1 // Copyright 2014 PDFium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Original code by Matt McCutchen, see the LICENSE file.
6 
7 #ifndef BIGUNSIGNED_H
8 #define BIGUNSIGNED_H
9 
10 #include "NumberlikeArray.hh"
11 
12 /* A BigUnsigned object represents a nonnegative integer of size limited only by
13  * available memory.  BigUnsigneds support most mathematical operators and can
14  * be converted to and from most primitive integer types.
15  *
16  * The number is stored as a NumberlikeArray of unsigned longs as if it were
17  * written in base 256^sizeof(unsigned long).  The least significant block is
18  * first, and the length is such that the most significant block is nonzero. */
19 class BigUnsigned : protected NumberlikeArray<unsigned long> {
20 
21 public:
22 	// Enumeration for the result of a comparison.
23 	enum CmpRes { less = -1, equal = 0, greater = 1 };
24 
25 	// BigUnsigneds are built with a Blk type of unsigned long.
26 	typedef unsigned long Blk;
27 
28 	typedef NumberlikeArray<Blk>::Index Index;
29 	using NumberlikeArray<Blk>::N;
30 
31 protected:
32 	// Creates a BigUnsigned with a capacity; for internal use.
BigUnsigned(int,Index c)33 	BigUnsigned(int, Index c) : NumberlikeArray<Blk>(0, c) {}
34 
35 	// Decreases len to eliminate any leading zero blocks.
zapLeadingZeros()36 	void zapLeadingZeros() {
37 		while (len > 0 && blk[len - 1] == 0)
38 			len--;
39 	}
40 
41 public:
42 	// Constructs zero.
BigUnsigned()43 	BigUnsigned() : NumberlikeArray<Blk>() {}
44 
45 	// Copy constructor
BigUnsigned(const BigUnsigned & x)46 	BigUnsigned(const BigUnsigned &x) : NumberlikeArray<Blk>(x) {}
47 
48 	// Assignment operator
operator =(const BigUnsigned & x)49 	void operator=(const BigUnsigned &x) {
50 		NumberlikeArray<Blk>::operator =(x);
51 	}
52 
53 	// Constructor that copies from a given array of blocks.
BigUnsigned(const Blk * b,Index blen)54 	BigUnsigned(const Blk *b, Index blen) : NumberlikeArray<Blk>(b, blen) {
55 		// Eliminate any leading zeros we may have been passed.
56 		zapLeadingZeros();
57 	}
58 
59 	// Destructor.  NumberlikeArray does the delete for us.
~BigUnsigned()60 	~BigUnsigned() {}
61 
62 	// Constructors from primitive integer types
63 	BigUnsigned(unsigned long  x);
64 	BigUnsigned(         long  x);
65 	BigUnsigned(unsigned int   x);
66 	BigUnsigned(         int   x);
67 	BigUnsigned(unsigned short x);
68 	BigUnsigned(         short x);
69 protected:
70 	// Helpers
71 	template <class X> void initFromPrimitive      (X x);
72 	template <class X> void initFromSignedPrimitive(X x);
73 public:
74 
75 	/* Converters to primitive integer types
76 	 * The implicit conversion operators caused trouble, so these are now
77 	 * named. */
78 	unsigned long  toUnsignedLong () const;
79 	long           toLong         () const;
80 	unsigned int   toUnsignedInt  () const;
81 	int            toInt          () const;
82 	unsigned short toUnsignedShort() const;
83 	short          toShort        () const;
84 protected:
85 	// Helpers
86 	template <class X> X convertToSignedPrimitive() const;
87 	template <class X> X convertToPrimitive      () const;
88 public:
89 
90 	// BIT/BLOCK ACCESSORS
91 
92 	// Expose these from NumberlikeArray directly.
93 	using NumberlikeArray<Blk>::getCapacity;
94 	using NumberlikeArray<Blk>::getLength;
95 
96 	/* Returns the requested block, or 0 if it is beyond the length (as if
97 	 * the number had 0s infinitely to the left). */
getBlock(Index i) const98 	Blk getBlock(Index i) const { return i >= len ? 0 : blk[i]; }
99 	/* Sets the requested block.  The number grows or shrinks as necessary. */
100 	void setBlock(Index i, Blk newBlock);
101 
102 	// The number is zero if and only if the canonical length is zero.
isZero() const103 	bool isZero() const { return NumberlikeArray<Blk>::isEmpty(); }
104 
105 	/* Returns the length of the number in bits, i.e., zero if the number
106 	 * is zero and otherwise one more than the largest value of bi for
107 	 * which getBit(bi) returns true. */
108 	Index bitLength() const;
109 	/* Get the state of bit bi, which has value 2^bi.  Bits beyond the
110 	 * number's length are considered to be 0. */
getBit(Index bi) const111 	bool getBit(Index bi) const {
112 		return (getBlock(bi / N) & (Blk(1) << (bi % N))) != 0;
113 	}
114 	/* Sets the state of bit bi to newBit.  The number grows or shrinks as
115 	 * necessary. */
116 	void setBit(Index bi, bool newBit);
117 
118 	// COMPARISONS
119 
120 	// Compares this to x like Perl's <=>
121 	CmpRes compareTo(const BigUnsigned &x) const;
122 
123 	// Ordinary comparison operators
operator ==(const BigUnsigned & x) const124 	bool operator ==(const BigUnsigned &x) const {
125 		return NumberlikeArray<Blk>::operator ==(x);
126 	}
operator !=(const BigUnsigned & x) const127 	bool operator !=(const BigUnsigned &x) const {
128 		return NumberlikeArray<Blk>::operator !=(x);
129 	}
operator <(const BigUnsigned & x) const130 	bool operator < (const BigUnsigned &x) const { return compareTo(x) == less   ; }
operator <=(const BigUnsigned & x) const131 	bool operator <=(const BigUnsigned &x) const { return compareTo(x) != greater; }
operator >=(const BigUnsigned & x) const132 	bool operator >=(const BigUnsigned &x) const { return compareTo(x) != less   ; }
operator >(const BigUnsigned & x) const133 	bool operator > (const BigUnsigned &x) const { return compareTo(x) == greater; }
134 
135 	/*
136 	 * BigUnsigned and BigInteger both provide three kinds of operators.
137 	 * Here ``big-integer'' refers to BigInteger or BigUnsigned.
138 	 *
139 	 * (1) Overloaded ``return-by-value'' operators:
140 	 *     +, -, *, /, %, unary -, &, |, ^, <<, >>.
141 	 * Big-integer code using these operators looks identical to code using
142 	 * the primitive integer types.  These operators take one or two
143 	 * big-integer inputs and return a big-integer result, which can then
144 	 * be assigned to a BigInteger variable or used in an expression.
145 	 * Example:
146 	 *     BigInteger a(1), b = 1;
147 	 *     BigInteger c = a + b;
148 	 *
149 	 * (2) Overloaded assignment operators:
150 	 *     +=, -=, *=, /=, %=, flipSign, &=, |=, ^=, <<=, >>=, ++, --.
151 	 * Again, these are used on big integers just like on ints.  They take
152 	 * one writable big integer that both provides an operand and receives a
153 	 * result.  Most also take a second read-only operand.
154 	 * Example:
155 	 *     BigInteger a(1), b(1);
156 	 *     a += b;
157 	 *
158 	 * (3) Copy-less operations: `add', `subtract', etc.
159 	 * These named methods take operands as arguments and store the result
160 	 * in the receiver (*this), avoiding unnecessary copies and allocations.
161 	 * `divideWithRemainder' is special: it both takes the dividend from and
162 	 * stores the remainder into the receiver, and it takes a separate
163 	 * object in which to store the quotient.  NOTE: If you are wondering
164 	 * why these don't return a value, you probably mean to use the
165 	 * overloaded return-by-value operators instead.
166 	 *
167 	 * Examples:
168 	 *     BigInteger a(43), b(7), c, d;
169 	 *
170 	 *     c = a + b;   // Now c == 50.
171 	 *     c.add(a, b); // Same effect but without the two copies.
172 	 *
173 	 *     c.divideWithRemainder(b, d);
174 	 *     // 50 / 7; now d == 7 (quotient) and c == 1 (remainder).
175 	 *
176 	 *     // ``Aliased'' calls now do the right thing using a temporary
177 	 *     // copy, but see note on `divideWithRemainder'.
178 	 *     a.add(a, b);
179 	 */
180 
181 	// COPY-LESS OPERATIONS
182 
183 	// These 8: Arguments are read-only operands, result is saved in *this.
184 	void add(const BigUnsigned &a, const BigUnsigned &b);
185 	void subtract(const BigUnsigned &a, const BigUnsigned &b);
186 	void multiply(const BigUnsigned &a, const BigUnsigned &b);
187 	void bitAnd(const BigUnsigned &a, const BigUnsigned &b);
188 	void bitOr(const BigUnsigned &a, const BigUnsigned &b);
189 	void bitXor(const BigUnsigned &a, const BigUnsigned &b);
190 	/* Negative shift amounts translate to opposite-direction shifts,
191 	 * except for -2^(8*sizeof(int)-1) which is unimplemented. */
192 	void bitShiftLeft(const BigUnsigned &a, int b);
193 	void bitShiftRight(const BigUnsigned &a, int b);
194 
195 	/* `a.divideWithRemainder(b, q)' is like `q = a / b, a %= b'.
196 	 * / and % use semantics similar to Knuth's, which differ from the
197 	 * primitive integer semantics under division by zero.  See the
198 	 * implementation in BigUnsigned.cc for details.
199 	 * `a.divideWithRemainder(b, a)' throws an exception: it doesn't make
200 	 * sense to write quotient and remainder into the same variable. */
201 	void divideWithRemainder(const BigUnsigned &b, BigUnsigned &q);
202 
203 	/* `divide' and `modulo' are no longer offered.  Use
204 	 * `divideWithRemainder' instead. */
205 
206 	// OVERLOADED RETURN-BY-VALUE OPERATORS
207 	BigUnsigned operator +(const BigUnsigned &x) const;
208 	BigUnsigned operator -(const BigUnsigned &x) const;
209 	BigUnsigned operator *(const BigUnsigned &x) const;
210 	BigUnsigned operator /(const BigUnsigned &x) const;
211 	BigUnsigned operator %(const BigUnsigned &x) const;
212 	/* OK, maybe unary minus could succeed in one case, but it really
213 	 * shouldn't be used, so it isn't provided. */
214 	BigUnsigned operator &(const BigUnsigned &x) const;
215 	BigUnsigned operator |(const BigUnsigned &x) const;
216 	BigUnsigned operator ^(const BigUnsigned &x) const;
217 	BigUnsigned operator <<(int b) const;
218 	BigUnsigned operator >>(int b) const;
219 
220 	// OVERLOADED ASSIGNMENT OPERATORS
221 	void operator +=(const BigUnsigned &x);
222 	void operator -=(const BigUnsigned &x);
223 	void operator *=(const BigUnsigned &x);
224 	void operator /=(const BigUnsigned &x);
225 	void operator %=(const BigUnsigned &x);
226 	void operator &=(const BigUnsigned &x);
227 	void operator |=(const BigUnsigned &x);
228 	void operator ^=(const BigUnsigned &x);
229 	void operator <<=(int b);
230 	void operator >>=(int b);
231 
232 	/* INCREMENT/DECREMENT OPERATORS
233 	 * To discourage messy coding, these do not return *this, so prefix
234 	 * and postfix behave the same. */
235 	void operator ++(   );
236 	void operator ++(int);
237 	void operator --(   );
238 	void operator --(int);
239 
240 	// Helper function that needs access to BigUnsigned internals
241 	friend Blk getShiftedBlock(const BigUnsigned &num, Index x,
242 			unsigned int y);
243 
244 	// See BigInteger.cc.
245 	template <class X>
246 	friend X convertBigUnsignedToPrimitiveAccess(const BigUnsigned &a);
247 };
248 
249 /* Implementing the return-by-value and assignment operators in terms of the
250  * copy-less operations.  The copy-less operations are responsible for making
251  * any necessary temporary copies to work around aliasing. */
252 
operator +(const BigUnsigned & x) const253 inline BigUnsigned BigUnsigned::operator +(const BigUnsigned &x) const {
254 	BigUnsigned ans;
255 	ans.add(*this, x);
256 	return ans;
257 }
operator -(const BigUnsigned & x) const258 inline BigUnsigned BigUnsigned::operator -(const BigUnsigned &x) const {
259 	BigUnsigned ans;
260 	ans.subtract(*this, x);
261 	return ans;
262 }
operator *(const BigUnsigned & x) const263 inline BigUnsigned BigUnsigned::operator *(const BigUnsigned &x) const {
264 	BigUnsigned ans;
265 	ans.multiply(*this, x);
266 	return ans;
267 }
operator /(const BigUnsigned & x) const268 inline BigUnsigned BigUnsigned::operator /(const BigUnsigned &x) const {
269 	if (x.isZero())
270         abort();
271 	BigUnsigned q, r;
272 	r = *this;
273 	r.divideWithRemainder(x, q);
274 	return q;
275 }
operator %(const BigUnsigned & x) const276 inline BigUnsigned BigUnsigned::operator %(const BigUnsigned &x) const {
277 	if (x.isZero())
278         abort();
279 	BigUnsigned q, r;
280 	r = *this;
281 	r.divideWithRemainder(x, q);
282 	return r;
283 }
operator &(const BigUnsigned & x) const284 inline BigUnsigned BigUnsigned::operator &(const BigUnsigned &x) const {
285 	BigUnsigned ans;
286 	ans.bitAnd(*this, x);
287 	return ans;
288 }
operator |(const BigUnsigned & x) const289 inline BigUnsigned BigUnsigned::operator |(const BigUnsigned &x) const {
290 	BigUnsigned ans;
291 	ans.bitOr(*this, x);
292 	return ans;
293 }
operator ^(const BigUnsigned & x) const294 inline BigUnsigned BigUnsigned::operator ^(const BigUnsigned &x) const {
295 	BigUnsigned ans;
296 	ans.bitXor(*this, x);
297 	return ans;
298 }
operator <<(int b) const299 inline BigUnsigned BigUnsigned::operator <<(int b) const {
300 	BigUnsigned ans;
301 	ans.bitShiftLeft(*this, b);
302 	return ans;
303 }
operator >>(int b) const304 inline BigUnsigned BigUnsigned::operator >>(int b) const {
305 	BigUnsigned ans;
306 	ans.bitShiftRight(*this, b);
307 	return ans;
308 }
309 
operator +=(const BigUnsigned & x)310 inline void BigUnsigned::operator +=(const BigUnsigned &x) {
311 	add(*this, x);
312 }
operator -=(const BigUnsigned & x)313 inline void BigUnsigned::operator -=(const BigUnsigned &x) {
314 	subtract(*this, x);
315 }
operator *=(const BigUnsigned & x)316 inline void BigUnsigned::operator *=(const BigUnsigned &x) {
317 	multiply(*this, x);
318 }
operator /=(const BigUnsigned & x)319 inline void BigUnsigned::operator /=(const BigUnsigned &x) {
320 	if (x.isZero())
321         abort();
322 	/* The following technique is slightly faster than copying *this first
323 	 * when x is large. */
324 	BigUnsigned q;
325 	divideWithRemainder(x, q);
326 	// *this contains the remainder, but we overwrite it with the quotient.
327 	*this = q;
328 }
operator %=(const BigUnsigned & x)329 inline void BigUnsigned::operator %=(const BigUnsigned &x) {
330 	if (x.isZero())
331         abort();
332 	BigUnsigned q;
333 	// Mods *this by x.  Don't care about quotient left in q.
334 	divideWithRemainder(x, q);
335 }
operator &=(const BigUnsigned & x)336 inline void BigUnsigned::operator &=(const BigUnsigned &x) {
337 	bitAnd(*this, x);
338 }
operator |=(const BigUnsigned & x)339 inline void BigUnsigned::operator |=(const BigUnsigned &x) {
340 	bitOr(*this, x);
341 }
operator ^=(const BigUnsigned & x)342 inline void BigUnsigned::operator ^=(const BigUnsigned &x) {
343 	bitXor(*this, x);
344 }
operator <<=(int b)345 inline void BigUnsigned::operator <<=(int b) {
346 	bitShiftLeft(*this, b);
347 }
operator >>=(int b)348 inline void BigUnsigned::operator >>=(int b) {
349 	bitShiftRight(*this, b);
350 }
351 
352 /* Templates for conversions of BigUnsigned to and from primitive integers.
353  * BigInteger.cc needs to instantiate convertToPrimitive, and the uses in
354  * BigUnsigned.cc didn't do the trick; I think g++ inlined convertToPrimitive
355  * instead of generating linkable instantiations.  So for consistency, I put
356  * all the templates here. */
357 
358 // CONSTRUCTION FROM PRIMITIVE INTEGERS
359 
360 /* Initialize this BigUnsigned from the given primitive integer.  The same
361  * pattern works for all primitive integer types, so I put it into a template to
362  * reduce code duplication.  (Don't worry: this is protected and we instantiate
363  * it only with primitive integer types.)  Type X could be signed, but x is
364  * known to be nonnegative. */
365 template <class X>
initFromPrimitive(X x)366 void BigUnsigned::initFromPrimitive(X x) {
367 	if (x == 0)
368 		; // NumberlikeArray already initialized us to zero.
369 	else {
370 		// Create a single block.  blk is NULL; no need to delete it.
371 		cap = 1;
372 		blk = new Blk[1];
373 		len = 1;
374 		blk[0] = Blk(x);
375 	}
376 }
377 
378 /* Ditto, but first check that x is nonnegative.  I could have put the check in
379  * initFromPrimitive and let the compiler optimize it out for unsigned-type
380  * instantiations, but I wanted to avoid the warning stupidly issued by g++ for
381  * a condition that is constant in *any* instantiation, even if not in all. */
382 template <class X>
initFromSignedPrimitive(X x)383 void BigUnsigned::initFromSignedPrimitive(X x) {
384 	if (x < 0)
385         abort();
386 	else
387 		initFromPrimitive(x);
388 }
389 
390 // CONVERSION TO PRIMITIVE INTEGERS
391 
392 /* Template with the same idea as initFromPrimitive.  This might be slightly
393  * slower than the previous version with the masks, but it's much shorter and
394  * clearer, which is the library's stated goal. */
395 template <class X>
convertToPrimitive() const396 X BigUnsigned::convertToPrimitive() const {
397 	if (len == 0)
398 		// The number is zero; return zero.
399 		return 0;
400 	else if (len == 1) {
401 		// The single block might fit in an X.  Try the conversion.
402 		X x = X(blk[0]);
403 		// Make sure the result accurately represents the block.
404 		if (Blk(x) == blk[0])
405 			// Successful conversion.
406 			return x;
407 		// Otherwise fall through.
408 	}
409     abort();
410 }
411 
412 /* Wrap the above in an x >= 0 test to make sure we got a nonnegative result,
413  * not a negative one that happened to convert back into the correct nonnegative
414  * one.  (E.g., catch incorrect conversion of 2^31 to the long -2^31.)  Again,
415  * separated to avoid a g++ warning. */
416 template <class X>
convertToSignedPrimitive() const417 X BigUnsigned::convertToSignedPrimitive() const {
418 	X x = convertToPrimitive<X>();
419 	if (x >= 0)
420 		return x;
421 	else
422         abort();
423 }
424 
425 #endif
426