1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // #define LOG_NDEBUG 0
18 #define LOG_TAG "libutils.threads"
19 
20 #include <assert.h>
21 #include <errno.h>
22 #include <memory.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <unistd.h>
26 
27 #if !defined(_WIN32)
28 # include <pthread.h>
29 # include <sched.h>
30 # include <sys/resource.h>
31 #else
32 # include <windows.h>
33 # include <stdint.h>
34 # include <process.h>
35 # define HAVE_CREATETHREAD  // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
36 #endif
37 
38 #if defined(__linux__)
39 #include <sys/prctl.h>
40 #endif
41 
42 #include <utils/threads.h>
43 #include <utils/Log.h>
44 
45 #include <cutils/sched_policy.h>
46 
47 #ifdef HAVE_ANDROID_OS
48 # define __android_unused
49 #else
50 # define __android_unused __attribute__((__unused__))
51 #endif
52 
53 /*
54  * ===========================================================================
55  *      Thread wrappers
56  * ===========================================================================
57  */
58 
59 using namespace android;
60 
61 // ----------------------------------------------------------------------------
62 #if !defined(_WIN32)
63 // ----------------------------------------------------------------------------
64 
65 /*
66  * Create and run a new thread.
67  *
68  * We create it "detached", so it cleans up after itself.
69  */
70 
71 typedef void* (*android_pthread_entry)(void*);
72 
73 struct thread_data_t {
74     thread_func_t   entryFunction;
75     void*           userData;
76     int             priority;
77     char *          threadName;
78 
79     // we use this trampoline when we need to set the priority with
80     // nice/setpriority, and name with prctl.
trampolinethread_data_t81     static int trampoline(const thread_data_t* t) {
82         thread_func_t f = t->entryFunction;
83         void* u = t->userData;
84         int prio = t->priority;
85         char * name = t->threadName;
86         delete t;
87         setpriority(PRIO_PROCESS, 0, prio);
88         if (prio >= ANDROID_PRIORITY_BACKGROUND) {
89             set_sched_policy(0, SP_BACKGROUND);
90         } else {
91             set_sched_policy(0, SP_FOREGROUND);
92         }
93 
94         if (name) {
95             androidSetThreadName(name);
96             free(name);
97         }
98         return f(u);
99     }
100 };
101 
androidSetThreadName(const char * name)102 void androidSetThreadName(const char* name) {
103 #if defined(__linux__)
104     // Mac OS doesn't have this, and we build libutil for the host too
105     int hasAt = 0;
106     int hasDot = 0;
107     const char *s = name;
108     while (*s) {
109         if (*s == '.') hasDot = 1;
110         else if (*s == '@') hasAt = 1;
111         s++;
112     }
113     int len = s - name;
114     if (len < 15 || hasAt || !hasDot) {
115         s = name;
116     } else {
117         s = name + len - 15;
118     }
119     prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
120 #endif
121 }
122 
androidCreateRawThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName __android_unused,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)123 int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
124                                void *userData,
125                                const char* threadName __android_unused,
126                                int32_t threadPriority,
127                                size_t threadStackSize,
128                                android_thread_id_t *threadId)
129 {
130     pthread_attr_t attr;
131     pthread_attr_init(&attr);
132     pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
133 
134 #ifdef HAVE_ANDROID_OS  /* valgrind is rejecting RT-priority create reqs */
135     if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
136         // Now that the pthread_t has a method to find the associated
137         // android_thread_id_t (pid) from pthread_t, it would be possible to avoid
138         // this trampoline in some cases as the parent could set the properties
139         // for the child.  However, there would be a race condition because the
140         // child becomes ready immediately, and it doesn't work for the name.
141         // prctl(PR_SET_NAME) only works for self; prctl(PR_SET_THREAD_NAME) was
142         // proposed but not yet accepted.
143         thread_data_t* t = new thread_data_t;
144         t->priority = threadPriority;
145         t->threadName = threadName ? strdup(threadName) : NULL;
146         t->entryFunction = entryFunction;
147         t->userData = userData;
148         entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
149         userData = t;
150     }
151 #endif
152 
153     if (threadStackSize) {
154         pthread_attr_setstacksize(&attr, threadStackSize);
155     }
156 
157     errno = 0;
158     pthread_t thread;
159     int result = pthread_create(&thread, &attr,
160                     (android_pthread_entry)entryFunction, userData);
161     pthread_attr_destroy(&attr);
162     if (result != 0) {
163         ALOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, errno=%d)\n"
164              "(android threadPriority=%d)",
165             entryFunction, result, errno, threadPriority);
166         return 0;
167     }
168 
169     // Note that *threadID is directly available to the parent only, as it is
170     // assigned after the child starts.  Use memory barrier / lock if the child
171     // or other threads also need access.
172     if (threadId != NULL) {
173         *threadId = (android_thread_id_t)thread; // XXX: this is not portable
174     }
175     return 1;
176 }
177 
178 #ifdef HAVE_ANDROID_OS
android_thread_id_t_to_pthread(android_thread_id_t thread)179 static pthread_t android_thread_id_t_to_pthread(android_thread_id_t thread)
180 {
181     return (pthread_t) thread;
182 }
183 #endif
184 
androidGetThreadId()185 android_thread_id_t androidGetThreadId()
186 {
187     return (android_thread_id_t)pthread_self();
188 }
189 
190 // ----------------------------------------------------------------------------
191 #else // !defined(_WIN32)
192 // ----------------------------------------------------------------------------
193 
194 /*
195  * Trampoline to make us __stdcall-compliant.
196  *
197  * We're expected to delete "vDetails" when we're done.
198  */
199 struct threadDetails {
200     int (*func)(void*);
201     void* arg;
202 };
threadIntermediary(void * vDetails)203 static __stdcall unsigned int threadIntermediary(void* vDetails)
204 {
205     struct threadDetails* pDetails = (struct threadDetails*) vDetails;
206     int result;
207 
208     result = (*(pDetails->func))(pDetails->arg);
209 
210     delete pDetails;
211 
212     ALOG(LOG_VERBOSE, "thread", "thread exiting\n");
213     return (unsigned int) result;
214 }
215 
216 /*
217  * Create and run a new thread.
218  */
doCreateThread(android_thread_func_t fn,void * arg,android_thread_id_t * id)219 static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
220 {
221     HANDLE hThread;
222     struct threadDetails* pDetails = new threadDetails; // must be on heap
223     unsigned int thrdaddr;
224 
225     pDetails->func = fn;
226     pDetails->arg = arg;
227 
228 #if defined(HAVE__BEGINTHREADEX)
229     hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
230                     &thrdaddr);
231     if (hThread == 0)
232 #elif defined(HAVE_CREATETHREAD)
233     hThread = CreateThread(NULL, 0,
234                     (LPTHREAD_START_ROUTINE) threadIntermediary,
235                     (void*) pDetails, 0, (DWORD*) &thrdaddr);
236     if (hThread == NULL)
237 #endif
238     {
239         ALOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
240         return false;
241     }
242 
243 #if defined(HAVE_CREATETHREAD)
244     /* close the management handle */
245     CloseHandle(hThread);
246 #endif
247 
248     if (id != NULL) {
249       	*id = (android_thread_id_t)thrdaddr;
250     }
251 
252     return true;
253 }
254 
androidCreateRawThreadEtc(android_thread_func_t fn,void * userData,const char *,int32_t,size_t,android_thread_id_t * threadId)255 int androidCreateRawThreadEtc(android_thread_func_t fn,
256                                void *userData,
257                                const char* /*threadName*/,
258                                int32_t /*threadPriority*/,
259                                size_t /*threadStackSize*/,
260                                android_thread_id_t *threadId)
261 {
262     return doCreateThread(  fn, userData, threadId);
263 }
264 
androidGetThreadId()265 android_thread_id_t androidGetThreadId()
266 {
267     return (android_thread_id_t)GetCurrentThreadId();
268 }
269 
270 // ----------------------------------------------------------------------------
271 #endif // !defined(_WIN32)
272 
273 // ----------------------------------------------------------------------------
274 
androidCreateThread(android_thread_func_t fn,void * arg)275 int androidCreateThread(android_thread_func_t fn, void* arg)
276 {
277     return createThreadEtc(fn, arg);
278 }
279 
androidCreateThreadGetID(android_thread_func_t fn,void * arg,android_thread_id_t * id)280 int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
281 {
282     return createThreadEtc(fn, arg, "android:unnamed_thread",
283                            PRIORITY_DEFAULT, 0, id);
284 }
285 
286 static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
287 
androidCreateThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)288 int androidCreateThreadEtc(android_thread_func_t entryFunction,
289                             void *userData,
290                             const char* threadName,
291                             int32_t threadPriority,
292                             size_t threadStackSize,
293                             android_thread_id_t *threadId)
294 {
295     return gCreateThreadFn(entryFunction, userData, threadName,
296         threadPriority, threadStackSize, threadId);
297 }
298 
androidSetCreateThreadFunc(android_create_thread_fn func)299 void androidSetCreateThreadFunc(android_create_thread_fn func)
300 {
301     gCreateThreadFn = func;
302 }
303 
304 #ifdef HAVE_ANDROID_OS
androidSetThreadPriority(pid_t tid,int pri)305 int androidSetThreadPriority(pid_t tid, int pri)
306 {
307     int rc = 0;
308 
309 #if !defined(_WIN32)
310     int lasterr = 0;
311 
312     if (pri >= ANDROID_PRIORITY_BACKGROUND) {
313         rc = set_sched_policy(tid, SP_BACKGROUND);
314     } else if (getpriority(PRIO_PROCESS, tid) >= ANDROID_PRIORITY_BACKGROUND) {
315         rc = set_sched_policy(tid, SP_FOREGROUND);
316     }
317 
318     if (rc) {
319         lasterr = errno;
320     }
321 
322     if (setpriority(PRIO_PROCESS, tid, pri) < 0) {
323         rc = INVALID_OPERATION;
324     } else {
325         errno = lasterr;
326     }
327 #endif
328 
329     return rc;
330 }
331 
androidGetThreadPriority(pid_t tid)332 int androidGetThreadPriority(pid_t tid) {
333 #if !defined(_WIN32)
334     return getpriority(PRIO_PROCESS, tid);
335 #else
336     return ANDROID_PRIORITY_NORMAL;
337 #endif
338 }
339 
340 #endif
341 
342 namespace android {
343 
344 /*
345  * ===========================================================================
346  *      Mutex class
347  * ===========================================================================
348  */
349 
350 #if !defined(_WIN32)
351 // implemented as inlines in threads.h
352 #else
353 
354 Mutex::Mutex()
355 {
356     HANDLE hMutex;
357 
358     assert(sizeof(hMutex) == sizeof(mState));
359 
360     hMutex = CreateMutex(NULL, FALSE, NULL);
361     mState = (void*) hMutex;
362 }
363 
364 Mutex::Mutex(const char* name)
365 {
366     // XXX: name not used for now
367     HANDLE hMutex;
368 
369     assert(sizeof(hMutex) == sizeof(mState));
370 
371     hMutex = CreateMutex(NULL, FALSE, NULL);
372     mState = (void*) hMutex;
373 }
374 
375 Mutex::Mutex(int type, const char* name)
376 {
377     // XXX: type and name not used for now
378     HANDLE hMutex;
379 
380     assert(sizeof(hMutex) == sizeof(mState));
381 
382     hMutex = CreateMutex(NULL, FALSE, NULL);
383     mState = (void*) hMutex;
384 }
385 
386 Mutex::~Mutex()
387 {
388     CloseHandle((HANDLE) mState);
389 }
390 
391 status_t Mutex::lock()
392 {
393     DWORD dwWaitResult;
394     dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
395     return dwWaitResult != WAIT_OBJECT_0 ? -1 : NO_ERROR;
396 }
397 
398 void Mutex::unlock()
399 {
400     if (!ReleaseMutex((HANDLE) mState))
401         ALOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
402 }
403 
404 status_t Mutex::tryLock()
405 {
406     DWORD dwWaitResult;
407 
408     dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
409     if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
410         ALOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
411     return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
412 }
413 
414 #endif // !defined(_WIN32)
415 
416 
417 /*
418  * ===========================================================================
419  *      Condition class
420  * ===========================================================================
421  */
422 
423 #if !defined(_WIN32)
424 // implemented as inlines in threads.h
425 #else
426 
427 /*
428  * Windows doesn't have a condition variable solution.  It's possible
429  * to create one, but it's easy to get it wrong.  For a discussion, and
430  * the origin of this implementation, see:
431  *
432  *  http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
433  *
434  * The implementation shown on the page does NOT follow POSIX semantics.
435  * As an optimization they require acquiring the external mutex before
436  * calling signal() and broadcast(), whereas POSIX only requires grabbing
437  * it before calling wait().  The implementation here has been un-optimized
438  * to have the correct behavior.
439  */
440 typedef struct WinCondition {
441     // Number of waiting threads.
442     int                 waitersCount;
443 
444     // Serialize access to waitersCount.
445     CRITICAL_SECTION    waitersCountLock;
446 
447     // Semaphore used to queue up threads waiting for the condition to
448     // become signaled.
449     HANDLE              sema;
450 
451     // An auto-reset event used by the broadcast/signal thread to wait
452     // for all the waiting thread(s) to wake up and be released from
453     // the semaphore.
454     HANDLE              waitersDone;
455 
456     // This mutex wouldn't be necessary if we required that the caller
457     // lock the external mutex before calling signal() and broadcast().
458     // I'm trying to mimic pthread semantics though.
459     HANDLE              internalMutex;
460 
461     // Keeps track of whether we were broadcasting or signaling.  This
462     // allows us to optimize the code if we're just signaling.
463     bool                wasBroadcast;
464 
465     status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
466     {
467         // Increment the wait count, avoiding race conditions.
468         EnterCriticalSection(&condState->waitersCountLock);
469         condState->waitersCount++;
470         //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
471         //    condState->waitersCount, getThreadId());
472         LeaveCriticalSection(&condState->waitersCountLock);
473 
474         DWORD timeout = INFINITE;
475         if (abstime) {
476             nsecs_t reltime = *abstime - systemTime();
477             if (reltime < 0)
478                 reltime = 0;
479             timeout = reltime/1000000;
480         }
481 
482         // Atomically release the external mutex and wait on the semaphore.
483         DWORD res =
484             SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
485 
486         //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
487 
488         // Reacquire lock to avoid race conditions.
489         EnterCriticalSection(&condState->waitersCountLock);
490 
491         // No longer waiting.
492         condState->waitersCount--;
493 
494         // Check to see if we're the last waiter after a broadcast.
495         bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
496 
497         //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
498         //    lastWaiter, condState->wasBroadcast, condState->waitersCount);
499 
500         LeaveCriticalSection(&condState->waitersCountLock);
501 
502         // If we're the last waiter thread during this particular broadcast
503         // then signal broadcast() that we're all awake.  It'll drop the
504         // internal mutex.
505         if (lastWaiter) {
506             // Atomically signal the "waitersDone" event and wait until we
507             // can acquire the internal mutex.  We want to do this in one step
508             // because it ensures that everybody is in the mutex FIFO before
509             // any thread has a chance to run.  Without it, another thread
510             // could wake up, do work, and hop back in ahead of us.
511             SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
512                 INFINITE, FALSE);
513         } else {
514             // Grab the internal mutex.
515             WaitForSingleObject(condState->internalMutex, INFINITE);
516         }
517 
518         // Release the internal and grab the external.
519         ReleaseMutex(condState->internalMutex);
520         WaitForSingleObject(hMutex, INFINITE);
521 
522         return res == WAIT_OBJECT_0 ? NO_ERROR : -1;
523     }
524 } WinCondition;
525 
526 /*
527  * Constructor.  Set up the WinCondition stuff.
528  */
529 Condition::Condition()
530 {
531     WinCondition* condState = new WinCondition;
532 
533     condState->waitersCount = 0;
534     condState->wasBroadcast = false;
535     // semaphore: no security, initial value of 0
536     condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
537     InitializeCriticalSection(&condState->waitersCountLock);
538     // auto-reset event, not signaled initially
539     condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
540     // used so we don't have to lock external mutex on signal/broadcast
541     condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
542 
543     mState = condState;
544 }
545 
546 /*
547  * Destructor.  Free Windows resources as well as our allocated storage.
548  */
549 Condition::~Condition()
550 {
551     WinCondition* condState = (WinCondition*) mState;
552     if (condState != NULL) {
553         CloseHandle(condState->sema);
554         CloseHandle(condState->waitersDone);
555         delete condState;
556     }
557 }
558 
559 
560 status_t Condition::wait(Mutex& mutex)
561 {
562     WinCondition* condState = (WinCondition*) mState;
563     HANDLE hMutex = (HANDLE) mutex.mState;
564 
565     return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
566 }
567 
568 status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
569 {
570     WinCondition* condState = (WinCondition*) mState;
571     HANDLE hMutex = (HANDLE) mutex.mState;
572     nsecs_t absTime = systemTime()+reltime;
573 
574     return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
575 }
576 
577 /*
578  * Signal the condition variable, allowing one thread to continue.
579  */
580 void Condition::signal()
581 {
582     WinCondition* condState = (WinCondition*) mState;
583 
584     // Lock the internal mutex.  This ensures that we don't clash with
585     // broadcast().
586     WaitForSingleObject(condState->internalMutex, INFINITE);
587 
588     EnterCriticalSection(&condState->waitersCountLock);
589     bool haveWaiters = (condState->waitersCount > 0);
590     LeaveCriticalSection(&condState->waitersCountLock);
591 
592     // If no waiters, then this is a no-op.  Otherwise, knock the semaphore
593     // down a notch.
594     if (haveWaiters)
595         ReleaseSemaphore(condState->sema, 1, 0);
596 
597     // Release internal mutex.
598     ReleaseMutex(condState->internalMutex);
599 }
600 
601 /*
602  * Signal the condition variable, allowing all threads to continue.
603  *
604  * First we have to wake up all threads waiting on the semaphore, then
605  * we wait until all of the threads have actually been woken before
606  * releasing the internal mutex.  This ensures that all threads are woken.
607  */
608 void Condition::broadcast()
609 {
610     WinCondition* condState = (WinCondition*) mState;
611 
612     // Lock the internal mutex.  This keeps the guys we're waking up
613     // from getting too far.
614     WaitForSingleObject(condState->internalMutex, INFINITE);
615 
616     EnterCriticalSection(&condState->waitersCountLock);
617     bool haveWaiters = false;
618 
619     if (condState->waitersCount > 0) {
620         haveWaiters = true;
621         condState->wasBroadcast = true;
622     }
623 
624     if (haveWaiters) {
625         // Wake up all the waiters.
626         ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
627 
628         LeaveCriticalSection(&condState->waitersCountLock);
629 
630         // Wait for all awakened threads to acquire the counting semaphore.
631         // The last guy who was waiting sets this.
632         WaitForSingleObject(condState->waitersDone, INFINITE);
633 
634         // Reset wasBroadcast.  (No crit section needed because nobody
635         // else can wake up to poke at it.)
636         condState->wasBroadcast = 0;
637     } else {
638         // nothing to do
639         LeaveCriticalSection(&condState->waitersCountLock);
640     }
641 
642     // Release internal mutex.
643     ReleaseMutex(condState->internalMutex);
644 }
645 
646 #endif // !defined(_WIN32)
647 
648 // ----------------------------------------------------------------------------
649 
650 /*
651  * This is our thread object!
652  */
653 
Thread(bool canCallJava)654 Thread::Thread(bool canCallJava)
655     :   mCanCallJava(canCallJava),
656         mThread(thread_id_t(-1)),
657         mLock("Thread::mLock"),
658         mStatus(NO_ERROR),
659         mExitPending(false), mRunning(false)
660 #ifdef HAVE_ANDROID_OS
661         , mTid(-1)
662 #endif
663 {
664 }
665 
~Thread()666 Thread::~Thread()
667 {
668 }
669 
readyToRun()670 status_t Thread::readyToRun()
671 {
672     return NO_ERROR;
673 }
674 
run(const char * name,int32_t priority,size_t stack)675 status_t Thread::run(const char* name, int32_t priority, size_t stack)
676 {
677     Mutex::Autolock _l(mLock);
678 
679     if (mRunning) {
680         // thread already started
681         return INVALID_OPERATION;
682     }
683 
684     // reset status and exitPending to their default value, so we can
685     // try again after an error happened (either below, or in readyToRun())
686     mStatus = NO_ERROR;
687     mExitPending = false;
688     mThread = thread_id_t(-1);
689 
690     // hold a strong reference on ourself
691     mHoldSelf = this;
692 
693     mRunning = true;
694 
695     bool res;
696     if (mCanCallJava) {
697         res = createThreadEtc(_threadLoop,
698                 this, name, priority, stack, &mThread);
699     } else {
700         res = androidCreateRawThreadEtc(_threadLoop,
701                 this, name, priority, stack, &mThread);
702     }
703 
704     if (res == false) {
705         mStatus = UNKNOWN_ERROR;   // something happened!
706         mRunning = false;
707         mThread = thread_id_t(-1);
708         mHoldSelf.clear();  // "this" may have gone away after this.
709 
710         return UNKNOWN_ERROR;
711     }
712 
713     // Do not refer to mStatus here: The thread is already running (may, in fact
714     // already have exited with a valid mStatus result). The NO_ERROR indication
715     // here merely indicates successfully starting the thread and does not
716     // imply successful termination/execution.
717     return NO_ERROR;
718 
719     // Exiting scope of mLock is a memory barrier and allows new thread to run
720 }
721 
_threadLoop(void * user)722 int Thread::_threadLoop(void* user)
723 {
724     Thread* const self = static_cast<Thread*>(user);
725 
726     sp<Thread> strong(self->mHoldSelf);
727     wp<Thread> weak(strong);
728     self->mHoldSelf.clear();
729 
730 #ifdef HAVE_ANDROID_OS
731     // this is very useful for debugging with gdb
732     self->mTid = gettid();
733 #endif
734 
735     bool first = true;
736 
737     do {
738         bool result;
739         if (first) {
740             first = false;
741             self->mStatus = self->readyToRun();
742             result = (self->mStatus == NO_ERROR);
743 
744             if (result && !self->exitPending()) {
745                 // Binder threads (and maybe others) rely on threadLoop
746                 // running at least once after a successful ::readyToRun()
747                 // (unless, of course, the thread has already been asked to exit
748                 // at that point).
749                 // This is because threads are essentially used like this:
750                 //   (new ThreadSubclass())->run();
751                 // The caller therefore does not retain a strong reference to
752                 // the thread and the thread would simply disappear after the
753                 // successful ::readyToRun() call instead of entering the
754                 // threadLoop at least once.
755                 result = self->threadLoop();
756             }
757         } else {
758             result = self->threadLoop();
759         }
760 
761         // establish a scope for mLock
762         {
763         Mutex::Autolock _l(self->mLock);
764         if (result == false || self->mExitPending) {
765             self->mExitPending = true;
766             self->mRunning = false;
767             // clear thread ID so that requestExitAndWait() does not exit if
768             // called by a new thread using the same thread ID as this one.
769             self->mThread = thread_id_t(-1);
770             // note that interested observers blocked in requestExitAndWait are
771             // awoken by broadcast, but blocked on mLock until break exits scope
772             self->mThreadExitedCondition.broadcast();
773             break;
774         }
775         }
776 
777         // Release our strong reference, to let a chance to the thread
778         // to die a peaceful death.
779         strong.clear();
780         // And immediately, re-acquire a strong reference for the next loop
781         strong = weak.promote();
782     } while(strong != 0);
783 
784     return 0;
785 }
786 
requestExit()787 void Thread::requestExit()
788 {
789     Mutex::Autolock _l(mLock);
790     mExitPending = true;
791 }
792 
requestExitAndWait()793 status_t Thread::requestExitAndWait()
794 {
795     Mutex::Autolock _l(mLock);
796     if (mThread == getThreadId()) {
797         ALOGW(
798         "Thread (this=%p): don't call waitForExit() from this "
799         "Thread object's thread. It's a guaranteed deadlock!",
800         this);
801 
802         return WOULD_BLOCK;
803     }
804 
805     mExitPending = true;
806 
807     while (mRunning == true) {
808         mThreadExitedCondition.wait(mLock);
809     }
810     // This next line is probably not needed any more, but is being left for
811     // historical reference. Note that each interested party will clear flag.
812     mExitPending = false;
813 
814     return mStatus;
815 }
816 
join()817 status_t Thread::join()
818 {
819     Mutex::Autolock _l(mLock);
820     if (mThread == getThreadId()) {
821         ALOGW(
822         "Thread (this=%p): don't call join() from this "
823         "Thread object's thread. It's a guaranteed deadlock!",
824         this);
825 
826         return WOULD_BLOCK;
827     }
828 
829     while (mRunning == true) {
830         mThreadExitedCondition.wait(mLock);
831     }
832 
833     return mStatus;
834 }
835 
isRunning() const836 bool Thread::isRunning() const {
837     Mutex::Autolock _l(mLock);
838     return mRunning;
839 }
840 
841 #ifdef HAVE_ANDROID_OS
getTid() const842 pid_t Thread::getTid() const
843 {
844     // mTid is not defined until the child initializes it, and the caller may need it earlier
845     Mutex::Autolock _l(mLock);
846     pid_t tid;
847     if (mRunning) {
848         pthread_t pthread = android_thread_id_t_to_pthread(mThread);
849         tid = pthread_gettid_np(pthread);
850     } else {
851         ALOGW("Thread (this=%p): getTid() is undefined before run()", this);
852         tid = -1;
853     }
854     return tid;
855 }
856 #endif
857 
exitPending() const858 bool Thread::exitPending() const
859 {
860     Mutex::Autolock _l(mLock);
861     return mExitPending;
862 }
863 
864 
865 
866 };  // namespace android
867