1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
18 #define ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
19 
20 #include "base/logging.h"
21 #include "dex/compiler_ir.h"
22 #include "dex/mir_graph.h"
23 #include "dex/quick/mir_to_lir.h"
24 #include "x86_lir.h"
25 
26 #include <map>
27 #include <vector>
28 
29 namespace art {
30 
31 class X86Mir2Lir FINAL : public Mir2Lir {
32  protected:
33   class InToRegStorageX86_64Mapper : public InToRegStorageMapper {
34    public:
InToRegStorageX86_64Mapper(Mir2Lir * m2l)35     explicit InToRegStorageX86_64Mapper(Mir2Lir* m2l)
36         : m2l_(m2l), cur_core_reg_(0), cur_fp_reg_(0) {}
37     virtual RegStorage GetNextReg(ShortyArg arg);
Reset()38     virtual void Reset() OVERRIDE {
39       cur_core_reg_ = 0;
40       cur_fp_reg_ = 0;
41     }
42    protected:
43     Mir2Lir* m2l_;
44     size_t cur_core_reg_;
45     size_t cur_fp_reg_;
46   };
47 
48   class InToRegStorageX86Mapper : public InToRegStorageX86_64Mapper {
49    public:
InToRegStorageX86Mapper(Mir2Lir * m2l)50     explicit InToRegStorageX86Mapper(Mir2Lir* m2l)
51         : InToRegStorageX86_64Mapper(m2l) { }
52     virtual RegStorage GetNextReg(ShortyArg arg);
53   };
54 
55   InToRegStorageX86_64Mapper in_to_reg_storage_x86_64_mapper_;
56   InToRegStorageX86Mapper in_to_reg_storage_x86_mapper_;
GetResetedInToRegStorageMapper()57   InToRegStorageMapper* GetResetedInToRegStorageMapper() OVERRIDE {
58     InToRegStorageMapper* res;
59     if (cu_->target64) {
60       res = &in_to_reg_storage_x86_64_mapper_;
61     } else {
62       res = &in_to_reg_storage_x86_mapper_;
63     }
64     res->Reset();
65     return res;
66   }
67 
68   class ExplicitTempRegisterLock {
69   public:
70     ExplicitTempRegisterLock(X86Mir2Lir* mir_to_lir, int n_regs, ...);
71     ~ExplicitTempRegisterLock();
72   protected:
73     std::vector<RegStorage> temp_regs_;
74     X86Mir2Lir* const mir_to_lir_;
75   };
76 
77   virtual int GenDalvikArgsBulkCopy(CallInfo* info, int first, int count) OVERRIDE;
78 
79  public:
80   X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
81 
82   // Required for target - codegen helpers.
83   bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src,
84                           RegLocation rl_dest, int lit) OVERRIDE;
85   bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) OVERRIDE;
86   void GenMultiplyByConstantFloat(RegLocation rl_dest, RegLocation rl_src1,
87                                   int32_t constant) OVERRIDE;
88   void GenMultiplyByConstantDouble(RegLocation rl_dest, RegLocation rl_src1,
89                                    int64_t constant) OVERRIDE;
90   LIR* CheckSuspendUsingLoad() OVERRIDE;
91   RegStorage LoadHelper(QuickEntrypointEnum trampoline) OVERRIDE;
92   LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
93                     OpSize size, VolatileKind is_volatile) OVERRIDE;
94   LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale,
95                        OpSize size) OVERRIDE;
96   LIR* LoadConstantNoClobber(RegStorage r_dest, int value);
97   LIR* LoadConstantWide(RegStorage r_dest, int64_t value);
98   void GenLongToInt(RegLocation rl_dest, RegLocation rl_src);
99   LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
100                      OpSize size, VolatileKind is_volatile) OVERRIDE;
101   LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale,
102                         OpSize size) OVERRIDE;
103 
104   /// @copydoc Mir2Lir::UnconditionallyMarkGCCard(RegStorage)
105   void UnconditionallyMarkGCCard(RegStorage tgt_addr_reg) OVERRIDE;
106 
107   bool CanUseOpPcRelDexCacheArrayLoad() const OVERRIDE;
108   void OpPcRelDexCacheArrayLoad(const DexFile* dex_file, int offset, RegStorage r_dest, bool wide)
109       OVERRIDE;
110 
111   void GenImplicitNullCheck(RegStorage reg, int opt_flags) OVERRIDE;
112 
113   // Required for target - register utilities.
114   RegStorage TargetReg(SpecialTargetRegister reg) OVERRIDE;
TargetReg(SpecialTargetRegister symbolic_reg,WideKind wide_kind)115   RegStorage TargetReg(SpecialTargetRegister symbolic_reg, WideKind wide_kind) OVERRIDE {
116     if (wide_kind == kWide) {
117       if (cu_->target64) {
118         return As64BitReg(TargetReg32(symbolic_reg));
119       } else {
120         if (symbolic_reg >= kFArg0 && symbolic_reg <= kFArg3) {
121           // We want an XMM, not a pair.
122           return As64BitReg(TargetReg32(symbolic_reg));
123         }
124         // x86: construct a pair.
125         DCHECK((kArg0 <= symbolic_reg && symbolic_reg < kArg3) ||
126                (kRet0 == symbolic_reg));
127         return RegStorage::MakeRegPair(TargetReg32(symbolic_reg),
128                                  TargetReg32(static_cast<SpecialTargetRegister>(symbolic_reg + 1)));
129       }
130     } else if (wide_kind == kRef && cu_->target64) {
131       return As64BitReg(TargetReg32(symbolic_reg));
132     } else {
133       return TargetReg32(symbolic_reg);
134     }
135   }
TargetPtrReg(SpecialTargetRegister symbolic_reg)136   RegStorage TargetPtrReg(SpecialTargetRegister symbolic_reg) OVERRIDE {
137     return TargetReg(symbolic_reg, cu_->target64 ? kWide : kNotWide);
138   }
139 
140   RegLocation GetReturnAlt() OVERRIDE;
141   RegLocation GetReturnWideAlt() OVERRIDE;
142   RegLocation LocCReturn() OVERRIDE;
143   RegLocation LocCReturnRef() OVERRIDE;
144   RegLocation LocCReturnDouble() OVERRIDE;
145   RegLocation LocCReturnFloat() OVERRIDE;
146   RegLocation LocCReturnWide() OVERRIDE;
147 
148   ResourceMask GetRegMaskCommon(const RegStorage& reg) const OVERRIDE;
149   void AdjustSpillMask() OVERRIDE;
150   void ClobberCallerSave() OVERRIDE;
151   void FreeCallTemps() OVERRIDE;
152   void LockCallTemps() OVERRIDE;
153 
154   void CompilerInitializeRegAlloc() OVERRIDE;
155   int VectorRegisterSize() OVERRIDE;
156   int NumReservableVectorRegisters(bool long_or_fp) OVERRIDE;
157 
158   // Required for target - miscellaneous.
159   void AssembleLIR() OVERRIDE;
160   void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) OVERRIDE;
161   void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
162                                 ResourceMask* use_mask, ResourceMask* def_mask) OVERRIDE;
163   const char* GetTargetInstFmt(int opcode) OVERRIDE;
164   const char* GetTargetInstName(int opcode) OVERRIDE;
165   std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) OVERRIDE;
166   ResourceMask GetPCUseDefEncoding() const OVERRIDE;
167   uint64_t GetTargetInstFlags(int opcode) OVERRIDE;
168   size_t GetInsnSize(LIR* lir) OVERRIDE;
169   bool IsUnconditionalBranch(LIR* lir) OVERRIDE;
170 
171   // Get the register class for load/store of a field.
172   RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) OVERRIDE;
173 
174   // Required for target - Dalvik-level generators.
175   void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index,
176                    RegLocation rl_dest, int scale) OVERRIDE;
177   void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
178                    RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) OVERRIDE;
179 
180   void GenArithOpDouble(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
181                         RegLocation rl_src2) OVERRIDE;
182   void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
183                        RegLocation rl_src2) OVERRIDE;
184   void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
185                 RegLocation rl_src2) OVERRIDE;
186   void GenConversion(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src) OVERRIDE;
187 
188   bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) OVERRIDE;
189   bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) OVERRIDE;
190   bool GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double) OVERRIDE;
191   bool GenInlinedReverseBits(CallInfo* info, OpSize size) OVERRIDE;
192   bool GenInlinedSqrt(CallInfo* info) OVERRIDE;
193   bool GenInlinedAbsFloat(CallInfo* info) OVERRIDE;
194   bool GenInlinedAbsDouble(CallInfo* info) OVERRIDE;
195   bool GenInlinedPeek(CallInfo* info, OpSize size) OVERRIDE;
196   bool GenInlinedPoke(CallInfo* info, OpSize size) OVERRIDE;
197   bool GenInlinedCharAt(CallInfo* info) OVERRIDE;
198 
199   // Long instructions.
200   void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
201                       RegLocation rl_src2, int flags) OVERRIDE;
202   void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
203                          RegLocation rl_src2, int flags) OVERRIDE;
204   void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
205                          RegLocation rl_src1, RegLocation rl_shift, int flags) OVERRIDE;
206   void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) OVERRIDE;
207   void GenIntToLong(RegLocation rl_dest, RegLocation rl_src) OVERRIDE;
208   void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
209                       RegLocation rl_src1, RegLocation rl_shift) OVERRIDE;
210 
211   /*
212    * @brief Generate a two address long operation with a constant value
213    * @param rl_dest location of result
214    * @param rl_src constant source operand
215    * @param op Opcode to be generated
216    * @return success or not
217    */
218   bool GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
219 
220   /*
221    * @brief Generate a three address long operation with a constant value
222    * @param rl_dest location of result
223    * @param rl_src1 source operand
224    * @param rl_src2 constant source operand
225    * @param op Opcode to be generated
226    * @return success or not
227    */
228   bool GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
229                       Instruction::Code op);
230   /**
231    * @brief Generate a long arithmetic operation.
232    * @param rl_dest The destination.
233    * @param rl_src1 First operand.
234    * @param rl_src2 Second operand.
235    * @param op The DEX opcode for the operation.
236    * @param is_commutative The sources can be swapped if needed.
237    */
238   virtual void GenLongArith(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
239                             Instruction::Code op, bool is_commutative);
240 
241   /**
242    * @brief Generate a two operand long arithmetic operation.
243    * @param rl_dest The destination.
244    * @param rl_src Second operand.
245    * @param op The DEX opcode for the operation.
246    */
247   void GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
248 
249   /**
250    * @brief Generate a long operation.
251    * @param rl_dest The destination.  Must be in a register
252    * @param rl_src The other operand.  May be in a register or in memory.
253    * @param op The DEX opcode for the operation.
254    */
255   virtual void GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
256 
257 
258   // TODO: collapse reg_lo, reg_hi
259   RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi, bool is_div)
260       OVERRIDE;
261   RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div) OVERRIDE;
262   void GenDivZeroCheckWide(RegStorage reg) OVERRIDE;
263   void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) OVERRIDE;
264   void GenExitSequence() OVERRIDE;
265   void GenSpecialExitSequence() OVERRIDE;
266   void GenSpecialEntryForSuspend() OVERRIDE;
267   void GenSpecialExitForSuspend() OVERRIDE;
268   void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) OVERRIDE;
269   void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) OVERRIDE;
270   void GenSelect(BasicBlock* bb, MIR* mir) OVERRIDE;
271   void GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
272                         int32_t true_val, int32_t false_val, RegStorage rs_dest,
273                         RegisterClass dest_reg_class) OVERRIDE;
274   bool GenMemBarrier(MemBarrierKind barrier_kind) OVERRIDE;
275   void GenMoveException(RegLocation rl_dest) OVERRIDE;
276   void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
277                                      int first_bit, int second_bit) OVERRIDE;
278   void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) OVERRIDE;
279   void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) OVERRIDE;
280   void GenLargePackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) OVERRIDE;
281   void GenLargeSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) OVERRIDE;
282 
283   /**
284    * @brief Implement instanceof a final class with x86 specific code.
285    * @param use_declaring_class 'true' if we can use the class itself.
286    * @param type_idx Type index to use if use_declaring_class is 'false'.
287    * @param rl_dest Result to be set to 0 or 1.
288    * @param rl_src Object to be tested.
289    */
290   void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
291                           RegLocation rl_src) OVERRIDE;
292 
293   // Single operation generators.
294   LIR* OpUnconditionalBranch(LIR* target) OVERRIDE;
295   LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) OVERRIDE;
296   LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target) OVERRIDE;
297   LIR* OpCondBranch(ConditionCode cc, LIR* target) OVERRIDE;
298   LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) OVERRIDE;
299   LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) OVERRIDE;
300   LIR* OpIT(ConditionCode cond, const char* guide) OVERRIDE;
301   void OpEndIT(LIR* it) OVERRIDE;
302   LIR* OpMem(OpKind op, RegStorage r_base, int disp) OVERRIDE;
303   void OpPcRelLoad(RegStorage reg, LIR* target) OVERRIDE;
304   LIR* OpReg(OpKind op, RegStorage r_dest_src) OVERRIDE;
305   void OpRegCopy(RegStorage r_dest, RegStorage r_src) OVERRIDE;
306   LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) OVERRIDE;
307   LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) OVERRIDE;
308   LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) OVERRIDE;
309   LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) OVERRIDE;
310   LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) OVERRIDE;
311   LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) OVERRIDE;
312   LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) OVERRIDE;
313   LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2) OVERRIDE;
314   LIR* OpTestSuspend(LIR* target) OVERRIDE;
315   LIR* OpVldm(RegStorage r_base, int count) OVERRIDE;
316   LIR* OpVstm(RegStorage r_base, int count) OVERRIDE;
317   void OpRegCopyWide(RegStorage dest, RegStorage src) OVERRIDE;
318   bool GenInlinedCurrentThread(CallInfo* info) OVERRIDE;
319 
320   bool InexpensiveConstantInt(int32_t value) OVERRIDE;
321   bool InexpensiveConstantFloat(int32_t value) OVERRIDE;
322   bool InexpensiveConstantLong(int64_t value) OVERRIDE;
323   bool InexpensiveConstantDouble(int64_t value) OVERRIDE;
324 
325   /*
326    * @brief Should try to optimize for two address instructions?
327    * @return true if we try to avoid generating three operand instructions.
328    */
GenerateTwoOperandInstructions()329   virtual bool GenerateTwoOperandInstructions() const { return true; }
330 
331   /*
332    * @brief x86 specific codegen for int operations.
333    * @param opcode Operation to perform.
334    * @param rl_dest Destination for the result.
335    * @param rl_lhs Left hand operand.
336    * @param rl_rhs Right hand operand.
337    * @param flags The instruction optimization flags.
338    */
339   void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_lhs,
340                      RegLocation rl_rhs, int flags) OVERRIDE;
341 
342   /*
343    * @brief Load the Method* of a dex method into the register.
344    * @param target_method The MethodReference of the method to be invoked.
345    * @param type How the method will be invoked.
346    * @param register that will contain the code address.
347    * @note register will be passed to TargetReg to get physical register.
348    */
349   void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
350                          SpecialTargetRegister symbolic_reg) OVERRIDE;
351 
352   /*
353    * @brief Load the Class* of a Dex Class type into the register.
354    * @param dex DexFile that contains the class type.
355    * @param type How the method will be invoked.
356    * @param register that will contain the code address.
357    * @note register will be passed to TargetReg to get physical register.
358    */
359   void LoadClassType(const DexFile& dex_file, uint32_t type_idx,
360                      SpecialTargetRegister symbolic_reg) OVERRIDE;
361 
362   NextCallInsn GetNextSDCallInsn() OVERRIDE;
363 
364   /*
365    * @brief Generate a relative call to the method that will be patched at link time.
366    * @param target_method The MethodReference of the method to be invoked.
367    * @param type How the method will be invoked.
368    * @returns Call instruction
369    */
370   LIR* CallWithLinkerFixup(const MethodReference& target_method, InvokeType type);
371 
372   /*
373    * @brief Generate the actual call insn based on the method info.
374    * @param method_info the lowering info for the method call.
375    * @returns Call instruction
376    */
377   LIR* GenCallInsn(const MirMethodLoweringInfo& method_info) OVERRIDE;
378 
379   void AnalyzeMIR(RefCounts* core_counts, MIR* mir, uint32_t weight) OVERRIDE;
380   void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs) OVERRIDE;
381   void DoPromotion() OVERRIDE;
382 
383   /*
384    * @brief Handle x86 specific literals
385    */
386   void InstallLiteralPools() OVERRIDE;
387 
388   LIR* InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) OVERRIDE;
389 
390  protected:
391   RegStorage TargetReg32(SpecialTargetRegister reg) const;
392   // Casting of RegStorage
As32BitReg(RegStorage reg)393   RegStorage As32BitReg(RegStorage reg) {
394     DCHECK(!reg.IsPair());
395     if ((kFailOnSizeError || kReportSizeError) && !reg.Is64Bit()) {
396       if (kFailOnSizeError) {
397         LOG(FATAL) << "Expected 64b register " << reg.GetReg();
398       } else {
399         LOG(WARNING) << "Expected 64b register " << reg.GetReg();
400         return reg;
401       }
402     }
403     RegStorage ret_val = RegStorage(RegStorage::k32BitSolo,
404                                     reg.GetRawBits() & RegStorage::kRegTypeMask);
405     DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k32SoloStorageMask)
406                              ->GetReg().GetReg(),
407               ret_val.GetReg());
408     return ret_val;
409   }
410 
As64BitReg(RegStorage reg)411   RegStorage As64BitReg(RegStorage reg) {
412     DCHECK(!reg.IsPair());
413     if ((kFailOnSizeError || kReportSizeError) && !reg.Is32Bit()) {
414       if (kFailOnSizeError) {
415         LOG(FATAL) << "Expected 32b register " << reg.GetReg();
416       } else {
417         LOG(WARNING) << "Expected 32b register " << reg.GetReg();
418         return reg;
419       }
420     }
421     RegStorage ret_val = RegStorage(RegStorage::k64BitSolo,
422                                     reg.GetRawBits() & RegStorage::kRegTypeMask);
423     DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k64SoloStorageMask)
424                              ->GetReg().GetReg(),
425               ret_val.GetReg());
426     return ret_val;
427   }
428 
429   LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
430                            RegStorage r_dest, OpSize size);
431   LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
432                             RegStorage r_src, OpSize size, int opt_flags = 0);
433 
434   int AssignInsnOffsets();
435   void AssignOffsets();
436   AssemblerStatus AssembleInstructions(LIR* first_lir_insn, CodeOffset start_addr);
437 
438   size_t ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index,
439                      int32_t raw_base, int32_t displacement);
440   void CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg);
441   void EmitPrefix(const X86EncodingMap* entry,
442                   int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b);
443   void EmitOpcode(const X86EncodingMap* entry);
444   void EmitPrefixAndOpcode(const X86EncodingMap* entry,
445                            int32_t reg_r, int32_t reg_x, int32_t reg_b);
446   void EmitDisp(uint8_t base, int32_t disp);
447   void EmitModrmThread(uint8_t reg_or_opcode);
448   void EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp);
449   void EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index, int scale,
450                         int32_t disp);
451   void EmitImm(const X86EncodingMap* entry, int64_t imm);
452   void EmitNullary(const X86EncodingMap* entry);
453   void EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg);
454   void EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg);
455   void EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
456   void EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
457                    int32_t disp);
458   void EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_reg);
459   void EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base, int32_t disp);
460   void EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
461                     int32_t raw_index, int scale, int32_t disp);
462   void EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
463                     int32_t disp, int32_t raw_reg);
464   void EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
465   void EmitArrayImm(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
466                     int32_t raw_disp, int32_t imm);
467   void EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp);
468   void EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2);
469   void EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t imm);
470   void EmitRegMemImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
471                      int32_t imm);
472   void EmitMemRegImm(const X86EncodingMap* entry, int32_t base, int32_t disp, int32_t raw_reg1,
473                      int32_t imm);
474   void EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
475   void EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm);
476   void EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm);
477   void EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
478   void EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl);
479   void EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_cl);
480   void EmitShiftRegRegCl(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2,
481                          int32_t raw_cl);
482   void EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
483   void EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc);
484   void EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t cc);
485   void EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t cc);
486   void EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
487                       int32_t cc);
488 
489   void EmitJmp(const X86EncodingMap* entry, int32_t rel);
490   void EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc);
491   void EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
492   void EmitCallImmediate(const X86EncodingMap* entry, int32_t disp);
493   void EmitCallThread(const X86EncodingMap* entry, int32_t disp);
494   void EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table,
495                  int32_t raw_index, int scale, int32_t table_or_disp);
496   void EmitUnimplemented(const X86EncodingMap* entry, LIR* lir);
497   void GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
498                                 int64_t val, ConditionCode ccode);
499   void GenConstWide(RegLocation rl_dest, int64_t value);
500   void GenMultiplyVectorSignedByte(RegStorage rs_dest_src1, RegStorage rs_src2);
501   void GenMultiplyVectorLong(RegStorage rs_dest_src1, RegStorage rs_src2);
502   void GenShiftByteVector(MIR* mir);
503   void AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3,
504                              uint32_t m4);
505   void MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m1, uint32_t m2,
506                           uint32_t m3, uint32_t m4);
507   void AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir);
508   virtual void LoadVectorRegister(RegStorage rs_dest, RegStorage rs_src, OpSize opsize,
509                                   int op_mov);
510 
511   static bool ProvidesFullMemoryBarrier(X86OpCode opcode);
512 
513   /*
514    * @brief Ensure that a temporary register is byte addressable.
515    * @returns a temporary guarenteed to be byte addressable.
516    */
517   virtual RegStorage AllocateByteRegister();
518 
519   /*
520    * @brief Use a wide temporary as a 128-bit register
521    * @returns a 128-bit temporary register.
522    */
523   virtual RegStorage Get128BitRegister(RegStorage reg);
524 
525   /*
526    * @brief Check if a register is byte addressable.
527    * @returns true if a register is byte addressable.
528    */
529   bool IsByteRegister(RegStorage reg) const;
530 
531   void GenDivRemLongLit(RegLocation rl_dest, RegLocation rl_src, int64_t imm, bool is_div);
532 
533   bool GenInlinedArrayCopyCharArray(CallInfo* info) OVERRIDE;
534 
535   /*
536    * @brief generate inline code for fast case of Strng.indexOf.
537    * @param info Call parameters
538    * @param zero_based 'true' if the index into the string is 0.
539    * @returns 'true' if the call was inlined, 'false' if a regular call needs to be
540    * generated.
541    */
542   bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
543 
544   /**
545    * @brief Used to reserve a range of vector registers.
546    * @see kMirOpReserveVectorRegisters
547    * @param mir The extended MIR for reservation.
548    */
549   void ReserveVectorRegisters(MIR* mir);
550 
551   /**
552    * @brief Used to return a range of vector registers.
553    * @see kMirOpReturnVectorRegisters
554    * @param mir The extended MIR for returning vector regs.
555    */
556   void ReturnVectorRegisters(MIR* mir);
557 
558   /*
559    * @brief Load 128 bit constant into vector register.
560    * @param mir The MIR whose opcode is kMirConstVector
561    * @note vA is the TypeSize for the register.
562    * @note vB is the destination XMM register. arg[0..3] are 32 bit constant values.
563    */
564   void GenConst128(MIR* mir);
565 
566   /*
567    * @brief MIR to move a vectorized register to another.
568    * @param mir The MIR whose opcode is kMirConstVector.
569    * @note vA: TypeSize
570    * @note vB: destination
571    * @note vC: source
572    */
573   void GenMoveVector(MIR* mir);
574 
575   /*
576    * @brief Packed multiply of units in two vector registers: vB = vB .* @note vC using vA to know
577    * the type of the vector.
578    * @param mir The MIR whose opcode is kMirConstVector.
579    * @note vA: TypeSize
580    * @note vB: destination and source
581    * @note vC: source
582    */
583   void GenMultiplyVector(MIR* mir);
584 
585   /*
586    * @brief Packed addition of units in two vector registers: vB = vB .+ vC using vA to know the
587    * type of the vector.
588    * @param mir The MIR whose opcode is kMirConstVector.
589    * @note vA: TypeSize
590    * @note vB: destination and source
591    * @note vC: source
592    */
593   void GenAddVector(MIR* mir);
594 
595   /*
596    * @brief Packed subtraction of units in two vector registers: vB = vB .- vC using vA to know the
597    * type of the vector.
598    * @param mir The MIR whose opcode is kMirConstVector.
599    * @note vA: TypeSize
600    * @note vB: destination and source
601    * @note vC: source
602    */
603   void GenSubtractVector(MIR* mir);
604 
605   /*
606    * @brief Packed shift left of units in two vector registers: vB = vB .<< vC using vA to know the
607    * type of the vector.
608    * @param mir The MIR whose opcode is kMirConstVector.
609    * @note vA: TypeSize
610    * @note vB: destination and source
611    * @note vC: immediate
612    */
613   void GenShiftLeftVector(MIR* mir);
614 
615   /*
616    * @brief Packed signed shift right of units in two vector registers: vB = vB .>> vC using vA to
617    * know the type of the vector.
618    * @param mir The MIR whose opcode is kMirConstVector.
619    * @note vA: TypeSize
620    * @note vB: destination and source
621    * @note vC: immediate
622    */
623   void GenSignedShiftRightVector(MIR* mir);
624 
625   /*
626    * @brief Packed unsigned shift right of units in two vector registers: vB = vB .>>> vC using vA
627    * to know the type of the vector.
628    * @param mir The MIR whose opcode is kMirConstVector.
629    * @note vA: TypeSize
630    * @note vB: destination and source
631    * @note vC: immediate
632    */
633   void GenUnsignedShiftRightVector(MIR* mir);
634 
635   /*
636    * @brief Packed bitwise and of units in two vector registers: vB = vB .& vC using vA to know the
637    * type of the vector.
638    * @note vA: TypeSize
639    * @note vB: destination and source
640    * @note vC: source
641    */
642   void GenAndVector(MIR* mir);
643 
644   /*
645    * @brief Packed bitwise or of units in two vector registers: vB = vB .| vC using vA to know the
646    * type of the vector.
647    * @param mir The MIR whose opcode is kMirConstVector.
648    * @note vA: TypeSize
649    * @note vB: destination and source
650    * @note vC: source
651    */
652   void GenOrVector(MIR* mir);
653 
654   /*
655    * @brief Packed bitwise xor of units in two vector registers: vB = vB .^ vC using vA to know the
656    * type of the vector.
657    * @param mir The MIR whose opcode is kMirConstVector.
658    * @note vA: TypeSize
659    * @note vB: destination and source
660    * @note vC: source
661    */
662   void GenXorVector(MIR* mir);
663 
664   /*
665    * @brief Reduce a 128-bit packed element into a single VR by taking lower bits
666    * @param mir The MIR whose opcode is kMirConstVector.
667    * @details Instruction does a horizontal addition of the packed elements and then adds it to VR.
668    * @note vA: TypeSize
669    * @note vB: destination and source VR (not vector register)
670    * @note vC: source (vector register)
671    */
672   void GenAddReduceVector(MIR* mir);
673 
674   /*
675    * @brief Extract a packed element into a single VR.
676    * @param mir The MIR whose opcode is kMirConstVector.
677    * @note vA: TypeSize
678    * @note vB: destination VR (not vector register)
679    * @note vC: source (vector register)
680    * @note arg[0]: The index to use for extraction from vector register (which packed element).
681    */
682   void GenReduceVector(MIR* mir);
683 
684   /*
685    * @brief Create a vector value, with all TypeSize values equal to vC
686    * @param bb The basic block in which the MIR is from.
687    * @param mir The MIR whose opcode is kMirConstVector.
688    * @note vA: TypeSize.
689    * @note vB: destination vector register.
690    * @note vC: source VR (not vector register).
691    */
692   void GenSetVector(MIR* mir);
693 
694   /**
695    * @brief Used to generate code for kMirOpPackedArrayGet.
696    * @param bb The basic block of MIR.
697    * @param mir The mir whose opcode is kMirOpPackedArrayGet.
698    */
699   void GenPackedArrayGet(BasicBlock* bb, MIR* mir);
700 
701   /**
702    * @brief Used to generate code for kMirOpPackedArrayPut.
703    * @param bb The basic block of MIR.
704    * @param mir The mir whose opcode is kMirOpPackedArrayPut.
705    */
706   void GenPackedArrayPut(BasicBlock* bb, MIR* mir);
707 
708   /*
709    * @brief Generate code for a vector opcode.
710    * @param bb The basic block in which the MIR is from.
711    * @param mir The MIR whose opcode is a non-standard opcode.
712    */
713   void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
714 
715   /*
716    * @brief Return the correct x86 opcode for the Dex operation
717    * @param op Dex opcode for the operation
718    * @param loc Register location of the operand
719    * @param is_high_op 'true' if this is an operation on the high word
720    * @param value Immediate value for the operation.  Used for byte variants
721    * @returns the correct x86 opcode to perform the operation
722    */
723   X86OpCode GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op, int32_t value);
724 
725   /*
726    * @brief Return the correct x86 opcode for the Dex operation
727    * @param op Dex opcode for the operation
728    * @param dest location of the destination.  May be register or memory.
729    * @param rhs Location for the rhs of the operation.  May be in register or memory.
730    * @param is_high_op 'true' if this is an operation on the high word
731    * @returns the correct x86 opcode to perform the operation
732    * @note at most one location may refer to memory
733    */
734   X86OpCode GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
735                       bool is_high_op);
736 
737   /*
738    * @brief Is this operation a no-op for this opcode and value
739    * @param op Dex opcode for the operation
740    * @param value Immediate value for the operation.
741    * @returns 'true' if the operation will have no effect
742    */
743   bool IsNoOp(Instruction::Code op, int32_t value);
744 
745   /**
746    * @brief Calculate magic number and shift for a given divisor
747    * @param divisor divisor number for calculation
748    * @param magic hold calculated magic number
749    * @param shift hold calculated shift
750    * @param is_long 'true' if divisor is jlong, 'false' for jint.
751    */
752   void CalculateMagicAndShift(int64_t divisor, int64_t& magic, int& shift, bool is_long);
753 
754   /*
755    * @brief Generate an integer div or rem operation.
756    * @param rl_dest Destination Location.
757    * @param rl_src1 Numerator Location.
758    * @param rl_src2 Divisor Location.
759    * @param is_div 'true' if this is a division, 'false' for a remainder.
760    * @param flags The instruction optimization flags. It can include information
761    * if exception check can be elided.
762    */
763   RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
764                         bool is_div, int flags);
765 
766   /*
767    * @brief Generate an integer div or rem operation by a literal.
768    * @param rl_dest Destination Location.
769    * @param rl_src Numerator Location.
770    * @param lit Divisor.
771    * @param is_div 'true' if this is a division, 'false' for a remainder.
772    */
773   RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src, int lit, bool is_div);
774 
775   /*
776    * Generate code to implement long shift operations.
777    * @param opcode The DEX opcode to specify the shift type.
778    * @param rl_dest The destination.
779    * @param rl_src The value to be shifted.
780    * @param shift_amount How much to shift.
781    * @param flags The instruction optimization flags.
782    * @returns the RegLocation of the result.
783    */
784   RegLocation GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
785                                 RegLocation rl_src, int shift_amount, int flags);
786   /*
787    * Generate an imul of a register by a constant or a better sequence.
788    * @param dest Destination Register.
789    * @param src Source Register.
790    * @param val Constant multiplier.
791    */
792   void GenImulRegImm(RegStorage dest, RegStorage src, int val);
793 
794   /*
795    * Generate an imul of a memory location by a constant or a better sequence.
796    * @param dest Destination Register.
797    * @param sreg Symbolic register.
798    * @param displacement Displacement on stack of Symbolic Register.
799    * @param val Constant multiplier.
800    */
801   void GenImulMemImm(RegStorage dest, int sreg, int displacement, int val);
802 
803   /*
804    * @brief Compare memory to immediate, and branch if condition true.
805    * @param cond The condition code that when true will branch to the target.
806    * @param temp_reg A temporary register that can be used if compare memory is not
807    * supported by the architecture.
808    * @param base_reg The register holding the base address.
809    * @param offset The offset from the base.
810    * @param check_value The immediate to compare to.
811    * @param target branch target (or nullptr)
812    * @param compare output for getting LIR for comparison (or nullptr)
813    */
814   LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
815                          int offset, int check_value, LIR* target, LIR** compare);
816 
817   void GenRemFP(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, bool is_double);
818 
819   /*
820    * Can this operation be using core registers without temporaries?
821    * @param rl_lhs Left hand operand.
822    * @param rl_rhs Right hand operand.
823    * @returns 'true' if the operation can proceed without needing temporary regs.
824    */
825   bool IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs);
826 
827   /**
828    * @brief Generates inline code for conversion of long to FP by using x87/
829    * @param rl_dest The destination of the FP.
830    * @param rl_src The source of the long.
831    * @param is_double 'true' if dealing with double, 'false' for float.
832    */
833   virtual void GenLongToFP(RegLocation rl_dest, RegLocation rl_src, bool is_double);
834 
835   void GenArrayBoundsCheck(RegStorage index, RegStorage array_base, int32_t len_offset);
836   void GenArrayBoundsCheck(int32_t index, RegStorage array_base, int32_t len_offset);
837 
838   LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset);
839   LIR* OpRegMem(OpKind op, RegStorage r_dest, RegLocation value);
840   LIR* OpMemReg(OpKind op, RegLocation rl_dest, int value);
841   LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset);
842   LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset);
843   void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset);
844   void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset);
845   void OpTlsCmp(ThreadOffset<4> offset, int val);
846   void OpTlsCmp(ThreadOffset<8> offset, int val);
847 
848   void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset);
849 
850   // Try to do a long multiplication where rl_src2 is a constant. This simplified setup might fail,
851   // in which case false will be returned.
852   bool GenMulLongConst(RegLocation rl_dest, RegLocation rl_src1, int64_t val, int flags);
853   void GenMulLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
854                   RegLocation rl_src2, int flags);
855   void GenNotLong(RegLocation rl_dest, RegLocation rl_src);
856   void GenNegLong(RegLocation rl_dest, RegLocation rl_src);
857   void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
858                      RegLocation rl_src2, bool is_div, int flags);
859 
860   void SpillCoreRegs();
861   void UnSpillCoreRegs();
862   void UnSpillFPRegs();
863   void SpillFPRegs();
864 
865   /*
866    * Mir2Lir's UpdateLoc() looks to see if the Dalvik value is currently live in any temp register
867    * without regard to data type.  In practice, this can result in UpdateLoc returning a
868    * location record for a Dalvik float value in a core register, and vis-versa.  For targets
869    * which can inexpensively move data between core and float registers, this can often be a win.
870    * However, for x86 this is generally not a win.  These variants of UpdateLoc()
871    * take a register class argument - and will return an in-register location record only if
872    * the value is live in a temp register of the correct class.  Additionally, if the value is in
873    * a temp register of the wrong register class, it will be clobbered.
874    */
875   RegLocation UpdateLocTyped(RegLocation loc);
876   RegLocation UpdateLocWideTyped(RegLocation loc);
877 
878   /*
879    * @brief Analyze one MIR float/double instruction
880    * @param opcode MIR instruction opcode.
881    * @param mir Instruction to analyze.
882    * @return true iff the instruction needs to load a literal using PC-relative addressing.
883    */
884   bool AnalyzeFPInstruction(int opcode, MIR* mir);
885 
886   /*
887    * @brief Analyze one use of a double operand.
888    * @param rl_use Double RegLocation for the operand.
889    * @return true iff the instruction needs to load a literal using PC-relative addressing.
890    */
891   bool AnalyzeDoubleUse(RegLocation rl_use);
892 
893   /*
894    * @brief Analyze one invoke-static MIR instruction
895    * @param mir Instruction to analyze.
896    * @return true iff the instruction needs to load a literal using PC-relative addressing.
897    */
898   bool AnalyzeInvokeStaticIntrinsic(MIR* mir);
899 
900   // Information derived from analysis of MIR
901 
902   // The base register for PC-relative addressing if promoted (32-bit only).
903   RegStorage pc_rel_base_reg_;
904 
905   // Have we actually used the pc_rel_base_reg_?
906   bool pc_rel_base_reg_used_;
907 
908   // Pointer to the "call +0" insn that sets up the promoted register for PC-relative addressing.
909   // The anchor "pop" insn is NEXT_LIR(setup_pc_rel_base_reg_). The whole "call +0; pop <reg>"
910   // sequence will be removed in AssembleLIR() if we do not actually use PC-relative addressing.
911   LIR* setup_pc_rel_base_reg_;  // There are 2 chained insns (no reordering allowed).
912 
913   // Instructions needing patching with Method* values.
914   ArenaVector<LIR*> method_address_insns_;
915 
916   // Instructions needing patching with Class Type* values.
917   ArenaVector<LIR*> class_type_address_insns_;
918 
919   // Instructions needing patching with PC relative code addresses.
920   ArenaVector<LIR*> call_method_insns_;
921 
922   // Instructions needing patching with PC relative code addresses.
923   ArenaVector<LIR*> dex_cache_access_insns_;
924 
925   // The list of const vector literals.
926   LIR* const_vectors_;
927 
928   /*
929    * @brief Search for a matching vector literal
930    * @param constants An array of size 4 which contains all of 32-bit constants.
931    * @returns pointer to matching LIR constant, or nullptr if not found.
932    */
933   LIR* ScanVectorLiteral(int32_t* constants);
934 
935   /*
936    * @brief Add a constant vector literal
937    * @param constants An array of size 4 which contains all of 32-bit constants.
938    */
939   LIR* AddVectorLiteral(int32_t* constants);
940 
WideGPRsAreAliases()941   bool WideGPRsAreAliases() const OVERRIDE {
942     return cu_->target64;  // On 64b, we have 64b GPRs.
943   }
944 
WideFPRsAreAliases()945   bool WideFPRsAreAliases() const OVERRIDE {
946     return true;  // xmm registers have 64b views even on x86.
947   }
948 
949   /*
950    * @brief Dump a RegLocation using printf
951    * @param loc Register location to dump
952    */
953   static void DumpRegLocation(RegLocation loc);
954 
955  private:
956   void SwapBits(RegStorage result_reg, int shift, int32_t value);
957   void SwapBits64(RegStorage result_reg, int shift, int64_t value);
958 
959   static int X86NextSDCallInsn(CompilationUnit* cu, CallInfo* info,
960                                int state, const MethodReference& target_method,
961                                uint32_t,
962                                uintptr_t direct_code, uintptr_t direct_method,
963                                InvokeType type);
964 
965   LIR* OpLoadPc(RegStorage r_dest);
966   RegStorage GetPcAndAnchor(LIR** anchor, RegStorage r_tmp = RegStorage::InvalidReg());
967 
968   // When we don't know the proper offset for the value, pick one that will force
969   // 4 byte offset.  We will fix this up in the assembler or linker later to have
970   // the right value.
971   static constexpr int kDummy32BitOffset = 256;
972 
973   static const X86EncodingMap EncodingMap[kX86Last];
974 
975   friend std::ostream& operator<<(std::ostream& os, const X86OpCode& rhs);
976   friend class QuickAssembleX86Test;
977   friend class QuickAssembleX86MacroTest;
978   friend class QuickAssembleX86LowLevelTest;
979 
980   DISALLOW_COPY_AND_ASSIGN(X86Mir2Lir);
981 };
982 
983 }  // namespace art
984 
985 #endif  // ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
986