_d(FPURegister fd, FPURegister fs); 915 void sqrt_d(FPURegister fd, FPURegister fs); 916 917 // Conversion. 918 void cvt_w_s(FPURegister fd, FPURegister fs); 919 void cvt_w_d(FPURegister fd, FPURegister fs); 920 void trunc_w_s(FPURegister fd, FPURegister fs); 921 void trunc_w_d(FPURegister fd, FPURegister fs); 922 void round_w_s(FPURegister fd, FPURegister fs); 923 void round_w_d(FPURegister fd, FPURegister fs); 924 void floor_w_s(FPURegister fd, FPURegister fs); 925 void floor_w_d(FPURegister fd, FPURegister fs); 926 void ceil_w_s(FPURegister fd, FPURegister fs); 927 void ceil_w_d(FPURegister fd, FPURegister fs); 928 929 void cvt_l_s(FPURegister fd, FPURegister fs); 930 void cvt_l_d(FPURegister fd, FPURegister fs); 931 void trunc_l_s(FPURegister fd, FPURegister fs); 932 void trunc_l_d(FPURegister fd, FPURegister fs); 933 void round_l_s(FPURegister fd, FPURegister fs); 934 void round_l_d(FPURegister fd, FPURegister fs); 935 void floor_l_s(FPURegister fd, FPURegister fs); 936 void floor_l_d(FPURegister fd, FPURegister fs); 937 void ceil_l_s(FPURegister fd, FPURegister fs); 938 void ceil_l_d(FPURegister fd, FPURegister fs); 939 940 void min(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs); 941 void mina(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs); 942 void max(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs); 943 void maxa(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs); 944 945 void cvt_s_w(FPURegister fd, FPURegister fs); 946 void cvt_s_l(FPURegister fd, FPURegister fs); 947 void cvt_s_d(FPURegister fd, FPURegister fs); 948 949 void cvt_d_w(FPURegister fd, FPURegister fs); 950 void cvt_d_l(FPURegister fd, FPURegister fs); 951 void cvt_d_s(FPURegister fd, FPURegister fs); 952 953 // Conditions and branches for MIPSr6. 954 void cmp(FPUCondition cond, SecondaryField fmt, 955 FPURegister fd, FPURegister ft, FPURegister fs); 956 957 void bc1eqz(int16_t offset, FPURegister ft); bc1eqz(Label * L,FPURegister ft)958 void bc1eqz(Label* L, FPURegister ft) { 959 bc1eqz(branch_offset(L, false)>>2, ft); 960 } 961 void bc1nez(int16_t offset, FPURegister ft); bc1nez(Label * L,FPURegister ft)962 void bc1nez(Label* L, FPURegister ft) { 963 bc1nez(branch_offset(L, false)>>2, ft); 964 } 965 966 // Conditions and branches for non MIPSr6. 967 void c(FPUCondition cond, SecondaryField fmt, 968 FPURegister ft, FPURegister fs, uint16_t cc = 0); 969 970 void bc1f(int16_t offset, uint16_t cc = 0); 971 void bc1f(Label* L, uint16_t cc = 0) { 972 bc1f(branch_offset(L, false)>>2, cc); 973 } 974 void bc1t(int16_t offset, uint16_t cc = 0); 975 void bc1t(Label* L, uint16_t cc = 0) { 976 bc1t(branch_offset(L, false)>>2, cc); 977 } 978 void fcmp(FPURegister src1, const double src2, FPUCondition cond); 979 980 // Check the code size generated from label to here. SizeOfCodeGeneratedSince(Label * label)981 int SizeOfCodeGeneratedSince(Label* label) { 982 return pc_offset() - label->pos(); 983 } 984 985 // Check the number of instructions generated from label to here. InstructionsGeneratedSince(Label * label)986 int InstructionsGeneratedSince(Label* label) { 987 return SizeOfCodeGeneratedSince(label) / kInstrSize; 988 } 989 990 // Class for scoping postponing the trampoline pool generation. 991 class BlockTrampolinePoolScope { 992 public: BlockTrampolinePoolScope(Assembler * assem)993 explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) { 994 assem_->StartBlockTrampolinePool(); 995 } ~BlockTrampolinePoolScope()996 ~BlockTrampolinePoolScope() { 997 assem_->EndBlockTrampolinePool(); 998 } 999 1000 private: 1001 Assembler* assem_; 1002 1003 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope); 1004 }; 1005 1006 // Class for postponing the assembly buffer growth. Typically used for 1007 // sequences of instructions that must be emitted as a unit, before 1008 // buffer growth (and relocation) can occur. 1009 // This blocking scope is not nestable. 1010 class BlockGrowBufferScope { 1011 public: BlockGrowBufferScope(Assembler * assem)1012 explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) { 1013 assem_->StartBlockGrowBuffer(); 1014 } ~BlockGrowBufferScope()1015 ~BlockGrowBufferScope() { 1016 assem_->EndBlockGrowBuffer(); 1017 } 1018 1019 private: 1020 Assembler* assem_; 1021 1022 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope); 1023 }; 1024 1025 // Debugging. 1026 1027 // Mark address of the ExitJSFrame code. 1028 void RecordJSReturn(); 1029 1030 // Mark address of a debug break slot. 1031 void RecordDebugBreakSlot(); 1032 1033 // Record the AST id of the CallIC being compiled, so that it can be placed 1034 // in the relocation information. SetRecordedAstId(TypeFeedbackId ast_id)1035 void SetRecordedAstId(TypeFeedbackId ast_id) { 1036 DCHECK(recorded_ast_id_.IsNone()); 1037 recorded_ast_id_ = ast_id; 1038 } 1039 RecordedAstId()1040 TypeFeedbackId RecordedAstId() { 1041 DCHECK(!recorded_ast_id_.IsNone()); 1042 return recorded_ast_id_; 1043 } 1044 ClearRecordedAstId()1045 void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); } 1046 1047 // Record a comment relocation entry that can be used by a disassembler. 1048 // Use --code-comments to enable. 1049 void RecordComment(const char* msg); 1050 1051 static int RelocateInternalReference(byte* pc, intptr_t pc_delta); 1052 1053 // Writes a single byte or word of data in the code stream. Used for 1054 // inline tables, e.g., jump-tables. 1055 void db(uint8_t data); 1056 void dd(uint32_t data); 1057 1058 // Emits the address of the code stub's first instruction. 1059 void emit_code_stub_address(Code* stub); 1060 positions_recorder()1061 PositionsRecorder* positions_recorder() { return &positions_recorder_; } 1062 1063 // Postpone the generation of the trampoline pool for the specified number of 1064 // instructions. 1065 void BlockTrampolinePoolFor(int instructions); 1066 1067 // Check if there is less than kGap bytes available in the buffer. 1068 // If this is the case, we need to grow the buffer before emitting 1069 // an instruction or relocation information. overflow()1070 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } 1071 1072 // Get the number of bytes available in the buffer. available_space()1073 inline int available_space() const { return reloc_info_writer.pos() - pc_; } 1074 1075 // Read/patch instructions. instr_at(byte * pc)1076 static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); } instr_at_put(byte * pc,Instr instr)1077 static void instr_at_put(byte* pc, Instr instr) { 1078 *reinterpret_cast<Instr*>(pc) = instr; 1079 } instr_at(int pos)1080 Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); } instr_at_put(int pos,Instr instr)1081 void instr_at_put(int pos, Instr instr) { 1082 *reinterpret_cast<Instr*>(buffer_ + pos) = instr; 1083 } 1084 1085 // Check if an instruction is a branch of some kind. 1086 static bool IsBranch(Instr instr); 1087 static bool IsBeq(Instr instr); 1088 static bool IsBne(Instr instr); 1089 1090 static bool IsJump(Instr instr); 1091 static bool IsJ(Instr instr); 1092 static bool IsLui(Instr instr); 1093 static bool IsOri(Instr instr); 1094 1095 static bool IsJal(Instr instr); 1096 static bool IsJr(Instr instr); 1097 static bool IsJalr(Instr instr); 1098 1099 static bool IsNop(Instr instr, unsigned int type); 1100 static bool IsPop(Instr instr); 1101 static bool IsPush(Instr instr); 1102 static bool IsLwRegFpOffset(Instr instr); 1103 static bool IsSwRegFpOffset(Instr instr); 1104 static bool IsLwRegFpNegOffset(Instr instr); 1105 static bool IsSwRegFpNegOffset(Instr instr); 1106 1107 static Register GetRtReg(Instr instr); 1108 static Register GetRsReg(Instr instr); 1109 static Register GetRdReg(Instr instr); 1110 1111 static uint32_t GetRt(Instr instr); 1112 static uint32_t GetRtField(Instr instr); 1113 static uint32_t GetRs(Instr instr); 1114 static uint32_t GetRsField(Instr instr); 1115 static uint32_t GetRd(Instr instr); 1116 static uint32_t GetRdField(Instr instr); 1117 static uint32_t GetSa(Instr instr); 1118 static uint32_t GetSaField(Instr instr); 1119 static uint32_t GetOpcodeField(Instr instr); 1120 static uint32_t GetFunction(Instr instr); 1121 static uint32_t GetFunctionField(Instr instr); 1122 static uint32_t GetImmediate16(Instr instr); 1123 static uint32_t GetLabelConst(Instr instr); 1124 1125 static int32_t GetBranchOffset(Instr instr); 1126 static bool IsLw(Instr instr); 1127 static int16_t GetLwOffset(Instr instr); 1128 static Instr SetLwOffset(Instr instr, int16_t offset); 1129 1130 static bool IsSw(Instr instr); 1131 static Instr SetSwOffset(Instr instr, int16_t offset); 1132 static bool IsAddImmediate(Instr instr); 1133 static Instr SetAddImmediateOffset(Instr instr, int16_t offset); 1134 1135 static bool IsAndImmediate(Instr instr); 1136 static bool IsEmittedConstant(Instr instr); 1137 1138 void CheckTrampolinePool(); 1139 1140 // Allocate a constant pool of the correct size for the generated code. 1141 Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate); 1142 1143 // Generate the constant pool for the generated code. 1144 void PopulateConstantPool(ConstantPoolArray* constant_pool); 1145 1146 protected: 1147 // Relocation for a type-recording IC has the AST id added to it. This 1148 // member variable is a way to pass the information from the call site to 1149 // the relocation info. 1150 TypeFeedbackId recorded_ast_id_; 1151 buffer_space()1152 int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; } 1153 1154 // Decode branch instruction at pos and return branch target pos. 1155 int64_t target_at(int64_t pos); 1156 1157 // Patch branch instruction at pos to branch to given branch target pos. 1158 void target_at_put(int64_t pos, int64_t target_pos); 1159 1160 // Say if we need to relocate with this mode. 1161 bool MustUseReg(RelocInfo::Mode rmode); 1162 1163 // Record reloc info for current pc_. 1164 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); 1165 1166 // Block the emission of the trampoline pool before pc_offset. BlockTrampolinePoolBefore(int pc_offset)1167 void BlockTrampolinePoolBefore(int pc_offset) { 1168 if (no_trampoline_pool_before_ < pc_offset) 1169 no_trampoline_pool_before_ = pc_offset; 1170 } 1171 StartBlockTrampolinePool()1172 void StartBlockTrampolinePool() { 1173 trampoline_pool_blocked_nesting_++; 1174 } 1175 EndBlockTrampolinePool()1176 void EndBlockTrampolinePool() { 1177 trampoline_pool_blocked_nesting_--; 1178 } 1179 is_trampoline_pool_blocked()1180 bool is_trampoline_pool_blocked() const { 1181 return trampoline_pool_blocked_nesting_ > 0; 1182 } 1183 has_exception()1184 bool has_exception() const { 1185 return internal_trampoline_exception_; 1186 } 1187 1188 void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi); 1189 is_trampoline_emitted()1190 bool is_trampoline_emitted() const { 1191 return trampoline_emitted_; 1192 } 1193 1194 // Temporarily block automatic assembly buffer growth. StartBlockGrowBuffer()1195 void StartBlockGrowBuffer() { 1196 DCHECK(!block_buffer_growth_); 1197 block_buffer_growth_ = true; 1198 } 1199 EndBlockGrowBuffer()1200 void EndBlockGrowBuffer() { 1201 DCHECK(block_buffer_growth_); 1202 block_buffer_growth_ = false; 1203 } 1204 is_buffer_growth_blocked()1205 bool is_buffer_growth_blocked() const { 1206 return block_buffer_growth_; 1207 } 1208 1209 private: 1210 // Buffer size and constant pool distance are checked together at regular 1211 // intervals of kBufferCheckInterval emitted bytes. 1212 static const int kBufferCheckInterval = 1*KB/2; 1213 1214 // Code generation. 1215 // The relocation writer's position is at least kGap bytes below the end of 1216 // the generated instructions. This is so that multi-instruction sequences do 1217 // not have to check for overflow. The same is true for writes of large 1218 // relocation info entries. 1219 static const int kGap = 32; 1220 1221 1222 // Repeated checking whether the trampoline pool should be emitted is rather 1223 // expensive. By default we only check again once a number of instructions 1224 // has been generated. 1225 static const int kCheckConstIntervalInst = 32; 1226 static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize; 1227 1228 int next_buffer_check_; // pc offset of next buffer check. 1229 1230 // Emission of the trampoline pool may be blocked in some code sequences. 1231 int trampoline_pool_blocked_nesting_; // Block emission if this is not zero. 1232 int no_trampoline_pool_before_; // Block emission before this pc offset. 1233 1234 // Keep track of the last emitted pool to guarantee a maximal distance. 1235 int last_trampoline_pool_end_; // pc offset of the end of the last pool. 1236 1237 // Automatic growth of the assembly buffer may be blocked for some sequences. 1238 bool block_buffer_growth_; // Block growth when true. 1239 1240 // Relocation information generation. 1241 // Each relocation is encoded as a variable size value. 1242 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize; 1243 RelocInfoWriter reloc_info_writer; 1244 1245 // The bound position, before this we cannot do instruction elimination. 1246 int last_bound_pos_; 1247 1248 // Code emission. 1249 inline void CheckBuffer(); 1250 void GrowBuffer(); 1251 inline void emit(Instr x); 1252 inline void emit(uint64_t x); 1253 inline void CheckTrampolinePoolQuick(); 1254 1255 // Instruction generation. 1256 // We have 3 different kind of encoding layout on MIPS. 1257 // However due to many different types of objects encoded in the same fields 1258 // we have quite a few aliases for each mode. 1259 // Using the same structure to refer to Register and FPURegister would spare a 1260 // few aliases, but mixing both does not look clean to me. 1261 // Anyway we could surely implement this differently. 1262 1263 void GenInstrRegister(Opcode opcode, 1264 Register rs, 1265 Register rt, 1266 Register rd, 1267 uint16_t sa = 0, 1268 SecondaryField func = NULLSF); 1269 1270 void GenInstrRegister(Opcode opcode, 1271 Register rs, 1272 Register rt, 1273 uint16_t msb, 1274 uint16_t lsb, 1275 SecondaryField func); 1276 1277 void GenInstrRegister(Opcode opcode, 1278 SecondaryField fmt, 1279 FPURegister ft, 1280 FPURegister fs, 1281 FPURegister fd, 1282 SecondaryField func = NULLSF); 1283 1284 void GenInstrRegister(Opcode opcode, 1285 FPURegister fr, 1286 FPURegister ft, 1287 FPURegister fs, 1288 FPURegister fd, 1289 SecondaryField func = NULLSF); 1290 1291 void GenInstrRegister(Opcode opcode, 1292 SecondaryField fmt, 1293 Register rt, 1294 FPURegister fs, 1295 FPURegister fd, 1296 SecondaryField func = NULLSF); 1297 1298 void GenInstrRegister(Opcode opcode, 1299 SecondaryField fmt, 1300 Register rt, 1301 FPUControlRegister fs, 1302 SecondaryField func = NULLSF); 1303 1304 1305 void GenInstrImmediate(Opcode opcode, 1306 Register rs, 1307 Register rt, 1308 int32_t j); 1309 void GenInstrImmediate(Opcode opcode, 1310 Register rs, 1311 SecondaryField SF, 1312 int32_t j); 1313 void GenInstrImmediate(Opcode opcode, 1314 Register r1, 1315 FPURegister r2, 1316 int32_t j); 1317 1318 1319 void GenInstrJump(Opcode opcode, 1320 uint32_t address); 1321 1322 // Helpers. 1323 void LoadRegPlusOffsetToAt(const MemOperand& src); 1324 1325 // Labels. 1326 void print(Label* L); 1327 void bind_to(Label* L, int pos); 1328 void next(Label* L); 1329 1330 // One trampoline consists of: 1331 // - space for trampoline slots, 1332 // - space for labels. 1333 // 1334 // Space for trampoline slots is equal to slot_count * 2 * kInstrSize. 1335 // Space for trampoline slots preceeds space for labels. Each label is of one 1336 // instruction size, so total amount for labels is equal to 1337 // label_count * kInstrSize. 1338 class Trampoline { 1339 public: Trampoline()1340 Trampoline() { 1341 start_ = 0; 1342 next_slot_ = 0; 1343 free_slot_count_ = 0; 1344 end_ = 0; 1345 } Trampoline(int start,int slot_count)1346 Trampoline(int start, int slot_count) { 1347 start_ = start; 1348 next_slot_ = start; 1349 free_slot_count_ = slot_count; 1350 end_ = start + slot_count * kTrampolineSlotsSize; 1351 } start()1352 int start() { 1353 return start_; 1354 } end()1355 int end() { 1356 return end_; 1357 } take_slot()1358 int take_slot() { 1359 int trampoline_slot = kInvalidSlotPos; 1360 if (free_slot_count_ <= 0) { 1361 // We have run out of space on trampolines. 1362 // Make sure we fail in debug mode, so we become aware of each case 1363 // when this happens. 1364 DCHECK(0); 1365 // Internal exception will be caught. 1366 } else { 1367 trampoline_slot = next_slot_; 1368 free_slot_count_--; 1369 next_slot_ += kTrampolineSlotsSize; 1370 } 1371 return trampoline_slot; 1372 } 1373 1374 private: 1375 int start_; 1376 int end_; 1377 int next_slot_; 1378 int free_slot_count_; 1379 }; 1380 1381 int32_t get_trampoline_entry(int32_t pos); 1382 int unbound_labels_count_; 1383 // If trampoline is emitted, generated code is becoming large. As this is 1384 // already a slow case which can possibly break our code generation for the 1385 // extreme case, we use this information to trigger different mode of 1386 // branch instruction generation, where we use jump instructions rather 1387 // than regular branch instructions. 1388 bool trampoline_emitted_; 1389 static const int kTrampolineSlotsSize = 6 * kInstrSize; 1390 static const int kMaxBranchOffset = (1 << (18 - 1)) - 1; 1391 static const int kInvalidSlotPos = -1; 1392 1393 Trampoline trampoline_; 1394 bool internal_trampoline_exception_; 1395 1396 friend class RegExpMacroAssemblerMIPS; 1397 friend class RelocInfo; 1398 friend class CodePatcher; 1399 friend class BlockTrampolinePoolScope; 1400 1401 PositionsRecorder positions_recorder_; 1402 friend class PositionsRecorder; 1403 friend class EnsureSpace; 1404 }; 1405 1406 1407 class EnsureSpace BASE_EMBEDDED { 1408 public: EnsureSpace(Assembler * assembler)1409 explicit EnsureSpace(Assembler* assembler) { 1410 assembler->CheckBuffer(); 1411 } 1412 }; 1413 1414 } } // namespace v8::internal 1415 1416 #endif // V8_ARM_ASSEMBLER_MIPS_H_ 1417