1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG. Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/LoopInfoImpl.h"
21 #include "llvm/Analysis/LoopIterator.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/IR/PassManager.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm>
34 using namespace llvm;
35
36 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
37 template class llvm::LoopBase<BasicBlock, Loop>;
38 template class llvm::LoopInfoBase<BasicBlock, Loop>;
39
40 // Always verify loopinfo if expensive checking is enabled.
41 #ifdef XDEBUG
42 static bool VerifyLoopInfo = true;
43 #else
44 static bool VerifyLoopInfo = false;
45 #endif
46 static cl::opt<bool,true>
47 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
48 cl::desc("Verify loop info (time consuming)"));
49
50 // Loop identifier metadata name.
51 static const char *const LoopMDName = "llvm.loop";
52
53 //===----------------------------------------------------------------------===//
54 // Loop implementation
55 //
56
57 /// isLoopInvariant - Return true if the specified value is loop invariant
58 ///
isLoopInvariant(Value * V) const59 bool Loop::isLoopInvariant(Value *V) const {
60 if (Instruction *I = dyn_cast<Instruction>(V))
61 return !contains(I);
62 return true; // All non-instructions are loop invariant
63 }
64
65 /// hasLoopInvariantOperands - Return true if all the operands of the
66 /// specified instruction are loop invariant.
hasLoopInvariantOperands(Instruction * I) const67 bool Loop::hasLoopInvariantOperands(Instruction *I) const {
68 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
69 if (!isLoopInvariant(I->getOperand(i)))
70 return false;
71
72 return true;
73 }
74
75 /// makeLoopInvariant - If the given value is an instruciton inside of the
76 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
77 /// Return true if the value after any hoisting is loop invariant. This
78 /// function can be used as a slightly more aggressive replacement for
79 /// isLoopInvariant.
80 ///
81 /// If InsertPt is specified, it is the point to hoist instructions to.
82 /// If null, the terminator of the loop preheader is used.
83 ///
makeLoopInvariant(Value * V,bool & Changed,Instruction * InsertPt) const84 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
85 Instruction *InsertPt) const {
86 if (Instruction *I = dyn_cast<Instruction>(V))
87 return makeLoopInvariant(I, Changed, InsertPt);
88 return true; // All non-instructions are loop-invariant.
89 }
90
91 /// makeLoopInvariant - If the given instruction is inside of the
92 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
93 /// Return true if the instruction after any hoisting is loop invariant. This
94 /// function can be used as a slightly more aggressive replacement for
95 /// isLoopInvariant.
96 ///
97 /// If InsertPt is specified, it is the point to hoist instructions to.
98 /// If null, the terminator of the loop preheader is used.
99 ///
makeLoopInvariant(Instruction * I,bool & Changed,Instruction * InsertPt) const100 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
101 Instruction *InsertPt) const {
102 // Test if the value is already loop-invariant.
103 if (isLoopInvariant(I))
104 return true;
105 if (!isSafeToSpeculativelyExecute(I))
106 return false;
107 if (I->mayReadFromMemory())
108 return false;
109 // The landingpad instruction is immobile.
110 if (isa<LandingPadInst>(I))
111 return false;
112 // Determine the insertion point, unless one was given.
113 if (!InsertPt) {
114 BasicBlock *Preheader = getLoopPreheader();
115 // Without a preheader, hoisting is not feasible.
116 if (!Preheader)
117 return false;
118 InsertPt = Preheader->getTerminator();
119 }
120 // Don't hoist instructions with loop-variant operands.
121 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
122 if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
123 return false;
124
125 // Hoist.
126 I->moveBefore(InsertPt);
127 Changed = true;
128 return true;
129 }
130
131 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
132 /// induction variable: an integer recurrence that starts at 0 and increments
133 /// by one each time through the loop. If so, return the phi node that
134 /// corresponds to it.
135 ///
136 /// The IndVarSimplify pass transforms loops to have a canonical induction
137 /// variable.
138 ///
getCanonicalInductionVariable() const139 PHINode *Loop::getCanonicalInductionVariable() const {
140 BasicBlock *H = getHeader();
141
142 BasicBlock *Incoming = nullptr, *Backedge = nullptr;
143 pred_iterator PI = pred_begin(H);
144 assert(PI != pred_end(H) &&
145 "Loop must have at least one backedge!");
146 Backedge = *PI++;
147 if (PI == pred_end(H)) return nullptr; // dead loop
148 Incoming = *PI++;
149 if (PI != pred_end(H)) return nullptr; // multiple backedges?
150
151 if (contains(Incoming)) {
152 if (contains(Backedge))
153 return nullptr;
154 std::swap(Incoming, Backedge);
155 } else if (!contains(Backedge))
156 return nullptr;
157
158 // Loop over all of the PHI nodes, looking for a canonical indvar.
159 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
160 PHINode *PN = cast<PHINode>(I);
161 if (ConstantInt *CI =
162 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
163 if (CI->isNullValue())
164 if (Instruction *Inc =
165 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
166 if (Inc->getOpcode() == Instruction::Add &&
167 Inc->getOperand(0) == PN)
168 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
169 if (CI->equalsInt(1))
170 return PN;
171 }
172 return nullptr;
173 }
174
175 /// isLCSSAForm - Return true if the Loop is in LCSSA form
isLCSSAForm(DominatorTree & DT) const176 bool Loop::isLCSSAForm(DominatorTree &DT) const {
177 for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
178 BasicBlock *BB = *BI;
179 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
180 for (Use &U : I->uses()) {
181 Instruction *UI = cast<Instruction>(U.getUser());
182 BasicBlock *UserBB = UI->getParent();
183 if (PHINode *P = dyn_cast<PHINode>(UI))
184 UserBB = P->getIncomingBlock(U);
185
186 // Check the current block, as a fast-path, before checking whether
187 // the use is anywhere in the loop. Most values are used in the same
188 // block they are defined in. Also, blocks not reachable from the
189 // entry are special; uses in them don't need to go through PHIs.
190 if (UserBB != BB &&
191 !contains(UserBB) &&
192 DT.isReachableFromEntry(UserBB))
193 return false;
194 }
195 }
196
197 return true;
198 }
199
200 /// isLoopSimplifyForm - Return true if the Loop is in the form that
201 /// the LoopSimplify form transforms loops to, which is sometimes called
202 /// normal form.
isLoopSimplifyForm() const203 bool Loop::isLoopSimplifyForm() const {
204 // Normal-form loops have a preheader, a single backedge, and all of their
205 // exits have all their predecessors inside the loop.
206 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
207 }
208
209 /// isSafeToClone - Return true if the loop body is safe to clone in practice.
210 /// Routines that reform the loop CFG and split edges often fail on indirectbr.
isSafeToClone() const211 bool Loop::isSafeToClone() const {
212 // Return false if any loop blocks contain indirectbrs, or there are any calls
213 // to noduplicate functions.
214 for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
215 if (isa<IndirectBrInst>((*I)->getTerminator()))
216 return false;
217
218 if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator()))
219 if (II->cannotDuplicate())
220 return false;
221
222 for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) {
223 if (const CallInst *CI = dyn_cast<CallInst>(BI)) {
224 if (CI->cannotDuplicate())
225 return false;
226 }
227 }
228 }
229 return true;
230 }
231
getLoopID() const232 MDNode *Loop::getLoopID() const {
233 MDNode *LoopID = nullptr;
234 if (isLoopSimplifyForm()) {
235 LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName);
236 } else {
237 // Go through each predecessor of the loop header and check the
238 // terminator for the metadata.
239 BasicBlock *H = getHeader();
240 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
241 TerminatorInst *TI = (*I)->getTerminator();
242 MDNode *MD = nullptr;
243
244 // Check if this terminator branches to the loop header.
245 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
246 if (TI->getSuccessor(i) == H) {
247 MD = TI->getMetadata(LoopMDName);
248 break;
249 }
250 }
251 if (!MD)
252 return nullptr;
253
254 if (!LoopID)
255 LoopID = MD;
256 else if (MD != LoopID)
257 return nullptr;
258 }
259 }
260 if (!LoopID || LoopID->getNumOperands() == 0 ||
261 LoopID->getOperand(0) != LoopID)
262 return nullptr;
263 return LoopID;
264 }
265
setLoopID(MDNode * LoopID) const266 void Loop::setLoopID(MDNode *LoopID) const {
267 assert(LoopID && "Loop ID should not be null");
268 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
269 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
270
271 if (isLoopSimplifyForm()) {
272 getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID);
273 return;
274 }
275
276 BasicBlock *H = getHeader();
277 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
278 TerminatorInst *TI = (*I)->getTerminator();
279 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
280 if (TI->getSuccessor(i) == H)
281 TI->setMetadata(LoopMDName, LoopID);
282 }
283 }
284 }
285
isAnnotatedParallel() const286 bool Loop::isAnnotatedParallel() const {
287 MDNode *desiredLoopIdMetadata = getLoopID();
288
289 if (!desiredLoopIdMetadata)
290 return false;
291
292 // The loop branch contains the parallel loop metadata. In order to ensure
293 // that any parallel-loop-unaware optimization pass hasn't added loop-carried
294 // dependencies (thus converted the loop back to a sequential loop), check
295 // that all the memory instructions in the loop contain parallelism metadata
296 // that point to the same unique "loop id metadata" the loop branch does.
297 for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) {
298 for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end();
299 II != EE; II++) {
300
301 if (!II->mayReadOrWriteMemory())
302 continue;
303
304 // The memory instruction can refer to the loop identifier metadata
305 // directly or indirectly through another list metadata (in case of
306 // nested parallel loops). The loop identifier metadata refers to
307 // itself so we can check both cases with the same routine.
308 MDNode *loopIdMD =
309 II->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
310
311 if (!loopIdMD)
312 return false;
313
314 bool loopIdMDFound = false;
315 for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) {
316 if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) {
317 loopIdMDFound = true;
318 break;
319 }
320 }
321
322 if (!loopIdMDFound)
323 return false;
324 }
325 }
326 return true;
327 }
328
329
330 /// hasDedicatedExits - Return true if no exit block for the loop
331 /// has a predecessor that is outside the loop.
hasDedicatedExits() const332 bool Loop::hasDedicatedExits() const {
333 // Each predecessor of each exit block of a normal loop is contained
334 // within the loop.
335 SmallVector<BasicBlock *, 4> ExitBlocks;
336 getExitBlocks(ExitBlocks);
337 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
338 for (pred_iterator PI = pred_begin(ExitBlocks[i]),
339 PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
340 if (!contains(*PI))
341 return false;
342 // All the requirements are met.
343 return true;
344 }
345
346 /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
347 /// These are the blocks _outside of the current loop_ which are branched to.
348 /// This assumes that loop exits are in canonical form.
349 ///
350 void
getUniqueExitBlocks(SmallVectorImpl<BasicBlock * > & ExitBlocks) const351 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
352 assert(hasDedicatedExits() &&
353 "getUniqueExitBlocks assumes the loop has canonical form exits!");
354
355 SmallVector<BasicBlock *, 32> switchExitBlocks;
356
357 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
358
359 BasicBlock *current = *BI;
360 switchExitBlocks.clear();
361
362 for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
363 // If block is inside the loop then it is not a exit block.
364 if (contains(*I))
365 continue;
366
367 pred_iterator PI = pred_begin(*I);
368 BasicBlock *firstPred = *PI;
369
370 // If current basic block is this exit block's first predecessor
371 // then only insert exit block in to the output ExitBlocks vector.
372 // This ensures that same exit block is not inserted twice into
373 // ExitBlocks vector.
374 if (current != firstPred)
375 continue;
376
377 // If a terminator has more then two successors, for example SwitchInst,
378 // then it is possible that there are multiple edges from current block
379 // to one exit block.
380 if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
381 ExitBlocks.push_back(*I);
382 continue;
383 }
384
385 // In case of multiple edges from current block to exit block, collect
386 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
387 // duplicate edges.
388 if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
389 == switchExitBlocks.end()) {
390 switchExitBlocks.push_back(*I);
391 ExitBlocks.push_back(*I);
392 }
393 }
394 }
395 }
396
397 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
398 /// block, return that block. Otherwise return null.
getUniqueExitBlock() const399 BasicBlock *Loop::getUniqueExitBlock() const {
400 SmallVector<BasicBlock *, 8> UniqueExitBlocks;
401 getUniqueExitBlocks(UniqueExitBlocks);
402 if (UniqueExitBlocks.size() == 1)
403 return UniqueExitBlocks[0];
404 return nullptr;
405 }
406
407 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const408 void Loop::dump() const {
409 print(dbgs());
410 }
411 #endif
412
413 //===----------------------------------------------------------------------===//
414 // UnloopUpdater implementation
415 //
416
417 namespace {
418 /// Find the new parent loop for all blocks within the "unloop" whose last
419 /// backedges has just been removed.
420 class UnloopUpdater {
421 Loop *Unloop;
422 LoopInfo *LI;
423
424 LoopBlocksDFS DFS;
425
426 // Map unloop's immediate subloops to their nearest reachable parents. Nested
427 // loops within these subloops will not change parents. However, an immediate
428 // subloop's new parent will be the nearest loop reachable from either its own
429 // exits *or* any of its nested loop's exits.
430 DenseMap<Loop*, Loop*> SubloopParents;
431
432 // Flag the presence of an irreducible backedge whose destination is a block
433 // directly contained by the original unloop.
434 bool FoundIB;
435
436 public:
UnloopUpdater(Loop * UL,LoopInfo * LInfo)437 UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
438 Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
439
440 void updateBlockParents();
441
442 void removeBlocksFromAncestors();
443
444 void updateSubloopParents();
445
446 protected:
447 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
448 };
449 } // end anonymous namespace
450
451 /// updateBlockParents - Update the parent loop for all blocks that are directly
452 /// contained within the original "unloop".
updateBlockParents()453 void UnloopUpdater::updateBlockParents() {
454 if (Unloop->getNumBlocks()) {
455 // Perform a post order CFG traversal of all blocks within this loop,
456 // propagating the nearest loop from sucessors to predecessors.
457 LoopBlocksTraversal Traversal(DFS, LI);
458 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
459 POE = Traversal.end(); POI != POE; ++POI) {
460
461 Loop *L = LI->getLoopFor(*POI);
462 Loop *NL = getNearestLoop(*POI, L);
463
464 if (NL != L) {
465 // For reducible loops, NL is now an ancestor of Unloop.
466 assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
467 "uninitialized successor");
468 LI->changeLoopFor(*POI, NL);
469 }
470 else {
471 // Or the current block is part of a subloop, in which case its parent
472 // is unchanged.
473 assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
474 }
475 }
476 }
477 // Each irreducible loop within the unloop induces a round of iteration using
478 // the DFS result cached by Traversal.
479 bool Changed = FoundIB;
480 for (unsigned NIters = 0; Changed; ++NIters) {
481 assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
482
483 // Iterate over the postorder list of blocks, propagating the nearest loop
484 // from successors to predecessors as before.
485 Changed = false;
486 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
487 POE = DFS.endPostorder(); POI != POE; ++POI) {
488
489 Loop *L = LI->getLoopFor(*POI);
490 Loop *NL = getNearestLoop(*POI, L);
491 if (NL != L) {
492 assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
493 "uninitialized successor");
494 LI->changeLoopFor(*POI, NL);
495 Changed = true;
496 }
497 }
498 }
499 }
500
501 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
502 /// their new parents.
removeBlocksFromAncestors()503 void UnloopUpdater::removeBlocksFromAncestors() {
504 // Remove all unloop's blocks (including those in nested subloops) from
505 // ancestors below the new parent loop.
506 for (Loop::block_iterator BI = Unloop->block_begin(),
507 BE = Unloop->block_end(); BI != BE; ++BI) {
508 Loop *OuterParent = LI->getLoopFor(*BI);
509 if (Unloop->contains(OuterParent)) {
510 while (OuterParent->getParentLoop() != Unloop)
511 OuterParent = OuterParent->getParentLoop();
512 OuterParent = SubloopParents[OuterParent];
513 }
514 // Remove blocks from former Ancestors except Unloop itself which will be
515 // deleted.
516 for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
517 OldParent = OldParent->getParentLoop()) {
518 assert(OldParent && "new loop is not an ancestor of the original");
519 OldParent->removeBlockFromLoop(*BI);
520 }
521 }
522 }
523
524 /// updateSubloopParents - Update the parent loop for all subloops directly
525 /// nested within unloop.
updateSubloopParents()526 void UnloopUpdater::updateSubloopParents() {
527 while (!Unloop->empty()) {
528 Loop *Subloop = *std::prev(Unloop->end());
529 Unloop->removeChildLoop(std::prev(Unloop->end()));
530
531 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
532 if (Loop *Parent = SubloopParents[Subloop])
533 Parent->addChildLoop(Subloop);
534 else
535 LI->addTopLevelLoop(Subloop);
536 }
537 }
538
539 /// getNearestLoop - Return the nearest parent loop among this block's
540 /// successors. If a successor is a subloop header, consider its parent to be
541 /// the nearest parent of the subloop's exits.
542 ///
543 /// For subloop blocks, simply update SubloopParents and return NULL.
getNearestLoop(BasicBlock * BB,Loop * BBLoop)544 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
545
546 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
547 // is considered uninitialized.
548 Loop *NearLoop = BBLoop;
549
550 Loop *Subloop = nullptr;
551 if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
552 Subloop = NearLoop;
553 // Find the subloop ancestor that is directly contained within Unloop.
554 while (Subloop->getParentLoop() != Unloop) {
555 Subloop = Subloop->getParentLoop();
556 assert(Subloop && "subloop is not an ancestor of the original loop");
557 }
558 // Get the current nearest parent of the Subloop exits, initially Unloop.
559 NearLoop =
560 SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
561 }
562
563 succ_iterator I = succ_begin(BB), E = succ_end(BB);
564 if (I == E) {
565 assert(!Subloop && "subloop blocks must have a successor");
566 NearLoop = nullptr; // unloop blocks may now exit the function.
567 }
568 for (; I != E; ++I) {
569 if (*I == BB)
570 continue; // self loops are uninteresting
571
572 Loop *L = LI->getLoopFor(*I);
573 if (L == Unloop) {
574 // This successor has not been processed. This path must lead to an
575 // irreducible backedge.
576 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
577 FoundIB = true;
578 }
579 if (L != Unloop && Unloop->contains(L)) {
580 // Successor is in a subloop.
581 if (Subloop)
582 continue; // Branching within subloops. Ignore it.
583
584 // BB branches from the original into a subloop header.
585 assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
586
587 // Get the current nearest parent of the Subloop's exits.
588 L = SubloopParents[L];
589 // L could be Unloop if the only exit was an irreducible backedge.
590 }
591 if (L == Unloop) {
592 continue;
593 }
594 // Handle critical edges from Unloop into a sibling loop.
595 if (L && !L->contains(Unloop)) {
596 L = L->getParentLoop();
597 }
598 // Remember the nearest parent loop among successors or subloop exits.
599 if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
600 NearLoop = L;
601 }
602 if (Subloop) {
603 SubloopParents[Subloop] = NearLoop;
604 return BBLoop;
605 }
606 return NearLoop;
607 }
608
609 /// updateUnloop - The last backedge has been removed from a loop--now the
610 /// "unloop". Find a new parent for the blocks contained within unloop and
611 /// update the loop tree. We don't necessarily have valid dominators at this
612 /// point, but LoopInfo is still valid except for the removal of this loop.
613 ///
614 /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
615 /// checking first is illegal.
updateUnloop(Loop * Unloop)616 void LoopInfo::updateUnloop(Loop *Unloop) {
617
618 // First handle the special case of no parent loop to simplify the algorithm.
619 if (!Unloop->getParentLoop()) {
620 // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
621 for (Loop::block_iterator I = Unloop->block_begin(),
622 E = Unloop->block_end();
623 I != E; ++I) {
624
625 // Don't reparent blocks in subloops.
626 if (getLoopFor(*I) != Unloop)
627 continue;
628
629 // Blocks no longer have a parent but are still referenced by Unloop until
630 // the Unloop object is deleted.
631 changeLoopFor(*I, nullptr);
632 }
633
634 // Remove the loop from the top-level LoopInfo object.
635 for (iterator I = begin();; ++I) {
636 assert(I != end() && "Couldn't find loop");
637 if (*I == Unloop) {
638 removeLoop(I);
639 break;
640 }
641 }
642
643 // Move all of the subloops to the top-level.
644 while (!Unloop->empty())
645 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
646
647 return;
648 }
649
650 // Update the parent loop for all blocks within the loop. Blocks within
651 // subloops will not change parents.
652 UnloopUpdater Updater(Unloop, this);
653 Updater.updateBlockParents();
654
655 // Remove blocks from former ancestor loops.
656 Updater.removeBlocksFromAncestors();
657
658 // Add direct subloops as children in their new parent loop.
659 Updater.updateSubloopParents();
660
661 // Remove unloop from its parent loop.
662 Loop *ParentLoop = Unloop->getParentLoop();
663 for (Loop::iterator I = ParentLoop->begin();; ++I) {
664 assert(I != ParentLoop->end() && "Couldn't find loop");
665 if (*I == Unloop) {
666 ParentLoop->removeChildLoop(I);
667 break;
668 }
669 }
670 }
671
672 char LoopAnalysis::PassID;
673
run(Function & F,AnalysisManager<Function> * AM)674 LoopInfo LoopAnalysis::run(Function &F, AnalysisManager<Function> *AM) {
675 // FIXME: Currently we create a LoopInfo from scratch for every function.
676 // This may prove to be too wasteful due to deallocating and re-allocating
677 // memory each time for the underlying map and vector datastructures. At some
678 // point it may prove worthwhile to use a freelist and recycle LoopInfo
679 // objects. I don't want to add that kind of complexity until the scope of
680 // the problem is better understood.
681 LoopInfo LI;
682 LI.Analyze(AM->getResult<DominatorTreeAnalysis>(F));
683 return std::move(LI);
684 }
685
run(Function & F,AnalysisManager<Function> * AM)686 PreservedAnalyses LoopPrinterPass::run(Function &F,
687 AnalysisManager<Function> *AM) {
688 AM->getResult<LoopAnalysis>(F).print(OS);
689 return PreservedAnalyses::all();
690 }
691
692 //===----------------------------------------------------------------------===//
693 // LoopInfo implementation
694 //
695
696 char LoopInfoWrapperPass::ID = 0;
697 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
698 true, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)699 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
700 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
701 true, true)
702
703 bool LoopInfoWrapperPass::runOnFunction(Function &) {
704 releaseMemory();
705 LI.Analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
706 return false;
707 }
708
verifyAnalysis() const709 void LoopInfoWrapperPass::verifyAnalysis() const {
710 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
711 // function each time verifyAnalysis is called is very expensive. The
712 // -verify-loop-info option can enable this. In order to perform some
713 // checking by default, LoopPass has been taught to call verifyLoop manually
714 // during loop pass sequences.
715 if (VerifyLoopInfo)
716 LI.verify();
717 }
718
getAnalysisUsage(AnalysisUsage & AU) const719 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
720 AU.setPreservesAll();
721 AU.addRequired<DominatorTreeWrapperPass>();
722 }
723
print(raw_ostream & OS,const Module *) const724 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
725 LI.print(OS);
726 }
727
728 //===----------------------------------------------------------------------===//
729 // LoopBlocksDFS implementation
730 //
731
732 /// Traverse the loop blocks and store the DFS result.
733 /// Useful for clients that just want the final DFS result and don't need to
734 /// visit blocks during the initial traversal.
perform(LoopInfo * LI)735 void LoopBlocksDFS::perform(LoopInfo *LI) {
736 LoopBlocksTraversal Traversal(*this, LI);
737 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
738 POE = Traversal.end(); POI != POE; ++POI) ;
739 }
740