1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Target/TargetLoweringObjectFile.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 #include <cctype>
36 using namespace llvm;
37
38 /// NOTE: The TargetMachine owns TLOF.
TargetLowering(const TargetMachine & tm)39 TargetLowering::TargetLowering(const TargetMachine &tm)
40 : TargetLoweringBase(tm) {}
41
getTargetNodeName(unsigned Opcode) const42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43 return nullptr;
44 }
45
46 /// Check whether a given call node is in tail position within its function. If
47 /// so, it sets Chain to the input chain of the tail call.
isInTailCallPosition(SelectionDAG & DAG,SDNode * Node,SDValue & Chain) const48 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
49 SDValue &Chain) const {
50 const Function *F = DAG.getMachineFunction().getFunction();
51
52 // Conservatively require the attributes of the call to match those of
53 // the return. Ignore noalias because it doesn't affect the call sequence.
54 AttributeSet CallerAttrs = F->getAttributes();
55 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
56 .removeAttribute(Attribute::NoAlias).hasAttributes())
57 return false;
58
59 // It's not safe to eliminate the sign / zero extension of the return value.
60 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
61 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
62 return false;
63
64 // Check if the only use is a function return node.
65 return isUsedByReturnOnly(Node, Chain);
66 }
67
68 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
69 /// and called function attributes.
setAttributes(ImmutableCallSite * CS,unsigned AttrIdx)70 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS,
71 unsigned AttrIdx) {
72 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt);
73 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
74 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg);
75 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
76 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest);
77 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
78 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
79 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
80 Alignment = CS->getParamAlignment(AttrIdx);
81 }
82
83 /// Generate a libcall taking the given operands as arguments and returning a
84 /// result of type RetVT.
85 std::pair<SDValue, SDValue>
makeLibCall(SelectionDAG & DAG,RTLIB::Libcall LC,EVT RetVT,const SDValue * Ops,unsigned NumOps,bool isSigned,SDLoc dl,bool doesNotReturn,bool isReturnValueUsed) const86 TargetLowering::makeLibCall(SelectionDAG &DAG,
87 RTLIB::Libcall LC, EVT RetVT,
88 const SDValue *Ops, unsigned NumOps,
89 bool isSigned, SDLoc dl,
90 bool doesNotReturn,
91 bool isReturnValueUsed) const {
92 TargetLowering::ArgListTy Args;
93 Args.reserve(NumOps);
94
95 TargetLowering::ArgListEntry Entry;
96 for (unsigned i = 0; i != NumOps; ++i) {
97 Entry.Node = Ops[i];
98 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
99 Entry.isSExt = shouldSignExtendTypeInLibCall(Ops[i].getValueType(), isSigned);
100 Entry.isZExt = !shouldSignExtendTypeInLibCall(Ops[i].getValueType(), isSigned);
101 Args.push_back(Entry);
102 }
103 if (LC == RTLIB::UNKNOWN_LIBCALL)
104 report_fatal_error("Unsupported library call operation!");
105 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy());
106
107 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
108 TargetLowering::CallLoweringInfo CLI(DAG);
109 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
110 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
111 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
112 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed)
113 .setSExtResult(signExtend).setZExtResult(!signExtend);
114 return LowerCallTo(CLI);
115 }
116
117
118 /// SoftenSetCCOperands - Soften the operands of a comparison. This code is
119 /// shared among BR_CC, SELECT_CC, and SETCC handlers.
softenSetCCOperands(SelectionDAG & DAG,EVT VT,SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode & CCCode,SDLoc dl) const120 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
121 SDValue &NewLHS, SDValue &NewRHS,
122 ISD::CondCode &CCCode,
123 SDLoc dl) const {
124 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
125 && "Unsupported setcc type!");
126
127 // Expand into one or more soft-fp libcall(s).
128 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
129 switch (CCCode) {
130 case ISD::SETEQ:
131 case ISD::SETOEQ:
132 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
133 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
134 break;
135 case ISD::SETNE:
136 case ISD::SETUNE:
137 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
138 (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128;
139 break;
140 case ISD::SETGE:
141 case ISD::SETOGE:
142 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
143 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
144 break;
145 case ISD::SETLT:
146 case ISD::SETOLT:
147 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
148 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
149 break;
150 case ISD::SETLE:
151 case ISD::SETOLE:
152 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
153 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
154 break;
155 case ISD::SETGT:
156 case ISD::SETOGT:
157 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
158 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
159 break;
160 case ISD::SETUO:
161 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
162 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
163 break;
164 case ISD::SETO:
165 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
166 (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128;
167 break;
168 default:
169 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
170 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
171 switch (CCCode) {
172 case ISD::SETONE:
173 // SETONE = SETOLT | SETOGT
174 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
175 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
176 // Fallthrough
177 case ISD::SETUGT:
178 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
179 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
180 break;
181 case ISD::SETUGE:
182 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
183 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
184 break;
185 case ISD::SETULT:
186 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
187 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
188 break;
189 case ISD::SETULE:
190 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
191 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
192 break;
193 case ISD::SETUEQ:
194 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
195 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
196 break;
197 default: llvm_unreachable("Do not know how to soften this setcc!");
198 }
199 }
200
201 // Use the target specific return value for comparions lib calls.
202 EVT RetVT = getCmpLibcallReturnType();
203 SDValue Ops[2] = { NewLHS, NewRHS };
204 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/,
205 dl).first;
206 NewRHS = DAG.getConstant(0, RetVT);
207 CCCode = getCmpLibcallCC(LC1);
208 if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
209 SDValue Tmp = DAG.getNode(ISD::SETCC, dl,
210 getSetCCResultType(*DAG.getContext(), RetVT),
211 NewLHS, NewRHS, DAG.getCondCode(CCCode));
212 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/,
213 dl).first;
214 NewLHS = DAG.getNode(ISD::SETCC, dl,
215 getSetCCResultType(*DAG.getContext(), RetVT), NewLHS,
216 NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
217 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
218 NewRHS = SDValue();
219 }
220 }
221
222 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
223 /// current function. The returned value is a member of the
224 /// MachineJumpTableInfo::JTEntryKind enum.
getJumpTableEncoding() const225 unsigned TargetLowering::getJumpTableEncoding() const {
226 // In non-pic modes, just use the address of a block.
227 if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
228 return MachineJumpTableInfo::EK_BlockAddress;
229
230 // In PIC mode, if the target supports a GPRel32 directive, use it.
231 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
232 return MachineJumpTableInfo::EK_GPRel32BlockAddress;
233
234 // Otherwise, use a label difference.
235 return MachineJumpTableInfo::EK_LabelDifference32;
236 }
237
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const238 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
239 SelectionDAG &DAG) const {
240 // If our PIC model is GP relative, use the global offset table as the base.
241 unsigned JTEncoding = getJumpTableEncoding();
242
243 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
244 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
245 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0));
246
247 return Table;
248 }
249
250 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
251 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
252 /// MCExpr.
253 const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction * MF,unsigned JTI,MCContext & Ctx) const254 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
255 unsigned JTI,MCContext &Ctx) const{
256 // The normal PIC reloc base is the label at the start of the jump table.
257 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
258 }
259
260 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const261 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
262 // Assume that everything is safe in static mode.
263 if (getTargetMachine().getRelocationModel() == Reloc::Static)
264 return true;
265
266 // In dynamic-no-pic mode, assume that known defined values are safe.
267 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
268 GA &&
269 !GA->getGlobal()->isDeclaration() &&
270 !GA->getGlobal()->isWeakForLinker())
271 return true;
272
273 // Otherwise assume nothing is safe.
274 return false;
275 }
276
277 //===----------------------------------------------------------------------===//
278 // Optimization Methods
279 //===----------------------------------------------------------------------===//
280
281 /// ShrinkDemandedConstant - Check to see if the specified operand of the
282 /// specified instruction is a constant integer. If so, check to see if there
283 /// are any bits set in the constant that are not demanded. If so, shrink the
284 /// constant and return true.
ShrinkDemandedConstant(SDValue Op,const APInt & Demanded)285 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
286 const APInt &Demanded) {
287 SDLoc dl(Op);
288
289 // FIXME: ISD::SELECT, ISD::SELECT_CC
290 switch (Op.getOpcode()) {
291 default: break;
292 case ISD::XOR:
293 case ISD::AND:
294 case ISD::OR: {
295 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
296 if (!C) return false;
297
298 if (Op.getOpcode() == ISD::XOR &&
299 (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
300 return false;
301
302 // if we can expand it to have all bits set, do it
303 if (C->getAPIntValue().intersects(~Demanded)) {
304 EVT VT = Op.getValueType();
305 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
306 DAG.getConstant(Demanded &
307 C->getAPIntValue(),
308 VT));
309 return CombineTo(Op, New);
310 }
311
312 break;
313 }
314 }
315
316 return false;
317 }
318
319 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
320 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
321 /// cast, but it could be generalized for targets with other types of
322 /// implicit widening casts.
323 bool
ShrinkDemandedOp(SDValue Op,unsigned BitWidth,const APInt & Demanded,SDLoc dl)324 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
325 unsigned BitWidth,
326 const APInt &Demanded,
327 SDLoc dl) {
328 assert(Op.getNumOperands() == 2 &&
329 "ShrinkDemandedOp only supports binary operators!");
330 assert(Op.getNode()->getNumValues() == 1 &&
331 "ShrinkDemandedOp only supports nodes with one result!");
332
333 // Early return, as this function cannot handle vector types.
334 if (Op.getValueType().isVector())
335 return false;
336
337 // Don't do this if the node has another user, which may require the
338 // full value.
339 if (!Op.getNode()->hasOneUse())
340 return false;
341
342 // Search for the smallest integer type with free casts to and from
343 // Op's type. For expedience, just check power-of-2 integer types.
344 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
345 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
346 unsigned SmallVTBits = DemandedSize;
347 if (!isPowerOf2_32(SmallVTBits))
348 SmallVTBits = NextPowerOf2(SmallVTBits);
349 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
350 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
351 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
352 TLI.isZExtFree(SmallVT, Op.getValueType())) {
353 // We found a type with free casts.
354 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
355 DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
356 Op.getNode()->getOperand(0)),
357 DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
358 Op.getNode()->getOperand(1)));
359 bool NeedZext = DemandedSize > SmallVTBits;
360 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
361 dl, Op.getValueType(), X);
362 return CombineTo(Op, Z);
363 }
364 }
365 return false;
366 }
367
368 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
369 /// DemandedMask bits of the result of Op are ever used downstream. If we can
370 /// use this information to simplify Op, create a new simplified DAG node and
371 /// return true, returning the original and new nodes in Old and New. Otherwise,
372 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
373 /// the expression (used to simplify the caller). The KnownZero/One bits may
374 /// only be accurate for those bits in the DemandedMask.
SimplifyDemandedBits(SDValue Op,const APInt & DemandedMask,APInt & KnownZero,APInt & KnownOne,TargetLoweringOpt & TLO,unsigned Depth) const375 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
376 const APInt &DemandedMask,
377 APInt &KnownZero,
378 APInt &KnownOne,
379 TargetLoweringOpt &TLO,
380 unsigned Depth) const {
381 unsigned BitWidth = DemandedMask.getBitWidth();
382 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
383 "Mask size mismatches value type size!");
384 APInt NewMask = DemandedMask;
385 SDLoc dl(Op);
386
387 // Don't know anything.
388 KnownZero = KnownOne = APInt(BitWidth, 0);
389
390 // Other users may use these bits.
391 if (!Op.getNode()->hasOneUse()) {
392 if (Depth != 0) {
393 // If not at the root, Just compute the KnownZero/KnownOne bits to
394 // simplify things downstream.
395 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
396 return false;
397 }
398 // If this is the root being simplified, allow it to have multiple uses,
399 // just set the NewMask to all bits.
400 NewMask = APInt::getAllOnesValue(BitWidth);
401 } else if (DemandedMask == 0) {
402 // Not demanding any bits from Op.
403 if (Op.getOpcode() != ISD::UNDEF)
404 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
405 return false;
406 } else if (Depth == 6) { // Limit search depth.
407 return false;
408 }
409
410 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
411 switch (Op.getOpcode()) {
412 case ISD::Constant:
413 // We know all of the bits for a constant!
414 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
415 KnownZero = ~KnownOne;
416 return false; // Don't fall through, will infinitely loop.
417 case ISD::AND:
418 // If the RHS is a constant, check to see if the LHS would be zero without
419 // using the bits from the RHS. Below, we use knowledge about the RHS to
420 // simplify the LHS, here we're using information from the LHS to simplify
421 // the RHS.
422 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
423 APInt LHSZero, LHSOne;
424 // Do not increment Depth here; that can cause an infinite loop.
425 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
426 // If the LHS already has zeros where RHSC does, this and is dead.
427 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
428 return TLO.CombineTo(Op, Op.getOperand(0));
429 // If any of the set bits in the RHS are known zero on the LHS, shrink
430 // the constant.
431 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
432 return true;
433 }
434
435 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
436 KnownOne, TLO, Depth+1))
437 return true;
438 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
439 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
440 KnownZero2, KnownOne2, TLO, Depth+1))
441 return true;
442 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
443
444 // If all of the demanded bits are known one on one side, return the other.
445 // These bits cannot contribute to the result of the 'and'.
446 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
447 return TLO.CombineTo(Op, Op.getOperand(0));
448 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
449 return TLO.CombineTo(Op, Op.getOperand(1));
450 // If all of the demanded bits in the inputs are known zeros, return zero.
451 if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
452 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
453 // If the RHS is a constant, see if we can simplify it.
454 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
455 return true;
456 // If the operation can be done in a smaller type, do so.
457 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
458 return true;
459
460 // Output known-1 bits are only known if set in both the LHS & RHS.
461 KnownOne &= KnownOne2;
462 // Output known-0 are known to be clear if zero in either the LHS | RHS.
463 KnownZero |= KnownZero2;
464 break;
465 case ISD::OR:
466 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
467 KnownOne, TLO, Depth+1))
468 return true;
469 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
470 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
471 KnownZero2, KnownOne2, TLO, Depth+1))
472 return true;
473 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
474
475 // If all of the demanded bits are known zero on one side, return the other.
476 // These bits cannot contribute to the result of the 'or'.
477 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
478 return TLO.CombineTo(Op, Op.getOperand(0));
479 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
480 return TLO.CombineTo(Op, Op.getOperand(1));
481 // If all of the potentially set bits on one side are known to be set on
482 // the other side, just use the 'other' side.
483 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
484 return TLO.CombineTo(Op, Op.getOperand(0));
485 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
486 return TLO.CombineTo(Op, Op.getOperand(1));
487 // If the RHS is a constant, see if we can simplify it.
488 if (TLO.ShrinkDemandedConstant(Op, NewMask))
489 return true;
490 // If the operation can be done in a smaller type, do so.
491 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
492 return true;
493
494 // Output known-0 bits are only known if clear in both the LHS & RHS.
495 KnownZero &= KnownZero2;
496 // Output known-1 are known to be set if set in either the LHS | RHS.
497 KnownOne |= KnownOne2;
498 break;
499 case ISD::XOR:
500 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
501 KnownOne, TLO, Depth+1))
502 return true;
503 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
504 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
505 KnownOne2, TLO, Depth+1))
506 return true;
507 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
508
509 // If all of the demanded bits are known zero on one side, return the other.
510 // These bits cannot contribute to the result of the 'xor'.
511 if ((KnownZero & NewMask) == NewMask)
512 return TLO.CombineTo(Op, Op.getOperand(0));
513 if ((KnownZero2 & NewMask) == NewMask)
514 return TLO.CombineTo(Op, Op.getOperand(1));
515 // If the operation can be done in a smaller type, do so.
516 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
517 return true;
518
519 // If all of the unknown bits are known to be zero on one side or the other
520 // (but not both) turn this into an *inclusive* or.
521 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
522 if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
523 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
524 Op.getOperand(0),
525 Op.getOperand(1)));
526
527 // Output known-0 bits are known if clear or set in both the LHS & RHS.
528 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
529 // Output known-1 are known to be set if set in only one of the LHS, RHS.
530 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
531
532 // If all of the demanded bits on one side are known, and all of the set
533 // bits on that side are also known to be set on the other side, turn this
534 // into an AND, as we know the bits will be cleared.
535 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
536 // NB: it is okay if more bits are known than are requested
537 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
538 if (KnownOne == KnownOne2) { // set bits are the same on both sides
539 EVT VT = Op.getValueType();
540 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
541 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
542 Op.getOperand(0), ANDC));
543 }
544 }
545
546 // If the RHS is a constant, see if we can simplify it.
547 // for XOR, we prefer to force bits to 1 if they will make a -1.
548 // if we can't force bits, try to shrink constant
549 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
550 APInt Expanded = C->getAPIntValue() | (~NewMask);
551 // if we can expand it to have all bits set, do it
552 if (Expanded.isAllOnesValue()) {
553 if (Expanded != C->getAPIntValue()) {
554 EVT VT = Op.getValueType();
555 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
556 TLO.DAG.getConstant(Expanded, VT));
557 return TLO.CombineTo(Op, New);
558 }
559 // if it already has all the bits set, nothing to change
560 // but don't shrink either!
561 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
562 return true;
563 }
564 }
565
566 KnownZero = KnownZeroOut;
567 KnownOne = KnownOneOut;
568 break;
569 case ISD::SELECT:
570 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
571 KnownOne, TLO, Depth+1))
572 return true;
573 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
574 KnownOne2, TLO, Depth+1))
575 return true;
576 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
577 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
578
579 // If the operands are constants, see if we can simplify them.
580 if (TLO.ShrinkDemandedConstant(Op, NewMask))
581 return true;
582
583 // Only known if known in both the LHS and RHS.
584 KnownOne &= KnownOne2;
585 KnownZero &= KnownZero2;
586 break;
587 case ISD::SELECT_CC:
588 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
589 KnownOne, TLO, Depth+1))
590 return true;
591 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
592 KnownOne2, TLO, Depth+1))
593 return true;
594 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
595 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
596
597 // If the operands are constants, see if we can simplify them.
598 if (TLO.ShrinkDemandedConstant(Op, NewMask))
599 return true;
600
601 // Only known if known in both the LHS and RHS.
602 KnownOne &= KnownOne2;
603 KnownZero &= KnownZero2;
604 break;
605 case ISD::SHL:
606 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
607 unsigned ShAmt = SA->getZExtValue();
608 SDValue InOp = Op.getOperand(0);
609
610 // If the shift count is an invalid immediate, don't do anything.
611 if (ShAmt >= BitWidth)
612 break;
613
614 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
615 // single shift. We can do this if the bottom bits (which are shifted
616 // out) are never demanded.
617 if (InOp.getOpcode() == ISD::SRL &&
618 isa<ConstantSDNode>(InOp.getOperand(1))) {
619 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
620 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
621 unsigned Opc = ISD::SHL;
622 int Diff = ShAmt-C1;
623 if (Diff < 0) {
624 Diff = -Diff;
625 Opc = ISD::SRL;
626 }
627
628 SDValue NewSA =
629 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
630 EVT VT = Op.getValueType();
631 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
632 InOp.getOperand(0), NewSA));
633 }
634 }
635
636 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
637 KnownZero, KnownOne, TLO, Depth+1))
638 return true;
639
640 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
641 // are not demanded. This will likely allow the anyext to be folded away.
642 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
643 SDValue InnerOp = InOp.getNode()->getOperand(0);
644 EVT InnerVT = InnerOp.getValueType();
645 unsigned InnerBits = InnerVT.getSizeInBits();
646 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
647 isTypeDesirableForOp(ISD::SHL, InnerVT)) {
648 EVT ShTy = getShiftAmountTy(InnerVT);
649 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
650 ShTy = InnerVT;
651 SDValue NarrowShl =
652 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
653 TLO.DAG.getConstant(ShAmt, ShTy));
654 return
655 TLO.CombineTo(Op,
656 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
657 NarrowShl));
658 }
659 // Repeat the SHL optimization above in cases where an extension
660 // intervenes: (shl (anyext (shr x, c1)), c2) to
661 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
662 // aren't demanded (as above) and that the shifted upper c1 bits of
663 // x aren't demanded.
664 if (InOp.hasOneUse() &&
665 InnerOp.getOpcode() == ISD::SRL &&
666 InnerOp.hasOneUse() &&
667 isa<ConstantSDNode>(InnerOp.getOperand(1))) {
668 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
669 ->getZExtValue();
670 if (InnerShAmt < ShAmt &&
671 InnerShAmt < InnerBits &&
672 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
673 NewMask.trunc(ShAmt) == 0) {
674 SDValue NewSA =
675 TLO.DAG.getConstant(ShAmt - InnerShAmt,
676 Op.getOperand(1).getValueType());
677 EVT VT = Op.getValueType();
678 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
679 InnerOp.getOperand(0));
680 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
681 NewExt, NewSA));
682 }
683 }
684 }
685
686 KnownZero <<= SA->getZExtValue();
687 KnownOne <<= SA->getZExtValue();
688 // low bits known zero.
689 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
690 }
691 break;
692 case ISD::SRL:
693 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
694 EVT VT = Op.getValueType();
695 unsigned ShAmt = SA->getZExtValue();
696 unsigned VTSize = VT.getSizeInBits();
697 SDValue InOp = Op.getOperand(0);
698
699 // If the shift count is an invalid immediate, don't do anything.
700 if (ShAmt >= BitWidth)
701 break;
702
703 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
704 // single shift. We can do this if the top bits (which are shifted out)
705 // are never demanded.
706 if (InOp.getOpcode() == ISD::SHL &&
707 isa<ConstantSDNode>(InOp.getOperand(1))) {
708 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
709 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
710 unsigned Opc = ISD::SRL;
711 int Diff = ShAmt-C1;
712 if (Diff < 0) {
713 Diff = -Diff;
714 Opc = ISD::SHL;
715 }
716
717 SDValue NewSA =
718 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
719 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
720 InOp.getOperand(0), NewSA));
721 }
722 }
723
724 // Compute the new bits that are at the top now.
725 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
726 KnownZero, KnownOne, TLO, Depth+1))
727 return true;
728 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
729 KnownZero = KnownZero.lshr(ShAmt);
730 KnownOne = KnownOne.lshr(ShAmt);
731
732 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
733 KnownZero |= HighBits; // High bits known zero.
734 }
735 break;
736 case ISD::SRA:
737 // If this is an arithmetic shift right and only the low-bit is set, we can
738 // always convert this into a logical shr, even if the shift amount is
739 // variable. The low bit of the shift cannot be an input sign bit unless
740 // the shift amount is >= the size of the datatype, which is undefined.
741 if (NewMask == 1)
742 return TLO.CombineTo(Op,
743 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
744 Op.getOperand(0), Op.getOperand(1)));
745
746 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
747 EVT VT = Op.getValueType();
748 unsigned ShAmt = SA->getZExtValue();
749
750 // If the shift count is an invalid immediate, don't do anything.
751 if (ShAmt >= BitWidth)
752 break;
753
754 APInt InDemandedMask = (NewMask << ShAmt);
755
756 // If any of the demanded bits are produced by the sign extension, we also
757 // demand the input sign bit.
758 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
759 if (HighBits.intersects(NewMask))
760 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
761
762 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
763 KnownZero, KnownOne, TLO, Depth+1))
764 return true;
765 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
766 KnownZero = KnownZero.lshr(ShAmt);
767 KnownOne = KnownOne.lshr(ShAmt);
768
769 // Handle the sign bit, adjusted to where it is now in the mask.
770 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
771
772 // If the input sign bit is known to be zero, or if none of the top bits
773 // are demanded, turn this into an unsigned shift right.
774 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits)
775 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
776 Op.getOperand(0),
777 Op.getOperand(1)));
778
779 int Log2 = NewMask.exactLogBase2();
780 if (Log2 >= 0) {
781 // The bit must come from the sign.
782 SDValue NewSA =
783 TLO.DAG.getConstant(BitWidth - 1 - Log2,
784 Op.getOperand(1).getValueType());
785 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
786 Op.getOperand(0), NewSA));
787 }
788
789 if (KnownOne.intersects(SignBit))
790 // New bits are known one.
791 KnownOne |= HighBits;
792 }
793 break;
794 case ISD::SIGN_EXTEND_INREG: {
795 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
796
797 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
798 // If we only care about the highest bit, don't bother shifting right.
799 if (MsbMask == NewMask) {
800 unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
801 SDValue InOp = Op.getOperand(0);
802 unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits();
803 bool AlreadySignExtended =
804 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1;
805 // However if the input is already sign extended we expect the sign
806 // extension to be dropped altogether later and do not simplify.
807 if (!AlreadySignExtended) {
808 // Compute the correct shift amount type, which must be getShiftAmountTy
809 // for scalar types after legalization.
810 EVT ShiftAmtTy = Op.getValueType();
811 if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
812 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
813
814 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
815 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
816 Op.getValueType(), InOp,
817 ShiftAmt));
818 }
819 }
820
821 // Sign extension. Compute the demanded bits in the result that are not
822 // present in the input.
823 APInt NewBits =
824 APInt::getHighBitsSet(BitWidth,
825 BitWidth - ExVT.getScalarType().getSizeInBits());
826
827 // If none of the extended bits are demanded, eliminate the sextinreg.
828 if ((NewBits & NewMask) == 0)
829 return TLO.CombineTo(Op, Op.getOperand(0));
830
831 APInt InSignBit =
832 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
833 APInt InputDemandedBits =
834 APInt::getLowBitsSet(BitWidth,
835 ExVT.getScalarType().getSizeInBits()) &
836 NewMask;
837
838 // Since the sign extended bits are demanded, we know that the sign
839 // bit is demanded.
840 InputDemandedBits |= InSignBit;
841
842 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
843 KnownZero, KnownOne, TLO, Depth+1))
844 return true;
845 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
846
847 // If the sign bit of the input is known set or clear, then we know the
848 // top bits of the result.
849
850 // If the input sign bit is known zero, convert this into a zero extension.
851 if (KnownZero.intersects(InSignBit))
852 return TLO.CombineTo(Op,
853 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
854
855 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
856 KnownOne |= NewBits;
857 KnownZero &= ~NewBits;
858 } else { // Input sign bit unknown
859 KnownZero &= ~NewBits;
860 KnownOne &= ~NewBits;
861 }
862 break;
863 }
864 case ISD::BUILD_PAIR: {
865 EVT HalfVT = Op.getOperand(0).getValueType();
866 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
867
868 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
869 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
870
871 APInt KnownZeroLo, KnownOneLo;
872 APInt KnownZeroHi, KnownOneHi;
873
874 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo,
875 KnownOneLo, TLO, Depth + 1))
876 return true;
877
878 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi,
879 KnownOneHi, TLO, Depth + 1))
880 return true;
881
882 KnownZero = KnownZeroLo.zext(BitWidth) |
883 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth);
884
885 KnownOne = KnownOneLo.zext(BitWidth) |
886 KnownOneHi.zext(BitWidth).shl(HalfBitWidth);
887 break;
888 }
889 case ISD::ZERO_EXTEND: {
890 unsigned OperandBitWidth =
891 Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
892 APInt InMask = NewMask.trunc(OperandBitWidth);
893
894 // If none of the top bits are demanded, convert this into an any_extend.
895 APInt NewBits =
896 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
897 if (!NewBits.intersects(NewMask))
898 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
899 Op.getValueType(),
900 Op.getOperand(0)));
901
902 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
903 KnownZero, KnownOne, TLO, Depth+1))
904 return true;
905 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
906 KnownZero = KnownZero.zext(BitWidth);
907 KnownOne = KnownOne.zext(BitWidth);
908 KnownZero |= NewBits;
909 break;
910 }
911 case ISD::SIGN_EXTEND: {
912 EVT InVT = Op.getOperand(0).getValueType();
913 unsigned InBits = InVT.getScalarType().getSizeInBits();
914 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
915 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
916 APInt NewBits = ~InMask & NewMask;
917
918 // If none of the top bits are demanded, convert this into an any_extend.
919 if (NewBits == 0)
920 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
921 Op.getValueType(),
922 Op.getOperand(0)));
923
924 // Since some of the sign extended bits are demanded, we know that the sign
925 // bit is demanded.
926 APInt InDemandedBits = InMask & NewMask;
927 InDemandedBits |= InSignBit;
928 InDemandedBits = InDemandedBits.trunc(InBits);
929
930 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
931 KnownOne, TLO, Depth+1))
932 return true;
933 KnownZero = KnownZero.zext(BitWidth);
934 KnownOne = KnownOne.zext(BitWidth);
935
936 // If the sign bit is known zero, convert this to a zero extend.
937 if (KnownZero.intersects(InSignBit))
938 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
939 Op.getValueType(),
940 Op.getOperand(0)));
941
942 // If the sign bit is known one, the top bits match.
943 if (KnownOne.intersects(InSignBit)) {
944 KnownOne |= NewBits;
945 assert((KnownZero & NewBits) == 0);
946 } else { // Otherwise, top bits aren't known.
947 assert((KnownOne & NewBits) == 0);
948 assert((KnownZero & NewBits) == 0);
949 }
950 break;
951 }
952 case ISD::ANY_EXTEND: {
953 unsigned OperandBitWidth =
954 Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
955 APInt InMask = NewMask.trunc(OperandBitWidth);
956 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
957 KnownZero, KnownOne, TLO, Depth+1))
958 return true;
959 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
960 KnownZero = KnownZero.zext(BitWidth);
961 KnownOne = KnownOne.zext(BitWidth);
962 break;
963 }
964 case ISD::TRUNCATE: {
965 // Simplify the input, using demanded bit information, and compute the known
966 // zero/one bits live out.
967 unsigned OperandBitWidth =
968 Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
969 APInt TruncMask = NewMask.zext(OperandBitWidth);
970 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
971 KnownZero, KnownOne, TLO, Depth+1))
972 return true;
973 KnownZero = KnownZero.trunc(BitWidth);
974 KnownOne = KnownOne.trunc(BitWidth);
975
976 // If the input is only used by this truncate, see if we can shrink it based
977 // on the known demanded bits.
978 if (Op.getOperand(0).getNode()->hasOneUse()) {
979 SDValue In = Op.getOperand(0);
980 switch (In.getOpcode()) {
981 default: break;
982 case ISD::SRL:
983 // Shrink SRL by a constant if none of the high bits shifted in are
984 // demanded.
985 if (TLO.LegalTypes() &&
986 !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
987 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
988 // undesirable.
989 break;
990 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
991 if (!ShAmt)
992 break;
993 SDValue Shift = In.getOperand(1);
994 if (TLO.LegalTypes()) {
995 uint64_t ShVal = ShAmt->getZExtValue();
996 Shift =
997 TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
998 }
999
1000 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1001 OperandBitWidth - BitWidth);
1002 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1003
1004 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1005 // None of the shifted in bits are needed. Add a truncate of the
1006 // shift input, then shift it.
1007 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1008 Op.getValueType(),
1009 In.getOperand(0));
1010 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1011 Op.getValueType(),
1012 NewTrunc,
1013 Shift));
1014 }
1015 break;
1016 }
1017 }
1018
1019 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1020 break;
1021 }
1022 case ISD::AssertZext: {
1023 // AssertZext demands all of the high bits, plus any of the low bits
1024 // demanded by its users.
1025 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1026 APInt InMask = APInt::getLowBitsSet(BitWidth,
1027 VT.getSizeInBits());
1028 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1029 KnownZero, KnownOne, TLO, Depth+1))
1030 return true;
1031 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1032
1033 KnownZero |= ~InMask & NewMask;
1034 break;
1035 }
1036 case ISD::BITCAST:
1037 // If this is an FP->Int bitcast and if the sign bit is the only
1038 // thing demanded, turn this into a FGETSIGN.
1039 if (!TLO.LegalOperations() &&
1040 !Op.getValueType().isVector() &&
1041 !Op.getOperand(0).getValueType().isVector() &&
1042 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1043 Op.getOperand(0).getValueType().isFloatingPoint()) {
1044 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1045 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1046 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
1047 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1048 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1049 // place. We expect the SHL to be eliminated by other optimizations.
1050 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1051 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1052 if (!OpVTLegal && OpVTSizeInBits > 32)
1053 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1054 unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1055 SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
1056 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1057 Op.getValueType(),
1058 Sign, ShAmt));
1059 }
1060 }
1061 break;
1062 case ISD::ADD:
1063 case ISD::MUL:
1064 case ISD::SUB: {
1065 // Add, Sub, and Mul don't demand any bits in positions beyond that
1066 // of the highest bit demanded of them.
1067 APInt LoMask = APInt::getLowBitsSet(BitWidth,
1068 BitWidth - NewMask.countLeadingZeros());
1069 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1070 KnownOne2, TLO, Depth+1))
1071 return true;
1072 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1073 KnownOne2, TLO, Depth+1))
1074 return true;
1075 // See if the operation should be performed at a smaller bit width.
1076 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1077 return true;
1078 }
1079 // FALL THROUGH
1080 default:
1081 // Just use computeKnownBits to compute output bits.
1082 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
1083 break;
1084 }
1085
1086 // If we know the value of all of the demanded bits, return this as a
1087 // constant.
1088 if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1089 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1090
1091 return false;
1092 }
1093
1094 /// computeKnownBitsForTargetNode - Determine which of the bits specified
1095 /// in Mask are known to be either zero or one and return them in the
1096 /// KnownZero/KnownOne bitsets.
computeKnownBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const1097 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1098 APInt &KnownZero,
1099 APInt &KnownOne,
1100 const SelectionDAG &DAG,
1101 unsigned Depth) const {
1102 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1103 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1104 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1105 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1106 "Should use MaskedValueIsZero if you don't know whether Op"
1107 " is a target node!");
1108 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1109 }
1110
1111 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1112 /// targets that want to expose additional information about sign bits to the
1113 /// DAG Combiner.
ComputeNumSignBitsForTargetNode(SDValue Op,const SelectionDAG &,unsigned Depth) const1114 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1115 const SelectionDAG &,
1116 unsigned Depth) const {
1117 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1118 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1119 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1120 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1121 "Should use ComputeNumSignBits if you don't know whether Op"
1122 " is a target node!");
1123 return 1;
1124 }
1125
1126 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1127 /// one bit set. This differs from computeKnownBits in that it doesn't need to
1128 /// determine which bit is set.
1129 ///
ValueHasExactlyOneBitSet(SDValue Val,const SelectionDAG & DAG)1130 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1131 // A left-shift of a constant one will have exactly one bit set, because
1132 // shifting the bit off the end is undefined.
1133 if (Val.getOpcode() == ISD::SHL)
1134 if (ConstantSDNode *C =
1135 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1136 if (C->getAPIntValue() == 1)
1137 return true;
1138
1139 // Similarly, a right-shift of a constant sign-bit will have exactly
1140 // one bit set.
1141 if (Val.getOpcode() == ISD::SRL)
1142 if (ConstantSDNode *C =
1143 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1144 if (C->getAPIntValue().isSignBit())
1145 return true;
1146
1147 // More could be done here, though the above checks are enough
1148 // to handle some common cases.
1149
1150 // Fall back to computeKnownBits to catch other known cases.
1151 EVT OpVT = Val.getValueType();
1152 unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1153 APInt KnownZero, KnownOne;
1154 DAG.computeKnownBits(Val, KnownZero, KnownOne);
1155 return (KnownZero.countPopulation() == BitWidth - 1) &&
1156 (KnownOne.countPopulation() == 1);
1157 }
1158
isConstTrueVal(const SDNode * N) const1159 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1160 if (!N)
1161 return false;
1162
1163 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1164 if (!CN) {
1165 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1166 if (!BV)
1167 return false;
1168
1169 BitVector UndefElements;
1170 CN = BV->getConstantSplatNode(&UndefElements);
1171 // Only interested in constant splats, and we don't try to handle undef
1172 // elements in identifying boolean constants.
1173 if (!CN || UndefElements.none())
1174 return false;
1175 }
1176
1177 switch (getBooleanContents(N->getValueType(0))) {
1178 case UndefinedBooleanContent:
1179 return CN->getAPIntValue()[0];
1180 case ZeroOrOneBooleanContent:
1181 return CN->isOne();
1182 case ZeroOrNegativeOneBooleanContent:
1183 return CN->isAllOnesValue();
1184 }
1185
1186 llvm_unreachable("Invalid boolean contents");
1187 }
1188
isConstFalseVal(const SDNode * N) const1189 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1190 if (!N)
1191 return false;
1192
1193 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1194 if (!CN) {
1195 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1196 if (!BV)
1197 return false;
1198
1199 BitVector UndefElements;
1200 CN = BV->getConstantSplatNode(&UndefElements);
1201 // Only interested in constant splats, and we don't try to handle undef
1202 // elements in identifying boolean constants.
1203 if (!CN || UndefElements.none())
1204 return false;
1205 }
1206
1207 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1208 return !CN->getAPIntValue()[0];
1209
1210 return CN->isNullValue();
1211 }
1212
1213 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1214 /// and cc. If it is unable to simplify it, return a null SDValue.
1215 SDValue
SimplifySetCC(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,bool foldBooleans,DAGCombinerInfo & DCI,SDLoc dl) const1216 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1217 ISD::CondCode Cond, bool foldBooleans,
1218 DAGCombinerInfo &DCI, SDLoc dl) const {
1219 SelectionDAG &DAG = DCI.DAG;
1220
1221 // These setcc operations always fold.
1222 switch (Cond) {
1223 default: break;
1224 case ISD::SETFALSE:
1225 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1226 case ISD::SETTRUE:
1227 case ISD::SETTRUE2: {
1228 TargetLowering::BooleanContent Cnt =
1229 getBooleanContents(N0->getValueType(0));
1230 return DAG.getConstant(
1231 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT);
1232 }
1233 }
1234
1235 // Ensure that the constant occurs on the RHS, and fold constant
1236 // comparisons.
1237 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1238 if (isa<ConstantSDNode>(N0.getNode()) &&
1239 (DCI.isBeforeLegalizeOps() ||
1240 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1241 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1242
1243 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1244 const APInt &C1 = N1C->getAPIntValue();
1245
1246 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1247 // equality comparison, then we're just comparing whether X itself is
1248 // zero.
1249 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1250 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1251 N0.getOperand(1).getOpcode() == ISD::Constant) {
1252 const APInt &ShAmt
1253 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1254 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1255 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1256 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1257 // (srl (ctlz x), 5) == 0 -> X != 0
1258 // (srl (ctlz x), 5) != 1 -> X != 0
1259 Cond = ISD::SETNE;
1260 } else {
1261 // (srl (ctlz x), 5) != 0 -> X == 0
1262 // (srl (ctlz x), 5) == 1 -> X == 0
1263 Cond = ISD::SETEQ;
1264 }
1265 SDValue Zero = DAG.getConstant(0, N0.getValueType());
1266 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1267 Zero, Cond);
1268 }
1269 }
1270
1271 SDValue CTPOP = N0;
1272 // Look through truncs that don't change the value of a ctpop.
1273 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1274 CTPOP = N0.getOperand(0);
1275
1276 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1277 (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1278 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1279 EVT CTVT = CTPOP.getValueType();
1280 SDValue CTOp = CTPOP.getOperand(0);
1281
1282 // (ctpop x) u< 2 -> (x & x-1) == 0
1283 // (ctpop x) u> 1 -> (x & x-1) != 0
1284 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1285 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1286 DAG.getConstant(1, CTVT));
1287 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1288 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1289 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1290 }
1291
1292 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1293 }
1294
1295 // (zext x) == C --> x == (trunc C)
1296 // (sext x) == C --> x == (trunc C)
1297 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1298 DCI.isBeforeLegalize() && N0->hasOneUse()) {
1299 unsigned MinBits = N0.getValueSizeInBits();
1300 SDValue PreExt;
1301 bool Signed = false;
1302 if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1303 // ZExt
1304 MinBits = N0->getOperand(0).getValueSizeInBits();
1305 PreExt = N0->getOperand(0);
1306 } else if (N0->getOpcode() == ISD::AND) {
1307 // DAGCombine turns costly ZExts into ANDs
1308 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1309 if ((C->getAPIntValue()+1).isPowerOf2()) {
1310 MinBits = C->getAPIntValue().countTrailingOnes();
1311 PreExt = N0->getOperand(0);
1312 }
1313 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
1314 // SExt
1315 MinBits = N0->getOperand(0).getValueSizeInBits();
1316 PreExt = N0->getOperand(0);
1317 Signed = true;
1318 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1319 // ZEXTLOAD / SEXTLOAD
1320 if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1321 MinBits = LN0->getMemoryVT().getSizeInBits();
1322 PreExt = N0;
1323 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
1324 Signed = true;
1325 MinBits = LN0->getMemoryVT().getSizeInBits();
1326 PreExt = N0;
1327 }
1328 }
1329
1330 // Figure out how many bits we need to preserve this constant.
1331 unsigned ReqdBits = Signed ?
1332 C1.getBitWidth() - C1.getNumSignBits() + 1 :
1333 C1.getActiveBits();
1334
1335 // Make sure we're not losing bits from the constant.
1336 if (MinBits > 0 &&
1337 MinBits < C1.getBitWidth() &&
1338 MinBits >= ReqdBits) {
1339 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1340 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1341 // Will get folded away.
1342 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
1343 SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
1344 return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1345 }
1346 }
1347 }
1348
1349 // If the LHS is '(and load, const)', the RHS is 0,
1350 // the test is for equality or unsigned, and all 1 bits of the const are
1351 // in the same partial word, see if we can shorten the load.
1352 if (DCI.isBeforeLegalize() &&
1353 !ISD::isSignedIntSetCC(Cond) &&
1354 N0.getOpcode() == ISD::AND && C1 == 0 &&
1355 N0.getNode()->hasOneUse() &&
1356 isa<LoadSDNode>(N0.getOperand(0)) &&
1357 N0.getOperand(0).getNode()->hasOneUse() &&
1358 isa<ConstantSDNode>(N0.getOperand(1))) {
1359 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1360 APInt bestMask;
1361 unsigned bestWidth = 0, bestOffset = 0;
1362 if (!Lod->isVolatile() && Lod->isUnindexed()) {
1363 unsigned origWidth = N0.getValueType().getSizeInBits();
1364 unsigned maskWidth = origWidth;
1365 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1366 // 8 bits, but have to be careful...
1367 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1368 origWidth = Lod->getMemoryVT().getSizeInBits();
1369 const APInt &Mask =
1370 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1371 for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1372 APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1373 for (unsigned offset=0; offset<origWidth/width; offset++) {
1374 if ((newMask & Mask) == Mask) {
1375 if (!getDataLayout()->isLittleEndian())
1376 bestOffset = (origWidth/width - offset - 1) * (width/8);
1377 else
1378 bestOffset = (uint64_t)offset * (width/8);
1379 bestMask = Mask.lshr(offset * (width/8) * 8);
1380 bestWidth = width;
1381 break;
1382 }
1383 newMask = newMask << width;
1384 }
1385 }
1386 }
1387 if (bestWidth) {
1388 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1389 if (newVT.isRound()) {
1390 EVT PtrType = Lod->getOperand(1).getValueType();
1391 SDValue Ptr = Lod->getBasePtr();
1392 if (bestOffset != 0)
1393 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1394 DAG.getConstant(bestOffset, PtrType));
1395 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1396 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1397 Lod->getPointerInfo().getWithOffset(bestOffset),
1398 false, false, false, NewAlign);
1399 return DAG.getSetCC(dl, VT,
1400 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1401 DAG.getConstant(bestMask.trunc(bestWidth),
1402 newVT)),
1403 DAG.getConstant(0LL, newVT), Cond);
1404 }
1405 }
1406 }
1407
1408 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1409 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1410 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1411
1412 // If the comparison constant has bits in the upper part, the
1413 // zero-extended value could never match.
1414 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1415 C1.getBitWidth() - InSize))) {
1416 switch (Cond) {
1417 case ISD::SETUGT:
1418 case ISD::SETUGE:
1419 case ISD::SETEQ: return DAG.getConstant(0, VT);
1420 case ISD::SETULT:
1421 case ISD::SETULE:
1422 case ISD::SETNE: return DAG.getConstant(1, VT);
1423 case ISD::SETGT:
1424 case ISD::SETGE:
1425 // True if the sign bit of C1 is set.
1426 return DAG.getConstant(C1.isNegative(), VT);
1427 case ISD::SETLT:
1428 case ISD::SETLE:
1429 // True if the sign bit of C1 isn't set.
1430 return DAG.getConstant(C1.isNonNegative(), VT);
1431 default:
1432 break;
1433 }
1434 }
1435
1436 // Otherwise, we can perform the comparison with the low bits.
1437 switch (Cond) {
1438 case ISD::SETEQ:
1439 case ISD::SETNE:
1440 case ISD::SETUGT:
1441 case ISD::SETUGE:
1442 case ISD::SETULT:
1443 case ISD::SETULE: {
1444 EVT newVT = N0.getOperand(0).getValueType();
1445 if (DCI.isBeforeLegalizeOps() ||
1446 (isOperationLegal(ISD::SETCC, newVT) &&
1447 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
1448 EVT NewSetCCVT = getSetCCResultType(*DAG.getContext(), newVT);
1449 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), newVT);
1450
1451 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
1452 NewConst, Cond);
1453 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
1454 }
1455 break;
1456 }
1457 default:
1458 break; // todo, be more careful with signed comparisons
1459 }
1460 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1461 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1462 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1463 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1464 EVT ExtDstTy = N0.getValueType();
1465 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1466
1467 // If the constant doesn't fit into the number of bits for the source of
1468 // the sign extension, it is impossible for both sides to be equal.
1469 if (C1.getMinSignedBits() > ExtSrcTyBits)
1470 return DAG.getConstant(Cond == ISD::SETNE, VT);
1471
1472 SDValue ZextOp;
1473 EVT Op0Ty = N0.getOperand(0).getValueType();
1474 if (Op0Ty == ExtSrcTy) {
1475 ZextOp = N0.getOperand(0);
1476 } else {
1477 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1478 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1479 DAG.getConstant(Imm, Op0Ty));
1480 }
1481 if (!DCI.isCalledByLegalizer())
1482 DCI.AddToWorklist(ZextOp.getNode());
1483 // Otherwise, make this a use of a zext.
1484 return DAG.getSetCC(dl, VT, ZextOp,
1485 DAG.getConstant(C1 & APInt::getLowBitsSet(
1486 ExtDstTyBits,
1487 ExtSrcTyBits),
1488 ExtDstTy),
1489 Cond);
1490 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1491 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1492 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1493 if (N0.getOpcode() == ISD::SETCC &&
1494 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1495 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1496 if (TrueWhenTrue)
1497 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1498 // Invert the condition.
1499 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1500 CC = ISD::getSetCCInverse(CC,
1501 N0.getOperand(0).getValueType().isInteger());
1502 if (DCI.isBeforeLegalizeOps() ||
1503 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1504 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1505 }
1506
1507 if ((N0.getOpcode() == ISD::XOR ||
1508 (N0.getOpcode() == ISD::AND &&
1509 N0.getOperand(0).getOpcode() == ISD::XOR &&
1510 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1511 isa<ConstantSDNode>(N0.getOperand(1)) &&
1512 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1513 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1514 // can only do this if the top bits are known zero.
1515 unsigned BitWidth = N0.getValueSizeInBits();
1516 if (DAG.MaskedValueIsZero(N0,
1517 APInt::getHighBitsSet(BitWidth,
1518 BitWidth-1))) {
1519 // Okay, get the un-inverted input value.
1520 SDValue Val;
1521 if (N0.getOpcode() == ISD::XOR)
1522 Val = N0.getOperand(0);
1523 else {
1524 assert(N0.getOpcode() == ISD::AND &&
1525 N0.getOperand(0).getOpcode() == ISD::XOR);
1526 // ((X^1)&1)^1 -> X & 1
1527 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1528 N0.getOperand(0).getOperand(0),
1529 N0.getOperand(1));
1530 }
1531
1532 return DAG.getSetCC(dl, VT, Val, N1,
1533 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1534 }
1535 } else if (N1C->getAPIntValue() == 1 &&
1536 (VT == MVT::i1 ||
1537 getBooleanContents(N0->getValueType(0)) ==
1538 ZeroOrOneBooleanContent)) {
1539 SDValue Op0 = N0;
1540 if (Op0.getOpcode() == ISD::TRUNCATE)
1541 Op0 = Op0.getOperand(0);
1542
1543 if ((Op0.getOpcode() == ISD::XOR) &&
1544 Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1545 Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1546 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1547 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1548 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1549 Cond);
1550 }
1551 if (Op0.getOpcode() == ISD::AND &&
1552 isa<ConstantSDNode>(Op0.getOperand(1)) &&
1553 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1554 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1555 if (Op0.getValueType().bitsGT(VT))
1556 Op0 = DAG.getNode(ISD::AND, dl, VT,
1557 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1558 DAG.getConstant(1, VT));
1559 else if (Op0.getValueType().bitsLT(VT))
1560 Op0 = DAG.getNode(ISD::AND, dl, VT,
1561 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1562 DAG.getConstant(1, VT));
1563
1564 return DAG.getSetCC(dl, VT, Op0,
1565 DAG.getConstant(0, Op0.getValueType()),
1566 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1567 }
1568 if (Op0.getOpcode() == ISD::AssertZext &&
1569 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1570 return DAG.getSetCC(dl, VT, Op0,
1571 DAG.getConstant(0, Op0.getValueType()),
1572 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1573 }
1574 }
1575
1576 APInt MinVal, MaxVal;
1577 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1578 if (ISD::isSignedIntSetCC(Cond)) {
1579 MinVal = APInt::getSignedMinValue(OperandBitSize);
1580 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1581 } else {
1582 MinVal = APInt::getMinValue(OperandBitSize);
1583 MaxVal = APInt::getMaxValue(OperandBitSize);
1584 }
1585
1586 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1587 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1588 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
1589 // X >= C0 --> X > (C0 - 1)
1590 APInt C = C1 - 1;
1591 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
1592 if ((DCI.isBeforeLegalizeOps() ||
1593 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1594 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1595 isLegalICmpImmediate(C.getSExtValue())))) {
1596 return DAG.getSetCC(dl, VT, N0,
1597 DAG.getConstant(C, N1.getValueType()),
1598 NewCC);
1599 }
1600 }
1601
1602 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1603 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
1604 // X <= C0 --> X < (C0 + 1)
1605 APInt C = C1 + 1;
1606 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
1607 if ((DCI.isBeforeLegalizeOps() ||
1608 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1609 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1610 isLegalICmpImmediate(C.getSExtValue())))) {
1611 return DAG.getSetCC(dl, VT, N0,
1612 DAG.getConstant(C, N1.getValueType()),
1613 NewCC);
1614 }
1615 }
1616
1617 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1618 return DAG.getConstant(0, VT); // X < MIN --> false
1619 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1620 return DAG.getConstant(1, VT); // X >= MIN --> true
1621 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1622 return DAG.getConstant(0, VT); // X > MAX --> false
1623 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1624 return DAG.getConstant(1, VT); // X <= MAX --> true
1625
1626 // Canonicalize setgt X, Min --> setne X, Min
1627 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1628 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1629 // Canonicalize setlt X, Max --> setne X, Max
1630 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1631 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1632
1633 // If we have setult X, 1, turn it into seteq X, 0
1634 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1635 return DAG.getSetCC(dl, VT, N0,
1636 DAG.getConstant(MinVal, N0.getValueType()),
1637 ISD::SETEQ);
1638 // If we have setugt X, Max-1, turn it into seteq X, Max
1639 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1640 return DAG.getSetCC(dl, VT, N0,
1641 DAG.getConstant(MaxVal, N0.getValueType()),
1642 ISD::SETEQ);
1643
1644 // If we have "setcc X, C0", check to see if we can shrink the immediate
1645 // by changing cc.
1646
1647 // SETUGT X, SINTMAX -> SETLT X, 0
1648 if (Cond == ISD::SETUGT &&
1649 C1 == APInt::getSignedMaxValue(OperandBitSize))
1650 return DAG.getSetCC(dl, VT, N0,
1651 DAG.getConstant(0, N1.getValueType()),
1652 ISD::SETLT);
1653
1654 // SETULT X, SINTMIN -> SETGT X, -1
1655 if (Cond == ISD::SETULT &&
1656 C1 == APInt::getSignedMinValue(OperandBitSize)) {
1657 SDValue ConstMinusOne =
1658 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1659 N1.getValueType());
1660 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1661 }
1662
1663 // Fold bit comparisons when we can.
1664 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1665 (VT == N0.getValueType() ||
1666 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1667 N0.getOpcode() == ISD::AND)
1668 if (ConstantSDNode *AndRHS =
1669 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1670 EVT ShiftTy = DCI.isBeforeLegalize() ?
1671 getPointerTy() : getShiftAmountTy(N0.getValueType());
1672 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
1673 // Perform the xform if the AND RHS is a single bit.
1674 if (AndRHS->getAPIntValue().isPowerOf2()) {
1675 return DAG.getNode(ISD::TRUNCATE, dl, VT,
1676 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1677 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
1678 }
1679 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1680 // (X & 8) == 8 --> (X & 8) >> 3
1681 // Perform the xform if C1 is a single bit.
1682 if (C1.isPowerOf2()) {
1683 return DAG.getNode(ISD::TRUNCATE, dl, VT,
1684 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1685 DAG.getConstant(C1.logBase2(), ShiftTy)));
1686 }
1687 }
1688 }
1689
1690 if (C1.getMinSignedBits() <= 64 &&
1691 !isLegalICmpImmediate(C1.getSExtValue())) {
1692 // (X & -256) == 256 -> (X >> 8) == 1
1693 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1694 N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
1695 if (ConstantSDNode *AndRHS =
1696 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1697 const APInt &AndRHSC = AndRHS->getAPIntValue();
1698 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
1699 unsigned ShiftBits = AndRHSC.countTrailingZeros();
1700 EVT ShiftTy = DCI.isBeforeLegalize() ?
1701 getPointerTy() : getShiftAmountTy(N0.getValueType());
1702 EVT CmpTy = N0.getValueType();
1703 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
1704 DAG.getConstant(ShiftBits, ShiftTy));
1705 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
1706 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
1707 }
1708 }
1709 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
1710 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
1711 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
1712 // X < 0x100000000 -> (X >> 32) < 1
1713 // X >= 0x100000000 -> (X >> 32) >= 1
1714 // X <= 0x0ffffffff -> (X >> 32) < 1
1715 // X > 0x0ffffffff -> (X >> 32) >= 1
1716 unsigned ShiftBits;
1717 APInt NewC = C1;
1718 ISD::CondCode NewCond = Cond;
1719 if (AdjOne) {
1720 ShiftBits = C1.countTrailingOnes();
1721 NewC = NewC + 1;
1722 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1723 } else {
1724 ShiftBits = C1.countTrailingZeros();
1725 }
1726 NewC = NewC.lshr(ShiftBits);
1727 if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
1728 EVT ShiftTy = DCI.isBeforeLegalize() ?
1729 getPointerTy() : getShiftAmountTy(N0.getValueType());
1730 EVT CmpTy = N0.getValueType();
1731 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
1732 DAG.getConstant(ShiftBits, ShiftTy));
1733 SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
1734 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
1735 }
1736 }
1737 }
1738 }
1739
1740 if (isa<ConstantFPSDNode>(N0.getNode())) {
1741 // Constant fold or commute setcc.
1742 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1743 if (O.getNode()) return O;
1744 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1745 // If the RHS of an FP comparison is a constant, simplify it away in
1746 // some cases.
1747 if (CFP->getValueAPF().isNaN()) {
1748 // If an operand is known to be a nan, we can fold it.
1749 switch (ISD::getUnorderedFlavor(Cond)) {
1750 default: llvm_unreachable("Unknown flavor!");
1751 case 0: // Known false.
1752 return DAG.getConstant(0, VT);
1753 case 1: // Known true.
1754 return DAG.getConstant(1, VT);
1755 case 2: // Undefined.
1756 return DAG.getUNDEF(VT);
1757 }
1758 }
1759
1760 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
1761 // constant if knowing that the operand is non-nan is enough. We prefer to
1762 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1763 // materialize 0.0.
1764 if (Cond == ISD::SETO || Cond == ISD::SETUO)
1765 return DAG.getSetCC(dl, VT, N0, N0, Cond);
1766
1767 // If the condition is not legal, see if we can find an equivalent one
1768 // which is legal.
1769 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
1770 // If the comparison was an awkward floating-point == or != and one of
1771 // the comparison operands is infinity or negative infinity, convert the
1772 // condition to a less-awkward <= or >=.
1773 if (CFP->getValueAPF().isInfinity()) {
1774 if (CFP->getValueAPF().isNegative()) {
1775 if (Cond == ISD::SETOEQ &&
1776 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1777 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
1778 if (Cond == ISD::SETUEQ &&
1779 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1780 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
1781 if (Cond == ISD::SETUNE &&
1782 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1783 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
1784 if (Cond == ISD::SETONE &&
1785 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1786 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
1787 } else {
1788 if (Cond == ISD::SETOEQ &&
1789 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1790 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
1791 if (Cond == ISD::SETUEQ &&
1792 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1793 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
1794 if (Cond == ISD::SETUNE &&
1795 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1796 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
1797 if (Cond == ISD::SETONE &&
1798 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1799 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
1800 }
1801 }
1802 }
1803 }
1804
1805 if (N0 == N1) {
1806 // The sext(setcc()) => setcc() optimization relies on the appropriate
1807 // constant being emitted.
1808 uint64_t EqVal = 0;
1809 switch (getBooleanContents(N0.getValueType())) {
1810 case UndefinedBooleanContent:
1811 case ZeroOrOneBooleanContent:
1812 EqVal = ISD::isTrueWhenEqual(Cond);
1813 break;
1814 case ZeroOrNegativeOneBooleanContent:
1815 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
1816 break;
1817 }
1818
1819 // We can always fold X == X for integer setcc's.
1820 if (N0.getValueType().isInteger()) {
1821 return DAG.getConstant(EqVal, VT);
1822 }
1823 unsigned UOF = ISD::getUnorderedFlavor(Cond);
1824 if (UOF == 2) // FP operators that are undefined on NaNs.
1825 return DAG.getConstant(EqVal, VT);
1826 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1827 return DAG.getConstant(EqVal, VT);
1828 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1829 // if it is not already.
1830 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1831 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
1832 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
1833 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1834 }
1835
1836 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1837 N0.getValueType().isInteger()) {
1838 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1839 N0.getOpcode() == ISD::XOR) {
1840 // Simplify (X+Y) == (X+Z) --> Y == Z
1841 if (N0.getOpcode() == N1.getOpcode()) {
1842 if (N0.getOperand(0) == N1.getOperand(0))
1843 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1844 if (N0.getOperand(1) == N1.getOperand(1))
1845 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1846 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1847 // If X op Y == Y op X, try other combinations.
1848 if (N0.getOperand(0) == N1.getOperand(1))
1849 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1850 Cond);
1851 if (N0.getOperand(1) == N1.getOperand(0))
1852 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1853 Cond);
1854 }
1855 }
1856
1857 // If RHS is a legal immediate value for a compare instruction, we need
1858 // to be careful about increasing register pressure needlessly.
1859 bool LegalRHSImm = false;
1860
1861 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1862 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1863 // Turn (X+C1) == C2 --> X == C2-C1
1864 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1865 return DAG.getSetCC(dl, VT, N0.getOperand(0),
1866 DAG.getConstant(RHSC->getAPIntValue()-
1867 LHSR->getAPIntValue(),
1868 N0.getValueType()), Cond);
1869 }
1870
1871 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1872 if (N0.getOpcode() == ISD::XOR)
1873 // If we know that all of the inverted bits are zero, don't bother
1874 // performing the inversion.
1875 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1876 return
1877 DAG.getSetCC(dl, VT, N0.getOperand(0),
1878 DAG.getConstant(LHSR->getAPIntValue() ^
1879 RHSC->getAPIntValue(),
1880 N0.getValueType()),
1881 Cond);
1882 }
1883
1884 // Turn (C1-X) == C2 --> X == C1-C2
1885 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1886 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1887 return
1888 DAG.getSetCC(dl, VT, N0.getOperand(1),
1889 DAG.getConstant(SUBC->getAPIntValue() -
1890 RHSC->getAPIntValue(),
1891 N0.getValueType()),
1892 Cond);
1893 }
1894 }
1895
1896 // Could RHSC fold directly into a compare?
1897 if (RHSC->getValueType(0).getSizeInBits() <= 64)
1898 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
1899 }
1900
1901 // Simplify (X+Z) == X --> Z == 0
1902 // Don't do this if X is an immediate that can fold into a cmp
1903 // instruction and X+Z has other uses. It could be an induction variable
1904 // chain, and the transform would increase register pressure.
1905 if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
1906 if (N0.getOperand(0) == N1)
1907 return DAG.getSetCC(dl, VT, N0.getOperand(1),
1908 DAG.getConstant(0, N0.getValueType()), Cond);
1909 if (N0.getOperand(1) == N1) {
1910 if (DAG.isCommutativeBinOp(N0.getOpcode()))
1911 return DAG.getSetCC(dl, VT, N0.getOperand(0),
1912 DAG.getConstant(0, N0.getValueType()), Cond);
1913 if (N0.getNode()->hasOneUse()) {
1914 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1915 // (Z-X) == X --> Z == X<<1
1916 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
1917 DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
1918 if (!DCI.isCalledByLegalizer())
1919 DCI.AddToWorklist(SH.getNode());
1920 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1921 }
1922 }
1923 }
1924 }
1925
1926 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1927 N1.getOpcode() == ISD::XOR) {
1928 // Simplify X == (X+Z) --> Z == 0
1929 if (N1.getOperand(0) == N0)
1930 return DAG.getSetCC(dl, VT, N1.getOperand(1),
1931 DAG.getConstant(0, N1.getValueType()), Cond);
1932 if (N1.getOperand(1) == N0) {
1933 if (DAG.isCommutativeBinOp(N1.getOpcode()))
1934 return DAG.getSetCC(dl, VT, N1.getOperand(0),
1935 DAG.getConstant(0, N1.getValueType()), Cond);
1936 if (N1.getNode()->hasOneUse()) {
1937 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1938 // X == (Z-X) --> X<<1 == Z
1939 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1940 DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
1941 if (!DCI.isCalledByLegalizer())
1942 DCI.AddToWorklist(SH.getNode());
1943 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1944 }
1945 }
1946 }
1947
1948 // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1949 // Note that where y is variable and is known to have at most
1950 // one bit set (for example, if it is z&1) we cannot do this;
1951 // the expressions are not equivalent when y==0.
1952 if (N0.getOpcode() == ISD::AND)
1953 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1954 if (ValueHasExactlyOneBitSet(N1, DAG)) {
1955 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1956 if (DCI.isBeforeLegalizeOps() ||
1957 isCondCodeLegal(Cond, N0.getSimpleValueType())) {
1958 SDValue Zero = DAG.getConstant(0, N1.getValueType());
1959 return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1960 }
1961 }
1962 }
1963 if (N1.getOpcode() == ISD::AND)
1964 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1965 if (ValueHasExactlyOneBitSet(N0, DAG)) {
1966 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1967 if (DCI.isBeforeLegalizeOps() ||
1968 isCondCodeLegal(Cond, N1.getSimpleValueType())) {
1969 SDValue Zero = DAG.getConstant(0, N0.getValueType());
1970 return DAG.getSetCC(dl, VT, N1, Zero, Cond);
1971 }
1972 }
1973 }
1974 }
1975
1976 // Fold away ALL boolean setcc's.
1977 SDValue Temp;
1978 if (N0.getValueType() == MVT::i1 && foldBooleans) {
1979 switch (Cond) {
1980 default: llvm_unreachable("Unknown integer setcc!");
1981 case ISD::SETEQ: // X == Y -> ~(X^Y)
1982 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1983 N0 = DAG.getNOT(dl, Temp, MVT::i1);
1984 if (!DCI.isCalledByLegalizer())
1985 DCI.AddToWorklist(Temp.getNode());
1986 break;
1987 case ISD::SETNE: // X != Y --> (X^Y)
1988 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1989 break;
1990 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
1991 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
1992 Temp = DAG.getNOT(dl, N0, MVT::i1);
1993 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
1994 if (!DCI.isCalledByLegalizer())
1995 DCI.AddToWorklist(Temp.getNode());
1996 break;
1997 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
1998 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
1999 Temp = DAG.getNOT(dl, N1, MVT::i1);
2000 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2001 if (!DCI.isCalledByLegalizer())
2002 DCI.AddToWorklist(Temp.getNode());
2003 break;
2004 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
2005 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
2006 Temp = DAG.getNOT(dl, N0, MVT::i1);
2007 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2008 if (!DCI.isCalledByLegalizer())
2009 DCI.AddToWorklist(Temp.getNode());
2010 break;
2011 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
2012 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
2013 Temp = DAG.getNOT(dl, N1, MVT::i1);
2014 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2015 break;
2016 }
2017 if (VT != MVT::i1) {
2018 if (!DCI.isCalledByLegalizer())
2019 DCI.AddToWorklist(N0.getNode());
2020 // FIXME: If running after legalize, we probably can't do this.
2021 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2022 }
2023 return N0;
2024 }
2025
2026 // Could not fold it.
2027 return SDValue();
2028 }
2029
2030 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2031 /// node is a GlobalAddress + offset.
isGAPlusOffset(SDNode * N,const GlobalValue * & GA,int64_t & Offset) const2032 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2033 int64_t &Offset) const {
2034 if (isa<GlobalAddressSDNode>(N)) {
2035 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2036 GA = GASD->getGlobal();
2037 Offset += GASD->getOffset();
2038 return true;
2039 }
2040
2041 if (N->getOpcode() == ISD::ADD) {
2042 SDValue N1 = N->getOperand(0);
2043 SDValue N2 = N->getOperand(1);
2044 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2045 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2046 if (V) {
2047 Offset += V->getSExtValue();
2048 return true;
2049 }
2050 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2051 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2052 if (V) {
2053 Offset += V->getSExtValue();
2054 return true;
2055 }
2056 }
2057 }
2058
2059 return false;
2060 }
2061
2062
2063 SDValue TargetLowering::
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const2064 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2065 // Default implementation: no optimization.
2066 return SDValue();
2067 }
2068
2069 //===----------------------------------------------------------------------===//
2070 // Inline Assembler Implementation Methods
2071 //===----------------------------------------------------------------------===//
2072
2073
2074 TargetLowering::ConstraintType
getConstraintType(const std::string & Constraint) const2075 TargetLowering::getConstraintType(const std::string &Constraint) const {
2076 unsigned S = Constraint.size();
2077
2078 if (S == 1) {
2079 switch (Constraint[0]) {
2080 default: break;
2081 case 'r': return C_RegisterClass;
2082 case 'm': // memory
2083 case 'o': // offsetable
2084 case 'V': // not offsetable
2085 return C_Memory;
2086 case 'i': // Simple Integer or Relocatable Constant
2087 case 'n': // Simple Integer
2088 case 'E': // Floating Point Constant
2089 case 'F': // Floating Point Constant
2090 case 's': // Relocatable Constant
2091 case 'p': // Address.
2092 case 'X': // Allow ANY value.
2093 case 'I': // Target registers.
2094 case 'J':
2095 case 'K':
2096 case 'L':
2097 case 'M':
2098 case 'N':
2099 case 'O':
2100 case 'P':
2101 case '<':
2102 case '>':
2103 return C_Other;
2104 }
2105 }
2106
2107 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2108 if (S == 8 && !Constraint.compare(1, 6, "memory", 6)) // "{memory}"
2109 return C_Memory;
2110 return C_Register;
2111 }
2112 return C_Unknown;
2113 }
2114
2115 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2116 /// with another that has more specific requirements based on the type of the
2117 /// corresponding operand.
LowerXConstraint(EVT ConstraintVT) const2118 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2119 if (ConstraintVT.isInteger())
2120 return "r";
2121 if (ConstraintVT.isFloatingPoint())
2122 return "f"; // works for many targets
2123 return nullptr;
2124 }
2125
2126 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2127 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const2128 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2129 std::string &Constraint,
2130 std::vector<SDValue> &Ops,
2131 SelectionDAG &DAG) const {
2132
2133 if (Constraint.length() > 1) return;
2134
2135 char ConstraintLetter = Constraint[0];
2136 switch (ConstraintLetter) {
2137 default: break;
2138 case 'X': // Allows any operand; labels (basic block) use this.
2139 if (Op.getOpcode() == ISD::BasicBlock) {
2140 Ops.push_back(Op);
2141 return;
2142 }
2143 // fall through
2144 case 'i': // Simple Integer or Relocatable Constant
2145 case 'n': // Simple Integer
2146 case 's': { // Relocatable Constant
2147 // These operands are interested in values of the form (GV+C), where C may
2148 // be folded in as an offset of GV, or it may be explicitly added. Also, it
2149 // is possible and fine if either GV or C are missing.
2150 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2151 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2152
2153 // If we have "(add GV, C)", pull out GV/C
2154 if (Op.getOpcode() == ISD::ADD) {
2155 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2156 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2157 if (!C || !GA) {
2158 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2159 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2160 }
2161 if (!C || !GA)
2162 C = nullptr, GA = nullptr;
2163 }
2164
2165 // If we find a valid operand, map to the TargetXXX version so that the
2166 // value itself doesn't get selected.
2167 if (GA) { // Either &GV or &GV+C
2168 if (ConstraintLetter != 'n') {
2169 int64_t Offs = GA->getOffset();
2170 if (C) Offs += C->getZExtValue();
2171 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2172 C ? SDLoc(C) : SDLoc(),
2173 Op.getValueType(), Offs));
2174 return;
2175 }
2176 }
2177 if (C) { // just C, no GV.
2178 // Simple constants are not allowed for 's'.
2179 if (ConstraintLetter != 's') {
2180 // gcc prints these as sign extended. Sign extend value to 64 bits
2181 // now; without this it would get ZExt'd later in
2182 // ScheduleDAGSDNodes::EmitNode, which is very generic.
2183 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2184 MVT::i64));
2185 return;
2186 }
2187 }
2188 break;
2189 }
2190 }
2191 }
2192
2193 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * RI,const std::string & Constraint,MVT VT) const2194 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
2195 const std::string &Constraint,
2196 MVT VT) const {
2197 if (Constraint.empty() || Constraint[0] != '{')
2198 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
2199 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2200
2201 // Remove the braces from around the name.
2202 StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2203
2204 std::pair<unsigned, const TargetRegisterClass*> R =
2205 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
2206
2207 // Figure out which register class contains this reg.
2208 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2209 E = RI->regclass_end(); RCI != E; ++RCI) {
2210 const TargetRegisterClass *RC = *RCI;
2211
2212 // If none of the value types for this register class are valid, we
2213 // can't use it. For example, 64-bit reg classes on 32-bit targets.
2214 if (!isLegalRC(RC))
2215 continue;
2216
2217 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2218 I != E; ++I) {
2219 if (RegName.equals_lower(RI->getName(*I))) {
2220 std::pair<unsigned, const TargetRegisterClass*> S =
2221 std::make_pair(*I, RC);
2222
2223 // If this register class has the requested value type, return it,
2224 // otherwise keep searching and return the first class found
2225 // if no other is found which explicitly has the requested type.
2226 if (RC->hasType(VT))
2227 return S;
2228 else if (!R.second)
2229 R = S;
2230 }
2231 }
2232 }
2233
2234 return R;
2235 }
2236
2237 //===----------------------------------------------------------------------===//
2238 // Constraint Selection.
2239
2240 /// isMatchingInputConstraint - Return true of this is an input operand that is
2241 /// a matching constraint like "4".
isMatchingInputConstraint() const2242 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2243 assert(!ConstraintCode.empty() && "No known constraint!");
2244 return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2245 }
2246
2247 /// getMatchedOperand - If this is an input matching constraint, this method
2248 /// returns the output operand it matches.
getMatchedOperand() const2249 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2250 assert(!ConstraintCode.empty() && "No known constraint!");
2251 return atoi(ConstraintCode.c_str());
2252 }
2253
2254
2255 /// ParseConstraints - Split up the constraint string from the inline
2256 /// assembly value into the specific constraints and their prefixes,
2257 /// and also tie in the associated operand values.
2258 /// If this returns an empty vector, and if the constraint string itself
2259 /// isn't empty, there was an error parsing.
2260 TargetLowering::AsmOperandInfoVector
ParseConstraints(const TargetRegisterInfo * TRI,ImmutableCallSite CS) const2261 TargetLowering::ParseConstraints(const TargetRegisterInfo *TRI,
2262 ImmutableCallSite CS) const {
2263 /// ConstraintOperands - Information about all of the constraints.
2264 AsmOperandInfoVector ConstraintOperands;
2265 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2266 unsigned maCount = 0; // Largest number of multiple alternative constraints.
2267
2268 // Do a prepass over the constraints, canonicalizing them, and building up the
2269 // ConstraintOperands list.
2270 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
2271 unsigned ResNo = 0; // ResNo - The result number of the next output.
2272
2273 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2274 ConstraintOperands.emplace_back(std::move(CI));
2275 AsmOperandInfo &OpInfo = ConstraintOperands.back();
2276
2277 // Update multiple alternative constraint count.
2278 if (OpInfo.multipleAlternatives.size() > maCount)
2279 maCount = OpInfo.multipleAlternatives.size();
2280
2281 OpInfo.ConstraintVT = MVT::Other;
2282
2283 // Compute the value type for each operand.
2284 switch (OpInfo.Type) {
2285 case InlineAsm::isOutput:
2286 // Indirect outputs just consume an argument.
2287 if (OpInfo.isIndirect) {
2288 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2289 break;
2290 }
2291
2292 // The return value of the call is this value. As such, there is no
2293 // corresponding argument.
2294 assert(!CS.getType()->isVoidTy() &&
2295 "Bad inline asm!");
2296 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2297 OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo));
2298 } else {
2299 assert(ResNo == 0 && "Asm only has one result!");
2300 OpInfo.ConstraintVT = getSimpleValueType(CS.getType());
2301 }
2302 ++ResNo;
2303 break;
2304 case InlineAsm::isInput:
2305 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2306 break;
2307 case InlineAsm::isClobber:
2308 // Nothing to do.
2309 break;
2310 }
2311
2312 if (OpInfo.CallOperandVal) {
2313 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2314 if (OpInfo.isIndirect) {
2315 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2316 if (!PtrTy)
2317 report_fatal_error("Indirect operand for inline asm not a pointer!");
2318 OpTy = PtrTy->getElementType();
2319 }
2320
2321 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2322 if (StructType *STy = dyn_cast<StructType>(OpTy))
2323 if (STy->getNumElements() == 1)
2324 OpTy = STy->getElementType(0);
2325
2326 // If OpTy is not a single value, it may be a struct/union that we
2327 // can tile with integers.
2328 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2329 unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy);
2330 switch (BitSize) {
2331 default: break;
2332 case 1:
2333 case 8:
2334 case 16:
2335 case 32:
2336 case 64:
2337 case 128:
2338 OpInfo.ConstraintVT =
2339 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2340 break;
2341 }
2342 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2343 unsigned PtrSize
2344 = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace());
2345 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
2346 } else {
2347 OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2348 }
2349 }
2350 }
2351
2352 // If we have multiple alternative constraints, select the best alternative.
2353 if (!ConstraintOperands.empty()) {
2354 if (maCount) {
2355 unsigned bestMAIndex = 0;
2356 int bestWeight = -1;
2357 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
2358 int weight = -1;
2359 unsigned maIndex;
2360 // Compute the sums of the weights for each alternative, keeping track
2361 // of the best (highest weight) one so far.
2362 for (maIndex = 0; maIndex < maCount; ++maIndex) {
2363 int weightSum = 0;
2364 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2365 cIndex != eIndex; ++cIndex) {
2366 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2367 if (OpInfo.Type == InlineAsm::isClobber)
2368 continue;
2369
2370 // If this is an output operand with a matching input operand,
2371 // look up the matching input. If their types mismatch, e.g. one
2372 // is an integer, the other is floating point, or their sizes are
2373 // different, flag it as an maCantMatch.
2374 if (OpInfo.hasMatchingInput()) {
2375 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2376 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2377 if ((OpInfo.ConstraintVT.isInteger() !=
2378 Input.ConstraintVT.isInteger()) ||
2379 (OpInfo.ConstraintVT.getSizeInBits() !=
2380 Input.ConstraintVT.getSizeInBits())) {
2381 weightSum = -1; // Can't match.
2382 break;
2383 }
2384 }
2385 }
2386 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2387 if (weight == -1) {
2388 weightSum = -1;
2389 break;
2390 }
2391 weightSum += weight;
2392 }
2393 // Update best.
2394 if (weightSum > bestWeight) {
2395 bestWeight = weightSum;
2396 bestMAIndex = maIndex;
2397 }
2398 }
2399
2400 // Now select chosen alternative in each constraint.
2401 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2402 cIndex != eIndex; ++cIndex) {
2403 AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2404 if (cInfo.Type == InlineAsm::isClobber)
2405 continue;
2406 cInfo.selectAlternative(bestMAIndex);
2407 }
2408 }
2409 }
2410
2411 // Check and hook up tied operands, choose constraint code to use.
2412 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2413 cIndex != eIndex; ++cIndex) {
2414 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2415
2416 // If this is an output operand with a matching input operand, look up the
2417 // matching input. If their types mismatch, e.g. one is an integer, the
2418 // other is floating point, or their sizes are different, flag it as an
2419 // error.
2420 if (OpInfo.hasMatchingInput()) {
2421 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2422
2423 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2424 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
2425 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
2426 OpInfo.ConstraintVT);
2427 std::pair<unsigned, const TargetRegisterClass *> InputRC =
2428 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
2429 Input.ConstraintVT);
2430 if ((OpInfo.ConstraintVT.isInteger() !=
2431 Input.ConstraintVT.isInteger()) ||
2432 (MatchRC.second != InputRC.second)) {
2433 report_fatal_error("Unsupported asm: input constraint"
2434 " with a matching output constraint of"
2435 " incompatible type!");
2436 }
2437 }
2438
2439 }
2440 }
2441
2442 return ConstraintOperands;
2443 }
2444
2445
2446 /// getConstraintGenerality - Return an integer indicating how general CT
2447 /// is.
getConstraintGenerality(TargetLowering::ConstraintType CT)2448 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2449 switch (CT) {
2450 case TargetLowering::C_Other:
2451 case TargetLowering::C_Unknown:
2452 return 0;
2453 case TargetLowering::C_Register:
2454 return 1;
2455 case TargetLowering::C_RegisterClass:
2456 return 2;
2457 case TargetLowering::C_Memory:
2458 return 3;
2459 }
2460 llvm_unreachable("Invalid constraint type");
2461 }
2462
2463 /// Examine constraint type and operand type and determine a weight value.
2464 /// This object must already have been set up with the operand type
2465 /// and the current alternative constraint selected.
2466 TargetLowering::ConstraintWeight
getMultipleConstraintMatchWeight(AsmOperandInfo & info,int maIndex) const2467 TargetLowering::getMultipleConstraintMatchWeight(
2468 AsmOperandInfo &info, int maIndex) const {
2469 InlineAsm::ConstraintCodeVector *rCodes;
2470 if (maIndex >= (int)info.multipleAlternatives.size())
2471 rCodes = &info.Codes;
2472 else
2473 rCodes = &info.multipleAlternatives[maIndex].Codes;
2474 ConstraintWeight BestWeight = CW_Invalid;
2475
2476 // Loop over the options, keeping track of the most general one.
2477 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2478 ConstraintWeight weight =
2479 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2480 if (weight > BestWeight)
2481 BestWeight = weight;
2482 }
2483
2484 return BestWeight;
2485 }
2486
2487 /// Examine constraint type and operand type and determine a weight value.
2488 /// This object must already have been set up with the operand type
2489 /// and the current alternative constraint selected.
2490 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const2491 TargetLowering::getSingleConstraintMatchWeight(
2492 AsmOperandInfo &info, const char *constraint) const {
2493 ConstraintWeight weight = CW_Invalid;
2494 Value *CallOperandVal = info.CallOperandVal;
2495 // If we don't have a value, we can't do a match,
2496 // but allow it at the lowest weight.
2497 if (!CallOperandVal)
2498 return CW_Default;
2499 // Look at the constraint type.
2500 switch (*constraint) {
2501 case 'i': // immediate integer.
2502 case 'n': // immediate integer with a known value.
2503 if (isa<ConstantInt>(CallOperandVal))
2504 weight = CW_Constant;
2505 break;
2506 case 's': // non-explicit intregal immediate.
2507 if (isa<GlobalValue>(CallOperandVal))
2508 weight = CW_Constant;
2509 break;
2510 case 'E': // immediate float if host format.
2511 case 'F': // immediate float.
2512 if (isa<ConstantFP>(CallOperandVal))
2513 weight = CW_Constant;
2514 break;
2515 case '<': // memory operand with autodecrement.
2516 case '>': // memory operand with autoincrement.
2517 case 'm': // memory operand.
2518 case 'o': // offsettable memory operand
2519 case 'V': // non-offsettable memory operand
2520 weight = CW_Memory;
2521 break;
2522 case 'r': // general register.
2523 case 'g': // general register, memory operand or immediate integer.
2524 // note: Clang converts "g" to "imr".
2525 if (CallOperandVal->getType()->isIntegerTy())
2526 weight = CW_Register;
2527 break;
2528 case 'X': // any operand.
2529 default:
2530 weight = CW_Default;
2531 break;
2532 }
2533 return weight;
2534 }
2535
2536 /// ChooseConstraint - If there are multiple different constraints that we
2537 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2538 /// This is somewhat tricky: constraints fall into four classes:
2539 /// Other -> immediates and magic values
2540 /// Register -> one specific register
2541 /// RegisterClass -> a group of regs
2542 /// Memory -> memory
2543 /// Ideally, we would pick the most specific constraint possible: if we have
2544 /// something that fits into a register, we would pick it. The problem here
2545 /// is that if we have something that could either be in a register or in
2546 /// memory that use of the register could cause selection of *other*
2547 /// operands to fail: they might only succeed if we pick memory. Because of
2548 /// this the heuristic we use is:
2549 ///
2550 /// 1) If there is an 'other' constraint, and if the operand is valid for
2551 /// that constraint, use it. This makes us take advantage of 'i'
2552 /// constraints when available.
2553 /// 2) Otherwise, pick the most general constraint present. This prefers
2554 /// 'm' over 'r', for example.
2555 ///
ChooseConstraint(TargetLowering::AsmOperandInfo & OpInfo,const TargetLowering & TLI,SDValue Op,SelectionDAG * DAG)2556 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2557 const TargetLowering &TLI,
2558 SDValue Op, SelectionDAG *DAG) {
2559 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2560 unsigned BestIdx = 0;
2561 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2562 int BestGenerality = -1;
2563
2564 // Loop over the options, keeping track of the most general one.
2565 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2566 TargetLowering::ConstraintType CType =
2567 TLI.getConstraintType(OpInfo.Codes[i]);
2568
2569 // If this is an 'other' constraint, see if the operand is valid for it.
2570 // For example, on X86 we might have an 'rI' constraint. If the operand
2571 // is an integer in the range [0..31] we want to use I (saving a load
2572 // of a register), otherwise we must use 'r'.
2573 if (CType == TargetLowering::C_Other && Op.getNode()) {
2574 assert(OpInfo.Codes[i].size() == 1 &&
2575 "Unhandled multi-letter 'other' constraint");
2576 std::vector<SDValue> ResultOps;
2577 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2578 ResultOps, *DAG);
2579 if (!ResultOps.empty()) {
2580 BestType = CType;
2581 BestIdx = i;
2582 break;
2583 }
2584 }
2585
2586 // Things with matching constraints can only be registers, per gcc
2587 // documentation. This mainly affects "g" constraints.
2588 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2589 continue;
2590
2591 // This constraint letter is more general than the previous one, use it.
2592 int Generality = getConstraintGenerality(CType);
2593 if (Generality > BestGenerality) {
2594 BestType = CType;
2595 BestIdx = i;
2596 BestGenerality = Generality;
2597 }
2598 }
2599
2600 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2601 OpInfo.ConstraintType = BestType;
2602 }
2603
2604 /// ComputeConstraintToUse - Determines the constraint code and constraint
2605 /// type to use for the specific AsmOperandInfo, setting
2606 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
ComputeConstraintToUse(AsmOperandInfo & OpInfo,SDValue Op,SelectionDAG * DAG) const2607 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2608 SDValue Op,
2609 SelectionDAG *DAG) const {
2610 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2611
2612 // Single-letter constraints ('r') are very common.
2613 if (OpInfo.Codes.size() == 1) {
2614 OpInfo.ConstraintCode = OpInfo.Codes[0];
2615 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2616 } else {
2617 ChooseConstraint(OpInfo, *this, Op, DAG);
2618 }
2619
2620 // 'X' matches anything.
2621 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2622 // Labels and constants are handled elsewhere ('X' is the only thing
2623 // that matches labels). For Functions, the type here is the type of
2624 // the result, which is not what we want to look at; leave them alone.
2625 Value *v = OpInfo.CallOperandVal;
2626 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2627 OpInfo.CallOperandVal = v;
2628 return;
2629 }
2630
2631 // Otherwise, try to resolve it to something we know about by looking at
2632 // the actual operand type.
2633 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2634 OpInfo.ConstraintCode = Repl;
2635 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2636 }
2637 }
2638 }
2639
2640 /// \brief Given an exact SDIV by a constant, create a multiplication
2641 /// with the multiplicative inverse of the constant.
BuildExactSDIV(SDValue Op1,SDValue Op2,SDLoc dl,SelectionDAG & DAG) const2642 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
2643 SelectionDAG &DAG) const {
2644 ConstantSDNode *C = cast<ConstantSDNode>(Op2);
2645 APInt d = C->getAPIntValue();
2646 assert(d != 0 && "Division by zero!");
2647
2648 // Shift the value upfront if it is even, so the LSB is one.
2649 unsigned ShAmt = d.countTrailingZeros();
2650 if (ShAmt) {
2651 // TODO: For UDIV use SRL instead of SRA.
2652 SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
2653 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, false, false,
2654 true);
2655 d = d.ashr(ShAmt);
2656 }
2657
2658 // Calculate the multiplicative inverse, using Newton's method.
2659 APInt t, xn = d;
2660 while ((t = d*xn) != 1)
2661 xn *= APInt(d.getBitWidth(), 2) - t;
2662
2663 Op2 = DAG.getConstant(xn, Op1.getValueType());
2664 return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2665 }
2666
2667 /// \brief Given an ISD::SDIV node expressing a divide by constant,
2668 /// return a DAG expression to select that will generate the same value by
2669 /// multiplying by a magic number.
2670 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
BuildSDIV(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,bool IsAfterLegalization,std::vector<SDNode * > * Created) const2671 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
2672 SelectionDAG &DAG, bool IsAfterLegalization,
2673 std::vector<SDNode *> *Created) const {
2674 assert(Created && "No vector to hold sdiv ops.");
2675
2676 EVT VT = N->getValueType(0);
2677 SDLoc dl(N);
2678
2679 // Check to see if we can do this.
2680 // FIXME: We should be more aggressive here.
2681 if (!isTypeLegal(VT))
2682 return SDValue();
2683
2684 APInt::ms magics = Divisor.magic();
2685
2686 // Multiply the numerator (operand 0) by the magic value
2687 // FIXME: We should support doing a MUL in a wider type
2688 SDValue Q;
2689 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
2690 isOperationLegalOrCustom(ISD::MULHS, VT))
2691 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2692 DAG.getConstant(magics.m, VT));
2693 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
2694 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2695 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2696 N->getOperand(0),
2697 DAG.getConstant(magics.m, VT)).getNode(), 1);
2698 else
2699 return SDValue(); // No mulhs or equvialent
2700 // If d > 0 and m < 0, add the numerator
2701 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
2702 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2703 Created->push_back(Q.getNode());
2704 }
2705 // If d < 0 and m > 0, subtract the numerator.
2706 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
2707 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2708 Created->push_back(Q.getNode());
2709 }
2710 // Shift right algebraic if shift value is nonzero
2711 if (magics.s > 0) {
2712 Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2713 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
2714 Created->push_back(Q.getNode());
2715 }
2716 // Extract the sign bit and add it to the quotient
2717 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q,
2718 DAG.getConstant(VT.getScalarSizeInBits() - 1,
2719 getShiftAmountTy(Q.getValueType())));
2720 Created->push_back(T.getNode());
2721 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2722 }
2723
2724 /// \brief Given an ISD::UDIV node expressing a divide by constant,
2725 /// return a DAG expression to select that will generate the same value by
2726 /// multiplying by a magic number.
2727 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
BuildUDIV(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,bool IsAfterLegalization,std::vector<SDNode * > * Created) const2728 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
2729 SelectionDAG &DAG, bool IsAfterLegalization,
2730 std::vector<SDNode *> *Created) const {
2731 assert(Created && "No vector to hold udiv ops.");
2732
2733 EVT VT = N->getValueType(0);
2734 SDLoc dl(N);
2735
2736 // Check to see if we can do this.
2737 // FIXME: We should be more aggressive here.
2738 if (!isTypeLegal(VT))
2739 return SDValue();
2740
2741 // FIXME: We should use a narrower constant when the upper
2742 // bits are known to be zero.
2743 APInt::mu magics = Divisor.magicu();
2744
2745 SDValue Q = N->getOperand(0);
2746
2747 // If the divisor is even, we can avoid using the expensive fixup by shifting
2748 // the divided value upfront.
2749 if (magics.a != 0 && !Divisor[0]) {
2750 unsigned Shift = Divisor.countTrailingZeros();
2751 Q = DAG.getNode(ISD::SRL, dl, VT, Q,
2752 DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
2753 Created->push_back(Q.getNode());
2754
2755 // Get magic number for the shifted divisor.
2756 magics = Divisor.lshr(Shift).magicu(Shift);
2757 assert(magics.a == 0 && "Should use cheap fixup now");
2758 }
2759
2760 // Multiply the numerator (operand 0) by the magic value
2761 // FIXME: We should support doing a MUL in a wider type
2762 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
2763 isOperationLegalOrCustom(ISD::MULHU, VT))
2764 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
2765 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
2766 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2767 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
2768 DAG.getConstant(magics.m, VT)).getNode(), 1);
2769 else
2770 return SDValue(); // No mulhu or equvialent
2771
2772 Created->push_back(Q.getNode());
2773
2774 if (magics.a == 0) {
2775 assert(magics.s < Divisor.getBitWidth() &&
2776 "We shouldn't generate an undefined shift!");
2777 return DAG.getNode(ISD::SRL, dl, VT, Q,
2778 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
2779 } else {
2780 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2781 Created->push_back(NPQ.getNode());
2782 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2783 DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
2784 Created->push_back(NPQ.getNode());
2785 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2786 Created->push_back(NPQ.getNode());
2787 return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2788 DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
2789 }
2790 }
2791
2792 bool TargetLowering::
verifyReturnAddressArgumentIsConstant(SDValue Op,SelectionDAG & DAG) const2793 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
2794 if (!isa<ConstantSDNode>(Op.getOperand(0))) {
2795 DAG.getContext()->emitError("argument to '__builtin_return_address' must "
2796 "be a constant integer");
2797 return true;
2798 }
2799
2800 return false;
2801 }
2802
2803 //===----------------------------------------------------------------------===//
2804 // Legalization Utilities
2805 //===----------------------------------------------------------------------===//
2806
expandMUL(SDNode * N,SDValue & Lo,SDValue & Hi,EVT HiLoVT,SelectionDAG & DAG,SDValue LL,SDValue LH,SDValue RL,SDValue RH) const2807 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
2808 SelectionDAG &DAG, SDValue LL, SDValue LH,
2809 SDValue RL, SDValue RH) const {
2810 EVT VT = N->getValueType(0);
2811 SDLoc dl(N);
2812
2813 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
2814 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
2815 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
2816 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
2817 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
2818 unsigned OuterBitSize = VT.getSizeInBits();
2819 unsigned InnerBitSize = HiLoVT.getSizeInBits();
2820 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
2821 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
2822
2823 // LL, LH, RL, and RH must be either all NULL or all set to a value.
2824 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
2825 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
2826
2827 if (!LL.getNode() && !RL.getNode() &&
2828 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
2829 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0));
2830 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1));
2831 }
2832
2833 if (!LL.getNode())
2834 return false;
2835
2836 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
2837 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
2838 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
2839 // The inputs are both zero-extended.
2840 if (HasUMUL_LOHI) {
2841 // We can emit a umul_lohi.
2842 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
2843 RL);
2844 Hi = SDValue(Lo.getNode(), 1);
2845 return true;
2846 }
2847 if (HasMULHU) {
2848 // We can emit a mulhu+mul.
2849 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
2850 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
2851 return true;
2852 }
2853 }
2854 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
2855 // The input values are both sign-extended.
2856 if (HasSMUL_LOHI) {
2857 // We can emit a smul_lohi.
2858 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
2859 RL);
2860 Hi = SDValue(Lo.getNode(), 1);
2861 return true;
2862 }
2863 if (HasMULHS) {
2864 // We can emit a mulhs+mul.
2865 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
2866 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL);
2867 return true;
2868 }
2869 }
2870
2871 if (!LH.getNode() && !RH.getNode() &&
2872 isOperationLegalOrCustom(ISD::SRL, VT) &&
2873 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
2874 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits();
2875 SDValue Shift = DAG.getConstant(ShiftAmt, getShiftAmountTy(VT));
2876 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift);
2877 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
2878 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift);
2879 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
2880 }
2881
2882 if (!LH.getNode())
2883 return false;
2884
2885 if (HasUMUL_LOHI) {
2886 // Lo,Hi = umul LHS, RHS.
2887 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
2888 DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
2889 Lo = UMulLOHI;
2890 Hi = UMulLOHI.getValue(1);
2891 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
2892 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
2893 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
2894 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
2895 return true;
2896 }
2897 if (HasMULHU) {
2898 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
2899 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
2900 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
2901 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
2902 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
2903 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
2904 return true;
2905 }
2906 }
2907 return false;
2908 }
2909
expandFP_TO_SINT(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const2910 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
2911 SelectionDAG &DAG) const {
2912 EVT VT = Node->getOperand(0).getValueType();
2913 EVT NVT = Node->getValueType(0);
2914 SDLoc dl(SDValue(Node, 0));
2915
2916 // FIXME: Only f32 to i64 conversions are supported.
2917 if (VT != MVT::f32 || NVT != MVT::i64)
2918 return false;
2919
2920 // Expand f32 -> i64 conversion
2921 // This algorithm comes from compiler-rt's implementation of fixsfdi:
2922 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
2923 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
2924 VT.getSizeInBits());
2925 SDValue ExponentMask = DAG.getConstant(0x7F800000, IntVT);
2926 SDValue ExponentLoBit = DAG.getConstant(23, IntVT);
2927 SDValue Bias = DAG.getConstant(127, IntVT);
2928 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()),
2929 IntVT);
2930 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, IntVT);
2931 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, IntVT);
2932
2933 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
2934
2935 SDValue ExponentBits = DAG.getNode(ISD::SRL, dl, IntVT,
2936 DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
2937 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT)));
2938 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
2939
2940 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
2941 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
2942 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT)));
2943 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
2944
2945 SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
2946 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
2947 DAG.getConstant(0x00800000, IntVT));
2948
2949 R = DAG.getZExtOrTrunc(R, dl, NVT);
2950
2951
2952 R = DAG.getSelectCC(dl, Exponent, ExponentLoBit,
2953 DAG.getNode(ISD::SHL, dl, NVT, R,
2954 DAG.getZExtOrTrunc(
2955 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
2956 dl, getShiftAmountTy(IntVT))),
2957 DAG.getNode(ISD::SRL, dl, NVT, R,
2958 DAG.getZExtOrTrunc(
2959 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
2960 dl, getShiftAmountTy(IntVT))),
2961 ISD::SETGT);
2962
2963 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
2964 DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
2965 Sign);
2966
2967 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, IntVT),
2968 DAG.getConstant(0, NVT), Ret, ISD::SETLT);
2969 return true;
2970 }
2971