1 //===--- ScopeInfo.h - Information about a semantic context -----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines FunctionScopeInfo and its subclasses, which contain
11 // information about a single function, block, lambda, or method body.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_CLANG_SEMA_SCOPEINFO_H
16 #define LLVM_CLANG_SEMA_SCOPEINFO_H
17
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/Type.h"
20 #include "clang/Basic/CapturedStmt.h"
21 #include "clang/Basic/PartialDiagnostic.h"
22 #include "clang/Sema/Ownership.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include <algorithm>
27
28 namespace clang {
29
30 class Decl;
31 class BlockDecl;
32 class CapturedDecl;
33 class CXXMethodDecl;
34 class FieldDecl;
35 class ObjCPropertyDecl;
36 class IdentifierInfo;
37 class ImplicitParamDecl;
38 class LabelDecl;
39 class ReturnStmt;
40 class Scope;
41 class SwitchStmt;
42 class TemplateTypeParmDecl;
43 class TemplateParameterList;
44 class VarDecl;
45 class ObjCIvarRefExpr;
46 class ObjCPropertyRefExpr;
47 class ObjCMessageExpr;
48
49 namespace sema {
50
51 /// \brief Contains information about the compound statement currently being
52 /// parsed.
53 class CompoundScopeInfo {
54 public:
CompoundScopeInfo()55 CompoundScopeInfo()
56 : HasEmptyLoopBodies(false) { }
57
58 /// \brief Whether this compound stamement contains `for' or `while' loops
59 /// with empty bodies.
60 bool HasEmptyLoopBodies;
61
setHasEmptyLoopBodies()62 void setHasEmptyLoopBodies() {
63 HasEmptyLoopBodies = true;
64 }
65 };
66
67 class PossiblyUnreachableDiag {
68 public:
69 PartialDiagnostic PD;
70 SourceLocation Loc;
71 const Stmt *stmt;
72
PossiblyUnreachableDiag(const PartialDiagnostic & PD,SourceLocation Loc,const Stmt * stmt)73 PossiblyUnreachableDiag(const PartialDiagnostic &PD, SourceLocation Loc,
74 const Stmt *stmt)
75 : PD(PD), Loc(Loc), stmt(stmt) {}
76 };
77
78 /// \brief Retains information about a function, method, or block that is
79 /// currently being parsed.
80 class FunctionScopeInfo {
81 protected:
82 enum ScopeKind {
83 SK_Function,
84 SK_Block,
85 SK_Lambda,
86 SK_CapturedRegion
87 };
88
89 public:
90 /// \brief What kind of scope we are describing.
91 ///
92 ScopeKind Kind;
93
94 /// \brief Whether this function contains a VLA, \@try, try, C++
95 /// initializer, or anything else that can't be jumped past.
96 bool HasBranchProtectedScope;
97
98 /// \brief Whether this function contains any switches or direct gotos.
99 bool HasBranchIntoScope;
100
101 /// \brief Whether this function contains any indirect gotos.
102 bool HasIndirectGoto;
103
104 /// \brief Whether a statement was dropped because it was invalid.
105 bool HasDroppedStmt;
106
107 /// A flag that is set when parsing a method that must call super's
108 /// implementation, such as \c -dealloc, \c -finalize, or any method marked
109 /// with \c __attribute__((objc_requires_super)).
110 bool ObjCShouldCallSuper;
111
112 /// True when this is a method marked as a designated initializer.
113 bool ObjCIsDesignatedInit;
114 /// This starts true for a method marked as designated initializer and will
115 /// be set to false if there is an invocation to a designated initializer of
116 /// the super class.
117 bool ObjCWarnForNoDesignatedInitChain;
118
119 /// True when this is an initializer method not marked as a designated
120 /// initializer within a class that has at least one initializer marked as a
121 /// designated initializer.
122 bool ObjCIsSecondaryInit;
123 /// This starts true for a secondary initializer method and will be set to
124 /// false if there is an invocation of an initializer on 'self'.
125 bool ObjCWarnForNoInitDelegation;
126
127 /// First C++ 'try' statement in the current function.
128 SourceLocation FirstCXXTryLoc;
129
130 /// First SEH '__try' statement in the current function.
131 SourceLocation FirstSEHTryLoc;
132
133 /// \brief Used to determine if errors occurred in this function or block.
134 DiagnosticErrorTrap ErrorTrap;
135
136 /// SwitchStack - This is the current set of active switch statements in the
137 /// block.
138 SmallVector<SwitchStmt*, 8> SwitchStack;
139
140 /// \brief The list of return statements that occur within the function or
141 /// block, if there is any chance of applying the named return value
142 /// optimization, or if we need to infer a return type.
143 SmallVector<ReturnStmt*, 4> Returns;
144
145 /// \brief The stack of currently active compound stamement scopes in the
146 /// function.
147 SmallVector<CompoundScopeInfo, 4> CompoundScopes;
148
149 /// \brief A list of PartialDiagnostics created but delayed within the
150 /// current function scope. These diagnostics are vetted for reachability
151 /// prior to being emitted.
152 SmallVector<PossiblyUnreachableDiag, 4> PossiblyUnreachableDiags;
153
154 /// \brief A list of parameters which have the nonnull attribute and are
155 /// modified in the function.
156 llvm::SmallPtrSet<const ParmVarDecl*, 8> ModifiedNonNullParams;
157
158 public:
159 /// Represents a simple identification of a weak object.
160 ///
161 /// Part of the implementation of -Wrepeated-use-of-weak.
162 ///
163 /// This is used to determine if two weak accesses refer to the same object.
164 /// Here are some examples of how various accesses are "profiled":
165 ///
166 /// Access Expression | "Base" Decl | "Property" Decl
167 /// :---------------: | :-----------------: | :------------------------------:
168 /// self.property | self (VarDecl) | property (ObjCPropertyDecl)
169 /// self.implicitProp | self (VarDecl) | -implicitProp (ObjCMethodDecl)
170 /// self->ivar.prop | ivar (ObjCIvarDecl) | prop (ObjCPropertyDecl)
171 /// cxxObj.obj.prop | obj (FieldDecl) | prop (ObjCPropertyDecl)
172 /// [self foo].prop | 0 (unknown) | prop (ObjCPropertyDecl)
173 /// self.prop1.prop2 | prop1 (ObjCPropertyDecl) | prop2 (ObjCPropertyDecl)
174 /// MyClass.prop | MyClass (ObjCInterfaceDecl) | -prop (ObjCMethodDecl)
175 /// weakVar | 0 (known) | weakVar (VarDecl)
176 /// self->weakIvar | self (VarDecl) | weakIvar (ObjCIvarDecl)
177 ///
178 /// Objects are identified with only two Decls to make it reasonably fast to
179 /// compare them.
180 class WeakObjectProfileTy {
181 /// The base object decl, as described in the class documentation.
182 ///
183 /// The extra flag is "true" if the Base and Property are enough to uniquely
184 /// identify the object in memory.
185 ///
186 /// \sa isExactProfile()
187 typedef llvm::PointerIntPair<const NamedDecl *, 1, bool> BaseInfoTy;
188 BaseInfoTy Base;
189
190 /// The "property" decl, as described in the class documentation.
191 ///
192 /// Note that this may not actually be an ObjCPropertyDecl, e.g. in the
193 /// case of "implicit" properties (regular methods accessed via dot syntax).
194 const NamedDecl *Property;
195
196 /// Used to find the proper base profile for a given base expression.
197 static BaseInfoTy getBaseInfo(const Expr *BaseE);
198
199 inline WeakObjectProfileTy();
200 static inline WeakObjectProfileTy getSentinel();
201
202 public:
203 WeakObjectProfileTy(const ObjCPropertyRefExpr *RE);
204 WeakObjectProfileTy(const Expr *Base, const ObjCPropertyDecl *Property);
205 WeakObjectProfileTy(const DeclRefExpr *RE);
206 WeakObjectProfileTy(const ObjCIvarRefExpr *RE);
207
getBase()208 const NamedDecl *getBase() const { return Base.getPointer(); }
getProperty()209 const NamedDecl *getProperty() const { return Property; }
210
211 /// Returns true if the object base specifies a known object in memory,
212 /// rather than, say, an instance variable or property of another object.
213 ///
214 /// Note that this ignores the effects of aliasing; that is, \c foo.bar is
215 /// considered an exact profile if \c foo is a local variable, even if
216 /// another variable \c foo2 refers to the same object as \c foo.
217 ///
218 /// For increased precision, accesses with base variables that are
219 /// properties or ivars of 'self' (e.g. self.prop1.prop2) are considered to
220 /// be exact, though this is not true for arbitrary variables
221 /// (foo.prop1.prop2).
isExactProfile()222 bool isExactProfile() const {
223 return Base.getInt();
224 }
225
226 bool operator==(const WeakObjectProfileTy &Other) const {
227 return Base == Other.Base && Property == Other.Property;
228 }
229
230 // For use in DenseMap.
231 // We can't specialize the usual llvm::DenseMapInfo at the end of the file
232 // because by that point the DenseMap in FunctionScopeInfo has already been
233 // instantiated.
234 class DenseMapInfo {
235 public:
getEmptyKey()236 static inline WeakObjectProfileTy getEmptyKey() {
237 return WeakObjectProfileTy();
238 }
getTombstoneKey()239 static inline WeakObjectProfileTy getTombstoneKey() {
240 return WeakObjectProfileTy::getSentinel();
241 }
242
getHashValue(const WeakObjectProfileTy & Val)243 static unsigned getHashValue(const WeakObjectProfileTy &Val) {
244 typedef std::pair<BaseInfoTy, const NamedDecl *> Pair;
245 return llvm::DenseMapInfo<Pair>::getHashValue(Pair(Val.Base,
246 Val.Property));
247 }
248
isEqual(const WeakObjectProfileTy & LHS,const WeakObjectProfileTy & RHS)249 static bool isEqual(const WeakObjectProfileTy &LHS,
250 const WeakObjectProfileTy &RHS) {
251 return LHS == RHS;
252 }
253 };
254 };
255
256 /// Represents a single use of a weak object.
257 ///
258 /// Stores both the expression and whether the access is potentially unsafe
259 /// (i.e. it could potentially be warned about).
260 ///
261 /// Part of the implementation of -Wrepeated-use-of-weak.
262 class WeakUseTy {
263 llvm::PointerIntPair<const Expr *, 1, bool> Rep;
264 public:
WeakUseTy(const Expr * Use,bool IsRead)265 WeakUseTy(const Expr *Use, bool IsRead) : Rep(Use, IsRead) {}
266
getUseExpr()267 const Expr *getUseExpr() const { return Rep.getPointer(); }
isUnsafe()268 bool isUnsafe() const { return Rep.getInt(); }
markSafe()269 void markSafe() { Rep.setInt(false); }
270
271 bool operator==(const WeakUseTy &Other) const {
272 return Rep == Other.Rep;
273 }
274 };
275
276 /// Used to collect uses of a particular weak object in a function body.
277 ///
278 /// Part of the implementation of -Wrepeated-use-of-weak.
279 typedef SmallVector<WeakUseTy, 4> WeakUseVector;
280
281 /// Used to collect all uses of weak objects in a function body.
282 ///
283 /// Part of the implementation of -Wrepeated-use-of-weak.
284 typedef llvm::SmallDenseMap<WeakObjectProfileTy, WeakUseVector, 8,
285 WeakObjectProfileTy::DenseMapInfo>
286 WeakObjectUseMap;
287
288 private:
289 /// Used to collect all uses of weak objects in this function body.
290 ///
291 /// Part of the implementation of -Wrepeated-use-of-weak.
292 WeakObjectUseMap WeakObjectUses;
293
294 public:
295 /// Record that a weak object was accessed.
296 ///
297 /// Part of the implementation of -Wrepeated-use-of-weak.
298 template <typename ExprT>
299 inline void recordUseOfWeak(const ExprT *E, bool IsRead = true);
300
301 void recordUseOfWeak(const ObjCMessageExpr *Msg,
302 const ObjCPropertyDecl *Prop);
303
304 /// Record that a given expression is a "safe" access of a weak object (e.g.
305 /// assigning it to a strong variable.)
306 ///
307 /// Part of the implementation of -Wrepeated-use-of-weak.
308 void markSafeWeakUse(const Expr *E);
309
getWeakObjectUses()310 const WeakObjectUseMap &getWeakObjectUses() const {
311 return WeakObjectUses;
312 }
313
setHasBranchIntoScope()314 void setHasBranchIntoScope() {
315 HasBranchIntoScope = true;
316 }
317
setHasBranchProtectedScope()318 void setHasBranchProtectedScope() {
319 HasBranchProtectedScope = true;
320 }
321
setHasIndirectGoto()322 void setHasIndirectGoto() {
323 HasIndirectGoto = true;
324 }
325
setHasDroppedStmt()326 void setHasDroppedStmt() {
327 HasDroppedStmt = true;
328 }
329
setHasCXXTry(SourceLocation TryLoc)330 void setHasCXXTry(SourceLocation TryLoc) {
331 setHasBranchProtectedScope();
332 FirstCXXTryLoc = TryLoc;
333 }
334
setHasSEHTry(SourceLocation TryLoc)335 void setHasSEHTry(SourceLocation TryLoc) {
336 setHasBranchProtectedScope();
337 FirstSEHTryLoc = TryLoc;
338 }
339
NeedsScopeChecking()340 bool NeedsScopeChecking() const {
341 return !HasDroppedStmt &&
342 (HasIndirectGoto ||
343 (HasBranchProtectedScope && HasBranchIntoScope));
344 }
345
FunctionScopeInfo(DiagnosticsEngine & Diag)346 FunctionScopeInfo(DiagnosticsEngine &Diag)
347 : Kind(SK_Function),
348 HasBranchProtectedScope(false),
349 HasBranchIntoScope(false),
350 HasIndirectGoto(false),
351 HasDroppedStmt(false),
352 ObjCShouldCallSuper(false),
353 ObjCIsDesignatedInit(false),
354 ObjCWarnForNoDesignatedInitChain(false),
355 ObjCIsSecondaryInit(false),
356 ObjCWarnForNoInitDelegation(false),
357 ErrorTrap(Diag) { }
358
359 virtual ~FunctionScopeInfo();
360
361 /// \brief Clear out the information in this function scope, making it
362 /// suitable for reuse.
363 void Clear();
364 };
365
366 class CapturingScopeInfo : public FunctionScopeInfo {
367 public:
368 enum ImplicitCaptureStyle {
369 ImpCap_None, ImpCap_LambdaByval, ImpCap_LambdaByref, ImpCap_Block,
370 ImpCap_CapturedRegion
371 };
372
373 ImplicitCaptureStyle ImpCaptureStyle;
374
375 class Capture {
376 // There are three categories of capture: capturing 'this', capturing
377 // local variables, and C++1y initialized captures (which can have an
378 // arbitrary initializer, and don't really capture in the traditional
379 // sense at all).
380 //
381 // There are three ways to capture a local variable:
382 // - capture by copy in the C++11 sense,
383 // - capture by reference in the C++11 sense, and
384 // - __block capture.
385 // Lambdas explicitly specify capture by copy or capture by reference.
386 // For blocks, __block capture applies to variables with that annotation,
387 // variables of reference type are captured by reference, and other
388 // variables are captured by copy.
389 enum CaptureKind {
390 Cap_ByCopy, Cap_ByRef, Cap_Block, Cap_This
391 };
392
393 /// The variable being captured (if we are not capturing 'this') and whether
394 /// this is a nested capture.
395 llvm::PointerIntPair<VarDecl*, 1, bool> VarAndNested;
396
397 /// Expression to initialize a field of the given type, and the kind of
398 /// capture (if this is a capture and not an init-capture). The expression
399 /// is only required if we are capturing ByVal and the variable's type has
400 /// a non-trivial copy constructor.
401 llvm::PointerIntPair<void *, 2, CaptureKind> InitExprAndCaptureKind;
402
403 /// \brief The source location at which the first capture occurred.
404 SourceLocation Loc;
405
406 /// \brief The location of the ellipsis that expands a parameter pack.
407 SourceLocation EllipsisLoc;
408
409 /// \brief The type as it was captured, which is in effect the type of the
410 /// non-static data member that would hold the capture.
411 QualType CaptureType;
412
413 public:
Capture(VarDecl * Var,bool Block,bool ByRef,bool IsNested,SourceLocation Loc,SourceLocation EllipsisLoc,QualType CaptureType,Expr * Cpy)414 Capture(VarDecl *Var, bool Block, bool ByRef, bool IsNested,
415 SourceLocation Loc, SourceLocation EllipsisLoc,
416 QualType CaptureType, Expr *Cpy)
417 : VarAndNested(Var, IsNested),
418 InitExprAndCaptureKind(Cpy, Block ? Cap_Block :
419 ByRef ? Cap_ByRef : Cap_ByCopy),
420 Loc(Loc), EllipsisLoc(EllipsisLoc), CaptureType(CaptureType) {}
421
422 enum IsThisCapture { ThisCapture };
Capture(IsThisCapture,bool IsNested,SourceLocation Loc,QualType CaptureType,Expr * Cpy)423 Capture(IsThisCapture, bool IsNested, SourceLocation Loc,
424 QualType CaptureType, Expr *Cpy)
425 : VarAndNested(nullptr, IsNested),
426 InitExprAndCaptureKind(Cpy, Cap_This),
427 Loc(Loc), EllipsisLoc(), CaptureType(CaptureType) {}
428
isThisCapture()429 bool isThisCapture() const {
430 return InitExprAndCaptureKind.getInt() == Cap_This;
431 }
isVariableCapture()432 bool isVariableCapture() const {
433 return InitExprAndCaptureKind.getInt() != Cap_This && !isVLATypeCapture();
434 }
isCopyCapture()435 bool isCopyCapture() const {
436 return InitExprAndCaptureKind.getInt() == Cap_ByCopy &&
437 !isVLATypeCapture();
438 }
isReferenceCapture()439 bool isReferenceCapture() const {
440 return InitExprAndCaptureKind.getInt() == Cap_ByRef;
441 }
isBlockCapture()442 bool isBlockCapture() const {
443 return InitExprAndCaptureKind.getInt() == Cap_Block;
444 }
isVLATypeCapture()445 bool isVLATypeCapture() const {
446 return InitExprAndCaptureKind.getInt() == Cap_ByCopy &&
447 getVariable() == nullptr;
448 }
isNested()449 bool isNested() const { return VarAndNested.getInt(); }
450
getVariable()451 VarDecl *getVariable() const {
452 return VarAndNested.getPointer();
453 }
454
455 /// \brief Retrieve the location at which this variable was captured.
getLocation()456 SourceLocation getLocation() const { return Loc; }
457
458 /// \brief Retrieve the source location of the ellipsis, whose presence
459 /// indicates that the capture is a pack expansion.
getEllipsisLoc()460 SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
461
462 /// \brief Retrieve the capture type for this capture, which is effectively
463 /// the type of the non-static data member in the lambda/block structure
464 /// that would store this capture.
getCaptureType()465 QualType getCaptureType() const { return CaptureType; }
466
getInitExpr()467 Expr *getInitExpr() const {
468 assert(!isVLATypeCapture() && "no init expression for type capture");
469 return static_cast<Expr *>(InitExprAndCaptureKind.getPointer());
470 }
471 };
472
CapturingScopeInfo(DiagnosticsEngine & Diag,ImplicitCaptureStyle Style)473 CapturingScopeInfo(DiagnosticsEngine &Diag, ImplicitCaptureStyle Style)
474 : FunctionScopeInfo(Diag), ImpCaptureStyle(Style), CXXThisCaptureIndex(0),
475 HasImplicitReturnType(false)
476 {}
477
478 /// CaptureMap - A map of captured variables to (index+1) into Captures.
479 llvm::DenseMap<VarDecl*, unsigned> CaptureMap;
480
481 /// CXXThisCaptureIndex - The (index+1) of the capture of 'this';
482 /// zero if 'this' is not captured.
483 unsigned CXXThisCaptureIndex;
484
485 /// Captures - The captures.
486 SmallVector<Capture, 4> Captures;
487
488 /// \brief - Whether the target type of return statements in this context
489 /// is deduced (e.g. a lambda or block with omitted return type).
490 bool HasImplicitReturnType;
491
492 /// ReturnType - The target type of return statements in this context,
493 /// or null if unknown.
494 QualType ReturnType;
495
addCapture(VarDecl * Var,bool isBlock,bool isByref,bool isNested,SourceLocation Loc,SourceLocation EllipsisLoc,QualType CaptureType,Expr * Cpy)496 void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested,
497 SourceLocation Loc, SourceLocation EllipsisLoc,
498 QualType CaptureType, Expr *Cpy) {
499 Captures.push_back(Capture(Var, isBlock, isByref, isNested, Loc,
500 EllipsisLoc, CaptureType, Cpy));
501 CaptureMap[Var] = Captures.size();
502 }
503
addVLATypeCapture(SourceLocation Loc,QualType CaptureType)504 void addVLATypeCapture(SourceLocation Loc, QualType CaptureType) {
505 Captures.push_back(Capture(/*Var*/ nullptr, /*isBlock*/ false,
506 /*isByref*/ false, /*isNested*/ false, Loc,
507 /*EllipsisLoc*/ SourceLocation(), CaptureType,
508 /*Cpy*/ nullptr));
509 }
510
511 void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType,
512 Expr *Cpy);
513
514 /// \brief Determine whether the C++ 'this' is captured.
isCXXThisCaptured()515 bool isCXXThisCaptured() const { return CXXThisCaptureIndex != 0; }
516
517 /// \brief Retrieve the capture of C++ 'this', if it has been captured.
getCXXThisCapture()518 Capture &getCXXThisCapture() {
519 assert(isCXXThisCaptured() && "this has not been captured");
520 return Captures[CXXThisCaptureIndex - 1];
521 }
522
523 /// \brief Determine whether the given variable has been captured.
isCaptured(VarDecl * Var)524 bool isCaptured(VarDecl *Var) const {
525 return CaptureMap.count(Var);
526 }
527
528 /// \brief Determine whether the given variable-array type has been captured.
529 bool isVLATypeCaptured(const VariableArrayType *VAT) const;
530
531 /// \brief Retrieve the capture of the given variable, if it has been
532 /// captured already.
getCapture(VarDecl * Var)533 Capture &getCapture(VarDecl *Var) {
534 assert(isCaptured(Var) && "Variable has not been captured");
535 return Captures[CaptureMap[Var] - 1];
536 }
537
getCapture(VarDecl * Var)538 const Capture &getCapture(VarDecl *Var) const {
539 llvm::DenseMap<VarDecl*, unsigned>::const_iterator Known
540 = CaptureMap.find(Var);
541 assert(Known != CaptureMap.end() && "Variable has not been captured");
542 return Captures[Known->second - 1];
543 }
544
classof(const FunctionScopeInfo * FSI)545 static bool classof(const FunctionScopeInfo *FSI) {
546 return FSI->Kind == SK_Block || FSI->Kind == SK_Lambda
547 || FSI->Kind == SK_CapturedRegion;
548 }
549 };
550
551 /// \brief Retains information about a block that is currently being parsed.
552 class BlockScopeInfo : public CapturingScopeInfo {
553 public:
554 BlockDecl *TheDecl;
555
556 /// TheScope - This is the scope for the block itself, which contains
557 /// arguments etc.
558 Scope *TheScope;
559
560 /// BlockType - The function type of the block, if one was given.
561 /// Its return type may be BuiltinType::Dependent.
562 QualType FunctionType;
563
BlockScopeInfo(DiagnosticsEngine & Diag,Scope * BlockScope,BlockDecl * Block)564 BlockScopeInfo(DiagnosticsEngine &Diag, Scope *BlockScope, BlockDecl *Block)
565 : CapturingScopeInfo(Diag, ImpCap_Block), TheDecl(Block),
566 TheScope(BlockScope)
567 {
568 Kind = SK_Block;
569 }
570
571 ~BlockScopeInfo() override;
572
classof(const FunctionScopeInfo * FSI)573 static bool classof(const FunctionScopeInfo *FSI) {
574 return FSI->Kind == SK_Block;
575 }
576 };
577
578 /// \brief Retains information about a captured region.
579 class CapturedRegionScopeInfo: public CapturingScopeInfo {
580 public:
581 /// \brief The CapturedDecl for this statement.
582 CapturedDecl *TheCapturedDecl;
583 /// \brief The captured record type.
584 RecordDecl *TheRecordDecl;
585 /// \brief This is the enclosing scope of the captured region.
586 Scope *TheScope;
587 /// \brief The implicit parameter for the captured variables.
588 ImplicitParamDecl *ContextParam;
589 /// \brief The kind of captured region.
590 CapturedRegionKind CapRegionKind;
591
CapturedRegionScopeInfo(DiagnosticsEngine & Diag,Scope * S,CapturedDecl * CD,RecordDecl * RD,ImplicitParamDecl * Context,CapturedRegionKind K)592 CapturedRegionScopeInfo(DiagnosticsEngine &Diag, Scope *S, CapturedDecl *CD,
593 RecordDecl *RD, ImplicitParamDecl *Context,
594 CapturedRegionKind K)
595 : CapturingScopeInfo(Diag, ImpCap_CapturedRegion),
596 TheCapturedDecl(CD), TheRecordDecl(RD), TheScope(S),
597 ContextParam(Context), CapRegionKind(K)
598 {
599 Kind = SK_CapturedRegion;
600 }
601
602 ~CapturedRegionScopeInfo() override;
603
604 /// \brief A descriptive name for the kind of captured region this is.
getRegionName()605 StringRef getRegionName() const {
606 switch (CapRegionKind) {
607 case CR_Default:
608 return "default captured statement";
609 case CR_OpenMP:
610 return "OpenMP region";
611 }
612 llvm_unreachable("Invalid captured region kind!");
613 }
614
classof(const FunctionScopeInfo * FSI)615 static bool classof(const FunctionScopeInfo *FSI) {
616 return FSI->Kind == SK_CapturedRegion;
617 }
618 };
619
620 class LambdaScopeInfo : public CapturingScopeInfo {
621 public:
622 /// \brief The class that describes the lambda.
623 CXXRecordDecl *Lambda;
624
625 /// \brief The lambda's compiler-generated \c operator().
626 CXXMethodDecl *CallOperator;
627
628 /// \brief Source range covering the lambda introducer [...].
629 SourceRange IntroducerRange;
630
631 /// \brief Source location of the '&' or '=' specifying the default capture
632 /// type, if any.
633 SourceLocation CaptureDefaultLoc;
634
635 /// \brief The number of captures in the \c Captures list that are
636 /// explicit captures.
637 unsigned NumExplicitCaptures;
638
639 /// \brief Whether this is a mutable lambda.
640 bool Mutable;
641
642 /// \brief Whether the (empty) parameter list is explicit.
643 bool ExplicitParams;
644
645 /// \brief Whether any of the capture expressions requires cleanups.
646 bool ExprNeedsCleanups;
647
648 /// \brief Whether the lambda contains an unexpanded parameter pack.
649 bool ContainsUnexpandedParameterPack;
650
651 /// \brief Variables used to index into by-copy array captures.
652 SmallVector<VarDecl *, 4> ArrayIndexVars;
653
654 /// \brief Offsets into the ArrayIndexVars array at which each capture starts
655 /// its list of array index variables.
656 SmallVector<unsigned, 4> ArrayIndexStarts;
657
658 /// \brief If this is a generic lambda, use this as the depth of
659 /// each 'auto' parameter, during initial AST construction.
660 unsigned AutoTemplateParameterDepth;
661
662 /// \brief Store the list of the auto parameters for a generic lambda.
663 /// If this is a generic lambda, store the list of the auto
664 /// parameters converted into TemplateTypeParmDecls into a vector
665 /// that can be used to construct the generic lambda's template
666 /// parameter list, during initial AST construction.
667 SmallVector<TemplateTypeParmDecl*, 4> AutoTemplateParams;
668
669 /// If this is a generic lambda, and the template parameter
670 /// list has been created (from the AutoTemplateParams) then
671 /// store a reference to it (cache it to avoid reconstructing it).
672 TemplateParameterList *GLTemplateParameterList;
673
674 /// \brief Contains all variable-referring-expressions (i.e. DeclRefExprs
675 /// or MemberExprs) that refer to local variables in a generic lambda
676 /// or a lambda in a potentially-evaluated-if-used context.
677 ///
678 /// Potentially capturable variables of a nested lambda that might need
679 /// to be captured by the lambda are housed here.
680 /// This is specifically useful for generic lambdas or
681 /// lambdas within a a potentially evaluated-if-used context.
682 /// If an enclosing variable is named in an expression of a lambda nested
683 /// within a generic lambda, we don't always know know whether the variable
684 /// will truly be odr-used (i.e. need to be captured) by that nested lambda,
685 /// until its instantiation. But we still need to capture it in the
686 /// enclosing lambda if all intervening lambdas can capture the variable.
687
688 llvm::SmallVector<Expr*, 4> PotentiallyCapturingExprs;
689
690 /// \brief Contains all variable-referring-expressions that refer
691 /// to local variables that are usable as constant expressions and
692 /// do not involve an odr-use (they may still need to be captured
693 /// if the enclosing full-expression is instantiation dependent).
694 llvm::SmallSet<Expr*, 8> NonODRUsedCapturingExprs;
695
696 SourceLocation PotentialThisCaptureLocation;
697
LambdaScopeInfo(DiagnosticsEngine & Diag)698 LambdaScopeInfo(DiagnosticsEngine &Diag)
699 : CapturingScopeInfo(Diag, ImpCap_None), Lambda(nullptr),
700 CallOperator(nullptr), NumExplicitCaptures(0), Mutable(false),
701 ExplicitParams(false), ExprNeedsCleanups(false),
702 ContainsUnexpandedParameterPack(false), AutoTemplateParameterDepth(0),
703 GLTemplateParameterList(nullptr) {
704 Kind = SK_Lambda;
705 }
706
707 ~LambdaScopeInfo() override;
708
709 /// \brief Note when all explicit captures have been added.
finishedExplicitCaptures()710 void finishedExplicitCaptures() {
711 NumExplicitCaptures = Captures.size();
712 }
713
classof(const FunctionScopeInfo * FSI)714 static bool classof(const FunctionScopeInfo *FSI) {
715 return FSI->Kind == SK_Lambda;
716 }
717
718 ///
719 /// \brief Add a variable that might potentially be captured by the
720 /// lambda and therefore the enclosing lambdas.
721 ///
722 /// This is also used by enclosing lambda's to speculatively capture
723 /// variables that nested lambda's - depending on their enclosing
724 /// specialization - might need to capture.
725 /// Consider:
726 /// void f(int, int); <-- don't capture
727 /// void f(const int&, double); <-- capture
728 /// void foo() {
729 /// const int x = 10;
730 /// auto L = [=](auto a) { // capture 'x'
731 /// return [=](auto b) {
732 /// f(x, a); // we may or may not need to capture 'x'
733 /// };
734 /// };
735 /// }
addPotentialCapture(Expr * VarExpr)736 void addPotentialCapture(Expr *VarExpr) {
737 assert(isa<DeclRefExpr>(VarExpr) || isa<MemberExpr>(VarExpr));
738 PotentiallyCapturingExprs.push_back(VarExpr);
739 }
740
addPotentialThisCapture(SourceLocation Loc)741 void addPotentialThisCapture(SourceLocation Loc) {
742 PotentialThisCaptureLocation = Loc;
743 }
hasPotentialThisCapture()744 bool hasPotentialThisCapture() const {
745 return PotentialThisCaptureLocation.isValid();
746 }
747
748 /// \brief Mark a variable's reference in a lambda as non-odr using.
749 ///
750 /// For generic lambdas, if a variable is named in a potentially evaluated
751 /// expression, where the enclosing full expression is dependent then we
752 /// must capture the variable (given a default capture).
753 /// This is accomplished by recording all references to variables
754 /// (DeclRefExprs or MemberExprs) within said nested lambda in its array of
755 /// PotentialCaptures. All such variables have to be captured by that lambda,
756 /// except for as described below.
757 /// If that variable is usable as a constant expression and is named in a
758 /// manner that does not involve its odr-use (e.g. undergoes
759 /// lvalue-to-rvalue conversion, or discarded) record that it is so. Upon the
760 /// act of analyzing the enclosing full expression (ActOnFinishFullExpr)
761 /// if we can determine that the full expression is not instantiation-
762 /// dependent, then we can entirely avoid its capture.
763 ///
764 /// const int n = 0;
765 /// [&] (auto x) {
766 /// (void)+n + x;
767 /// };
768 /// Interestingly, this strategy would involve a capture of n, even though
769 /// it's obviously not odr-used here, because the full-expression is
770 /// instantiation-dependent. It could be useful to avoid capturing such
771 /// variables, even when they are referred to in an instantiation-dependent
772 /// expression, if we can unambiguously determine that they shall never be
773 /// odr-used. This would involve removal of the variable-referring-expression
774 /// from the array of PotentialCaptures during the lvalue-to-rvalue
775 /// conversions. But per the working draft N3797, (post-chicago 2013) we must
776 /// capture such variables.
777 /// Before anyone is tempted to implement a strategy for not-capturing 'n',
778 /// consider the insightful warning in:
779 /// /cfe-commits/Week-of-Mon-20131104/092596.html
780 /// "The problem is that the set of captures for a lambda is part of the ABI
781 /// (since lambda layout can be made visible through inline functions and the
782 /// like), and there are no guarantees as to which cases we'll manage to build
783 /// an lvalue-to-rvalue conversion in, when parsing a template -- some
784 /// seemingly harmless change elsewhere in Sema could cause us to start or stop
785 /// building such a node. So we need a rule that anyone can implement and get
786 /// exactly the same result".
787 ///
markVariableExprAsNonODRUsed(Expr * CapturingVarExpr)788 void markVariableExprAsNonODRUsed(Expr *CapturingVarExpr) {
789 assert(isa<DeclRefExpr>(CapturingVarExpr)
790 || isa<MemberExpr>(CapturingVarExpr));
791 NonODRUsedCapturingExprs.insert(CapturingVarExpr);
792 }
isVariableExprMarkedAsNonODRUsed(Expr * CapturingVarExpr)793 bool isVariableExprMarkedAsNonODRUsed(Expr *CapturingVarExpr) const {
794 assert(isa<DeclRefExpr>(CapturingVarExpr)
795 || isa<MemberExpr>(CapturingVarExpr));
796 return NonODRUsedCapturingExprs.count(CapturingVarExpr);
797 }
removePotentialCapture(Expr * E)798 void removePotentialCapture(Expr *E) {
799 PotentiallyCapturingExprs.erase(
800 std::remove(PotentiallyCapturingExprs.begin(),
801 PotentiallyCapturingExprs.end(), E),
802 PotentiallyCapturingExprs.end());
803 }
clearPotentialCaptures()804 void clearPotentialCaptures() {
805 PotentiallyCapturingExprs.clear();
806 PotentialThisCaptureLocation = SourceLocation();
807 }
getNumPotentialVariableCaptures()808 unsigned getNumPotentialVariableCaptures() const {
809 return PotentiallyCapturingExprs.size();
810 }
811
hasPotentialCaptures()812 bool hasPotentialCaptures() const {
813 return getNumPotentialVariableCaptures() ||
814 PotentialThisCaptureLocation.isValid();
815 }
816
817 // When passed the index, returns the VarDecl and Expr associated
818 // with the index.
819 void getPotentialVariableCapture(unsigned Idx, VarDecl *&VD, Expr *&E) const;
820 };
821
WeakObjectProfileTy()822 FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy()
823 : Base(nullptr, false), Property(nullptr) {}
824
825 FunctionScopeInfo::WeakObjectProfileTy
getSentinel()826 FunctionScopeInfo::WeakObjectProfileTy::getSentinel() {
827 FunctionScopeInfo::WeakObjectProfileTy Result;
828 Result.Base.setInt(true);
829 return Result;
830 }
831
832 template <typename ExprT>
recordUseOfWeak(const ExprT * E,bool IsRead)833 void FunctionScopeInfo::recordUseOfWeak(const ExprT *E, bool IsRead) {
834 assert(E);
835 WeakUseVector &Uses = WeakObjectUses[WeakObjectProfileTy(E)];
836 Uses.push_back(WeakUseTy(E, IsRead));
837 }
838
839 inline void
addThisCapture(bool isNested,SourceLocation Loc,QualType CaptureType,Expr * Cpy)840 CapturingScopeInfo::addThisCapture(bool isNested, SourceLocation Loc,
841 QualType CaptureType, Expr *Cpy) {
842 Captures.push_back(Capture(Capture::ThisCapture, isNested, Loc, CaptureType,
843 Cpy));
844 CXXThisCaptureIndex = Captures.size();
845
846 if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(this))
847 LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
848 }
849
850 } // end namespace sema
851 } // end namespace clang
852
853 #endif
854