1 /**************************************************************************
2 *
3 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /** @file intel_tris.c
29 *
30 * This file contains functions for managing the vertex buffer and emitting
31 * primitives into it.
32 */
33
34 #include "main/glheader.h"
35 #include "main/context.h"
36 #include "main/macros.h"
37 #include "main/enums.h"
38 #include "main/texobj.h"
39 #include "main/state.h"
40 #include "main/dd.h"
41 #include "main/fbobject.h"
42
43 #include "swrast/swrast.h"
44 #include "swrast_setup/swrast_setup.h"
45 #include "tnl/t_context.h"
46 #include "tnl/t_pipeline.h"
47 #include "tnl/t_vertex.h"
48
49 #include "intel_screen.h"
50 #include "intel_context.h"
51 #include "intel_tris.h"
52 #include "intel_batchbuffer.h"
53 #include "intel_buffers.h"
54 #include "intel_reg.h"
55 #include "intel_span.h"
56 #include "i830_context.h"
57 #include "i830_reg.h"
58 #include "i915_context.h"
59
60 static void intelRenderPrimitive(struct gl_context * ctx, GLenum prim);
61 static void intelRasterPrimitive(struct gl_context * ctx, GLenum rprim,
62 GLuint hwprim);
63
64 static void
intel_flush_inline_primitive(struct intel_context * intel)65 intel_flush_inline_primitive(struct intel_context *intel)
66 {
67 GLuint used = intel->batch.used - intel->prim.start_ptr;
68
69 assert(intel->prim.primitive != ~0);
70
71 /* printf("/\n"); */
72
73 if (used < 2)
74 goto do_discard;
75
76 intel->batch.map[intel->prim.start_ptr] =
77 _3DPRIMITIVE | intel->prim.primitive | (used - 2);
78
79 goto finished;
80
81 do_discard:
82 intel->batch.used = intel->prim.start_ptr;
83
84 finished:
85 intel->prim.primitive = ~0;
86 intel->prim.start_ptr = 0;
87 intel->prim.flush = 0;
88 }
89
intel_start_inline(struct intel_context * intel,uint32_t prim)90 static void intel_start_inline(struct intel_context *intel, uint32_t prim)
91 {
92 BATCH_LOCALS;
93
94 intel->vtbl.emit_state(intel);
95
96 intel->no_batch_wrap = true;
97
98 /*printf("%s *", __progname);*/
99
100 /* Emit a slot which will be filled with the inline primitive
101 * command later.
102 */
103 BEGIN_BATCH(1);
104
105 intel->prim.start_ptr = intel->batch.used;
106 intel->prim.primitive = prim;
107 intel->prim.flush = intel_flush_inline_primitive;
108
109 OUT_BATCH(0);
110 ADVANCE_BATCH();
111
112 intel->no_batch_wrap = false;
113 /* printf(">"); */
114 }
115
intel_wrap_inline(struct intel_context * intel)116 static void intel_wrap_inline(struct intel_context *intel)
117 {
118 GLuint prim = intel->prim.primitive;
119
120 intel_flush_inline_primitive(intel);
121 intel_batchbuffer_flush(intel);
122 intel_start_inline(intel, prim); /* ??? */
123 }
124
intel_extend_inline(struct intel_context * intel,GLuint dwords)125 static GLuint *intel_extend_inline(struct intel_context *intel, GLuint dwords)
126 {
127 GLuint *ptr;
128
129 assert(intel->prim.flush == intel_flush_inline_primitive);
130
131 if (intel_batchbuffer_space(intel) < dwords * sizeof(GLuint))
132 intel_wrap_inline(intel);
133
134 /* printf("."); */
135
136 intel->vtbl.assert_not_dirty(intel);
137
138 ptr = intel->batch.map + intel->batch.used;
139 intel->batch.used += dwords;
140
141 return ptr;
142 }
143
144 /** Sets the primitive type for a primitive sequence, flushing as needed. */
intel_set_prim(struct intel_context * intel,uint32_t prim)145 void intel_set_prim(struct intel_context *intel, uint32_t prim)
146 {
147 /* if we have no VBOs */
148
149 if (intel->intelScreen->no_vbo) {
150 intel_start_inline(intel, prim);
151 return;
152 }
153 if (prim != intel->prim.primitive) {
154 INTEL_FIREVERTICES(intel);
155 intel->prim.primitive = prim;
156 }
157 }
158
159 /** Returns mapped VB space for the given number of vertices */
intel_get_prim_space(struct intel_context * intel,unsigned int count)160 uint32_t *intel_get_prim_space(struct intel_context *intel, unsigned int count)
161 {
162 uint32_t *addr;
163
164 if (intel->intelScreen->no_vbo) {
165 return intel_extend_inline(intel, count * intel->vertex_size);
166 }
167
168 /* Check for space in the existing VB */
169 if (intel->prim.vb_bo == NULL ||
170 (intel->prim.current_offset +
171 count * intel->vertex_size * 4) > INTEL_VB_SIZE ||
172 (intel->prim.count + count) >= (1 << 16)) {
173 /* Flush existing prim if any */
174 INTEL_FIREVERTICES(intel);
175
176 intel_finish_vb(intel);
177
178 /* Start a new VB */
179 if (intel->prim.vb == NULL)
180 intel->prim.vb = malloc(INTEL_VB_SIZE);
181 intel->prim.vb_bo = drm_intel_bo_alloc(intel->bufmgr, "vb",
182 INTEL_VB_SIZE, 4);
183 intel->prim.start_offset = 0;
184 intel->prim.current_offset = 0;
185 }
186
187 intel->prim.flush = intel_flush_prim;
188
189 addr = (uint32_t *)(intel->prim.vb + intel->prim.current_offset);
190 intel->prim.current_offset += intel->vertex_size * 4 * count;
191 intel->prim.count += count;
192
193 return addr;
194 }
195
196 /** Dispatches the accumulated primitive to the batchbuffer. */
intel_flush_prim(struct intel_context * intel)197 void intel_flush_prim(struct intel_context *intel)
198 {
199 drm_intel_bo *aper_array[2];
200 drm_intel_bo *vb_bo;
201 unsigned int offset, count;
202 BATCH_LOCALS;
203
204 /* Must be called after an intel_start_prim. */
205 assert(intel->prim.primitive != ~0);
206
207 if (intel->prim.count == 0)
208 return;
209
210 /* Clear the current prims out of the context state so that a batch flush
211 * flush triggered by emit_state doesn't loop back to flush_prim again.
212 */
213 vb_bo = intel->prim.vb_bo;
214 drm_intel_bo_reference(vb_bo);
215 count = intel->prim.count;
216 intel->prim.count = 0;
217 offset = intel->prim.start_offset;
218 intel->prim.start_offset = intel->prim.current_offset;
219 if (intel->gen < 3)
220 intel->prim.current_offset = intel->prim.start_offset = ALIGN(intel->prim.start_offset, 128);
221 intel->prim.flush = NULL;
222
223 intel->vtbl.emit_state(intel);
224
225 aper_array[0] = intel->batch.bo;
226 aper_array[1] = vb_bo;
227 if (dri_bufmgr_check_aperture_space(aper_array, 2)) {
228 intel_batchbuffer_flush(intel);
229 intel->vtbl.emit_state(intel);
230 }
231
232 /* Ensure that we don't start a new batch for the following emit, which
233 * depends on the state just emitted. emit_state should be making sure we
234 * have the space for this.
235 */
236 intel->no_batch_wrap = true;
237
238 if (intel->always_flush_cache) {
239 intel_batchbuffer_emit_mi_flush(intel);
240 }
241
242 #if 0
243 printf("emitting %d..%d=%d vertices size %d\n", offset,
244 intel->prim.current_offset, count,
245 intel->vertex_size * 4);
246 #endif
247
248 if (intel->gen >= 3) {
249 struct i915_context *i915 = i915_context(&intel->ctx);
250 unsigned int cmd = 0, len = 0;
251
252 if (vb_bo != i915->current_vb_bo) {
253 cmd |= I1_LOAD_S(0);
254 len++;
255 }
256
257 if (intel->vertex_size != i915->current_vertex_size) {
258 cmd |= I1_LOAD_S(1);
259 len++;
260 }
261 if (len)
262 len++;
263
264 BEGIN_BATCH(2+len);
265 if (cmd)
266 OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | cmd | (len - 2));
267 if (vb_bo != i915->current_vb_bo) {
268 OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0, 0);
269 i915->current_vb_bo = vb_bo;
270 }
271 if (intel->vertex_size != i915->current_vertex_size) {
272 OUT_BATCH((intel->vertex_size << S1_VERTEX_WIDTH_SHIFT) |
273 (intel->vertex_size << S1_VERTEX_PITCH_SHIFT));
274 i915->current_vertex_size = intel->vertex_size;
275 }
276 OUT_BATCH(_3DPRIMITIVE |
277 PRIM_INDIRECT |
278 PRIM_INDIRECT_SEQUENTIAL |
279 intel->prim.primitive |
280 count);
281 OUT_BATCH(offset / (intel->vertex_size * 4));
282 ADVANCE_BATCH();
283 } else {
284 struct i830_context *i830 = i830_context(&intel->ctx);
285
286 BEGIN_BATCH(5);
287 OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
288 I1_LOAD_S(0) | I1_LOAD_S(2) | 1);
289 /* S0 */
290 assert((offset & ~S0_VB_OFFSET_MASK_830) == 0);
291 OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0,
292 offset | (intel->vertex_size << S0_VB_PITCH_SHIFT_830) |
293 S0_VB_ENABLE_830);
294 /* S2
295 * This is somewhat unfortunate -- VB width is tied up with
296 * vertex format data that we've already uploaded through
297 * _3DSTATE_VFT[01]_CMD. We may want to replace emits of VFT state with
298 * STATE_IMMEDIATE_1 like this to avoid duplication.
299 */
300 OUT_BATCH((i830->state.Ctx[I830_CTXREG_VF] & VFT0_TEX_COUNT_MASK) >>
301 VFT0_TEX_COUNT_SHIFT << S2_TEX_COUNT_SHIFT_830 |
302 (i830->state.Ctx[I830_CTXREG_VF2] << 16) |
303 intel->vertex_size << S2_VERTEX_0_WIDTH_SHIFT_830);
304
305 OUT_BATCH(_3DPRIMITIVE |
306 PRIM_INDIRECT |
307 PRIM_INDIRECT_SEQUENTIAL |
308 intel->prim.primitive |
309 count);
310 OUT_BATCH(0); /* Beginning vertex index */
311 ADVANCE_BATCH();
312 }
313
314 if (intel->always_flush_cache) {
315 intel_batchbuffer_emit_mi_flush(intel);
316 }
317
318 intel->no_batch_wrap = false;
319
320 drm_intel_bo_unreference(vb_bo);
321 }
322
323 /**
324 * Uploads the locally-accumulated VB into the buffer object.
325 *
326 * This avoids us thrashing the cachelines in and out as the buffer gets
327 * filled, dispatched, then reused as the hardware completes rendering from it,
328 * and also lets us clflush less if we dispatch with a partially-filled VB.
329 *
330 * This is called normally from get_space when we're finishing a BO, but also
331 * at batch flush time so that we don't try accessing the contents of a
332 * just-dispatched buffer.
333 */
intel_finish_vb(struct intel_context * intel)334 void intel_finish_vb(struct intel_context *intel)
335 {
336 if (intel->prim.vb_bo == NULL)
337 return;
338
339 drm_intel_bo_subdata(intel->prim.vb_bo, 0, intel->prim.start_offset,
340 intel->prim.vb);
341 drm_intel_bo_unreference(intel->prim.vb_bo);
342 intel->prim.vb_bo = NULL;
343 }
344
345 /***********************************************************************
346 * Emit primitives as inline vertices *
347 ***********************************************************************/
348
349 #ifdef __i386__
350 #define COPY_DWORDS( j, vb, vertsize, v ) \
351 do { \
352 int __tmp; \
353 __asm__ __volatile__( "rep ; movsl" \
354 : "=%c" (j), "=D" (vb), "=S" (__tmp) \
355 : "0" (vertsize), \
356 "D" ((long)vb), \
357 "S" ((long)v) ); \
358 } while (0)
359 #else
360 #define COPY_DWORDS( j, vb, vertsize, v ) \
361 do { \
362 for ( j = 0 ; j < vertsize ; j++ ) { \
363 vb[j] = ((GLuint *)v)[j]; \
364 } \
365 vb += vertsize; \
366 } while (0)
367 #endif
368
369 static void
intel_draw_quad(struct intel_context * intel,intelVertexPtr v0,intelVertexPtr v1,intelVertexPtr v2,intelVertexPtr v3)370 intel_draw_quad(struct intel_context *intel,
371 intelVertexPtr v0,
372 intelVertexPtr v1, intelVertexPtr v2, intelVertexPtr v3)
373 {
374 GLuint vertsize = intel->vertex_size;
375 GLuint *vb = intel_get_prim_space(intel, 6);
376 int j;
377
378 COPY_DWORDS(j, vb, vertsize, v0);
379 COPY_DWORDS(j, vb, vertsize, v1);
380
381 /* If smooth shading, draw like a trifan which gives better
382 * rasterization. Otherwise draw as two triangles with provoking
383 * vertex in third position as required for flat shading.
384 */
385 if (intel->ctx.Light.ShadeModel == GL_FLAT) {
386 COPY_DWORDS(j, vb, vertsize, v3);
387 COPY_DWORDS(j, vb, vertsize, v1);
388 }
389 else {
390 COPY_DWORDS(j, vb, vertsize, v2);
391 COPY_DWORDS(j, vb, vertsize, v0);
392 }
393
394 COPY_DWORDS(j, vb, vertsize, v2);
395 COPY_DWORDS(j, vb, vertsize, v3);
396 }
397
398 static void
intel_draw_triangle(struct intel_context * intel,intelVertexPtr v0,intelVertexPtr v1,intelVertexPtr v2)399 intel_draw_triangle(struct intel_context *intel,
400 intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
401 {
402 GLuint vertsize = intel->vertex_size;
403 GLuint *vb = intel_get_prim_space(intel, 3);
404 int j;
405
406 COPY_DWORDS(j, vb, vertsize, v0);
407 COPY_DWORDS(j, vb, vertsize, v1);
408 COPY_DWORDS(j, vb, vertsize, v2);
409 }
410
411
412 static void
intel_draw_line(struct intel_context * intel,intelVertexPtr v0,intelVertexPtr v1)413 intel_draw_line(struct intel_context *intel,
414 intelVertexPtr v0, intelVertexPtr v1)
415 {
416 GLuint vertsize = intel->vertex_size;
417 GLuint *vb = intel_get_prim_space(intel, 2);
418 int j;
419
420 COPY_DWORDS(j, vb, vertsize, v0);
421 COPY_DWORDS(j, vb, vertsize, v1);
422 }
423
424
425 static void
intel_draw_point(struct intel_context * intel,intelVertexPtr v0)426 intel_draw_point(struct intel_context *intel, intelVertexPtr v0)
427 {
428 GLuint vertsize = intel->vertex_size;
429 GLuint *vb = intel_get_prim_space(intel, 1);
430 int j;
431
432 /* Adjust for sub pixel position -- still required for conform. */
433 *(float *) &vb[0] = v0->v.x;
434 *(float *) &vb[1] = v0->v.y;
435 for (j = 2; j < vertsize; j++)
436 vb[j] = v0->ui[j];
437 }
438
439
440
441 /***********************************************************************
442 * Fixup for ARB_point_parameters *
443 ***********************************************************************/
444
445 /* Currently not working - VERT_ATTRIB_POINTSIZE isn't correctly
446 * represented in the fragment program InputsRead field.
447 */
448 static void
intel_atten_point(struct intel_context * intel,intelVertexPtr v0)449 intel_atten_point(struct intel_context *intel, intelVertexPtr v0)
450 {
451 struct gl_context *ctx = &intel->ctx;
452 GLfloat psz[4], col[4], restore_psz, restore_alpha;
453
454 _tnl_get_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
455 _tnl_get_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
456
457 restore_psz = psz[0];
458 restore_alpha = col[3];
459
460 if (psz[0] >= ctx->Point.Threshold) {
461 psz[0] = MIN2(psz[0], ctx->Point.MaxSize);
462 }
463 else {
464 GLfloat dsize = psz[0] / ctx->Point.Threshold;
465 psz[0] = MAX2(ctx->Point.Threshold, ctx->Point.MinSize);
466 col[3] *= dsize * dsize;
467 }
468
469 if (psz[0] < 1.0)
470 psz[0] = 1.0;
471
472 if (restore_psz != psz[0] || restore_alpha != col[3]) {
473 _tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
474 _tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
475
476 intel_draw_point(intel, v0);
477
478 psz[0] = restore_psz;
479 col[3] = restore_alpha;
480
481 _tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
482 _tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
483 }
484 else
485 intel_draw_point(intel, v0);
486 }
487
488
489
490
491
492 /***********************************************************************
493 * Fixup for I915 WPOS texture coordinate *
494 ***********************************************************************/
495
496 static void
intel_emit_fragcoord(struct intel_context * intel,intelVertexPtr v)497 intel_emit_fragcoord(struct intel_context *intel, intelVertexPtr v)
498 {
499 struct gl_context *ctx = &intel->ctx;
500 struct gl_framebuffer *fb = ctx->DrawBuffer;
501 GLuint offset = intel->wpos_offset;
502 float *vertex_position = (float *)v;
503 float *fragcoord = (float *)((char *)v + offset);
504
505 fragcoord[0] = vertex_position[0];
506
507 if (_mesa_is_user_fbo(fb))
508 fragcoord[1] = vertex_position[1];
509 else
510 fragcoord[1] = fb->Height - vertex_position[1];
511
512 fragcoord[2] = vertex_position[2];
513 fragcoord[3] = vertex_position[3];
514 }
515
516 static void
intel_wpos_triangle(struct intel_context * intel,intelVertexPtr v0,intelVertexPtr v1,intelVertexPtr v2)517 intel_wpos_triangle(struct intel_context *intel,
518 intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
519 {
520 intel_emit_fragcoord(intel, v0);
521 intel_emit_fragcoord(intel, v1);
522 intel_emit_fragcoord(intel, v2);
523
524 intel_draw_triangle(intel, v0, v1, v2);
525 }
526
527
528 static void
intel_wpos_line(struct intel_context * intel,intelVertexPtr v0,intelVertexPtr v1)529 intel_wpos_line(struct intel_context *intel,
530 intelVertexPtr v0, intelVertexPtr v1)
531 {
532 intel_emit_fragcoord(intel, v0);
533 intel_emit_fragcoord(intel, v1);
534 intel_draw_line(intel, v0, v1);
535 }
536
537
538 static void
intel_wpos_point(struct intel_context * intel,intelVertexPtr v0)539 intel_wpos_point(struct intel_context *intel, intelVertexPtr v0)
540 {
541 intel_emit_fragcoord(intel, v0);
542 intel_draw_point(intel, v0);
543 }
544
545
546
547
548
549
550 /***********************************************************************
551 * Macros for t_dd_tritmp.h to draw basic primitives *
552 ***********************************************************************/
553
554 #define TRI( a, b, c ) \
555 do { \
556 if (DO_FALLBACK) \
557 intel->draw_tri( intel, a, b, c ); \
558 else \
559 intel_draw_triangle( intel, a, b, c ); \
560 } while (0)
561
562 #define QUAD( a, b, c, d ) \
563 do { \
564 if (DO_FALLBACK) { \
565 intel->draw_tri( intel, a, b, d ); \
566 intel->draw_tri( intel, b, c, d ); \
567 } else \
568 intel_draw_quad( intel, a, b, c, d ); \
569 } while (0)
570
571 #define LINE( v0, v1 ) \
572 do { \
573 if (DO_FALLBACK) \
574 intel->draw_line( intel, v0, v1 ); \
575 else \
576 intel_draw_line( intel, v0, v1 ); \
577 } while (0)
578
579 #define POINT( v0 ) \
580 do { \
581 if (DO_FALLBACK) \
582 intel->draw_point( intel, v0 ); \
583 else \
584 intel_draw_point( intel, v0 ); \
585 } while (0)
586
587
588 /***********************************************************************
589 * Build render functions from dd templates *
590 ***********************************************************************/
591
592 #define INTEL_OFFSET_BIT 0x01
593 #define INTEL_TWOSIDE_BIT 0x02
594 #define INTEL_UNFILLED_BIT 0x04
595 #define INTEL_FALLBACK_BIT 0x08
596 #define INTEL_MAX_TRIFUNC 0x10
597
598
599 static struct
600 {
601 tnl_points_func points;
602 tnl_line_func line;
603 tnl_triangle_func triangle;
604 tnl_quad_func quad;
605 } rast_tab[INTEL_MAX_TRIFUNC];
606
607
608 #define DO_FALLBACK (IND & INTEL_FALLBACK_BIT)
609 #define DO_OFFSET (IND & INTEL_OFFSET_BIT)
610 #define DO_UNFILLED (IND & INTEL_UNFILLED_BIT)
611 #define DO_TWOSIDE (IND & INTEL_TWOSIDE_BIT)
612 #define DO_FLAT 0
613 #define DO_TRI 1
614 #define DO_QUAD 1
615 #define DO_LINE 1
616 #define DO_POINTS 1
617 #define DO_FULL_QUAD 1
618
619 #define HAVE_SPEC 1
620 #define HAVE_BACK_COLORS 0
621 #define HAVE_HW_FLATSHADE 1
622 #define VERTEX intelVertex
623 #define TAB rast_tab
624
625 /* Only used to pull back colors into vertices (ie, we know color is
626 * floating point).
627 */
628 #define INTEL_COLOR( dst, src ) \
629 do { \
630 UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]); \
631 UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]); \
632 UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]); \
633 UNCLAMPED_FLOAT_TO_UBYTE((dst)[3], (src)[3]); \
634 } while (0)
635
636 #define INTEL_SPEC( dst, src ) \
637 do { \
638 UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]); \
639 UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]); \
640 UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]); \
641 } while (0)
642
643
644 #define DEPTH_SCALE intel->polygon_offset_scale
645 #define UNFILLED_TRI unfilled_tri
646 #define UNFILLED_QUAD unfilled_quad
647 #define VERT_X(_v) _v->v.x
648 #define VERT_Y(_v) _v->v.y
649 #define VERT_Z(_v) _v->v.z
650 #define AREA_IS_CCW( a ) (a > 0)
651 #define GET_VERTEX(e) (intel->verts + (e * intel->vertex_size * sizeof(GLuint)))
652
653 #define VERT_SET_RGBA( v, c ) if (coloroffset) INTEL_COLOR( v->ub4[coloroffset], c )
654 #define VERT_COPY_RGBA( v0, v1 ) if (coloroffset) v0->ui[coloroffset] = v1->ui[coloroffset]
655 #define VERT_SAVE_RGBA( idx ) if (coloroffset) color[idx] = v[idx]->ui[coloroffset]
656 #define VERT_RESTORE_RGBA( idx ) if (coloroffset) v[idx]->ui[coloroffset] = color[idx]
657
658 #define VERT_SET_SPEC( v, c ) if (specoffset) INTEL_SPEC( v->ub4[specoffset], c )
659 #define VERT_COPY_SPEC( v0, v1 ) if (specoffset) COPY_3V(v0->ub4[specoffset], v1->ub4[specoffset])
660 #define VERT_SAVE_SPEC( idx ) if (specoffset) spec[idx] = v[idx]->ui[specoffset]
661 #define VERT_RESTORE_SPEC( idx ) if (specoffset) v[idx]->ui[specoffset] = spec[idx]
662
663 #define LOCAL_VARS(n) \
664 struct intel_context *intel = intel_context(ctx); \
665 GLuint color[n] = { 0, }, spec[n] = { 0, }; \
666 GLuint coloroffset = intel->coloroffset; \
667 GLuint specoffset = intel->specoffset; \
668 (void) color; (void) spec; (void) coloroffset; (void) specoffset;
669
670
671 /***********************************************************************
672 * Helpers for rendering unfilled primitives *
673 ***********************************************************************/
674
675 static const GLuint hw_prim[GL_POLYGON + 1] = {
676 PRIM3D_POINTLIST,
677 PRIM3D_LINELIST,
678 PRIM3D_LINELIST,
679 PRIM3D_LINELIST,
680 PRIM3D_TRILIST,
681 PRIM3D_TRILIST,
682 PRIM3D_TRILIST,
683 PRIM3D_TRILIST,
684 PRIM3D_TRILIST,
685 PRIM3D_TRILIST
686 };
687
688 #define RASTERIZE(x) intelRasterPrimitive( ctx, x, hw_prim[x] )
689 #define RENDER_PRIMITIVE intel->render_primitive
690 #define TAG(x) x
691 #define IND INTEL_FALLBACK_BIT
692 #include "tnl_dd/t_dd_unfilled.h"
693 #undef IND
694
695 /***********************************************************************
696 * Generate GL render functions *
697 ***********************************************************************/
698
699 #define IND (0)
700 #define TAG(x) x
701 #include "tnl_dd/t_dd_tritmp.h"
702
703 #define IND (INTEL_OFFSET_BIT)
704 #define TAG(x) x##_offset
705 #include "tnl_dd/t_dd_tritmp.h"
706
707 #define IND (INTEL_TWOSIDE_BIT)
708 #define TAG(x) x##_twoside
709 #include "tnl_dd/t_dd_tritmp.h"
710
711 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT)
712 #define TAG(x) x##_twoside_offset
713 #include "tnl_dd/t_dd_tritmp.h"
714
715 #define IND (INTEL_UNFILLED_BIT)
716 #define TAG(x) x##_unfilled
717 #include "tnl_dd/t_dd_tritmp.h"
718
719 #define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
720 #define TAG(x) x##_offset_unfilled
721 #include "tnl_dd/t_dd_tritmp.h"
722
723 #define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT)
724 #define TAG(x) x##_twoside_unfilled
725 #include "tnl_dd/t_dd_tritmp.h"
726
727 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
728 #define TAG(x) x##_twoside_offset_unfilled
729 #include "tnl_dd/t_dd_tritmp.h"
730
731 #define IND (INTEL_FALLBACK_BIT)
732 #define TAG(x) x##_fallback
733 #include "tnl_dd/t_dd_tritmp.h"
734
735 #define IND (INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
736 #define TAG(x) x##_offset_fallback
737 #include "tnl_dd/t_dd_tritmp.h"
738
739 #define IND (INTEL_TWOSIDE_BIT|INTEL_FALLBACK_BIT)
740 #define TAG(x) x##_twoside_fallback
741 #include "tnl_dd/t_dd_tritmp.h"
742
743 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
744 #define TAG(x) x##_twoside_offset_fallback
745 #include "tnl_dd/t_dd_tritmp.h"
746
747 #define IND (INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
748 #define TAG(x) x##_unfilled_fallback
749 #include "tnl_dd/t_dd_tritmp.h"
750
751 #define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
752 #define TAG(x) x##_offset_unfilled_fallback
753 #include "tnl_dd/t_dd_tritmp.h"
754
755 #define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
756 #define TAG(x) x##_twoside_unfilled_fallback
757 #include "tnl_dd/t_dd_tritmp.h"
758
759 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT| \
760 INTEL_FALLBACK_BIT)
761 #define TAG(x) x##_twoside_offset_unfilled_fallback
762 #include "tnl_dd/t_dd_tritmp.h"
763
764
765 static void
init_rast_tab(void)766 init_rast_tab(void)
767 {
768 init();
769 init_offset();
770 init_twoside();
771 init_twoside_offset();
772 init_unfilled();
773 init_offset_unfilled();
774 init_twoside_unfilled();
775 init_twoside_offset_unfilled();
776 init_fallback();
777 init_offset_fallback();
778 init_twoside_fallback();
779 init_twoside_offset_fallback();
780 init_unfilled_fallback();
781 init_offset_unfilled_fallback();
782 init_twoside_unfilled_fallback();
783 init_twoside_offset_unfilled_fallback();
784 }
785
786
787 /***********************************************************************
788 * Rasterization fallback helpers *
789 ***********************************************************************/
790
791
792 /* This code is hit only when a mix of accelerated and unaccelerated
793 * primitives are being drawn, and only for the unaccelerated
794 * primitives.
795 */
796 static void
intel_fallback_tri(struct intel_context * intel,intelVertex * v0,intelVertex * v1,intelVertex * v2)797 intel_fallback_tri(struct intel_context *intel,
798 intelVertex * v0, intelVertex * v1, intelVertex * v2)
799 {
800 struct gl_context *ctx = &intel->ctx;
801 SWvertex v[3];
802
803 if (0)
804 fprintf(stderr, "\n%s\n", __FUNCTION__);
805
806 INTEL_FIREVERTICES(intel);
807
808 _swsetup_Translate(ctx, v0, &v[0]);
809 _swsetup_Translate(ctx, v1, &v[1]);
810 _swsetup_Translate(ctx, v2, &v[2]);
811 intelSpanRenderStart(ctx);
812 _swrast_Triangle(ctx, &v[0], &v[1], &v[2]);
813 intelSpanRenderFinish(ctx);
814 }
815
816
817 static void
intel_fallback_line(struct intel_context * intel,intelVertex * v0,intelVertex * v1)818 intel_fallback_line(struct intel_context *intel,
819 intelVertex * v0, intelVertex * v1)
820 {
821 struct gl_context *ctx = &intel->ctx;
822 SWvertex v[2];
823
824 if (0)
825 fprintf(stderr, "\n%s\n", __FUNCTION__);
826
827 INTEL_FIREVERTICES(intel);
828
829 _swsetup_Translate(ctx, v0, &v[0]);
830 _swsetup_Translate(ctx, v1, &v[1]);
831 intelSpanRenderStart(ctx);
832 _swrast_Line(ctx, &v[0], &v[1]);
833 intelSpanRenderFinish(ctx);
834 }
835
836 static void
intel_fallback_point(struct intel_context * intel,intelVertex * v0)837 intel_fallback_point(struct intel_context *intel,
838 intelVertex * v0)
839 {
840 struct gl_context *ctx = &intel->ctx;
841 SWvertex v[1];
842
843 if (0)
844 fprintf(stderr, "\n%s\n", __FUNCTION__);
845
846 INTEL_FIREVERTICES(intel);
847
848 _swsetup_Translate(ctx, v0, &v[0]);
849 intelSpanRenderStart(ctx);
850 _swrast_Point(ctx, &v[0]);
851 intelSpanRenderFinish(ctx);
852 }
853
854
855 /**********************************************************************/
856 /* Render unclipped begin/end objects */
857 /**********************************************************************/
858
859 #define IND 0
860 #define V(x) (intelVertex *)(vertptr + ((x)*vertsize*sizeof(GLuint)))
861 #define RENDER_POINTS( start, count ) \
862 for ( ; start < count ; start++) POINT( V(ELT(start)) );
863 #define RENDER_LINE( v0, v1 ) LINE( V(v0), V(v1) )
864 #define RENDER_TRI( v0, v1, v2 ) TRI( V(v0), V(v1), V(v2) )
865 #define RENDER_QUAD( v0, v1, v2, v3 ) QUAD( V(v0), V(v1), V(v2), V(v3) )
866 #define INIT(x) intelRenderPrimitive( ctx, x )
867 #undef LOCAL_VARS
868 #define LOCAL_VARS \
869 struct intel_context *intel = intel_context(ctx); \
870 GLubyte *vertptr = (GLubyte *)intel->verts; \
871 const GLuint vertsize = intel->vertex_size; \
872 const GLuint * const elt = TNL_CONTEXT(ctx)->vb.Elts; \
873 (void) elt;
874 #define RESET_STIPPLE
875 #define RESET_OCCLUSION
876 #define PRESERVE_VB_DEFS
877 #define ELT(x) x
878 #define TAG(x) intel_##x##_verts
879 #include "tnl/t_vb_rendertmp.h"
880 #undef ELT
881 #undef TAG
882 #define TAG(x) intel_##x##_elts
883 #define ELT(x) elt[x]
884 #include "tnl/t_vb_rendertmp.h"
885
886 /**********************************************************************/
887 /* Render clipped primitives */
888 /**********************************************************************/
889
890
891
892 static void
intelRenderClippedPoly(struct gl_context * ctx,const GLuint * elts,GLuint n)893 intelRenderClippedPoly(struct gl_context * ctx, const GLuint * elts, GLuint n)
894 {
895 struct intel_context *intel = intel_context(ctx);
896 TNLcontext *tnl = TNL_CONTEXT(ctx);
897 struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
898 GLuint prim = intel->render_primitive;
899
900 /* Render the new vertices as an unclipped polygon.
901 */
902 {
903 GLuint *tmp = VB->Elts;
904 VB->Elts = (GLuint *) elts;
905 tnl->Driver.Render.PrimTabElts[GL_POLYGON] (ctx, 0, n,
906 PRIM_BEGIN | PRIM_END);
907 VB->Elts = tmp;
908 }
909
910 /* Restore the render primitive
911 */
912 if (prim != GL_POLYGON)
913 tnl->Driver.Render.PrimitiveNotify(ctx, prim);
914 }
915
916 static void
intelRenderClippedLine(struct gl_context * ctx,GLuint ii,GLuint jj)917 intelRenderClippedLine(struct gl_context * ctx, GLuint ii, GLuint jj)
918 {
919 TNLcontext *tnl = TNL_CONTEXT(ctx);
920
921 tnl->Driver.Render.Line(ctx, ii, jj);
922 }
923
924 static void
intelFastRenderClippedPoly(struct gl_context * ctx,const GLuint * elts,GLuint n)925 intelFastRenderClippedPoly(struct gl_context * ctx, const GLuint * elts, GLuint n)
926 {
927 struct intel_context *intel = intel_context(ctx);
928 const GLuint vertsize = intel->vertex_size;
929 GLuint *vb = intel_get_prim_space(intel, (n - 2) * 3);
930 GLubyte *vertptr = (GLubyte *) intel->verts;
931 const GLuint *start = (const GLuint *) V(elts[0]);
932 int i, j;
933
934 for (i = 2; i < n; i++) {
935 COPY_DWORDS(j, vb, vertsize, V(elts[i - 1]));
936 COPY_DWORDS(j, vb, vertsize, V(elts[i]));
937 COPY_DWORDS(j, vb, vertsize, start);
938 }
939 }
940
941 /**********************************************************************/
942 /* Choose render functions */
943 /**********************************************************************/
944
945
946
947
948 #define ANY_FALLBACK_FLAGS (DD_LINE_STIPPLE | DD_TRI_STIPPLE | DD_POINT_ATTEN)
949 #define ANY_RASTER_FLAGS (DD_TRI_LIGHT_TWOSIDE | DD_TRI_OFFSET | DD_TRI_UNFILLED)
950
951 void
intelChooseRenderState(struct gl_context * ctx)952 intelChooseRenderState(struct gl_context * ctx)
953 {
954 TNLcontext *tnl = TNL_CONTEXT(ctx);
955 struct intel_context *intel = intel_context(ctx);
956 GLuint flags = ctx->_TriangleCaps;
957 const struct gl_fragment_program *fprog = ctx->FragmentProgram._Current;
958 bool have_wpos = (fprog && (fprog->Base.InputsRead & FRAG_BIT_WPOS));
959 GLuint index = 0;
960
961 if (INTEL_DEBUG & DEBUG_STATE)
962 fprintf(stderr, "\n%s\n", __FUNCTION__);
963
964 if ((flags & (ANY_FALLBACK_FLAGS | ANY_RASTER_FLAGS)) || have_wpos) {
965
966 if (flags & ANY_RASTER_FLAGS) {
967 if (flags & DD_TRI_LIGHT_TWOSIDE)
968 index |= INTEL_TWOSIDE_BIT;
969 if (flags & DD_TRI_OFFSET)
970 index |= INTEL_OFFSET_BIT;
971 if (flags & DD_TRI_UNFILLED)
972 index |= INTEL_UNFILLED_BIT;
973 }
974
975 if (have_wpos) {
976 intel->draw_point = intel_wpos_point;
977 intel->draw_line = intel_wpos_line;
978 intel->draw_tri = intel_wpos_triangle;
979
980 /* Make sure these get called:
981 */
982 index |= INTEL_FALLBACK_BIT;
983 }
984 else {
985 intel->draw_point = intel_draw_point;
986 intel->draw_line = intel_draw_line;
987 intel->draw_tri = intel_draw_triangle;
988 }
989
990 /* Hook in fallbacks for specific primitives.
991 */
992 if (flags & ANY_FALLBACK_FLAGS) {
993 if (flags & DD_LINE_STIPPLE)
994 intel->draw_line = intel_fallback_line;
995
996 if ((flags & DD_TRI_STIPPLE) && !intel->hw_stipple)
997 intel->draw_tri = intel_fallback_tri;
998
999 if (flags & DD_POINT_ATTEN) {
1000 if (0)
1001 intel->draw_point = intel_atten_point;
1002 else
1003 intel->draw_point = intel_fallback_point;
1004 }
1005
1006 index |= INTEL_FALLBACK_BIT;
1007 }
1008 }
1009
1010 if (intel->RenderIndex != index) {
1011 intel->RenderIndex = index;
1012
1013 tnl->Driver.Render.Points = rast_tab[index].points;
1014 tnl->Driver.Render.Line = rast_tab[index].line;
1015 tnl->Driver.Render.Triangle = rast_tab[index].triangle;
1016 tnl->Driver.Render.Quad = rast_tab[index].quad;
1017
1018 if (index == 0) {
1019 tnl->Driver.Render.PrimTabVerts = intel_render_tab_verts;
1020 tnl->Driver.Render.PrimTabElts = intel_render_tab_elts;
1021 tnl->Driver.Render.ClippedLine = line; /* from tritmp.h */
1022 tnl->Driver.Render.ClippedPolygon = intelFastRenderClippedPoly;
1023 }
1024 else {
1025 tnl->Driver.Render.PrimTabVerts = _tnl_render_tab_verts;
1026 tnl->Driver.Render.PrimTabElts = _tnl_render_tab_elts;
1027 tnl->Driver.Render.ClippedLine = intelRenderClippedLine;
1028 tnl->Driver.Render.ClippedPolygon = intelRenderClippedPoly;
1029 }
1030 }
1031 }
1032
1033 static const GLenum reduced_prim[GL_POLYGON + 1] = {
1034 GL_POINTS,
1035 GL_LINES,
1036 GL_LINES,
1037 GL_LINES,
1038 GL_TRIANGLES,
1039 GL_TRIANGLES,
1040 GL_TRIANGLES,
1041 GL_TRIANGLES,
1042 GL_TRIANGLES,
1043 GL_TRIANGLES
1044 };
1045
1046
1047 /**********************************************************************/
1048 /* High level hooks for t_vb_render.c */
1049 /**********************************************************************/
1050
1051
1052
1053
1054 static void
intelRunPipeline(struct gl_context * ctx)1055 intelRunPipeline(struct gl_context * ctx)
1056 {
1057 struct intel_context *intel = intel_context(ctx);
1058
1059 _mesa_lock_context_textures(ctx);
1060
1061 if (ctx->NewState)
1062 _mesa_update_state_locked(ctx);
1063
1064 /* We need to get this done before we start the pipeline, or a
1065 * change in the INTEL_FALLBACK() of its intel_draw_buffers() call
1066 * while the pipeline is running will result in mismatched swrast
1067 * map/unmaps, and later assertion failures.
1068 */
1069 intel_prepare_render(intel);
1070
1071 if (intel->NewGLState) {
1072 if (intel->NewGLState & _NEW_TEXTURE) {
1073 intel->vtbl.update_texture_state(intel);
1074 }
1075
1076 if (!intel->Fallback) {
1077 if (intel->NewGLState & _INTEL_NEW_RENDERSTATE)
1078 intelChooseRenderState(ctx);
1079 }
1080
1081 intel->NewGLState = 0;
1082 }
1083
1084 intel_map_vertex_shader_textures(ctx);
1085 intel->tnl_pipeline_running = true;
1086 _tnl_run_pipeline(ctx);
1087 intel->tnl_pipeline_running = false;
1088 intel_unmap_vertex_shader_textures(ctx);
1089
1090 _mesa_unlock_context_textures(ctx);
1091 }
1092
1093 static void
intelRenderStart(struct gl_context * ctx)1094 intelRenderStart(struct gl_context * ctx)
1095 {
1096 struct intel_context *intel = intel_context(ctx);
1097
1098 intel_check_front_buffer_rendering(intel);
1099 intel->vtbl.render_start(intel_context(ctx));
1100 intel->vtbl.emit_state(intel);
1101 }
1102
1103 static void
intelRenderFinish(struct gl_context * ctx)1104 intelRenderFinish(struct gl_context * ctx)
1105 {
1106 struct intel_context *intel = intel_context(ctx);
1107
1108 if (intel->RenderIndex & INTEL_FALLBACK_BIT)
1109 _swrast_flush(ctx);
1110
1111 INTEL_FIREVERTICES(intel);
1112 }
1113
1114
1115
1116
1117 /* System to flush dma and emit state changes based on the rasterized
1118 * primitive.
1119 */
1120 static void
intelRasterPrimitive(struct gl_context * ctx,GLenum rprim,GLuint hwprim)1121 intelRasterPrimitive(struct gl_context * ctx, GLenum rprim, GLuint hwprim)
1122 {
1123 struct intel_context *intel = intel_context(ctx);
1124
1125 if (0)
1126 fprintf(stderr, "%s %s %x\n", __FUNCTION__,
1127 _mesa_lookup_enum_by_nr(rprim), hwprim);
1128
1129 intel->vtbl.reduced_primitive_state(intel, rprim);
1130
1131 /* Start a new primitive. Arrange to have it flushed later on.
1132 */
1133 if (hwprim != intel->prim.primitive) {
1134 INTEL_FIREVERTICES(intel);
1135
1136 intel_set_prim(intel, hwprim);
1137 }
1138 }
1139
1140
1141 /*
1142 */
1143 static void
intelRenderPrimitive(struct gl_context * ctx,GLenum prim)1144 intelRenderPrimitive(struct gl_context * ctx, GLenum prim)
1145 {
1146 struct intel_context *intel = intel_context(ctx);
1147
1148 if (0)
1149 fprintf(stderr, "%s %s\n", __FUNCTION__, _mesa_lookup_enum_by_nr(prim));
1150
1151 /* Let some clipping routines know which primitive they're dealing
1152 * with.
1153 */
1154 intel->render_primitive = prim;
1155
1156 /* Shortcircuit this when called for unfilled triangles. The rasterized
1157 * primitive will always be reset by lower level functions in that case,
1158 * potentially pingponging the state:
1159 */
1160 if (reduced_prim[prim] == GL_TRIANGLES &&
1161 (ctx->_TriangleCaps & DD_TRI_UNFILLED))
1162 return;
1163
1164 /* Set some primitive-dependent state and Start? a new primitive.
1165 */
1166 intelRasterPrimitive(ctx, reduced_prim[prim], hw_prim[prim]);
1167 }
1168
1169
1170 /**********************************************************************/
1171 /* Transition to/from hardware rasterization. */
1172 /**********************************************************************/
1173
1174 static char *fallbackStrings[] = {
1175 [0] = "Draw buffer",
1176 [1] = "Read buffer",
1177 [2] = "Depth buffer",
1178 [3] = "Stencil buffer",
1179 [4] = "User disable",
1180 [5] = "Render mode",
1181
1182 [12] = "Texture",
1183 [13] = "Color mask",
1184 [14] = "Stencil",
1185 [15] = "Stipple",
1186 [16] = "Program",
1187 [17] = "Logic op",
1188 [18] = "Smooth polygon",
1189 [19] = "Smooth point",
1190 [20] = "point sprite coord origin",
1191 [21] = "depth/color drawing offset",
1192 [22] = "coord replace(SPRITE POINT ENABLE)",
1193 };
1194
1195
1196 static char *
getFallbackString(GLuint bit)1197 getFallbackString(GLuint bit)
1198 {
1199 int i = 0;
1200 while (bit > 1) {
1201 i++;
1202 bit >>= 1;
1203 }
1204 return fallbackStrings[i];
1205 }
1206
1207
1208
1209 /**
1210 * Enable/disable a fallback flag.
1211 * \param bit one of INTEL_FALLBACK_x flags.
1212 */
1213 void
intelFallback(struct intel_context * intel,GLbitfield bit,bool mode)1214 intelFallback(struct intel_context *intel, GLbitfield bit, bool mode)
1215 {
1216 struct gl_context *ctx = &intel->ctx;
1217 TNLcontext *tnl = TNL_CONTEXT(ctx);
1218 const GLbitfield oldfallback = intel->Fallback;
1219
1220 if (mode) {
1221 intel->Fallback |= bit;
1222 if (oldfallback == 0) {
1223 assert(!intel->tnl_pipeline_running);
1224
1225 intel_flush(ctx);
1226 if (INTEL_DEBUG & DEBUG_PERF)
1227 fprintf(stderr, "ENTER FALLBACK %x: %s\n",
1228 bit, getFallbackString(bit));
1229 _swsetup_Wakeup(ctx);
1230 intel->RenderIndex = ~0;
1231 }
1232 }
1233 else {
1234 intel->Fallback &= ~bit;
1235 if (oldfallback == bit) {
1236 assert(!intel->tnl_pipeline_running);
1237
1238 _swrast_flush(ctx);
1239 if (INTEL_DEBUG & DEBUG_PERF)
1240 fprintf(stderr, "LEAVE FALLBACK %s\n", getFallbackString(bit));
1241 tnl->Driver.Render.Start = intelRenderStart;
1242 tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
1243 tnl->Driver.Render.Finish = intelRenderFinish;
1244 tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
1245 tnl->Driver.Render.CopyPV = _tnl_copy_pv;
1246 tnl->Driver.Render.Interp = _tnl_interp;
1247
1248 _tnl_invalidate_vertex_state(ctx, ~0);
1249 _tnl_invalidate_vertices(ctx, ~0);
1250 _tnl_install_attrs(ctx,
1251 intel->vertex_attrs,
1252 intel->vertex_attr_count,
1253 intel->ViewportMatrix.m, 0);
1254
1255 intel->NewGLState |= _INTEL_NEW_RENDERSTATE;
1256 }
1257 }
1258 }
1259
1260 union fi
1261 {
1262 GLfloat f;
1263 GLint i;
1264 };
1265
1266 /**********************************************************************/
1267 /* Initialization. */
1268 /**********************************************************************/
1269
1270
1271 void
intelInitTriFuncs(struct gl_context * ctx)1272 intelInitTriFuncs(struct gl_context * ctx)
1273 {
1274 TNLcontext *tnl = TNL_CONTEXT(ctx);
1275 static int firsttime = 1;
1276
1277 if (firsttime) {
1278 init_rast_tab();
1279 firsttime = 0;
1280 }
1281
1282 tnl->Driver.RunPipeline = intelRunPipeline;
1283 tnl->Driver.Render.Start = intelRenderStart;
1284 tnl->Driver.Render.Finish = intelRenderFinish;
1285 tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
1286 tnl->Driver.Render.ResetLineStipple = _swrast_ResetLineStipple;
1287 tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
1288 tnl->Driver.Render.CopyPV = _tnl_copy_pv;
1289 tnl->Driver.Render.Interp = _tnl_interp;
1290 }
1291