1 //===--- ScopeInfo.h - Information about a semantic context -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines FunctionScopeInfo and its subclasses, which contain
11 // information about a single function, block, lambda, or method body.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CLANG_SEMA_SCOPEINFO_H
16 #define LLVM_CLANG_SEMA_SCOPEINFO_H
17 
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/Type.h"
20 #include "clang/Basic/CapturedStmt.h"
21 #include "clang/Basic/PartialDiagnostic.h"
22 #include "clang/Sema/Ownership.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include <algorithm>
27 
28 namespace clang {
29 
30 class Decl;
31 class BlockDecl;
32 class CapturedDecl;
33 class CXXMethodDecl;
34 class FieldDecl;
35 class ObjCPropertyDecl;
36 class IdentifierInfo;
37 class ImplicitParamDecl;
38 class LabelDecl;
39 class ReturnStmt;
40 class Scope;
41 class SwitchStmt;
42 class TemplateTypeParmDecl;
43 class TemplateParameterList;
44 class VarDecl;
45 class ObjCIvarRefExpr;
46 class ObjCPropertyRefExpr;
47 class ObjCMessageExpr;
48 
49 namespace sema {
50 
51 /// \brief Contains information about the compound statement currently being
52 /// parsed.
53 class CompoundScopeInfo {
54 public:
CompoundScopeInfo()55   CompoundScopeInfo()
56     : HasEmptyLoopBodies(false) { }
57 
58   /// \brief Whether this compound stamement contains `for' or `while' loops
59   /// with empty bodies.
60   bool HasEmptyLoopBodies;
61 
setHasEmptyLoopBodies()62   void setHasEmptyLoopBodies() {
63     HasEmptyLoopBodies = true;
64   }
65 };
66 
67 class PossiblyUnreachableDiag {
68 public:
69   PartialDiagnostic PD;
70   SourceLocation Loc;
71   const Stmt *stmt;
72 
PossiblyUnreachableDiag(const PartialDiagnostic & PD,SourceLocation Loc,const Stmt * stmt)73   PossiblyUnreachableDiag(const PartialDiagnostic &PD, SourceLocation Loc,
74                           const Stmt *stmt)
75     : PD(PD), Loc(Loc), stmt(stmt) {}
76 };
77 
78 /// \brief Retains information about a function, method, or block that is
79 /// currently being parsed.
80 class FunctionScopeInfo {
81 protected:
82   enum ScopeKind {
83     SK_Function,
84     SK_Block,
85     SK_Lambda,
86     SK_CapturedRegion
87   };
88 
89 public:
90   /// \brief What kind of scope we are describing.
91   ///
92   ScopeKind Kind;
93 
94   /// \brief Whether this function contains a VLA, \@try, try, C++
95   /// initializer, or anything else that can't be jumped past.
96   bool HasBranchProtectedScope;
97 
98   /// \brief Whether this function contains any switches or direct gotos.
99   bool HasBranchIntoScope;
100 
101   /// \brief Whether this function contains any indirect gotos.
102   bool HasIndirectGoto;
103 
104   /// \brief Whether a statement was dropped because it was invalid.
105   bool HasDroppedStmt;
106 
107   /// A flag that is set when parsing a method that must call super's
108   /// implementation, such as \c -dealloc, \c -finalize, or any method marked
109   /// with \c __attribute__((objc_requires_super)).
110   bool ObjCShouldCallSuper;
111 
112   /// True when this is a method marked as a designated initializer.
113   bool ObjCIsDesignatedInit;
114   /// This starts true for a method marked as designated initializer and will
115   /// be set to false if there is an invocation to a designated initializer of
116   /// the super class.
117   bool ObjCWarnForNoDesignatedInitChain;
118 
119   /// True when this is an initializer method not marked as a designated
120   /// initializer within a class that has at least one initializer marked as a
121   /// designated initializer.
122   bool ObjCIsSecondaryInit;
123   /// This starts true for a secondary initializer method and will be set to
124   /// false if there is an invocation of an initializer on 'self'.
125   bool ObjCWarnForNoInitDelegation;
126 
127   /// First C++ 'try' statement in the current function.
128   SourceLocation FirstCXXTryLoc;
129 
130   /// First SEH '__try' statement in the current function.
131   SourceLocation FirstSEHTryLoc;
132 
133   /// \brief Used to determine if errors occurred in this function or block.
134   DiagnosticErrorTrap ErrorTrap;
135 
136   /// SwitchStack - This is the current set of active switch statements in the
137   /// block.
138   SmallVector<SwitchStmt*, 8> SwitchStack;
139 
140   /// \brief The list of return statements that occur within the function or
141   /// block, if there is any chance of applying the named return value
142   /// optimization, or if we need to infer a return type.
143   SmallVector<ReturnStmt*, 4> Returns;
144 
145   /// \brief The stack of currently active compound stamement scopes in the
146   /// function.
147   SmallVector<CompoundScopeInfo, 4> CompoundScopes;
148 
149   /// \brief A list of PartialDiagnostics created but delayed within the
150   /// current function scope.  These diagnostics are vetted for reachability
151   /// prior to being emitted.
152   SmallVector<PossiblyUnreachableDiag, 4> PossiblyUnreachableDiags;
153 
154   /// \brief A list of parameters which have the nonnull attribute and are
155   /// modified in the function.
156   llvm::SmallPtrSet<const ParmVarDecl*, 8>  ModifiedNonNullParams;
157 
158 public:
159   /// Represents a simple identification of a weak object.
160   ///
161   /// Part of the implementation of -Wrepeated-use-of-weak.
162   ///
163   /// This is used to determine if two weak accesses refer to the same object.
164   /// Here are some examples of how various accesses are "profiled":
165   ///
166   /// Access Expression |     "Base" Decl     |          "Property" Decl
167   /// :---------------: | :-----------------: | :------------------------------:
168   /// self.property     | self (VarDecl)      | property (ObjCPropertyDecl)
169   /// self.implicitProp | self (VarDecl)      | -implicitProp (ObjCMethodDecl)
170   /// self->ivar.prop   | ivar (ObjCIvarDecl) | prop (ObjCPropertyDecl)
171   /// cxxObj.obj.prop   | obj (FieldDecl)     | prop (ObjCPropertyDecl)
172   /// [self foo].prop   | 0 (unknown)         | prop (ObjCPropertyDecl)
173   /// self.prop1.prop2  | prop1 (ObjCPropertyDecl)    | prop2 (ObjCPropertyDecl)
174   /// MyClass.prop      | MyClass (ObjCInterfaceDecl) | -prop (ObjCMethodDecl)
175   /// weakVar           | 0 (known)           | weakVar (VarDecl)
176   /// self->weakIvar    | self (VarDecl)      | weakIvar (ObjCIvarDecl)
177   ///
178   /// Objects are identified with only two Decls to make it reasonably fast to
179   /// compare them.
180   class WeakObjectProfileTy {
181     /// The base object decl, as described in the class documentation.
182     ///
183     /// The extra flag is "true" if the Base and Property are enough to uniquely
184     /// identify the object in memory.
185     ///
186     /// \sa isExactProfile()
187     typedef llvm::PointerIntPair<const NamedDecl *, 1, bool> BaseInfoTy;
188     BaseInfoTy Base;
189 
190     /// The "property" decl, as described in the class documentation.
191     ///
192     /// Note that this may not actually be an ObjCPropertyDecl, e.g. in the
193     /// case of "implicit" properties (regular methods accessed via dot syntax).
194     const NamedDecl *Property;
195 
196     /// Used to find the proper base profile for a given base expression.
197     static BaseInfoTy getBaseInfo(const Expr *BaseE);
198 
199     inline WeakObjectProfileTy();
200     static inline WeakObjectProfileTy getSentinel();
201 
202   public:
203     WeakObjectProfileTy(const ObjCPropertyRefExpr *RE);
204     WeakObjectProfileTy(const Expr *Base, const ObjCPropertyDecl *Property);
205     WeakObjectProfileTy(const DeclRefExpr *RE);
206     WeakObjectProfileTy(const ObjCIvarRefExpr *RE);
207 
getBase()208     const NamedDecl *getBase() const { return Base.getPointer(); }
getProperty()209     const NamedDecl *getProperty() const { return Property; }
210 
211     /// Returns true if the object base specifies a known object in memory,
212     /// rather than, say, an instance variable or property of another object.
213     ///
214     /// Note that this ignores the effects of aliasing; that is, \c foo.bar is
215     /// considered an exact profile if \c foo is a local variable, even if
216     /// another variable \c foo2 refers to the same object as \c foo.
217     ///
218     /// For increased precision, accesses with base variables that are
219     /// properties or ivars of 'self' (e.g. self.prop1.prop2) are considered to
220     /// be exact, though this is not true for arbitrary variables
221     /// (foo.prop1.prop2).
isExactProfile()222     bool isExactProfile() const {
223       return Base.getInt();
224     }
225 
226     bool operator==(const WeakObjectProfileTy &Other) const {
227       return Base == Other.Base && Property == Other.Property;
228     }
229 
230     // For use in DenseMap.
231     // We can't specialize the usual llvm::DenseMapInfo at the end of the file
232     // because by that point the DenseMap in FunctionScopeInfo has already been
233     // instantiated.
234     class DenseMapInfo {
235     public:
getEmptyKey()236       static inline WeakObjectProfileTy getEmptyKey() {
237         return WeakObjectProfileTy();
238       }
getTombstoneKey()239       static inline WeakObjectProfileTy getTombstoneKey() {
240         return WeakObjectProfileTy::getSentinel();
241       }
242 
getHashValue(const WeakObjectProfileTy & Val)243       static unsigned getHashValue(const WeakObjectProfileTy &Val) {
244         typedef std::pair<BaseInfoTy, const NamedDecl *> Pair;
245         return llvm::DenseMapInfo<Pair>::getHashValue(Pair(Val.Base,
246                                                            Val.Property));
247       }
248 
isEqual(const WeakObjectProfileTy & LHS,const WeakObjectProfileTy & RHS)249       static bool isEqual(const WeakObjectProfileTy &LHS,
250                           const WeakObjectProfileTy &RHS) {
251         return LHS == RHS;
252       }
253     };
254   };
255 
256   /// Represents a single use of a weak object.
257   ///
258   /// Stores both the expression and whether the access is potentially unsafe
259   /// (i.e. it could potentially be warned about).
260   ///
261   /// Part of the implementation of -Wrepeated-use-of-weak.
262   class WeakUseTy {
263     llvm::PointerIntPair<const Expr *, 1, bool> Rep;
264   public:
WeakUseTy(const Expr * Use,bool IsRead)265     WeakUseTy(const Expr *Use, bool IsRead) : Rep(Use, IsRead) {}
266 
getUseExpr()267     const Expr *getUseExpr() const { return Rep.getPointer(); }
isUnsafe()268     bool isUnsafe() const { return Rep.getInt(); }
markSafe()269     void markSafe() { Rep.setInt(false); }
270 
271     bool operator==(const WeakUseTy &Other) const {
272       return Rep == Other.Rep;
273     }
274   };
275 
276   /// Used to collect uses of a particular weak object in a function body.
277   ///
278   /// Part of the implementation of -Wrepeated-use-of-weak.
279   typedef SmallVector<WeakUseTy, 4> WeakUseVector;
280 
281   /// Used to collect all uses of weak objects in a function body.
282   ///
283   /// Part of the implementation of -Wrepeated-use-of-weak.
284   typedef llvm::SmallDenseMap<WeakObjectProfileTy, WeakUseVector, 8,
285                               WeakObjectProfileTy::DenseMapInfo>
286           WeakObjectUseMap;
287 
288 private:
289   /// Used to collect all uses of weak objects in this function body.
290   ///
291   /// Part of the implementation of -Wrepeated-use-of-weak.
292   WeakObjectUseMap WeakObjectUses;
293 
294 public:
295   /// Record that a weak object was accessed.
296   ///
297   /// Part of the implementation of -Wrepeated-use-of-weak.
298   template <typename ExprT>
299   inline void recordUseOfWeak(const ExprT *E, bool IsRead = true);
300 
301   void recordUseOfWeak(const ObjCMessageExpr *Msg,
302                        const ObjCPropertyDecl *Prop);
303 
304   /// Record that a given expression is a "safe" access of a weak object (e.g.
305   /// assigning it to a strong variable.)
306   ///
307   /// Part of the implementation of -Wrepeated-use-of-weak.
308   void markSafeWeakUse(const Expr *E);
309 
getWeakObjectUses()310   const WeakObjectUseMap &getWeakObjectUses() const {
311     return WeakObjectUses;
312   }
313 
setHasBranchIntoScope()314   void setHasBranchIntoScope() {
315     HasBranchIntoScope = true;
316   }
317 
setHasBranchProtectedScope()318   void setHasBranchProtectedScope() {
319     HasBranchProtectedScope = true;
320   }
321 
setHasIndirectGoto()322   void setHasIndirectGoto() {
323     HasIndirectGoto = true;
324   }
325 
setHasDroppedStmt()326   void setHasDroppedStmt() {
327     HasDroppedStmt = true;
328   }
329 
setHasCXXTry(SourceLocation TryLoc)330   void setHasCXXTry(SourceLocation TryLoc) {
331     setHasBranchProtectedScope();
332     FirstCXXTryLoc = TryLoc;
333   }
334 
setHasSEHTry(SourceLocation TryLoc)335   void setHasSEHTry(SourceLocation TryLoc) {
336     setHasBranchProtectedScope();
337     FirstSEHTryLoc = TryLoc;
338   }
339 
NeedsScopeChecking()340   bool NeedsScopeChecking() const {
341     return !HasDroppedStmt &&
342         (HasIndirectGoto ||
343           (HasBranchProtectedScope && HasBranchIntoScope));
344   }
345 
FunctionScopeInfo(DiagnosticsEngine & Diag)346   FunctionScopeInfo(DiagnosticsEngine &Diag)
347     : Kind(SK_Function),
348       HasBranchProtectedScope(false),
349       HasBranchIntoScope(false),
350       HasIndirectGoto(false),
351       HasDroppedStmt(false),
352       ObjCShouldCallSuper(false),
353       ObjCIsDesignatedInit(false),
354       ObjCWarnForNoDesignatedInitChain(false),
355       ObjCIsSecondaryInit(false),
356       ObjCWarnForNoInitDelegation(false),
357       ErrorTrap(Diag) { }
358 
359   virtual ~FunctionScopeInfo();
360 
361   /// \brief Clear out the information in this function scope, making it
362   /// suitable for reuse.
363   void Clear();
364 };
365 
366 class CapturingScopeInfo : public FunctionScopeInfo {
367 public:
368   enum ImplicitCaptureStyle {
369     ImpCap_None, ImpCap_LambdaByval, ImpCap_LambdaByref, ImpCap_Block,
370     ImpCap_CapturedRegion
371   };
372 
373   ImplicitCaptureStyle ImpCaptureStyle;
374 
375   class Capture {
376     // There are three categories of capture: capturing 'this', capturing
377     // local variables, and C++1y initialized captures (which can have an
378     // arbitrary initializer, and don't really capture in the traditional
379     // sense at all).
380     //
381     // There are three ways to capture a local variable:
382     //  - capture by copy in the C++11 sense,
383     //  - capture by reference in the C++11 sense, and
384     //  - __block capture.
385     // Lambdas explicitly specify capture by copy or capture by reference.
386     // For blocks, __block capture applies to variables with that annotation,
387     // variables of reference type are captured by reference, and other
388     // variables are captured by copy.
389     enum CaptureKind {
390       Cap_ByCopy, Cap_ByRef, Cap_Block, Cap_This
391     };
392 
393     /// The variable being captured (if we are not capturing 'this') and whether
394     /// this is a nested capture.
395     llvm::PointerIntPair<VarDecl*, 1, bool> VarAndNested;
396 
397     /// Expression to initialize a field of the given type, and the kind of
398     /// capture (if this is a capture and not an init-capture). The expression
399     /// is only required if we are capturing ByVal and the variable's type has
400     /// a non-trivial copy constructor.
401     llvm::PointerIntPair<void *, 2, CaptureKind> InitExprAndCaptureKind;
402 
403     /// \brief The source location at which the first capture occurred.
404     SourceLocation Loc;
405 
406     /// \brief The location of the ellipsis that expands a parameter pack.
407     SourceLocation EllipsisLoc;
408 
409     /// \brief The type as it was captured, which is in effect the type of the
410     /// non-static data member that would hold the capture.
411     QualType CaptureType;
412 
413   public:
Capture(VarDecl * Var,bool Block,bool ByRef,bool IsNested,SourceLocation Loc,SourceLocation EllipsisLoc,QualType CaptureType,Expr * Cpy)414     Capture(VarDecl *Var, bool Block, bool ByRef, bool IsNested,
415             SourceLocation Loc, SourceLocation EllipsisLoc,
416             QualType CaptureType, Expr *Cpy)
417         : VarAndNested(Var, IsNested),
418           InitExprAndCaptureKind(Cpy, Block ? Cap_Block :
419                                       ByRef ? Cap_ByRef : Cap_ByCopy),
420           Loc(Loc), EllipsisLoc(EllipsisLoc), CaptureType(CaptureType) {}
421 
422     enum IsThisCapture { ThisCapture };
Capture(IsThisCapture,bool IsNested,SourceLocation Loc,QualType CaptureType,Expr * Cpy)423     Capture(IsThisCapture, bool IsNested, SourceLocation Loc,
424             QualType CaptureType, Expr *Cpy)
425         : VarAndNested(nullptr, IsNested),
426           InitExprAndCaptureKind(Cpy, Cap_This),
427           Loc(Loc), EllipsisLoc(), CaptureType(CaptureType) {}
428 
isThisCapture()429     bool isThisCapture() const {
430       return InitExprAndCaptureKind.getInt() == Cap_This;
431     }
isVariableCapture()432     bool isVariableCapture() const {
433       return InitExprAndCaptureKind.getInt() != Cap_This && !isVLATypeCapture();
434     }
isCopyCapture()435     bool isCopyCapture() const {
436       return InitExprAndCaptureKind.getInt() == Cap_ByCopy &&
437              !isVLATypeCapture();
438     }
isReferenceCapture()439     bool isReferenceCapture() const {
440       return InitExprAndCaptureKind.getInt() == Cap_ByRef;
441     }
isBlockCapture()442     bool isBlockCapture() const {
443       return InitExprAndCaptureKind.getInt() == Cap_Block;
444     }
isVLATypeCapture()445     bool isVLATypeCapture() const {
446       return InitExprAndCaptureKind.getInt() == Cap_ByCopy &&
447              getVariable() == nullptr;
448     }
isNested()449     bool isNested() const { return VarAndNested.getInt(); }
450 
getVariable()451     VarDecl *getVariable() const {
452       return VarAndNested.getPointer();
453     }
454 
455     /// \brief Retrieve the location at which this variable was captured.
getLocation()456     SourceLocation getLocation() const { return Loc; }
457 
458     /// \brief Retrieve the source location of the ellipsis, whose presence
459     /// indicates that the capture is a pack expansion.
getEllipsisLoc()460     SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
461 
462     /// \brief Retrieve the capture type for this capture, which is effectively
463     /// the type of the non-static data member in the lambda/block structure
464     /// that would store this capture.
getCaptureType()465     QualType getCaptureType() const { return CaptureType; }
466 
getInitExpr()467     Expr *getInitExpr() const {
468       assert(!isVLATypeCapture() && "no init expression for type capture");
469       return static_cast<Expr *>(InitExprAndCaptureKind.getPointer());
470     }
471   };
472 
CapturingScopeInfo(DiagnosticsEngine & Diag,ImplicitCaptureStyle Style)473   CapturingScopeInfo(DiagnosticsEngine &Diag, ImplicitCaptureStyle Style)
474     : FunctionScopeInfo(Diag), ImpCaptureStyle(Style), CXXThisCaptureIndex(0),
475       HasImplicitReturnType(false)
476      {}
477 
478   /// CaptureMap - A map of captured variables to (index+1) into Captures.
479   llvm::DenseMap<VarDecl*, unsigned> CaptureMap;
480 
481   /// CXXThisCaptureIndex - The (index+1) of the capture of 'this';
482   /// zero if 'this' is not captured.
483   unsigned CXXThisCaptureIndex;
484 
485   /// Captures - The captures.
486   SmallVector<Capture, 4> Captures;
487 
488   /// \brief - Whether the target type of return statements in this context
489   /// is deduced (e.g. a lambda or block with omitted return type).
490   bool HasImplicitReturnType;
491 
492   /// ReturnType - The target type of return statements in this context,
493   /// or null if unknown.
494   QualType ReturnType;
495 
addCapture(VarDecl * Var,bool isBlock,bool isByref,bool isNested,SourceLocation Loc,SourceLocation EllipsisLoc,QualType CaptureType,Expr * Cpy)496   void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested,
497                   SourceLocation Loc, SourceLocation EllipsisLoc,
498                   QualType CaptureType, Expr *Cpy) {
499     Captures.push_back(Capture(Var, isBlock, isByref, isNested, Loc,
500                                EllipsisLoc, CaptureType, Cpy));
501     CaptureMap[Var] = Captures.size();
502   }
503 
addVLATypeCapture(SourceLocation Loc,QualType CaptureType)504   void addVLATypeCapture(SourceLocation Loc, QualType CaptureType) {
505     Captures.push_back(Capture(/*Var*/ nullptr, /*isBlock*/ false,
506                                /*isByref*/ false, /*isNested*/ false, Loc,
507                                /*EllipsisLoc*/ SourceLocation(), CaptureType,
508                                /*Cpy*/ nullptr));
509   }
510 
511   void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType,
512                       Expr *Cpy);
513 
514   /// \brief Determine whether the C++ 'this' is captured.
isCXXThisCaptured()515   bool isCXXThisCaptured() const { return CXXThisCaptureIndex != 0; }
516 
517   /// \brief Retrieve the capture of C++ 'this', if it has been captured.
getCXXThisCapture()518   Capture &getCXXThisCapture() {
519     assert(isCXXThisCaptured() && "this has not been captured");
520     return Captures[CXXThisCaptureIndex - 1];
521   }
522 
523   /// \brief Determine whether the given variable has been captured.
isCaptured(VarDecl * Var)524   bool isCaptured(VarDecl *Var) const {
525     return CaptureMap.count(Var);
526   }
527 
528   /// \brief Determine whether the given variable-array type has been captured.
529   bool isVLATypeCaptured(const VariableArrayType *VAT) const;
530 
531   /// \brief Retrieve the capture of the given variable, if it has been
532   /// captured already.
getCapture(VarDecl * Var)533   Capture &getCapture(VarDecl *Var) {
534     assert(isCaptured(Var) && "Variable has not been captured");
535     return Captures[CaptureMap[Var] - 1];
536   }
537 
getCapture(VarDecl * Var)538   const Capture &getCapture(VarDecl *Var) const {
539     llvm::DenseMap<VarDecl*, unsigned>::const_iterator Known
540       = CaptureMap.find(Var);
541     assert(Known != CaptureMap.end() && "Variable has not been captured");
542     return Captures[Known->second - 1];
543   }
544 
classof(const FunctionScopeInfo * FSI)545   static bool classof(const FunctionScopeInfo *FSI) {
546     return FSI->Kind == SK_Block || FSI->Kind == SK_Lambda
547                                  || FSI->Kind == SK_CapturedRegion;
548   }
549 };
550 
551 /// \brief Retains information about a block that is currently being parsed.
552 class BlockScopeInfo : public CapturingScopeInfo {
553 public:
554   BlockDecl *TheDecl;
555 
556   /// TheScope - This is the scope for the block itself, which contains
557   /// arguments etc.
558   Scope *TheScope;
559 
560   /// BlockType - The function type of the block, if one was given.
561   /// Its return type may be BuiltinType::Dependent.
562   QualType FunctionType;
563 
BlockScopeInfo(DiagnosticsEngine & Diag,Scope * BlockScope,BlockDecl * Block)564   BlockScopeInfo(DiagnosticsEngine &Diag, Scope *BlockScope, BlockDecl *Block)
565     : CapturingScopeInfo(Diag, ImpCap_Block), TheDecl(Block),
566       TheScope(BlockScope)
567   {
568     Kind = SK_Block;
569   }
570 
571   ~BlockScopeInfo() override;
572 
classof(const FunctionScopeInfo * FSI)573   static bool classof(const FunctionScopeInfo *FSI) {
574     return FSI->Kind == SK_Block;
575   }
576 };
577 
578 /// \brief Retains information about a captured region.
579 class CapturedRegionScopeInfo: public CapturingScopeInfo {
580 public:
581   /// \brief The CapturedDecl for this statement.
582   CapturedDecl *TheCapturedDecl;
583   /// \brief The captured record type.
584   RecordDecl *TheRecordDecl;
585   /// \brief This is the enclosing scope of the captured region.
586   Scope *TheScope;
587   /// \brief The implicit parameter for the captured variables.
588   ImplicitParamDecl *ContextParam;
589   /// \brief The kind of captured region.
590   CapturedRegionKind CapRegionKind;
591 
CapturedRegionScopeInfo(DiagnosticsEngine & Diag,Scope * S,CapturedDecl * CD,RecordDecl * RD,ImplicitParamDecl * Context,CapturedRegionKind K)592   CapturedRegionScopeInfo(DiagnosticsEngine &Diag, Scope *S, CapturedDecl *CD,
593                           RecordDecl *RD, ImplicitParamDecl *Context,
594                           CapturedRegionKind K)
595     : CapturingScopeInfo(Diag, ImpCap_CapturedRegion),
596       TheCapturedDecl(CD), TheRecordDecl(RD), TheScope(S),
597       ContextParam(Context), CapRegionKind(K)
598   {
599     Kind = SK_CapturedRegion;
600   }
601 
602   ~CapturedRegionScopeInfo() override;
603 
604   /// \brief A descriptive name for the kind of captured region this is.
getRegionName()605   StringRef getRegionName() const {
606     switch (CapRegionKind) {
607     case CR_Default:
608       return "default captured statement";
609     case CR_OpenMP:
610       return "OpenMP region";
611     }
612     llvm_unreachable("Invalid captured region kind!");
613   }
614 
classof(const FunctionScopeInfo * FSI)615   static bool classof(const FunctionScopeInfo *FSI) {
616     return FSI->Kind == SK_CapturedRegion;
617   }
618 };
619 
620 class LambdaScopeInfo : public CapturingScopeInfo {
621 public:
622   /// \brief The class that describes the lambda.
623   CXXRecordDecl *Lambda;
624 
625   /// \brief The lambda's compiler-generated \c operator().
626   CXXMethodDecl *CallOperator;
627 
628   /// \brief Source range covering the lambda introducer [...].
629   SourceRange IntroducerRange;
630 
631   /// \brief Source location of the '&' or '=' specifying the default capture
632   /// type, if any.
633   SourceLocation CaptureDefaultLoc;
634 
635   /// \brief The number of captures in the \c Captures list that are
636   /// explicit captures.
637   unsigned NumExplicitCaptures;
638 
639   /// \brief Whether this is a mutable lambda.
640   bool Mutable;
641 
642   /// \brief Whether the (empty) parameter list is explicit.
643   bool ExplicitParams;
644 
645   /// \brief Whether any of the capture expressions requires cleanups.
646   bool ExprNeedsCleanups;
647 
648   /// \brief Whether the lambda contains an unexpanded parameter pack.
649   bool ContainsUnexpandedParameterPack;
650 
651   /// \brief Variables used to index into by-copy array captures.
652   SmallVector<VarDecl *, 4> ArrayIndexVars;
653 
654   /// \brief Offsets into the ArrayIndexVars array at which each capture starts
655   /// its list of array index variables.
656   SmallVector<unsigned, 4> ArrayIndexStarts;
657 
658   /// \brief If this is a generic lambda, use this as the depth of
659   /// each 'auto' parameter, during initial AST construction.
660   unsigned AutoTemplateParameterDepth;
661 
662   /// \brief Store the list of the auto parameters for a generic lambda.
663   /// If this is a generic lambda, store the list of the auto
664   /// parameters converted into TemplateTypeParmDecls into a vector
665   /// that can be used to construct the generic lambda's template
666   /// parameter list, during initial AST construction.
667   SmallVector<TemplateTypeParmDecl*, 4> AutoTemplateParams;
668 
669   /// If this is a generic lambda, and the template parameter
670   /// list has been created (from the AutoTemplateParams) then
671   /// store a reference to it (cache it to avoid reconstructing it).
672   TemplateParameterList *GLTemplateParameterList;
673 
674   /// \brief Contains all variable-referring-expressions (i.e. DeclRefExprs
675   ///  or MemberExprs) that refer to local variables in a generic lambda
676   ///  or a lambda in a potentially-evaluated-if-used context.
677   ///
678   ///  Potentially capturable variables of a nested lambda that might need
679   ///   to be captured by the lambda are housed here.
680   ///  This is specifically useful for generic lambdas or
681   ///  lambdas within a a potentially evaluated-if-used context.
682   ///  If an enclosing variable is named in an expression of a lambda nested
683   ///  within a generic lambda, we don't always know know whether the variable
684   ///  will truly be odr-used (i.e. need to be captured) by that nested lambda,
685   ///  until its instantiation. But we still need to capture it in the
686   ///  enclosing lambda if all intervening lambdas can capture the variable.
687 
688   llvm::SmallVector<Expr*, 4> PotentiallyCapturingExprs;
689 
690   /// \brief Contains all variable-referring-expressions that refer
691   ///  to local variables that are usable as constant expressions and
692   ///  do not involve an odr-use (they may still need to be captured
693   ///  if the enclosing full-expression is instantiation dependent).
694   llvm::SmallSet<Expr*, 8> NonODRUsedCapturingExprs;
695 
696   SourceLocation PotentialThisCaptureLocation;
697 
LambdaScopeInfo(DiagnosticsEngine & Diag)698   LambdaScopeInfo(DiagnosticsEngine &Diag)
699     : CapturingScopeInfo(Diag, ImpCap_None), Lambda(nullptr),
700       CallOperator(nullptr), NumExplicitCaptures(0), Mutable(false),
701       ExplicitParams(false), ExprNeedsCleanups(false),
702       ContainsUnexpandedParameterPack(false), AutoTemplateParameterDepth(0),
703       GLTemplateParameterList(nullptr) {
704     Kind = SK_Lambda;
705   }
706 
707   ~LambdaScopeInfo() override;
708 
709   /// \brief Note when all explicit captures have been added.
finishedExplicitCaptures()710   void finishedExplicitCaptures() {
711     NumExplicitCaptures = Captures.size();
712   }
713 
classof(const FunctionScopeInfo * FSI)714   static bool classof(const FunctionScopeInfo *FSI) {
715     return FSI->Kind == SK_Lambda;
716   }
717 
718   ///
719   /// \brief Add a variable that might potentially be captured by the
720   /// lambda and therefore the enclosing lambdas.
721   ///
722   /// This is also used by enclosing lambda's to speculatively capture
723   /// variables that nested lambda's - depending on their enclosing
724   /// specialization - might need to capture.
725   /// Consider:
726   /// void f(int, int); <-- don't capture
727   /// void f(const int&, double); <-- capture
728   /// void foo() {
729   ///   const int x = 10;
730   ///   auto L = [=](auto a) { // capture 'x'
731   ///      return [=](auto b) {
732   ///        f(x, a);  // we may or may not need to capture 'x'
733   ///      };
734   ///   };
735   /// }
addPotentialCapture(Expr * VarExpr)736   void addPotentialCapture(Expr *VarExpr) {
737     assert(isa<DeclRefExpr>(VarExpr) || isa<MemberExpr>(VarExpr));
738     PotentiallyCapturingExprs.push_back(VarExpr);
739   }
740 
addPotentialThisCapture(SourceLocation Loc)741   void addPotentialThisCapture(SourceLocation Loc) {
742     PotentialThisCaptureLocation = Loc;
743   }
hasPotentialThisCapture()744   bool hasPotentialThisCapture() const {
745     return PotentialThisCaptureLocation.isValid();
746   }
747 
748   /// \brief Mark a variable's reference in a lambda as non-odr using.
749   ///
750   /// For generic lambdas, if a variable is named in a potentially evaluated
751   /// expression, where the enclosing full expression is dependent then we
752   /// must capture the variable (given a default capture).
753   /// This is accomplished by recording all references to variables
754   /// (DeclRefExprs or MemberExprs) within said nested lambda in its array of
755   /// PotentialCaptures. All such variables have to be captured by that lambda,
756   /// except for as described below.
757   /// If that variable is usable as a constant expression and is named in a
758   /// manner that does not involve its odr-use (e.g. undergoes
759   /// lvalue-to-rvalue conversion, or discarded) record that it is so. Upon the
760   /// act of analyzing the enclosing full expression (ActOnFinishFullExpr)
761   /// if we can determine that the full expression is not instantiation-
762   /// dependent, then we can entirely avoid its capture.
763   ///
764   ///   const int n = 0;
765   ///   [&] (auto x) {
766   ///     (void)+n + x;
767   ///   };
768   /// Interestingly, this strategy would involve a capture of n, even though
769   /// it's obviously not odr-used here, because the full-expression is
770   /// instantiation-dependent.  It could be useful to avoid capturing such
771   /// variables, even when they are referred to in an instantiation-dependent
772   /// expression, if we can unambiguously determine that they shall never be
773   /// odr-used.  This would involve removal of the variable-referring-expression
774   /// from the array of PotentialCaptures during the lvalue-to-rvalue
775   /// conversions.  But per the working draft N3797, (post-chicago 2013) we must
776   /// capture such variables.
777   /// Before anyone is tempted to implement a strategy for not-capturing 'n',
778   /// consider the insightful warning in:
779   ///    /cfe-commits/Week-of-Mon-20131104/092596.html
780   /// "The problem is that the set of captures for a lambda is part of the ABI
781   ///  (since lambda layout can be made visible through inline functions and the
782   ///  like), and there are no guarantees as to which cases we'll manage to build
783   ///  an lvalue-to-rvalue conversion in, when parsing a template -- some
784   ///  seemingly harmless change elsewhere in Sema could cause us to start or stop
785   ///  building such a node. So we need a rule that anyone can implement and get
786   ///  exactly the same result".
787   ///
markVariableExprAsNonODRUsed(Expr * CapturingVarExpr)788   void markVariableExprAsNonODRUsed(Expr *CapturingVarExpr) {
789     assert(isa<DeclRefExpr>(CapturingVarExpr)
790         || isa<MemberExpr>(CapturingVarExpr));
791     NonODRUsedCapturingExprs.insert(CapturingVarExpr);
792   }
isVariableExprMarkedAsNonODRUsed(Expr * CapturingVarExpr)793   bool isVariableExprMarkedAsNonODRUsed(Expr *CapturingVarExpr) const {
794     assert(isa<DeclRefExpr>(CapturingVarExpr)
795       || isa<MemberExpr>(CapturingVarExpr));
796     return NonODRUsedCapturingExprs.count(CapturingVarExpr);
797   }
removePotentialCapture(Expr * E)798   void removePotentialCapture(Expr *E) {
799     PotentiallyCapturingExprs.erase(
800         std::remove(PotentiallyCapturingExprs.begin(),
801             PotentiallyCapturingExprs.end(), E),
802         PotentiallyCapturingExprs.end());
803   }
clearPotentialCaptures()804   void clearPotentialCaptures() {
805     PotentiallyCapturingExprs.clear();
806     PotentialThisCaptureLocation = SourceLocation();
807   }
getNumPotentialVariableCaptures()808   unsigned getNumPotentialVariableCaptures() const {
809     return PotentiallyCapturingExprs.size();
810   }
811 
hasPotentialCaptures()812   bool hasPotentialCaptures() const {
813     return getNumPotentialVariableCaptures() ||
814                                   PotentialThisCaptureLocation.isValid();
815   }
816 
817   // When passed the index, returns the VarDecl and Expr associated
818   // with the index.
819   void getPotentialVariableCapture(unsigned Idx, VarDecl *&VD, Expr *&E) const;
820 };
821 
WeakObjectProfileTy()822 FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy()
823   : Base(nullptr, false), Property(nullptr) {}
824 
825 FunctionScopeInfo::WeakObjectProfileTy
getSentinel()826 FunctionScopeInfo::WeakObjectProfileTy::getSentinel() {
827   FunctionScopeInfo::WeakObjectProfileTy Result;
828   Result.Base.setInt(true);
829   return Result;
830 }
831 
832 template <typename ExprT>
recordUseOfWeak(const ExprT * E,bool IsRead)833 void FunctionScopeInfo::recordUseOfWeak(const ExprT *E, bool IsRead) {
834   assert(E);
835   WeakUseVector &Uses = WeakObjectUses[WeakObjectProfileTy(E)];
836   Uses.push_back(WeakUseTy(E, IsRead));
837 }
838 
839 inline void
addThisCapture(bool isNested,SourceLocation Loc,QualType CaptureType,Expr * Cpy)840 CapturingScopeInfo::addThisCapture(bool isNested, SourceLocation Loc,
841                                    QualType CaptureType, Expr *Cpy) {
842   Captures.push_back(Capture(Capture::ThisCapture, isNested, Loc, CaptureType,
843                              Cpy));
844   CXXThisCaptureIndex = Captures.size();
845 
846   if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(this))
847     LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
848 }
849 
850 } // end namespace sema
851 } // end namespace clang
852 
853 #endif
854