1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/IR/Instructions.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/ConstantRange.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 using namespace llvm;
28
29 //===----------------------------------------------------------------------===//
30 // CallSite Class
31 //===----------------------------------------------------------------------===//
32
getCallee() const33 User::op_iterator CallSite::getCallee() const {
34 Instruction *II(getInstruction());
35 return isCall()
36 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
37 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
38 }
39
40 //===----------------------------------------------------------------------===//
41 // TerminatorInst Class
42 //===----------------------------------------------------------------------===//
43
44 // Out of line virtual method, so the vtable, etc has a home.
~TerminatorInst()45 TerminatorInst::~TerminatorInst() {
46 }
47
48 //===----------------------------------------------------------------------===//
49 // UnaryInstruction Class
50 //===----------------------------------------------------------------------===//
51
52 // Out of line virtual method, so the vtable, etc has a home.
~UnaryInstruction()53 UnaryInstruction::~UnaryInstruction() {
54 }
55
56 //===----------------------------------------------------------------------===//
57 // SelectInst Class
58 //===----------------------------------------------------------------------===//
59
60 /// areInvalidOperands - Return a string if the specified operands are invalid
61 /// for a select operation, otherwise return null.
areInvalidOperands(Value * Op0,Value * Op1,Value * Op2)62 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
63 if (Op1->getType() != Op2->getType())
64 return "both values to select must have same type";
65
66 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
67 // Vector select.
68 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
69 return "vector select condition element type must be i1";
70 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
71 if (!ET)
72 return "selected values for vector select must be vectors";
73 if (ET->getNumElements() != VT->getNumElements())
74 return "vector select requires selected vectors to have "
75 "the same vector length as select condition";
76 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
77 return "select condition must be i1 or <n x i1>";
78 }
79 return nullptr;
80 }
81
82
83 //===----------------------------------------------------------------------===//
84 // PHINode Class
85 //===----------------------------------------------------------------------===//
86
PHINode(const PHINode & PN)87 PHINode::PHINode(const PHINode &PN)
88 : Instruction(PN.getType(), Instruction::PHI,
89 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
90 ReservedSpace(PN.getNumOperands()) {
91 std::copy(PN.op_begin(), PN.op_end(), op_begin());
92 std::copy(PN.block_begin(), PN.block_end(), block_begin());
93 SubclassOptionalData = PN.SubclassOptionalData;
94 }
95
~PHINode()96 PHINode::~PHINode() {
97 dropHungoffUses();
98 }
99
allocHungoffUses(unsigned N) const100 Use *PHINode::allocHungoffUses(unsigned N) const {
101 // Allocate the array of Uses of the incoming values, followed by a pointer
102 // (with bottom bit set) to the User, followed by the array of pointers to
103 // the incoming basic blocks.
104 size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
105 + N * sizeof(BasicBlock*);
106 Use *Begin = static_cast<Use*>(::operator new(size));
107 Use *End = Begin + N;
108 (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
109 return Use::initTags(Begin, End);
110 }
111
112 // removeIncomingValue - Remove an incoming value. This is useful if a
113 // predecessor basic block is deleted.
removeIncomingValue(unsigned Idx,bool DeletePHIIfEmpty)114 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
115 Value *Removed = getIncomingValue(Idx);
116
117 // Move everything after this operand down.
118 //
119 // FIXME: we could just swap with the end of the list, then erase. However,
120 // clients might not expect this to happen. The code as it is thrashes the
121 // use/def lists, which is kinda lame.
122 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
123 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
124
125 // Nuke the last value.
126 Op<-1>().set(nullptr);
127 --NumOperands;
128
129 // If the PHI node is dead, because it has zero entries, nuke it now.
130 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
131 // If anyone is using this PHI, make them use a dummy value instead...
132 replaceAllUsesWith(UndefValue::get(getType()));
133 eraseFromParent();
134 }
135 return Removed;
136 }
137
138 /// growOperands - grow operands - This grows the operand list in response
139 /// to a push_back style of operation. This grows the number of ops by 1.5
140 /// times.
141 ///
growOperands()142 void PHINode::growOperands() {
143 unsigned e = getNumOperands();
144 unsigned NumOps = e + e / 2;
145 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
146
147 Use *OldOps = op_begin();
148 BasicBlock **OldBlocks = block_begin();
149
150 ReservedSpace = NumOps;
151 OperandList = allocHungoffUses(ReservedSpace);
152
153 std::copy(OldOps, OldOps + e, op_begin());
154 std::copy(OldBlocks, OldBlocks + e, block_begin());
155
156 Use::zap(OldOps, OldOps + e, true);
157 }
158
159 /// hasConstantValue - If the specified PHI node always merges together the same
160 /// value, return the value, otherwise return null.
hasConstantValue() const161 Value *PHINode::hasConstantValue() const {
162 // Exploit the fact that phi nodes always have at least one entry.
163 Value *ConstantValue = getIncomingValue(0);
164 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
165 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
166 if (ConstantValue != this)
167 return nullptr; // Incoming values not all the same.
168 // The case where the first value is this PHI.
169 ConstantValue = getIncomingValue(i);
170 }
171 if (ConstantValue == this)
172 return UndefValue::get(getType());
173 return ConstantValue;
174 }
175
176 //===----------------------------------------------------------------------===//
177 // LandingPadInst Implementation
178 //===----------------------------------------------------------------------===//
179
LandingPadInst(Type * RetTy,Value * PersonalityFn,unsigned NumReservedValues,const Twine & NameStr,Instruction * InsertBefore)180 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
181 unsigned NumReservedValues, const Twine &NameStr,
182 Instruction *InsertBefore)
183 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
184 init(PersonalityFn, 1 + NumReservedValues, NameStr);
185 }
186
LandingPadInst(Type * RetTy,Value * PersonalityFn,unsigned NumReservedValues,const Twine & NameStr,BasicBlock * InsertAtEnd)187 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
188 unsigned NumReservedValues, const Twine &NameStr,
189 BasicBlock *InsertAtEnd)
190 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
191 init(PersonalityFn, 1 + NumReservedValues, NameStr);
192 }
193
LandingPadInst(const LandingPadInst & LP)194 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
195 : Instruction(LP.getType(), Instruction::LandingPad,
196 allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
197 ReservedSpace(LP.getNumOperands()) {
198 Use *OL = OperandList, *InOL = LP.OperandList;
199 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
200 OL[I] = InOL[I];
201
202 setCleanup(LP.isCleanup());
203 }
204
~LandingPadInst()205 LandingPadInst::~LandingPadInst() {
206 dropHungoffUses();
207 }
208
Create(Type * RetTy,Value * PersonalityFn,unsigned NumReservedClauses,const Twine & NameStr,Instruction * InsertBefore)209 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
210 unsigned NumReservedClauses,
211 const Twine &NameStr,
212 Instruction *InsertBefore) {
213 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
214 InsertBefore);
215 }
216
Create(Type * RetTy,Value * PersonalityFn,unsigned NumReservedClauses,const Twine & NameStr,BasicBlock * InsertAtEnd)217 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
218 unsigned NumReservedClauses,
219 const Twine &NameStr,
220 BasicBlock *InsertAtEnd) {
221 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
222 InsertAtEnd);
223 }
224
init(Value * PersFn,unsigned NumReservedValues,const Twine & NameStr)225 void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
226 const Twine &NameStr) {
227 ReservedSpace = NumReservedValues;
228 NumOperands = 1;
229 OperandList = allocHungoffUses(ReservedSpace);
230 OperandList[0] = PersFn;
231 setName(NameStr);
232 setCleanup(false);
233 }
234
235 /// growOperands - grow operands - This grows the operand list in response to a
236 /// push_back style of operation. This grows the number of ops by 2 times.
growOperands(unsigned Size)237 void LandingPadInst::growOperands(unsigned Size) {
238 unsigned e = getNumOperands();
239 if (ReservedSpace >= e + Size) return;
240 ReservedSpace = (e + Size / 2) * 2;
241
242 Use *NewOps = allocHungoffUses(ReservedSpace);
243 Use *OldOps = OperandList;
244 for (unsigned i = 0; i != e; ++i)
245 NewOps[i] = OldOps[i];
246
247 OperandList = NewOps;
248 Use::zap(OldOps, OldOps + e, true);
249 }
250
addClause(Constant * Val)251 void LandingPadInst::addClause(Constant *Val) {
252 unsigned OpNo = getNumOperands();
253 growOperands(1);
254 assert(OpNo < ReservedSpace && "Growing didn't work!");
255 ++NumOperands;
256 OperandList[OpNo] = Val;
257 }
258
259 //===----------------------------------------------------------------------===//
260 // CallInst Implementation
261 //===----------------------------------------------------------------------===//
262
~CallInst()263 CallInst::~CallInst() {
264 }
265
init(Value * Func,ArrayRef<Value * > Args,const Twine & NameStr)266 void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
267 assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
268 Op<-1>() = Func;
269
270 #ifndef NDEBUG
271 FunctionType *FTy =
272 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
273
274 assert((Args.size() == FTy->getNumParams() ||
275 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
276 "Calling a function with bad signature!");
277
278 for (unsigned i = 0; i != Args.size(); ++i)
279 assert((i >= FTy->getNumParams() ||
280 FTy->getParamType(i) == Args[i]->getType()) &&
281 "Calling a function with a bad signature!");
282 #endif
283
284 std::copy(Args.begin(), Args.end(), op_begin());
285 setName(NameStr);
286 }
287
init(Value * Func,const Twine & NameStr)288 void CallInst::init(Value *Func, const Twine &NameStr) {
289 assert(NumOperands == 1 && "NumOperands not set up?");
290 Op<-1>() = Func;
291
292 #ifndef NDEBUG
293 FunctionType *FTy =
294 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
295
296 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
297 #endif
298
299 setName(NameStr);
300 }
301
CallInst(Value * Func,const Twine & Name,Instruction * InsertBefore)302 CallInst::CallInst(Value *Func, const Twine &Name,
303 Instruction *InsertBefore)
304 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
305 ->getElementType())->getReturnType(),
306 Instruction::Call,
307 OperandTraits<CallInst>::op_end(this) - 1,
308 1, InsertBefore) {
309 init(Func, Name);
310 }
311
CallInst(Value * Func,const Twine & Name,BasicBlock * InsertAtEnd)312 CallInst::CallInst(Value *Func, const Twine &Name,
313 BasicBlock *InsertAtEnd)
314 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
315 ->getElementType())->getReturnType(),
316 Instruction::Call,
317 OperandTraits<CallInst>::op_end(this) - 1,
318 1, InsertAtEnd) {
319 init(Func, Name);
320 }
321
CallInst(const CallInst & CI)322 CallInst::CallInst(const CallInst &CI)
323 : Instruction(CI.getType(), Instruction::Call,
324 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
325 CI.getNumOperands()) {
326 setAttributes(CI.getAttributes());
327 setTailCallKind(CI.getTailCallKind());
328 setCallingConv(CI.getCallingConv());
329
330 std::copy(CI.op_begin(), CI.op_end(), op_begin());
331 SubclassOptionalData = CI.SubclassOptionalData;
332 }
333
addAttribute(unsigned i,Attribute::AttrKind attr)334 void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
335 AttributeSet PAL = getAttributes();
336 PAL = PAL.addAttribute(getContext(), i, attr);
337 setAttributes(PAL);
338 }
339
removeAttribute(unsigned i,Attribute attr)340 void CallInst::removeAttribute(unsigned i, Attribute attr) {
341 AttributeSet PAL = getAttributes();
342 AttrBuilder B(attr);
343 LLVMContext &Context = getContext();
344 PAL = PAL.removeAttributes(Context, i,
345 AttributeSet::get(Context, i, B));
346 setAttributes(PAL);
347 }
348
addDereferenceableAttr(unsigned i,uint64_t Bytes)349 void CallInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
350 AttributeSet PAL = getAttributes();
351 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
352 setAttributes(PAL);
353 }
354
addDereferenceableOrNullAttr(unsigned i,uint64_t Bytes)355 void CallInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
356 AttributeSet PAL = getAttributes();
357 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
358 setAttributes(PAL);
359 }
360
hasFnAttrImpl(Attribute::AttrKind A) const361 bool CallInst::hasFnAttrImpl(Attribute::AttrKind A) const {
362 if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
363 return true;
364 if (const Function *F = getCalledFunction())
365 return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
366 return false;
367 }
368
paramHasAttr(unsigned i,Attribute::AttrKind A) const369 bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
370 if (AttributeList.hasAttribute(i, A))
371 return true;
372 if (const Function *F = getCalledFunction())
373 return F->getAttributes().hasAttribute(i, A);
374 return false;
375 }
376
377 /// IsConstantOne - Return true only if val is constant int 1
IsConstantOne(Value * val)378 static bool IsConstantOne(Value *val) {
379 assert(val && "IsConstantOne does not work with nullptr val");
380 const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
381 return CVal && CVal->isOne();
382 }
383
createMalloc(Instruction * InsertBefore,BasicBlock * InsertAtEnd,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)384 static Instruction *createMalloc(Instruction *InsertBefore,
385 BasicBlock *InsertAtEnd, Type *IntPtrTy,
386 Type *AllocTy, Value *AllocSize,
387 Value *ArraySize, Function *MallocF,
388 const Twine &Name) {
389 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
390 "createMalloc needs either InsertBefore or InsertAtEnd");
391
392 // malloc(type) becomes:
393 // bitcast (i8* malloc(typeSize)) to type*
394 // malloc(type, arraySize) becomes:
395 // bitcast (i8 *malloc(typeSize*arraySize)) to type*
396 if (!ArraySize)
397 ArraySize = ConstantInt::get(IntPtrTy, 1);
398 else if (ArraySize->getType() != IntPtrTy) {
399 if (InsertBefore)
400 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
401 "", InsertBefore);
402 else
403 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
404 "", InsertAtEnd);
405 }
406
407 if (!IsConstantOne(ArraySize)) {
408 if (IsConstantOne(AllocSize)) {
409 AllocSize = ArraySize; // Operand * 1 = Operand
410 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
411 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
412 false /*ZExt*/);
413 // Malloc arg is constant product of type size and array size
414 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
415 } else {
416 // Multiply type size by the array size...
417 if (InsertBefore)
418 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
419 "mallocsize", InsertBefore);
420 else
421 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
422 "mallocsize", InsertAtEnd);
423 }
424 }
425
426 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
427 // Create the call to Malloc.
428 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
429 Module* M = BB->getParent()->getParent();
430 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
431 Value *MallocFunc = MallocF;
432 if (!MallocFunc)
433 // prototype malloc as "void *malloc(size_t)"
434 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, nullptr);
435 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
436 CallInst *MCall = nullptr;
437 Instruction *Result = nullptr;
438 if (InsertBefore) {
439 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
440 Result = MCall;
441 if (Result->getType() != AllocPtrType)
442 // Create a cast instruction to convert to the right type...
443 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
444 } else {
445 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
446 Result = MCall;
447 if (Result->getType() != AllocPtrType) {
448 InsertAtEnd->getInstList().push_back(MCall);
449 // Create a cast instruction to convert to the right type...
450 Result = new BitCastInst(MCall, AllocPtrType, Name);
451 }
452 }
453 MCall->setTailCall();
454 if (Function *F = dyn_cast<Function>(MallocFunc)) {
455 MCall->setCallingConv(F->getCallingConv());
456 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
457 }
458 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
459
460 return Result;
461 }
462
463 /// CreateMalloc - Generate the IR for a call to malloc:
464 /// 1. Compute the malloc call's argument as the specified type's size,
465 /// possibly multiplied by the array size if the array size is not
466 /// constant 1.
467 /// 2. Call malloc with that argument.
468 /// 3. Bitcast the result of the malloc call to the specified type.
CreateMalloc(Instruction * InsertBefore,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)469 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
470 Type *IntPtrTy, Type *AllocTy,
471 Value *AllocSize, Value *ArraySize,
472 Function * MallocF,
473 const Twine &Name) {
474 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
475 ArraySize, MallocF, Name);
476 }
477
478 /// CreateMalloc - Generate the IR for a call to malloc:
479 /// 1. Compute the malloc call's argument as the specified type's size,
480 /// possibly multiplied by the array size if the array size is not
481 /// constant 1.
482 /// 2. Call malloc with that argument.
483 /// 3. Bitcast the result of the malloc call to the specified type.
484 /// Note: This function does not add the bitcast to the basic block, that is the
485 /// responsibility of the caller.
CreateMalloc(BasicBlock * InsertAtEnd,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)486 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
487 Type *IntPtrTy, Type *AllocTy,
488 Value *AllocSize, Value *ArraySize,
489 Function *MallocF, const Twine &Name) {
490 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
491 ArraySize, MallocF, Name);
492 }
493
createFree(Value * Source,Instruction * InsertBefore,BasicBlock * InsertAtEnd)494 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
495 BasicBlock *InsertAtEnd) {
496 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
497 "createFree needs either InsertBefore or InsertAtEnd");
498 assert(Source->getType()->isPointerTy() &&
499 "Can not free something of nonpointer type!");
500
501 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
502 Module* M = BB->getParent()->getParent();
503
504 Type *VoidTy = Type::getVoidTy(M->getContext());
505 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
506 // prototype free as "void free(void*)"
507 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, nullptr);
508 CallInst* Result = nullptr;
509 Value *PtrCast = Source;
510 if (InsertBefore) {
511 if (Source->getType() != IntPtrTy)
512 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
513 Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
514 } else {
515 if (Source->getType() != IntPtrTy)
516 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
517 Result = CallInst::Create(FreeFunc, PtrCast, "");
518 }
519 Result->setTailCall();
520 if (Function *F = dyn_cast<Function>(FreeFunc))
521 Result->setCallingConv(F->getCallingConv());
522
523 return Result;
524 }
525
526 /// CreateFree - Generate the IR for a call to the builtin free function.
CreateFree(Value * Source,Instruction * InsertBefore)527 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
528 return createFree(Source, InsertBefore, nullptr);
529 }
530
531 /// CreateFree - Generate the IR for a call to the builtin free function.
532 /// Note: This function does not add the call to the basic block, that is the
533 /// responsibility of the caller.
CreateFree(Value * Source,BasicBlock * InsertAtEnd)534 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
535 Instruction* FreeCall = createFree(Source, nullptr, InsertAtEnd);
536 assert(FreeCall && "CreateFree did not create a CallInst");
537 return FreeCall;
538 }
539
540 //===----------------------------------------------------------------------===//
541 // InvokeInst Implementation
542 //===----------------------------------------------------------------------===//
543
init(Value * Fn,BasicBlock * IfNormal,BasicBlock * IfException,ArrayRef<Value * > Args,const Twine & NameStr)544 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
545 ArrayRef<Value *> Args, const Twine &NameStr) {
546 assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
547 Op<-3>() = Fn;
548 Op<-2>() = IfNormal;
549 Op<-1>() = IfException;
550
551 #ifndef NDEBUG
552 FunctionType *FTy =
553 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
554
555 assert(((Args.size() == FTy->getNumParams()) ||
556 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
557 "Invoking a function with bad signature");
558
559 for (unsigned i = 0, e = Args.size(); i != e; i++)
560 assert((i >= FTy->getNumParams() ||
561 FTy->getParamType(i) == Args[i]->getType()) &&
562 "Invoking a function with a bad signature!");
563 #endif
564
565 std::copy(Args.begin(), Args.end(), op_begin());
566 setName(NameStr);
567 }
568
InvokeInst(const InvokeInst & II)569 InvokeInst::InvokeInst(const InvokeInst &II)
570 : TerminatorInst(II.getType(), Instruction::Invoke,
571 OperandTraits<InvokeInst>::op_end(this)
572 - II.getNumOperands(),
573 II.getNumOperands()) {
574 setAttributes(II.getAttributes());
575 setCallingConv(II.getCallingConv());
576 std::copy(II.op_begin(), II.op_end(), op_begin());
577 SubclassOptionalData = II.SubclassOptionalData;
578 }
579
getSuccessorV(unsigned idx) const580 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
581 return getSuccessor(idx);
582 }
getNumSuccessorsV() const583 unsigned InvokeInst::getNumSuccessorsV() const {
584 return getNumSuccessors();
585 }
setSuccessorV(unsigned idx,BasicBlock * B)586 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
587 return setSuccessor(idx, B);
588 }
589
hasFnAttrImpl(Attribute::AttrKind A) const590 bool InvokeInst::hasFnAttrImpl(Attribute::AttrKind A) const {
591 if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
592 return true;
593 if (const Function *F = getCalledFunction())
594 return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
595 return false;
596 }
597
paramHasAttr(unsigned i,Attribute::AttrKind A) const598 bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
599 if (AttributeList.hasAttribute(i, A))
600 return true;
601 if (const Function *F = getCalledFunction())
602 return F->getAttributes().hasAttribute(i, A);
603 return false;
604 }
605
addAttribute(unsigned i,Attribute::AttrKind attr)606 void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
607 AttributeSet PAL = getAttributes();
608 PAL = PAL.addAttribute(getContext(), i, attr);
609 setAttributes(PAL);
610 }
611
removeAttribute(unsigned i,Attribute attr)612 void InvokeInst::removeAttribute(unsigned i, Attribute attr) {
613 AttributeSet PAL = getAttributes();
614 AttrBuilder B(attr);
615 PAL = PAL.removeAttributes(getContext(), i,
616 AttributeSet::get(getContext(), i, B));
617 setAttributes(PAL);
618 }
619
addDereferenceableAttr(unsigned i,uint64_t Bytes)620 void InvokeInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
621 AttributeSet PAL = getAttributes();
622 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
623 setAttributes(PAL);
624 }
625
addDereferenceableOrNullAttr(unsigned i,uint64_t Bytes)626 void InvokeInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
627 AttributeSet PAL = getAttributes();
628 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
629 setAttributes(PAL);
630 }
631
getLandingPadInst() const632 LandingPadInst *InvokeInst::getLandingPadInst() const {
633 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
634 }
635
636 //===----------------------------------------------------------------------===//
637 // ReturnInst Implementation
638 //===----------------------------------------------------------------------===//
639
ReturnInst(const ReturnInst & RI)640 ReturnInst::ReturnInst(const ReturnInst &RI)
641 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
642 OperandTraits<ReturnInst>::op_end(this) -
643 RI.getNumOperands(),
644 RI.getNumOperands()) {
645 if (RI.getNumOperands())
646 Op<0>() = RI.Op<0>();
647 SubclassOptionalData = RI.SubclassOptionalData;
648 }
649
ReturnInst(LLVMContext & C,Value * retVal,Instruction * InsertBefore)650 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
651 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
652 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
653 InsertBefore) {
654 if (retVal)
655 Op<0>() = retVal;
656 }
ReturnInst(LLVMContext & C,Value * retVal,BasicBlock * InsertAtEnd)657 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
658 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
659 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
660 InsertAtEnd) {
661 if (retVal)
662 Op<0>() = retVal;
663 }
ReturnInst(LLVMContext & Context,BasicBlock * InsertAtEnd)664 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
665 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
666 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
667 }
668
getNumSuccessorsV() const669 unsigned ReturnInst::getNumSuccessorsV() const {
670 return getNumSuccessors();
671 }
672
673 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
674 /// emit the vtable for the class in this translation unit.
setSuccessorV(unsigned idx,BasicBlock * NewSucc)675 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
676 llvm_unreachable("ReturnInst has no successors!");
677 }
678
getSuccessorV(unsigned idx) const679 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
680 llvm_unreachable("ReturnInst has no successors!");
681 }
682
~ReturnInst()683 ReturnInst::~ReturnInst() {
684 }
685
686 //===----------------------------------------------------------------------===//
687 // ResumeInst Implementation
688 //===----------------------------------------------------------------------===//
689
ResumeInst(const ResumeInst & RI)690 ResumeInst::ResumeInst(const ResumeInst &RI)
691 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
692 OperandTraits<ResumeInst>::op_begin(this), 1) {
693 Op<0>() = RI.Op<0>();
694 }
695
ResumeInst(Value * Exn,Instruction * InsertBefore)696 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
697 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
698 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
699 Op<0>() = Exn;
700 }
701
ResumeInst(Value * Exn,BasicBlock * InsertAtEnd)702 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
703 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
704 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
705 Op<0>() = Exn;
706 }
707
getNumSuccessorsV() const708 unsigned ResumeInst::getNumSuccessorsV() const {
709 return getNumSuccessors();
710 }
711
setSuccessorV(unsigned idx,BasicBlock * NewSucc)712 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
713 llvm_unreachable("ResumeInst has no successors!");
714 }
715
getSuccessorV(unsigned idx) const716 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
717 llvm_unreachable("ResumeInst has no successors!");
718 }
719
720 //===----------------------------------------------------------------------===//
721 // UnreachableInst Implementation
722 //===----------------------------------------------------------------------===//
723
UnreachableInst(LLVMContext & Context,Instruction * InsertBefore)724 UnreachableInst::UnreachableInst(LLVMContext &Context,
725 Instruction *InsertBefore)
726 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
727 nullptr, 0, InsertBefore) {
728 }
UnreachableInst(LLVMContext & Context,BasicBlock * InsertAtEnd)729 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
730 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
731 nullptr, 0, InsertAtEnd) {
732 }
733
getNumSuccessorsV() const734 unsigned UnreachableInst::getNumSuccessorsV() const {
735 return getNumSuccessors();
736 }
737
setSuccessorV(unsigned idx,BasicBlock * NewSucc)738 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
739 llvm_unreachable("UnreachableInst has no successors!");
740 }
741
getSuccessorV(unsigned idx) const742 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
743 llvm_unreachable("UnreachableInst has no successors!");
744 }
745
746 //===----------------------------------------------------------------------===//
747 // BranchInst Implementation
748 //===----------------------------------------------------------------------===//
749
AssertOK()750 void BranchInst::AssertOK() {
751 if (isConditional())
752 assert(getCondition()->getType()->isIntegerTy(1) &&
753 "May only branch on boolean predicates!");
754 }
755
BranchInst(BasicBlock * IfTrue,Instruction * InsertBefore)756 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
757 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
758 OperandTraits<BranchInst>::op_end(this) - 1,
759 1, InsertBefore) {
760 assert(IfTrue && "Branch destination may not be null!");
761 Op<-1>() = IfTrue;
762 }
BranchInst(BasicBlock * IfTrue,BasicBlock * IfFalse,Value * Cond,Instruction * InsertBefore)763 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
764 Instruction *InsertBefore)
765 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
766 OperandTraits<BranchInst>::op_end(this) - 3,
767 3, InsertBefore) {
768 Op<-1>() = IfTrue;
769 Op<-2>() = IfFalse;
770 Op<-3>() = Cond;
771 #ifndef NDEBUG
772 AssertOK();
773 #endif
774 }
775
BranchInst(BasicBlock * IfTrue,BasicBlock * InsertAtEnd)776 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
777 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
778 OperandTraits<BranchInst>::op_end(this) - 1,
779 1, InsertAtEnd) {
780 assert(IfTrue && "Branch destination may not be null!");
781 Op<-1>() = IfTrue;
782 }
783
BranchInst(BasicBlock * IfTrue,BasicBlock * IfFalse,Value * Cond,BasicBlock * InsertAtEnd)784 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
785 BasicBlock *InsertAtEnd)
786 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
787 OperandTraits<BranchInst>::op_end(this) - 3,
788 3, InsertAtEnd) {
789 Op<-1>() = IfTrue;
790 Op<-2>() = IfFalse;
791 Op<-3>() = Cond;
792 #ifndef NDEBUG
793 AssertOK();
794 #endif
795 }
796
797
BranchInst(const BranchInst & BI)798 BranchInst::BranchInst(const BranchInst &BI) :
799 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
800 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
801 BI.getNumOperands()) {
802 Op<-1>() = BI.Op<-1>();
803 if (BI.getNumOperands() != 1) {
804 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
805 Op<-3>() = BI.Op<-3>();
806 Op<-2>() = BI.Op<-2>();
807 }
808 SubclassOptionalData = BI.SubclassOptionalData;
809 }
810
swapSuccessors()811 void BranchInst::swapSuccessors() {
812 assert(isConditional() &&
813 "Cannot swap successors of an unconditional branch");
814 Op<-1>().swap(Op<-2>());
815
816 // Update profile metadata if present and it matches our structural
817 // expectations.
818 MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
819 if (!ProfileData || ProfileData->getNumOperands() != 3)
820 return;
821
822 // The first operand is the name. Fetch them backwards and build a new one.
823 Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2),
824 ProfileData->getOperand(1)};
825 setMetadata(LLVMContext::MD_prof,
826 MDNode::get(ProfileData->getContext(), Ops));
827 }
828
getSuccessorV(unsigned idx) const829 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
830 return getSuccessor(idx);
831 }
getNumSuccessorsV() const832 unsigned BranchInst::getNumSuccessorsV() const {
833 return getNumSuccessors();
834 }
setSuccessorV(unsigned idx,BasicBlock * B)835 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
836 setSuccessor(idx, B);
837 }
838
839
840 //===----------------------------------------------------------------------===//
841 // AllocaInst Implementation
842 //===----------------------------------------------------------------------===//
843
getAISize(LLVMContext & Context,Value * Amt)844 static Value *getAISize(LLVMContext &Context, Value *Amt) {
845 if (!Amt)
846 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
847 else {
848 assert(!isa<BasicBlock>(Amt) &&
849 "Passed basic block into allocation size parameter! Use other ctor");
850 assert(Amt->getType()->isIntegerTy() &&
851 "Allocation array size is not an integer!");
852 }
853 return Amt;
854 }
855
AllocaInst(Type * Ty,const Twine & Name,Instruction * InsertBefore)856 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore)
857 : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertBefore) {}
858
AllocaInst(Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)859 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd)
860 : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
861
AllocaInst(Type * Ty,Value * ArraySize,const Twine & Name,Instruction * InsertBefore)862 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name,
863 Instruction *InsertBefore)
864 : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertBefore) {}
865
AllocaInst(Type * Ty,Value * ArraySize,const Twine & Name,BasicBlock * InsertAtEnd)866 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name,
867 BasicBlock *InsertAtEnd)
868 : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
869
AllocaInst(Type * Ty,Value * ArraySize,unsigned Align,const Twine & Name,Instruction * InsertBefore)870 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
871 const Twine &Name, Instruction *InsertBefore)
872 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
873 getAISize(Ty->getContext(), ArraySize), InsertBefore) {
874 setAlignment(Align);
875 assert(!Ty->isVoidTy() && "Cannot allocate void!");
876 setName(Name);
877 }
878
AllocaInst(Type * Ty,Value * ArraySize,unsigned Align,const Twine & Name,BasicBlock * InsertAtEnd)879 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
880 const Twine &Name, BasicBlock *InsertAtEnd)
881 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
882 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
883 setAlignment(Align);
884 assert(!Ty->isVoidTy() && "Cannot allocate void!");
885 setName(Name);
886 }
887
888 // Out of line virtual method, so the vtable, etc has a home.
~AllocaInst()889 AllocaInst::~AllocaInst() {
890 }
891
setAlignment(unsigned Align)892 void AllocaInst::setAlignment(unsigned Align) {
893 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
894 assert(Align <= MaximumAlignment &&
895 "Alignment is greater than MaximumAlignment!");
896 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
897 (Log2_32(Align) + 1));
898 assert(getAlignment() == Align && "Alignment representation error!");
899 }
900
isArrayAllocation() const901 bool AllocaInst::isArrayAllocation() const {
902 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
903 return !CI->isOne();
904 return true;
905 }
906
getAllocatedType() const907 Type *AllocaInst::getAllocatedType() const {
908 return getType()->getElementType();
909 }
910
911 /// isStaticAlloca - Return true if this alloca is in the entry block of the
912 /// function and is a constant size. If so, the code generator will fold it
913 /// into the prolog/epilog code, so it is basically free.
isStaticAlloca() const914 bool AllocaInst::isStaticAlloca() const {
915 // Must be constant size.
916 if (!isa<ConstantInt>(getArraySize())) return false;
917
918 // Must be in the entry block.
919 const BasicBlock *Parent = getParent();
920 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
921 }
922
923 //===----------------------------------------------------------------------===//
924 // LoadInst Implementation
925 //===----------------------------------------------------------------------===//
926
AssertOK()927 void LoadInst::AssertOK() {
928 assert(getOperand(0)->getType()->isPointerTy() &&
929 "Ptr must have pointer type.");
930 assert(!(isAtomic() && getAlignment() == 0) &&
931 "Alignment required for atomic load");
932 }
933
LoadInst(Value * Ptr,const Twine & Name,Instruction * InsertBef)934 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
935 : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertBef) {}
936
LoadInst(Value * Ptr,const Twine & Name,BasicBlock * InsertAE)937 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
938 : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertAE) {}
939
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,Instruction * InsertBef)940 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
941 Instruction *InsertBef)
942 : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
943
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,BasicBlock * InsertAE)944 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
945 BasicBlock *InsertAE)
946 : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
947
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,Instruction * InsertBef)948 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
949 unsigned Align, Instruction *InsertBef)
950 : LoadInst(Ptr, Name, isVolatile, Align, NotAtomic, CrossThread,
951 InsertBef) {}
952
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,BasicBlock * InsertAE)953 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
954 unsigned Align, BasicBlock *InsertAE)
955 : LoadInst(Ptr, Name, isVolatile, Align, NotAtomic, CrossThread, InsertAE) {
956 }
957
LoadInst(Type * Ty,Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,Instruction * InsertBef)958 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
959 unsigned Align, AtomicOrdering Order,
960 SynchronizationScope SynchScope, Instruction *InsertBef)
961 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
962 setVolatile(isVolatile);
963 setAlignment(Align);
964 setAtomic(Order, SynchScope);
965 AssertOK();
966 setName(Name);
967 }
968
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,BasicBlock * InsertAE)969 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
970 unsigned Align, AtomicOrdering Order,
971 SynchronizationScope SynchScope,
972 BasicBlock *InsertAE)
973 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
974 Load, Ptr, InsertAE) {
975 setVolatile(isVolatile);
976 setAlignment(Align);
977 setAtomic(Order, SynchScope);
978 AssertOK();
979 setName(Name);
980 }
981
LoadInst(Value * Ptr,const char * Name,Instruction * InsertBef)982 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
983 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
984 Load, Ptr, InsertBef) {
985 setVolatile(false);
986 setAlignment(0);
987 setAtomic(NotAtomic);
988 AssertOK();
989 if (Name && Name[0]) setName(Name);
990 }
991
LoadInst(Value * Ptr,const char * Name,BasicBlock * InsertAE)992 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
993 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
994 Load, Ptr, InsertAE) {
995 setVolatile(false);
996 setAlignment(0);
997 setAtomic(NotAtomic);
998 AssertOK();
999 if (Name && Name[0]) setName(Name);
1000 }
1001
LoadInst(Value * Ptr,const char * Name,bool isVolatile,Instruction * InsertBef)1002 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1003 Instruction *InsertBef)
1004 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1005 Load, Ptr, InsertBef) {
1006 setVolatile(isVolatile);
1007 setAlignment(0);
1008 setAtomic(NotAtomic);
1009 AssertOK();
1010 if (Name && Name[0]) setName(Name);
1011 }
1012
LoadInst(Value * Ptr,const char * Name,bool isVolatile,BasicBlock * InsertAE)1013 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1014 BasicBlock *InsertAE)
1015 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1016 Load, Ptr, InsertAE) {
1017 setVolatile(isVolatile);
1018 setAlignment(0);
1019 setAtomic(NotAtomic);
1020 AssertOK();
1021 if (Name && Name[0]) setName(Name);
1022 }
1023
setAlignment(unsigned Align)1024 void LoadInst::setAlignment(unsigned Align) {
1025 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1026 assert(Align <= MaximumAlignment &&
1027 "Alignment is greater than MaximumAlignment!");
1028 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1029 ((Log2_32(Align)+1)<<1));
1030 assert(getAlignment() == Align && "Alignment representation error!");
1031 }
1032
1033 //===----------------------------------------------------------------------===//
1034 // StoreInst Implementation
1035 //===----------------------------------------------------------------------===//
1036
AssertOK()1037 void StoreInst::AssertOK() {
1038 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1039 assert(getOperand(1)->getType()->isPointerTy() &&
1040 "Ptr must have pointer type!");
1041 assert(getOperand(0)->getType() ==
1042 cast<PointerType>(getOperand(1)->getType())->getElementType()
1043 && "Ptr must be a pointer to Val type!");
1044 assert(!(isAtomic() && getAlignment() == 0) &&
1045 "Alignment required for atomic store");
1046 }
1047
StoreInst(Value * val,Value * addr,Instruction * InsertBefore)1048 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1049 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1050
StoreInst(Value * val,Value * addr,BasicBlock * InsertAtEnd)1051 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1052 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1053
StoreInst(Value * val,Value * addr,bool isVolatile,Instruction * InsertBefore)1054 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1055 Instruction *InsertBefore)
1056 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1057
StoreInst(Value * val,Value * addr,bool isVolatile,BasicBlock * InsertAtEnd)1058 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1059 BasicBlock *InsertAtEnd)
1060 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1061
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,Instruction * InsertBefore)1062 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1063 Instruction *InsertBefore)
1064 : StoreInst(val, addr, isVolatile, Align, NotAtomic, CrossThread,
1065 InsertBefore) {}
1066
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,BasicBlock * InsertAtEnd)1067 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1068 BasicBlock *InsertAtEnd)
1069 : StoreInst(val, addr, isVolatile, Align, NotAtomic, CrossThread,
1070 InsertAtEnd) {}
1071
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,Instruction * InsertBefore)1072 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1073 unsigned Align, AtomicOrdering Order,
1074 SynchronizationScope SynchScope,
1075 Instruction *InsertBefore)
1076 : Instruction(Type::getVoidTy(val->getContext()), Store,
1077 OperandTraits<StoreInst>::op_begin(this),
1078 OperandTraits<StoreInst>::operands(this),
1079 InsertBefore) {
1080 Op<0>() = val;
1081 Op<1>() = addr;
1082 setVolatile(isVolatile);
1083 setAlignment(Align);
1084 setAtomic(Order, SynchScope);
1085 AssertOK();
1086 }
1087
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1088 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1089 unsigned Align, AtomicOrdering Order,
1090 SynchronizationScope SynchScope,
1091 BasicBlock *InsertAtEnd)
1092 : Instruction(Type::getVoidTy(val->getContext()), Store,
1093 OperandTraits<StoreInst>::op_begin(this),
1094 OperandTraits<StoreInst>::operands(this),
1095 InsertAtEnd) {
1096 Op<0>() = val;
1097 Op<1>() = addr;
1098 setVolatile(isVolatile);
1099 setAlignment(Align);
1100 setAtomic(Order, SynchScope);
1101 AssertOK();
1102 }
1103
setAlignment(unsigned Align)1104 void StoreInst::setAlignment(unsigned Align) {
1105 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1106 assert(Align <= MaximumAlignment &&
1107 "Alignment is greater than MaximumAlignment!");
1108 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1109 ((Log2_32(Align)+1) << 1));
1110 assert(getAlignment() == Align && "Alignment representation error!");
1111 }
1112
1113 //===----------------------------------------------------------------------===//
1114 // AtomicCmpXchgInst Implementation
1115 //===----------------------------------------------------------------------===//
1116
Init(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SynchronizationScope SynchScope)1117 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1118 AtomicOrdering SuccessOrdering,
1119 AtomicOrdering FailureOrdering,
1120 SynchronizationScope SynchScope) {
1121 Op<0>() = Ptr;
1122 Op<1>() = Cmp;
1123 Op<2>() = NewVal;
1124 setSuccessOrdering(SuccessOrdering);
1125 setFailureOrdering(FailureOrdering);
1126 setSynchScope(SynchScope);
1127
1128 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1129 "All operands must be non-null!");
1130 assert(getOperand(0)->getType()->isPointerTy() &&
1131 "Ptr must have pointer type!");
1132 assert(getOperand(1)->getType() ==
1133 cast<PointerType>(getOperand(0)->getType())->getElementType()
1134 && "Ptr must be a pointer to Cmp type!");
1135 assert(getOperand(2)->getType() ==
1136 cast<PointerType>(getOperand(0)->getType())->getElementType()
1137 && "Ptr must be a pointer to NewVal type!");
1138 assert(SuccessOrdering != NotAtomic &&
1139 "AtomicCmpXchg instructions must be atomic!");
1140 assert(FailureOrdering != NotAtomic &&
1141 "AtomicCmpXchg instructions must be atomic!");
1142 assert(SuccessOrdering >= FailureOrdering &&
1143 "AtomicCmpXchg success ordering must be at least as strong as fail");
1144 assert(FailureOrdering != Release && FailureOrdering != AcquireRelease &&
1145 "AtomicCmpXchg failure ordering cannot include release semantics");
1146 }
1147
AtomicCmpXchgInst(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SynchronizationScope SynchScope,Instruction * InsertBefore)1148 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1149 AtomicOrdering SuccessOrdering,
1150 AtomicOrdering FailureOrdering,
1151 SynchronizationScope SynchScope,
1152 Instruction *InsertBefore)
1153 : Instruction(
1154 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
1155 nullptr),
1156 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1157 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1158 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1159 }
1160
AtomicCmpXchgInst(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1161 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1162 AtomicOrdering SuccessOrdering,
1163 AtomicOrdering FailureOrdering,
1164 SynchronizationScope SynchScope,
1165 BasicBlock *InsertAtEnd)
1166 : Instruction(
1167 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
1168 nullptr),
1169 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1170 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1171 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1172 }
1173
1174 //===----------------------------------------------------------------------===//
1175 // AtomicRMWInst Implementation
1176 //===----------------------------------------------------------------------===//
1177
Init(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SynchronizationScope SynchScope)1178 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1179 AtomicOrdering Ordering,
1180 SynchronizationScope SynchScope) {
1181 Op<0>() = Ptr;
1182 Op<1>() = Val;
1183 setOperation(Operation);
1184 setOrdering(Ordering);
1185 setSynchScope(SynchScope);
1186
1187 assert(getOperand(0) && getOperand(1) &&
1188 "All operands must be non-null!");
1189 assert(getOperand(0)->getType()->isPointerTy() &&
1190 "Ptr must have pointer type!");
1191 assert(getOperand(1)->getType() ==
1192 cast<PointerType>(getOperand(0)->getType())->getElementType()
1193 && "Ptr must be a pointer to Val type!");
1194 assert(Ordering != NotAtomic &&
1195 "AtomicRMW instructions must be atomic!");
1196 }
1197
AtomicRMWInst(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SynchronizationScope SynchScope,Instruction * InsertBefore)1198 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1199 AtomicOrdering Ordering,
1200 SynchronizationScope SynchScope,
1201 Instruction *InsertBefore)
1202 : Instruction(Val->getType(), AtomicRMW,
1203 OperandTraits<AtomicRMWInst>::op_begin(this),
1204 OperandTraits<AtomicRMWInst>::operands(this),
1205 InsertBefore) {
1206 Init(Operation, Ptr, Val, Ordering, SynchScope);
1207 }
1208
AtomicRMWInst(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1209 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1210 AtomicOrdering Ordering,
1211 SynchronizationScope SynchScope,
1212 BasicBlock *InsertAtEnd)
1213 : Instruction(Val->getType(), AtomicRMW,
1214 OperandTraits<AtomicRMWInst>::op_begin(this),
1215 OperandTraits<AtomicRMWInst>::operands(this),
1216 InsertAtEnd) {
1217 Init(Operation, Ptr, Val, Ordering, SynchScope);
1218 }
1219
1220 //===----------------------------------------------------------------------===//
1221 // FenceInst Implementation
1222 //===----------------------------------------------------------------------===//
1223
FenceInst(LLVMContext & C,AtomicOrdering Ordering,SynchronizationScope SynchScope,Instruction * InsertBefore)1224 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1225 SynchronizationScope SynchScope,
1226 Instruction *InsertBefore)
1227 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1228 setOrdering(Ordering);
1229 setSynchScope(SynchScope);
1230 }
1231
FenceInst(LLVMContext & C,AtomicOrdering Ordering,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1232 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1233 SynchronizationScope SynchScope,
1234 BasicBlock *InsertAtEnd)
1235 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1236 setOrdering(Ordering);
1237 setSynchScope(SynchScope);
1238 }
1239
1240 //===----------------------------------------------------------------------===//
1241 // GetElementPtrInst Implementation
1242 //===----------------------------------------------------------------------===//
1243
init(Value * Ptr,ArrayRef<Value * > IdxList,const Twine & Name)1244 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1245 const Twine &Name) {
1246 assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
1247 OperandList[0] = Ptr;
1248 std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1249 setName(Name);
1250 }
1251
GetElementPtrInst(const GetElementPtrInst & GEPI)1252 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1253 : Instruction(GEPI.getType(), GetElementPtr,
1254 OperandTraits<GetElementPtrInst>::op_end(this)
1255 - GEPI.getNumOperands(),
1256 GEPI.getNumOperands()) {
1257 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1258 SubclassOptionalData = GEPI.SubclassOptionalData;
1259 }
1260
1261 /// getIndexedType - Returns the type of the element that would be accessed with
1262 /// a gep instruction with the specified parameters.
1263 ///
1264 /// The Idxs pointer should point to a continuous piece of memory containing the
1265 /// indices, either as Value* or uint64_t.
1266 ///
1267 /// A null type is returned if the indices are invalid for the specified
1268 /// pointer type.
1269 ///
1270 template <typename IndexTy>
getIndexedTypeInternal(Type * Agg,ArrayRef<IndexTy> IdxList)1271 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1272 // Handle the special case of the empty set index set, which is always valid.
1273 if (IdxList.empty())
1274 return Agg;
1275
1276 // If there is at least one index, the top level type must be sized, otherwise
1277 // it cannot be 'stepped over'.
1278 if (!Agg->isSized())
1279 return nullptr;
1280
1281 unsigned CurIdx = 1;
1282 for (; CurIdx != IdxList.size(); ++CurIdx) {
1283 CompositeType *CT = dyn_cast<CompositeType>(Agg);
1284 if (!CT || CT->isPointerTy()) return nullptr;
1285 IndexTy Index = IdxList[CurIdx];
1286 if (!CT->indexValid(Index)) return nullptr;
1287 Agg = CT->getTypeAtIndex(Index);
1288 }
1289 return CurIdx == IdxList.size() ? Agg : nullptr;
1290 }
1291
getIndexedType(Type * Ty,ArrayRef<Value * > IdxList)1292 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1293 return getIndexedTypeInternal(Ty, IdxList);
1294 }
1295
getIndexedType(Type * Ty,ArrayRef<Constant * > IdxList)1296 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1297 ArrayRef<Constant *> IdxList) {
1298 return getIndexedTypeInternal(Ty, IdxList);
1299 }
1300
getIndexedType(Type * Ty,ArrayRef<uint64_t> IdxList)1301 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1302 return getIndexedTypeInternal(Ty, IdxList);
1303 }
1304
1305 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1306 /// zeros. If so, the result pointer and the first operand have the same
1307 /// value, just potentially different types.
hasAllZeroIndices() const1308 bool GetElementPtrInst::hasAllZeroIndices() const {
1309 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1310 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1311 if (!CI->isZero()) return false;
1312 } else {
1313 return false;
1314 }
1315 }
1316 return true;
1317 }
1318
1319 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1320 /// constant integers. If so, the result pointer and the first operand have
1321 /// a constant offset between them.
hasAllConstantIndices() const1322 bool GetElementPtrInst::hasAllConstantIndices() const {
1323 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1324 if (!isa<ConstantInt>(getOperand(i)))
1325 return false;
1326 }
1327 return true;
1328 }
1329
setIsInBounds(bool B)1330 void GetElementPtrInst::setIsInBounds(bool B) {
1331 cast<GEPOperator>(this)->setIsInBounds(B);
1332 }
1333
isInBounds() const1334 bool GetElementPtrInst::isInBounds() const {
1335 return cast<GEPOperator>(this)->isInBounds();
1336 }
1337
accumulateConstantOffset(const DataLayout & DL,APInt & Offset) const1338 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1339 APInt &Offset) const {
1340 // Delegate to the generic GEPOperator implementation.
1341 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1342 }
1343
1344 //===----------------------------------------------------------------------===//
1345 // ExtractElementInst Implementation
1346 //===----------------------------------------------------------------------===//
1347
ExtractElementInst(Value * Val,Value * Index,const Twine & Name,Instruction * InsertBef)1348 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1349 const Twine &Name,
1350 Instruction *InsertBef)
1351 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1352 ExtractElement,
1353 OperandTraits<ExtractElementInst>::op_begin(this),
1354 2, InsertBef) {
1355 assert(isValidOperands(Val, Index) &&
1356 "Invalid extractelement instruction operands!");
1357 Op<0>() = Val;
1358 Op<1>() = Index;
1359 setName(Name);
1360 }
1361
ExtractElementInst(Value * Val,Value * Index,const Twine & Name,BasicBlock * InsertAE)1362 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1363 const Twine &Name,
1364 BasicBlock *InsertAE)
1365 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1366 ExtractElement,
1367 OperandTraits<ExtractElementInst>::op_begin(this),
1368 2, InsertAE) {
1369 assert(isValidOperands(Val, Index) &&
1370 "Invalid extractelement instruction operands!");
1371
1372 Op<0>() = Val;
1373 Op<1>() = Index;
1374 setName(Name);
1375 }
1376
1377
isValidOperands(const Value * Val,const Value * Index)1378 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1379 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1380 return false;
1381 return true;
1382 }
1383
1384
1385 //===----------------------------------------------------------------------===//
1386 // InsertElementInst Implementation
1387 //===----------------------------------------------------------------------===//
1388
InsertElementInst(Value * Vec,Value * Elt,Value * Index,const Twine & Name,Instruction * InsertBef)1389 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1390 const Twine &Name,
1391 Instruction *InsertBef)
1392 : Instruction(Vec->getType(), InsertElement,
1393 OperandTraits<InsertElementInst>::op_begin(this),
1394 3, InsertBef) {
1395 assert(isValidOperands(Vec, Elt, Index) &&
1396 "Invalid insertelement instruction operands!");
1397 Op<0>() = Vec;
1398 Op<1>() = Elt;
1399 Op<2>() = Index;
1400 setName(Name);
1401 }
1402
InsertElementInst(Value * Vec,Value * Elt,Value * Index,const Twine & Name,BasicBlock * InsertAE)1403 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1404 const Twine &Name,
1405 BasicBlock *InsertAE)
1406 : Instruction(Vec->getType(), InsertElement,
1407 OperandTraits<InsertElementInst>::op_begin(this),
1408 3, InsertAE) {
1409 assert(isValidOperands(Vec, Elt, Index) &&
1410 "Invalid insertelement instruction operands!");
1411
1412 Op<0>() = Vec;
1413 Op<1>() = Elt;
1414 Op<2>() = Index;
1415 setName(Name);
1416 }
1417
isValidOperands(const Value * Vec,const Value * Elt,const Value * Index)1418 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1419 const Value *Index) {
1420 if (!Vec->getType()->isVectorTy())
1421 return false; // First operand of insertelement must be vector type.
1422
1423 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1424 return false;// Second operand of insertelement must be vector element type.
1425
1426 if (!Index->getType()->isIntegerTy())
1427 return false; // Third operand of insertelement must be i32.
1428 return true;
1429 }
1430
1431
1432 //===----------------------------------------------------------------------===//
1433 // ShuffleVectorInst Implementation
1434 //===----------------------------------------------------------------------===//
1435
ShuffleVectorInst(Value * V1,Value * V2,Value * Mask,const Twine & Name,Instruction * InsertBefore)1436 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1437 const Twine &Name,
1438 Instruction *InsertBefore)
1439 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1440 cast<VectorType>(Mask->getType())->getNumElements()),
1441 ShuffleVector,
1442 OperandTraits<ShuffleVectorInst>::op_begin(this),
1443 OperandTraits<ShuffleVectorInst>::operands(this),
1444 InsertBefore) {
1445 assert(isValidOperands(V1, V2, Mask) &&
1446 "Invalid shuffle vector instruction operands!");
1447 Op<0>() = V1;
1448 Op<1>() = V2;
1449 Op<2>() = Mask;
1450 setName(Name);
1451 }
1452
ShuffleVectorInst(Value * V1,Value * V2,Value * Mask,const Twine & Name,BasicBlock * InsertAtEnd)1453 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1454 const Twine &Name,
1455 BasicBlock *InsertAtEnd)
1456 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1457 cast<VectorType>(Mask->getType())->getNumElements()),
1458 ShuffleVector,
1459 OperandTraits<ShuffleVectorInst>::op_begin(this),
1460 OperandTraits<ShuffleVectorInst>::operands(this),
1461 InsertAtEnd) {
1462 assert(isValidOperands(V1, V2, Mask) &&
1463 "Invalid shuffle vector instruction operands!");
1464
1465 Op<0>() = V1;
1466 Op<1>() = V2;
1467 Op<2>() = Mask;
1468 setName(Name);
1469 }
1470
isValidOperands(const Value * V1,const Value * V2,const Value * Mask)1471 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1472 const Value *Mask) {
1473 // V1 and V2 must be vectors of the same type.
1474 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1475 return false;
1476
1477 // Mask must be vector of i32.
1478 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1479 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1480 return false;
1481
1482 // Check to see if Mask is valid.
1483 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1484 return true;
1485
1486 if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1487 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1488 for (Value *Op : MV->operands()) {
1489 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1490 if (CI->uge(V1Size*2))
1491 return false;
1492 } else if (!isa<UndefValue>(Op)) {
1493 return false;
1494 }
1495 }
1496 return true;
1497 }
1498
1499 if (const ConstantDataSequential *CDS =
1500 dyn_cast<ConstantDataSequential>(Mask)) {
1501 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1502 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1503 if (CDS->getElementAsInteger(i) >= V1Size*2)
1504 return false;
1505 return true;
1506 }
1507
1508 // The bitcode reader can create a place holder for a forward reference
1509 // used as the shuffle mask. When this occurs, the shuffle mask will
1510 // fall into this case and fail. To avoid this error, do this bit of
1511 // ugliness to allow such a mask pass.
1512 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
1513 if (CE->getOpcode() == Instruction::UserOp1)
1514 return true;
1515
1516 return false;
1517 }
1518
1519 /// getMaskValue - Return the index from the shuffle mask for the specified
1520 /// output result. This is either -1 if the element is undef or a number less
1521 /// than 2*numelements.
getMaskValue(Constant * Mask,unsigned i)1522 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
1523 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1524 if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
1525 return CDS->getElementAsInteger(i);
1526 Constant *C = Mask->getAggregateElement(i);
1527 if (isa<UndefValue>(C))
1528 return -1;
1529 return cast<ConstantInt>(C)->getZExtValue();
1530 }
1531
1532 /// getShuffleMask - Return the full mask for this instruction, where each
1533 /// element is the element number and undef's are returned as -1.
getShuffleMask(Constant * Mask,SmallVectorImpl<int> & Result)1534 void ShuffleVectorInst::getShuffleMask(Constant *Mask,
1535 SmallVectorImpl<int> &Result) {
1536 unsigned NumElts = Mask->getType()->getVectorNumElements();
1537
1538 if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
1539 for (unsigned i = 0; i != NumElts; ++i)
1540 Result.push_back(CDS->getElementAsInteger(i));
1541 return;
1542 }
1543 for (unsigned i = 0; i != NumElts; ++i) {
1544 Constant *C = Mask->getAggregateElement(i);
1545 Result.push_back(isa<UndefValue>(C) ? -1 :
1546 cast<ConstantInt>(C)->getZExtValue());
1547 }
1548 }
1549
1550
1551 //===----------------------------------------------------------------------===//
1552 // InsertValueInst Class
1553 //===----------------------------------------------------------------------===//
1554
init(Value * Agg,Value * Val,ArrayRef<unsigned> Idxs,const Twine & Name)1555 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1556 const Twine &Name) {
1557 assert(NumOperands == 2 && "NumOperands not initialized?");
1558
1559 // There's no fundamental reason why we require at least one index
1560 // (other than weirdness with &*IdxBegin being invalid; see
1561 // getelementptr's init routine for example). But there's no
1562 // present need to support it.
1563 assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1564
1565 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1566 Val->getType() && "Inserted value must match indexed type!");
1567 Op<0>() = Agg;
1568 Op<1>() = Val;
1569
1570 Indices.append(Idxs.begin(), Idxs.end());
1571 setName(Name);
1572 }
1573
InsertValueInst(const InsertValueInst & IVI)1574 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1575 : Instruction(IVI.getType(), InsertValue,
1576 OperandTraits<InsertValueInst>::op_begin(this), 2),
1577 Indices(IVI.Indices) {
1578 Op<0>() = IVI.getOperand(0);
1579 Op<1>() = IVI.getOperand(1);
1580 SubclassOptionalData = IVI.SubclassOptionalData;
1581 }
1582
1583 //===----------------------------------------------------------------------===//
1584 // ExtractValueInst Class
1585 //===----------------------------------------------------------------------===//
1586
init(ArrayRef<unsigned> Idxs,const Twine & Name)1587 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1588 assert(NumOperands == 1 && "NumOperands not initialized?");
1589
1590 // There's no fundamental reason why we require at least one index.
1591 // But there's no present need to support it.
1592 assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1593
1594 Indices.append(Idxs.begin(), Idxs.end());
1595 setName(Name);
1596 }
1597
ExtractValueInst(const ExtractValueInst & EVI)1598 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1599 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1600 Indices(EVI.Indices) {
1601 SubclassOptionalData = EVI.SubclassOptionalData;
1602 }
1603
1604 // getIndexedType - Returns the type of the element that would be extracted
1605 // with an extractvalue instruction with the specified parameters.
1606 //
1607 // A null type is returned if the indices are invalid for the specified
1608 // pointer type.
1609 //
getIndexedType(Type * Agg,ArrayRef<unsigned> Idxs)1610 Type *ExtractValueInst::getIndexedType(Type *Agg,
1611 ArrayRef<unsigned> Idxs) {
1612 for (unsigned Index : Idxs) {
1613 // We can't use CompositeType::indexValid(Index) here.
1614 // indexValid() always returns true for arrays because getelementptr allows
1615 // out-of-bounds indices. Since we don't allow those for extractvalue and
1616 // insertvalue we need to check array indexing manually.
1617 // Since the only other types we can index into are struct types it's just
1618 // as easy to check those manually as well.
1619 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1620 if (Index >= AT->getNumElements())
1621 return nullptr;
1622 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1623 if (Index >= ST->getNumElements())
1624 return nullptr;
1625 } else {
1626 // Not a valid type to index into.
1627 return nullptr;
1628 }
1629
1630 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1631 }
1632 return const_cast<Type*>(Agg);
1633 }
1634
1635 //===----------------------------------------------------------------------===//
1636 // BinaryOperator Class
1637 //===----------------------------------------------------------------------===//
1638
BinaryOperator(BinaryOps iType,Value * S1,Value * S2,Type * Ty,const Twine & Name,Instruction * InsertBefore)1639 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1640 Type *Ty, const Twine &Name,
1641 Instruction *InsertBefore)
1642 : Instruction(Ty, iType,
1643 OperandTraits<BinaryOperator>::op_begin(this),
1644 OperandTraits<BinaryOperator>::operands(this),
1645 InsertBefore) {
1646 Op<0>() = S1;
1647 Op<1>() = S2;
1648 init(iType);
1649 setName(Name);
1650 }
1651
BinaryOperator(BinaryOps iType,Value * S1,Value * S2,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)1652 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1653 Type *Ty, const Twine &Name,
1654 BasicBlock *InsertAtEnd)
1655 : Instruction(Ty, iType,
1656 OperandTraits<BinaryOperator>::op_begin(this),
1657 OperandTraits<BinaryOperator>::operands(this),
1658 InsertAtEnd) {
1659 Op<0>() = S1;
1660 Op<1>() = S2;
1661 init(iType);
1662 setName(Name);
1663 }
1664
1665
init(BinaryOps iType)1666 void BinaryOperator::init(BinaryOps iType) {
1667 Value *LHS = getOperand(0), *RHS = getOperand(1);
1668 (void)LHS; (void)RHS; // Silence warnings.
1669 assert(LHS->getType() == RHS->getType() &&
1670 "Binary operator operand types must match!");
1671 #ifndef NDEBUG
1672 switch (iType) {
1673 case Add: case Sub:
1674 case Mul:
1675 assert(getType() == LHS->getType() &&
1676 "Arithmetic operation should return same type as operands!");
1677 assert(getType()->isIntOrIntVectorTy() &&
1678 "Tried to create an integer operation on a non-integer type!");
1679 break;
1680 case FAdd: case FSub:
1681 case FMul:
1682 assert(getType() == LHS->getType() &&
1683 "Arithmetic operation should return same type as operands!");
1684 assert(getType()->isFPOrFPVectorTy() &&
1685 "Tried to create a floating-point operation on a "
1686 "non-floating-point type!");
1687 break;
1688 case UDiv:
1689 case SDiv:
1690 assert(getType() == LHS->getType() &&
1691 "Arithmetic operation should return same type as operands!");
1692 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1693 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1694 "Incorrect operand type (not integer) for S/UDIV");
1695 break;
1696 case FDiv:
1697 assert(getType() == LHS->getType() &&
1698 "Arithmetic operation should return same type as operands!");
1699 assert(getType()->isFPOrFPVectorTy() &&
1700 "Incorrect operand type (not floating point) for FDIV");
1701 break;
1702 case URem:
1703 case SRem:
1704 assert(getType() == LHS->getType() &&
1705 "Arithmetic operation should return same type as operands!");
1706 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1707 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1708 "Incorrect operand type (not integer) for S/UREM");
1709 break;
1710 case FRem:
1711 assert(getType() == LHS->getType() &&
1712 "Arithmetic operation should return same type as operands!");
1713 assert(getType()->isFPOrFPVectorTy() &&
1714 "Incorrect operand type (not floating point) for FREM");
1715 break;
1716 case Shl:
1717 case LShr:
1718 case AShr:
1719 assert(getType() == LHS->getType() &&
1720 "Shift operation should return same type as operands!");
1721 assert((getType()->isIntegerTy() ||
1722 (getType()->isVectorTy() &&
1723 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1724 "Tried to create a shift operation on a non-integral type!");
1725 break;
1726 case And: case Or:
1727 case Xor:
1728 assert(getType() == LHS->getType() &&
1729 "Logical operation should return same type as operands!");
1730 assert((getType()->isIntegerTy() ||
1731 (getType()->isVectorTy() &&
1732 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1733 "Tried to create a logical operation on a non-integral type!");
1734 break;
1735 default:
1736 break;
1737 }
1738 #endif
1739 }
1740
Create(BinaryOps Op,Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore)1741 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1742 const Twine &Name,
1743 Instruction *InsertBefore) {
1744 assert(S1->getType() == S2->getType() &&
1745 "Cannot create binary operator with two operands of differing type!");
1746 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1747 }
1748
Create(BinaryOps Op,Value * S1,Value * S2,const Twine & Name,BasicBlock * InsertAtEnd)1749 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1750 const Twine &Name,
1751 BasicBlock *InsertAtEnd) {
1752 BinaryOperator *Res = Create(Op, S1, S2, Name);
1753 InsertAtEnd->getInstList().push_back(Res);
1754 return Res;
1755 }
1756
CreateNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1757 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1758 Instruction *InsertBefore) {
1759 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1760 return new BinaryOperator(Instruction::Sub,
1761 zero, Op,
1762 Op->getType(), Name, InsertBefore);
1763 }
1764
CreateNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1765 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1766 BasicBlock *InsertAtEnd) {
1767 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1768 return new BinaryOperator(Instruction::Sub,
1769 zero, Op,
1770 Op->getType(), Name, InsertAtEnd);
1771 }
1772
CreateNSWNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1773 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1774 Instruction *InsertBefore) {
1775 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1776 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1777 }
1778
CreateNSWNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1779 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1780 BasicBlock *InsertAtEnd) {
1781 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1782 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1783 }
1784
CreateNUWNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1785 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1786 Instruction *InsertBefore) {
1787 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1788 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1789 }
1790
CreateNUWNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1791 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1792 BasicBlock *InsertAtEnd) {
1793 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1794 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1795 }
1796
CreateFNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1797 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1798 Instruction *InsertBefore) {
1799 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1800 return new BinaryOperator(Instruction::FSub, zero, Op,
1801 Op->getType(), Name, InsertBefore);
1802 }
1803
CreateFNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1804 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1805 BasicBlock *InsertAtEnd) {
1806 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1807 return new BinaryOperator(Instruction::FSub, zero, Op,
1808 Op->getType(), Name, InsertAtEnd);
1809 }
1810
CreateNot(Value * Op,const Twine & Name,Instruction * InsertBefore)1811 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1812 Instruction *InsertBefore) {
1813 Constant *C = Constant::getAllOnesValue(Op->getType());
1814 return new BinaryOperator(Instruction::Xor, Op, C,
1815 Op->getType(), Name, InsertBefore);
1816 }
1817
CreateNot(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1818 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1819 BasicBlock *InsertAtEnd) {
1820 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
1821 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1822 Op->getType(), Name, InsertAtEnd);
1823 }
1824
1825
1826 // isConstantAllOnes - Helper function for several functions below
isConstantAllOnes(const Value * V)1827 static inline bool isConstantAllOnes(const Value *V) {
1828 if (const Constant *C = dyn_cast<Constant>(V))
1829 return C->isAllOnesValue();
1830 return false;
1831 }
1832
isNeg(const Value * V)1833 bool BinaryOperator::isNeg(const Value *V) {
1834 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1835 if (Bop->getOpcode() == Instruction::Sub)
1836 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1837 return C->isNegativeZeroValue();
1838 return false;
1839 }
1840
isFNeg(const Value * V,bool IgnoreZeroSign)1841 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
1842 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1843 if (Bop->getOpcode() == Instruction::FSub)
1844 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) {
1845 if (!IgnoreZeroSign)
1846 IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
1847 return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
1848 }
1849 return false;
1850 }
1851
isNot(const Value * V)1852 bool BinaryOperator::isNot(const Value *V) {
1853 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1854 return (Bop->getOpcode() == Instruction::Xor &&
1855 (isConstantAllOnes(Bop->getOperand(1)) ||
1856 isConstantAllOnes(Bop->getOperand(0))));
1857 return false;
1858 }
1859
getNegArgument(Value * BinOp)1860 Value *BinaryOperator::getNegArgument(Value *BinOp) {
1861 return cast<BinaryOperator>(BinOp)->getOperand(1);
1862 }
1863
getNegArgument(const Value * BinOp)1864 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1865 return getNegArgument(const_cast<Value*>(BinOp));
1866 }
1867
getFNegArgument(Value * BinOp)1868 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1869 return cast<BinaryOperator>(BinOp)->getOperand(1);
1870 }
1871
getFNegArgument(const Value * BinOp)1872 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1873 return getFNegArgument(const_cast<Value*>(BinOp));
1874 }
1875
getNotArgument(Value * BinOp)1876 Value *BinaryOperator::getNotArgument(Value *BinOp) {
1877 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1878 BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1879 Value *Op0 = BO->getOperand(0);
1880 Value *Op1 = BO->getOperand(1);
1881 if (isConstantAllOnes(Op0)) return Op1;
1882
1883 assert(isConstantAllOnes(Op1));
1884 return Op0;
1885 }
1886
getNotArgument(const Value * BinOp)1887 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1888 return getNotArgument(const_cast<Value*>(BinOp));
1889 }
1890
1891
1892 // swapOperands - Exchange the two operands to this instruction. This
1893 // instruction is safe to use on any binary instruction and does not
1894 // modify the semantics of the instruction. If the instruction is
1895 // order dependent (SetLT f.e.) the opcode is changed.
1896 //
swapOperands()1897 bool BinaryOperator::swapOperands() {
1898 if (!isCommutative())
1899 return true; // Can't commute operands
1900 Op<0>().swap(Op<1>());
1901 return false;
1902 }
1903
setHasNoUnsignedWrap(bool b)1904 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
1905 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
1906 }
1907
setHasNoSignedWrap(bool b)1908 void BinaryOperator::setHasNoSignedWrap(bool b) {
1909 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
1910 }
1911
setIsExact(bool b)1912 void BinaryOperator::setIsExact(bool b) {
1913 cast<PossiblyExactOperator>(this)->setIsExact(b);
1914 }
1915
hasNoUnsignedWrap() const1916 bool BinaryOperator::hasNoUnsignedWrap() const {
1917 return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
1918 }
1919
hasNoSignedWrap() const1920 bool BinaryOperator::hasNoSignedWrap() const {
1921 return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
1922 }
1923
isExact() const1924 bool BinaryOperator::isExact() const {
1925 return cast<PossiblyExactOperator>(this)->isExact();
1926 }
1927
copyIRFlags(const Value * V)1928 void BinaryOperator::copyIRFlags(const Value *V) {
1929 // Copy the wrapping flags.
1930 if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
1931 setHasNoSignedWrap(OB->hasNoSignedWrap());
1932 setHasNoUnsignedWrap(OB->hasNoUnsignedWrap());
1933 }
1934
1935 // Copy the exact flag.
1936 if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
1937 setIsExact(PE->isExact());
1938
1939 // Copy the fast-math flags.
1940 if (auto *FP = dyn_cast<FPMathOperator>(V))
1941 copyFastMathFlags(FP->getFastMathFlags());
1942 }
1943
andIRFlags(const Value * V)1944 void BinaryOperator::andIRFlags(const Value *V) {
1945 if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
1946 setHasNoSignedWrap(hasNoSignedWrap() & OB->hasNoSignedWrap());
1947 setHasNoUnsignedWrap(hasNoUnsignedWrap() & OB->hasNoUnsignedWrap());
1948 }
1949
1950 if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
1951 setIsExact(isExact() & PE->isExact());
1952
1953 if (auto *FP = dyn_cast<FPMathOperator>(V)) {
1954 FastMathFlags FM = getFastMathFlags();
1955 FM &= FP->getFastMathFlags();
1956 copyFastMathFlags(FM);
1957 }
1958 }
1959
1960
1961 //===----------------------------------------------------------------------===//
1962 // FPMathOperator Class
1963 //===----------------------------------------------------------------------===//
1964
1965 /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
1966 /// An accuracy of 0.0 means that the operation should be performed with the
1967 /// default precision.
getFPAccuracy() const1968 float FPMathOperator::getFPAccuracy() const {
1969 const MDNode *MD =
1970 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
1971 if (!MD)
1972 return 0.0;
1973 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
1974 return Accuracy->getValueAPF().convertToFloat();
1975 }
1976
1977
1978 //===----------------------------------------------------------------------===//
1979 // CastInst Class
1980 //===----------------------------------------------------------------------===//
1981
anchor()1982 void CastInst::anchor() {}
1983
1984 // Just determine if this cast only deals with integral->integral conversion.
isIntegerCast() const1985 bool CastInst::isIntegerCast() const {
1986 switch (getOpcode()) {
1987 default: return false;
1988 case Instruction::ZExt:
1989 case Instruction::SExt:
1990 case Instruction::Trunc:
1991 return true;
1992 case Instruction::BitCast:
1993 return getOperand(0)->getType()->isIntegerTy() &&
1994 getType()->isIntegerTy();
1995 }
1996 }
1997
isLosslessCast() const1998 bool CastInst::isLosslessCast() const {
1999 // Only BitCast can be lossless, exit fast if we're not BitCast
2000 if (getOpcode() != Instruction::BitCast)
2001 return false;
2002
2003 // Identity cast is always lossless
2004 Type* SrcTy = getOperand(0)->getType();
2005 Type* DstTy = getType();
2006 if (SrcTy == DstTy)
2007 return true;
2008
2009 // Pointer to pointer is always lossless.
2010 if (SrcTy->isPointerTy())
2011 return DstTy->isPointerTy();
2012 return false; // Other types have no identity values
2013 }
2014
2015 /// This function determines if the CastInst does not require any bits to be
2016 /// changed in order to effect the cast. Essentially, it identifies cases where
2017 /// no code gen is necessary for the cast, hence the name no-op cast. For
2018 /// example, the following are all no-op casts:
2019 /// # bitcast i32* %x to i8*
2020 /// # bitcast <2 x i32> %x to <4 x i16>
2021 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2022 /// @brief Determine if the described cast is a no-op.
isNoopCast(Instruction::CastOps Opcode,Type * SrcTy,Type * DestTy,Type * IntPtrTy)2023 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2024 Type *SrcTy,
2025 Type *DestTy,
2026 Type *IntPtrTy) {
2027 switch (Opcode) {
2028 default: llvm_unreachable("Invalid CastOp");
2029 case Instruction::Trunc:
2030 case Instruction::ZExt:
2031 case Instruction::SExt:
2032 case Instruction::FPTrunc:
2033 case Instruction::FPExt:
2034 case Instruction::UIToFP:
2035 case Instruction::SIToFP:
2036 case Instruction::FPToUI:
2037 case Instruction::FPToSI:
2038 case Instruction::AddrSpaceCast:
2039 // TODO: Target informations may give a more accurate answer here.
2040 return false;
2041 case Instruction::BitCast:
2042 return true; // BitCast never modifies bits.
2043 case Instruction::PtrToInt:
2044 return IntPtrTy->getScalarSizeInBits() ==
2045 DestTy->getScalarSizeInBits();
2046 case Instruction::IntToPtr:
2047 return IntPtrTy->getScalarSizeInBits() ==
2048 SrcTy->getScalarSizeInBits();
2049 }
2050 }
2051
2052 /// @brief Determine if a cast is a no-op.
isNoopCast(Type * IntPtrTy) const2053 bool CastInst::isNoopCast(Type *IntPtrTy) const {
2054 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2055 }
2056
isNoopCast(const DataLayout & DL) const2057 bool CastInst::isNoopCast(const DataLayout &DL) const {
2058 Type *PtrOpTy = nullptr;
2059 if (getOpcode() == Instruction::PtrToInt)
2060 PtrOpTy = getOperand(0)->getType();
2061 else if (getOpcode() == Instruction::IntToPtr)
2062 PtrOpTy = getType();
2063
2064 Type *IntPtrTy =
2065 PtrOpTy ? DL.getIntPtrType(PtrOpTy) : DL.getIntPtrType(getContext(), 0);
2066
2067 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2068 }
2069
2070 /// This function determines if a pair of casts can be eliminated and what
2071 /// opcode should be used in the elimination. This assumes that there are two
2072 /// instructions like this:
2073 /// * %F = firstOpcode SrcTy %x to MidTy
2074 /// * %S = secondOpcode MidTy %F to DstTy
2075 /// The function returns a resultOpcode so these two casts can be replaced with:
2076 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2077 /// If no such cast is permited, the function returns 0.
isEliminableCastPair(Instruction::CastOps firstOp,Instruction::CastOps secondOp,Type * SrcTy,Type * MidTy,Type * DstTy,Type * SrcIntPtrTy,Type * MidIntPtrTy,Type * DstIntPtrTy)2078 unsigned CastInst::isEliminableCastPair(
2079 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2080 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2081 Type *DstIntPtrTy) {
2082 // Define the 144 possibilities for these two cast instructions. The values
2083 // in this matrix determine what to do in a given situation and select the
2084 // case in the switch below. The rows correspond to firstOp, the columns
2085 // correspond to secondOp. In looking at the table below, keep in mind
2086 // the following cast properties:
2087 //
2088 // Size Compare Source Destination
2089 // Operator Src ? Size Type Sign Type Sign
2090 // -------- ------------ ------------------- ---------------------
2091 // TRUNC > Integer Any Integral Any
2092 // ZEXT < Integral Unsigned Integer Any
2093 // SEXT < Integral Signed Integer Any
2094 // FPTOUI n/a FloatPt n/a Integral Unsigned
2095 // FPTOSI n/a FloatPt n/a Integral Signed
2096 // UITOFP n/a Integral Unsigned FloatPt n/a
2097 // SITOFP n/a Integral Signed FloatPt n/a
2098 // FPTRUNC > FloatPt n/a FloatPt n/a
2099 // FPEXT < FloatPt n/a FloatPt n/a
2100 // PTRTOINT n/a Pointer n/a Integral Unsigned
2101 // INTTOPTR n/a Integral Unsigned Pointer n/a
2102 // BITCAST = FirstClass n/a FirstClass n/a
2103 // ADDRSPCST n/a Pointer n/a Pointer n/a
2104 //
2105 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2106 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2107 // into "fptoui double to i64", but this loses information about the range
2108 // of the produced value (we no longer know the top-part is all zeros).
2109 // Further this conversion is often much more expensive for typical hardware,
2110 // and causes issues when building libgcc. We disallow fptosi+sext for the
2111 // same reason.
2112 const unsigned numCastOps =
2113 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2114 static const uint8_t CastResults[numCastOps][numCastOps] = {
2115 // T F F U S F F P I B A -+
2116 // R Z S P P I I T P 2 N T S |
2117 // U E E 2 2 2 2 R E I T C C +- secondOp
2118 // N X X U S F F N X N 2 V V |
2119 // C T T I I P P C T T P T T -+
2120 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2121 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3, 0}, // ZExt |
2122 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2123 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2124 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2125 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2126 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2127 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4, 0}, // FPTrunc |
2128 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt |
2129 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2130 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2131 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2132 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2133 };
2134
2135 // If either of the casts are a bitcast from scalar to vector, disallow the
2136 // merging. However, bitcast of A->B->A are allowed.
2137 bool isFirstBitcast = (firstOp == Instruction::BitCast);
2138 bool isSecondBitcast = (secondOp == Instruction::BitCast);
2139 bool chainedBitcast = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
2140
2141 // Check if any of the bitcasts convert scalars<->vectors.
2142 if ((isFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2143 (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2144 // Unless we are bitcasing to the original type, disallow optimizations.
2145 if (!chainedBitcast) return 0;
2146
2147 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2148 [secondOp-Instruction::CastOpsBegin];
2149 switch (ElimCase) {
2150 case 0:
2151 // Categorically disallowed.
2152 return 0;
2153 case 1:
2154 // Allowed, use first cast's opcode.
2155 return firstOp;
2156 case 2:
2157 // Allowed, use second cast's opcode.
2158 return secondOp;
2159 case 3:
2160 // No-op cast in second op implies firstOp as long as the DestTy
2161 // is integer and we are not converting between a vector and a
2162 // non-vector type.
2163 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2164 return firstOp;
2165 return 0;
2166 case 4:
2167 // No-op cast in second op implies firstOp as long as the DestTy
2168 // is floating point.
2169 if (DstTy->isFloatingPointTy())
2170 return firstOp;
2171 return 0;
2172 case 5:
2173 // No-op cast in first op implies secondOp as long as the SrcTy
2174 // is an integer.
2175 if (SrcTy->isIntegerTy())
2176 return secondOp;
2177 return 0;
2178 case 6:
2179 // No-op cast in first op implies secondOp as long as the SrcTy
2180 // is a floating point.
2181 if (SrcTy->isFloatingPointTy())
2182 return secondOp;
2183 return 0;
2184 case 7: {
2185 // Cannot simplify if address spaces are different!
2186 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2187 return 0;
2188
2189 unsigned MidSize = MidTy->getScalarSizeInBits();
2190 // We can still fold this without knowing the actual sizes as long we
2191 // know that the intermediate pointer is the largest possible
2192 // pointer size.
2193 // FIXME: Is this always true?
2194 if (MidSize == 64)
2195 return Instruction::BitCast;
2196
2197 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2198 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2199 return 0;
2200 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2201 if (MidSize >= PtrSize)
2202 return Instruction::BitCast;
2203 return 0;
2204 }
2205 case 8: {
2206 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2207 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2208 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2209 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2210 unsigned DstSize = DstTy->getScalarSizeInBits();
2211 if (SrcSize == DstSize)
2212 return Instruction::BitCast;
2213 else if (SrcSize < DstSize)
2214 return firstOp;
2215 return secondOp;
2216 }
2217 case 9:
2218 // zext, sext -> zext, because sext can't sign extend after zext
2219 return Instruction::ZExt;
2220 case 10:
2221 // fpext followed by ftrunc is allowed if the bit size returned to is
2222 // the same as the original, in which case its just a bitcast
2223 if (SrcTy == DstTy)
2224 return Instruction::BitCast;
2225 return 0; // If the types are not the same we can't eliminate it.
2226 case 11: {
2227 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2228 if (!MidIntPtrTy)
2229 return 0;
2230 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2231 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2232 unsigned DstSize = DstTy->getScalarSizeInBits();
2233 if (SrcSize <= PtrSize && SrcSize == DstSize)
2234 return Instruction::BitCast;
2235 return 0;
2236 }
2237 case 12: {
2238 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2239 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2240 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2241 return Instruction::AddrSpaceCast;
2242 return Instruction::BitCast;
2243 }
2244 case 13:
2245 // FIXME: this state can be merged with (1), but the following assert
2246 // is useful to check the correcteness of the sequence due to semantic
2247 // change of bitcast.
2248 assert(
2249 SrcTy->isPtrOrPtrVectorTy() &&
2250 MidTy->isPtrOrPtrVectorTy() &&
2251 DstTy->isPtrOrPtrVectorTy() &&
2252 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2253 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2254 "Illegal addrspacecast, bitcast sequence!");
2255 // Allowed, use first cast's opcode
2256 return firstOp;
2257 case 14:
2258 // bitcast, addrspacecast -> addrspacecast if the element type of
2259 // bitcast's source is the same as that of addrspacecast's destination.
2260 if (SrcTy->getPointerElementType() == DstTy->getPointerElementType())
2261 return Instruction::AddrSpaceCast;
2262 return 0;
2263
2264 case 15:
2265 // FIXME: this state can be merged with (1), but the following assert
2266 // is useful to check the correcteness of the sequence due to semantic
2267 // change of bitcast.
2268 assert(
2269 SrcTy->isIntOrIntVectorTy() &&
2270 MidTy->isPtrOrPtrVectorTy() &&
2271 DstTy->isPtrOrPtrVectorTy() &&
2272 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2273 "Illegal inttoptr, bitcast sequence!");
2274 // Allowed, use first cast's opcode
2275 return firstOp;
2276 case 16:
2277 // FIXME: this state can be merged with (2), but the following assert
2278 // is useful to check the correcteness of the sequence due to semantic
2279 // change of bitcast.
2280 assert(
2281 SrcTy->isPtrOrPtrVectorTy() &&
2282 MidTy->isPtrOrPtrVectorTy() &&
2283 DstTy->isIntOrIntVectorTy() &&
2284 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2285 "Illegal bitcast, ptrtoint sequence!");
2286 // Allowed, use second cast's opcode
2287 return secondOp;
2288 case 99:
2289 // Cast combination can't happen (error in input). This is for all cases
2290 // where the MidTy is not the same for the two cast instructions.
2291 llvm_unreachable("Invalid Cast Combination");
2292 default:
2293 llvm_unreachable("Error in CastResults table!!!");
2294 }
2295 }
2296
Create(Instruction::CastOps op,Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2297 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2298 const Twine &Name, Instruction *InsertBefore) {
2299 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2300 // Construct and return the appropriate CastInst subclass
2301 switch (op) {
2302 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2303 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2304 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2305 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2306 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2307 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2308 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2309 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2310 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2311 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2312 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2313 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2314 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2315 default: llvm_unreachable("Invalid opcode provided");
2316 }
2317 }
2318
Create(Instruction::CastOps op,Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2319 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2320 const Twine &Name, BasicBlock *InsertAtEnd) {
2321 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2322 // Construct and return the appropriate CastInst subclass
2323 switch (op) {
2324 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2325 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2326 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2327 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2328 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2329 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2330 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2331 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2332 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2333 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2334 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2335 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2336 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2337 default: llvm_unreachable("Invalid opcode provided");
2338 }
2339 }
2340
CreateZExtOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2341 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2342 const Twine &Name,
2343 Instruction *InsertBefore) {
2344 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2345 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2346 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2347 }
2348
CreateZExtOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2349 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2350 const Twine &Name,
2351 BasicBlock *InsertAtEnd) {
2352 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2353 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2354 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2355 }
2356
CreateSExtOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2357 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2358 const Twine &Name,
2359 Instruction *InsertBefore) {
2360 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2361 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2362 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2363 }
2364
CreateSExtOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2365 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2366 const Twine &Name,
2367 BasicBlock *InsertAtEnd) {
2368 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2369 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2370 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2371 }
2372
CreateTruncOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2373 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2374 const Twine &Name,
2375 Instruction *InsertBefore) {
2376 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2377 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2378 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2379 }
2380
CreateTruncOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2381 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2382 const Twine &Name,
2383 BasicBlock *InsertAtEnd) {
2384 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2385 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2386 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2387 }
2388
CreatePointerCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2389 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2390 const Twine &Name,
2391 BasicBlock *InsertAtEnd) {
2392 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2393 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2394 "Invalid cast");
2395 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2396 assert((!Ty->isVectorTy() ||
2397 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2398 "Invalid cast");
2399
2400 if (Ty->isIntOrIntVectorTy())
2401 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2402
2403 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2404 }
2405
2406 /// @brief Create a BitCast or a PtrToInt cast instruction
CreatePointerCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2407 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2408 const Twine &Name,
2409 Instruction *InsertBefore) {
2410 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2411 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2412 "Invalid cast");
2413 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2414 assert((!Ty->isVectorTy() ||
2415 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2416 "Invalid cast");
2417
2418 if (Ty->isIntOrIntVectorTy())
2419 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2420
2421 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2422 }
2423
CreatePointerBitCastOrAddrSpaceCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2424 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2425 Value *S, Type *Ty,
2426 const Twine &Name,
2427 BasicBlock *InsertAtEnd) {
2428 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2429 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2430
2431 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2432 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2433
2434 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2435 }
2436
CreatePointerBitCastOrAddrSpaceCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2437 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2438 Value *S, Type *Ty,
2439 const Twine &Name,
2440 Instruction *InsertBefore) {
2441 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2442 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2443
2444 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2445 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2446
2447 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2448 }
2449
CreateBitOrPointerCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2450 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2451 const Twine &Name,
2452 Instruction *InsertBefore) {
2453 if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2454 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2455 if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2456 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2457
2458 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2459 }
2460
CreateIntegerCast(Value * C,Type * Ty,bool isSigned,const Twine & Name,Instruction * InsertBefore)2461 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2462 bool isSigned, const Twine &Name,
2463 Instruction *InsertBefore) {
2464 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2465 "Invalid integer cast");
2466 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2467 unsigned DstBits = Ty->getScalarSizeInBits();
2468 Instruction::CastOps opcode =
2469 (SrcBits == DstBits ? Instruction::BitCast :
2470 (SrcBits > DstBits ? Instruction::Trunc :
2471 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2472 return Create(opcode, C, Ty, Name, InsertBefore);
2473 }
2474
CreateIntegerCast(Value * C,Type * Ty,bool isSigned,const Twine & Name,BasicBlock * InsertAtEnd)2475 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2476 bool isSigned, const Twine &Name,
2477 BasicBlock *InsertAtEnd) {
2478 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2479 "Invalid cast");
2480 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2481 unsigned DstBits = Ty->getScalarSizeInBits();
2482 Instruction::CastOps opcode =
2483 (SrcBits == DstBits ? Instruction::BitCast :
2484 (SrcBits > DstBits ? Instruction::Trunc :
2485 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2486 return Create(opcode, C, Ty, Name, InsertAtEnd);
2487 }
2488
CreateFPCast(Value * C,Type * Ty,const Twine & Name,Instruction * InsertBefore)2489 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2490 const Twine &Name,
2491 Instruction *InsertBefore) {
2492 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2493 "Invalid cast");
2494 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2495 unsigned DstBits = Ty->getScalarSizeInBits();
2496 Instruction::CastOps opcode =
2497 (SrcBits == DstBits ? Instruction::BitCast :
2498 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2499 return Create(opcode, C, Ty, Name, InsertBefore);
2500 }
2501
CreateFPCast(Value * C,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2502 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2503 const Twine &Name,
2504 BasicBlock *InsertAtEnd) {
2505 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2506 "Invalid cast");
2507 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2508 unsigned DstBits = Ty->getScalarSizeInBits();
2509 Instruction::CastOps opcode =
2510 (SrcBits == DstBits ? Instruction::BitCast :
2511 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2512 return Create(opcode, C, Ty, Name, InsertAtEnd);
2513 }
2514
2515 // Check whether it is valid to call getCastOpcode for these types.
2516 // This routine must be kept in sync with getCastOpcode.
isCastable(Type * SrcTy,Type * DestTy)2517 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2518 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2519 return false;
2520
2521 if (SrcTy == DestTy)
2522 return true;
2523
2524 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2525 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2526 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2527 // An element by element cast. Valid if casting the elements is valid.
2528 SrcTy = SrcVecTy->getElementType();
2529 DestTy = DestVecTy->getElementType();
2530 }
2531
2532 // Get the bit sizes, we'll need these
2533 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2534 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2535
2536 // Run through the possibilities ...
2537 if (DestTy->isIntegerTy()) { // Casting to integral
2538 if (SrcTy->isIntegerTy()) // Casting from integral
2539 return true;
2540 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2541 return true;
2542 if (SrcTy->isVectorTy()) // Casting from vector
2543 return DestBits == SrcBits;
2544 // Casting from something else
2545 return SrcTy->isPointerTy();
2546 }
2547 if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2548 if (SrcTy->isIntegerTy()) // Casting from integral
2549 return true;
2550 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2551 return true;
2552 if (SrcTy->isVectorTy()) // Casting from vector
2553 return DestBits == SrcBits;
2554 // Casting from something else
2555 return false;
2556 }
2557 if (DestTy->isVectorTy()) // Casting to vector
2558 return DestBits == SrcBits;
2559 if (DestTy->isPointerTy()) { // Casting to pointer
2560 if (SrcTy->isPointerTy()) // Casting from pointer
2561 return true;
2562 return SrcTy->isIntegerTy(); // Casting from integral
2563 }
2564 if (DestTy->isX86_MMXTy()) {
2565 if (SrcTy->isVectorTy())
2566 return DestBits == SrcBits; // 64-bit vector to MMX
2567 return false;
2568 } // Casting to something else
2569 return false;
2570 }
2571
isBitCastable(Type * SrcTy,Type * DestTy)2572 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2573 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2574 return false;
2575
2576 if (SrcTy == DestTy)
2577 return true;
2578
2579 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2580 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2581 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2582 // An element by element cast. Valid if casting the elements is valid.
2583 SrcTy = SrcVecTy->getElementType();
2584 DestTy = DestVecTy->getElementType();
2585 }
2586 }
2587 }
2588
2589 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2590 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2591 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2592 }
2593 }
2594
2595 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2596 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2597
2598 // Could still have vectors of pointers if the number of elements doesn't
2599 // match
2600 if (SrcBits == 0 || DestBits == 0)
2601 return false;
2602
2603 if (SrcBits != DestBits)
2604 return false;
2605
2606 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2607 return false;
2608
2609 return true;
2610 }
2611
isBitOrNoopPointerCastable(Type * SrcTy,Type * DestTy,const DataLayout & DL)2612 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
2613 const DataLayout &DL) {
2614 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
2615 if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
2616 return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy);
2617 if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
2618 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
2619 return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy);
2620
2621 return isBitCastable(SrcTy, DestTy);
2622 }
2623
2624 // Provide a way to get a "cast" where the cast opcode is inferred from the
2625 // types and size of the operand. This, basically, is a parallel of the
2626 // logic in the castIsValid function below. This axiom should hold:
2627 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2628 // should not assert in castIsValid. In other words, this produces a "correct"
2629 // casting opcode for the arguments passed to it.
2630 // This routine must be kept in sync with isCastable.
2631 Instruction::CastOps
getCastOpcode(const Value * Src,bool SrcIsSigned,Type * DestTy,bool DestIsSigned)2632 CastInst::getCastOpcode(
2633 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2634 Type *SrcTy = Src->getType();
2635
2636 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2637 "Only first class types are castable!");
2638
2639 if (SrcTy == DestTy)
2640 return BitCast;
2641
2642 // FIXME: Check address space sizes here
2643 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2644 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2645 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2646 // An element by element cast. Find the appropriate opcode based on the
2647 // element types.
2648 SrcTy = SrcVecTy->getElementType();
2649 DestTy = DestVecTy->getElementType();
2650 }
2651
2652 // Get the bit sizes, we'll need these
2653 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2654 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2655
2656 // Run through the possibilities ...
2657 if (DestTy->isIntegerTy()) { // Casting to integral
2658 if (SrcTy->isIntegerTy()) { // Casting from integral
2659 if (DestBits < SrcBits)
2660 return Trunc; // int -> smaller int
2661 else if (DestBits > SrcBits) { // its an extension
2662 if (SrcIsSigned)
2663 return SExt; // signed -> SEXT
2664 else
2665 return ZExt; // unsigned -> ZEXT
2666 } else {
2667 return BitCast; // Same size, No-op cast
2668 }
2669 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2670 if (DestIsSigned)
2671 return FPToSI; // FP -> sint
2672 else
2673 return FPToUI; // FP -> uint
2674 } else if (SrcTy->isVectorTy()) {
2675 assert(DestBits == SrcBits &&
2676 "Casting vector to integer of different width");
2677 return BitCast; // Same size, no-op cast
2678 } else {
2679 assert(SrcTy->isPointerTy() &&
2680 "Casting from a value that is not first-class type");
2681 return PtrToInt; // ptr -> int
2682 }
2683 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2684 if (SrcTy->isIntegerTy()) { // Casting from integral
2685 if (SrcIsSigned)
2686 return SIToFP; // sint -> FP
2687 else
2688 return UIToFP; // uint -> FP
2689 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2690 if (DestBits < SrcBits) {
2691 return FPTrunc; // FP -> smaller FP
2692 } else if (DestBits > SrcBits) {
2693 return FPExt; // FP -> larger FP
2694 } else {
2695 return BitCast; // same size, no-op cast
2696 }
2697 } else if (SrcTy->isVectorTy()) {
2698 assert(DestBits == SrcBits &&
2699 "Casting vector to floating point of different width");
2700 return BitCast; // same size, no-op cast
2701 }
2702 llvm_unreachable("Casting pointer or non-first class to float");
2703 } else if (DestTy->isVectorTy()) {
2704 assert(DestBits == SrcBits &&
2705 "Illegal cast to vector (wrong type or size)");
2706 return BitCast;
2707 } else if (DestTy->isPointerTy()) {
2708 if (SrcTy->isPointerTy()) {
2709 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
2710 return AddrSpaceCast;
2711 return BitCast; // ptr -> ptr
2712 } else if (SrcTy->isIntegerTy()) {
2713 return IntToPtr; // int -> ptr
2714 }
2715 llvm_unreachable("Casting pointer to other than pointer or int");
2716 } else if (DestTy->isX86_MMXTy()) {
2717 if (SrcTy->isVectorTy()) {
2718 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2719 return BitCast; // 64-bit vector to MMX
2720 }
2721 llvm_unreachable("Illegal cast to X86_MMX");
2722 }
2723 llvm_unreachable("Casting to type that is not first-class");
2724 }
2725
2726 //===----------------------------------------------------------------------===//
2727 // CastInst SubClass Constructors
2728 //===----------------------------------------------------------------------===//
2729
2730 /// Check that the construction parameters for a CastInst are correct. This
2731 /// could be broken out into the separate constructors but it is useful to have
2732 /// it in one place and to eliminate the redundant code for getting the sizes
2733 /// of the types involved.
2734 bool
castIsValid(Instruction::CastOps op,Value * S,Type * DstTy)2735 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
2736
2737 // Check for type sanity on the arguments
2738 Type *SrcTy = S->getType();
2739
2740 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2741 SrcTy->isAggregateType() || DstTy->isAggregateType())
2742 return false;
2743
2744 // Get the size of the types in bits, we'll need this later
2745 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2746 unsigned DstBitSize = DstTy->getScalarSizeInBits();
2747
2748 // If these are vector types, get the lengths of the vectors (using zero for
2749 // scalar types means that checking that vector lengths match also checks that
2750 // scalars are not being converted to vectors or vectors to scalars).
2751 unsigned SrcLength = SrcTy->isVectorTy() ?
2752 cast<VectorType>(SrcTy)->getNumElements() : 0;
2753 unsigned DstLength = DstTy->isVectorTy() ?
2754 cast<VectorType>(DstTy)->getNumElements() : 0;
2755
2756 // Switch on the opcode provided
2757 switch (op) {
2758 default: return false; // This is an input error
2759 case Instruction::Trunc:
2760 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2761 SrcLength == DstLength && SrcBitSize > DstBitSize;
2762 case Instruction::ZExt:
2763 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2764 SrcLength == DstLength && SrcBitSize < DstBitSize;
2765 case Instruction::SExt:
2766 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2767 SrcLength == DstLength && SrcBitSize < DstBitSize;
2768 case Instruction::FPTrunc:
2769 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2770 SrcLength == DstLength && SrcBitSize > DstBitSize;
2771 case Instruction::FPExt:
2772 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2773 SrcLength == DstLength && SrcBitSize < DstBitSize;
2774 case Instruction::UIToFP:
2775 case Instruction::SIToFP:
2776 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
2777 SrcLength == DstLength;
2778 case Instruction::FPToUI:
2779 case Instruction::FPToSI:
2780 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
2781 SrcLength == DstLength;
2782 case Instruction::PtrToInt:
2783 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2784 return false;
2785 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2786 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2787 return false;
2788 return SrcTy->getScalarType()->isPointerTy() &&
2789 DstTy->getScalarType()->isIntegerTy();
2790 case Instruction::IntToPtr:
2791 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2792 return false;
2793 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2794 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2795 return false;
2796 return SrcTy->getScalarType()->isIntegerTy() &&
2797 DstTy->getScalarType()->isPointerTy();
2798 case Instruction::BitCast: {
2799 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
2800 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
2801
2802 // BitCast implies a no-op cast of type only. No bits change.
2803 // However, you can't cast pointers to anything but pointers.
2804 if (!SrcPtrTy != !DstPtrTy)
2805 return false;
2806
2807 // For non-pointer cases, the cast is okay if the source and destination bit
2808 // widths are identical.
2809 if (!SrcPtrTy)
2810 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2811
2812 // If both are pointers then the address spaces must match.
2813 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
2814 return false;
2815
2816 // A vector of pointers must have the same number of elements.
2817 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2818 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
2819 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
2820
2821 return false;
2822 }
2823
2824 return true;
2825 }
2826 case Instruction::AddrSpaceCast: {
2827 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
2828 if (!SrcPtrTy)
2829 return false;
2830
2831 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
2832 if (!DstPtrTy)
2833 return false;
2834
2835 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2836 return false;
2837
2838 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2839 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
2840 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
2841
2842 return false;
2843 }
2844
2845 return true;
2846 }
2847 }
2848 }
2849
TruncInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2850 TruncInst::TruncInst(
2851 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2852 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2853 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2854 }
2855
TruncInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2856 TruncInst::TruncInst(
2857 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2858 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2859 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2860 }
2861
ZExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2862 ZExtInst::ZExtInst(
2863 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2864 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2865 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2866 }
2867
ZExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2868 ZExtInst::ZExtInst(
2869 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2870 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2871 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2872 }
SExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2873 SExtInst::SExtInst(
2874 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2875 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2876 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2877 }
2878
SExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2879 SExtInst::SExtInst(
2880 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2881 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2882 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2883 }
2884
FPTruncInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2885 FPTruncInst::FPTruncInst(
2886 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2887 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2888 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2889 }
2890
FPTruncInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2891 FPTruncInst::FPTruncInst(
2892 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2893 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2894 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2895 }
2896
FPExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2897 FPExtInst::FPExtInst(
2898 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2899 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2900 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2901 }
2902
FPExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2903 FPExtInst::FPExtInst(
2904 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2905 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2906 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2907 }
2908
UIToFPInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2909 UIToFPInst::UIToFPInst(
2910 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2911 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2912 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2913 }
2914
UIToFPInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2915 UIToFPInst::UIToFPInst(
2916 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2917 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2918 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2919 }
2920
SIToFPInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2921 SIToFPInst::SIToFPInst(
2922 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2923 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2924 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2925 }
2926
SIToFPInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2927 SIToFPInst::SIToFPInst(
2928 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2929 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2930 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2931 }
2932
FPToUIInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2933 FPToUIInst::FPToUIInst(
2934 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2935 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2936 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2937 }
2938
FPToUIInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2939 FPToUIInst::FPToUIInst(
2940 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2941 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2942 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2943 }
2944
FPToSIInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2945 FPToSIInst::FPToSIInst(
2946 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2947 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2948 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2949 }
2950
FPToSIInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2951 FPToSIInst::FPToSIInst(
2952 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2953 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2954 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2955 }
2956
PtrToIntInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2957 PtrToIntInst::PtrToIntInst(
2958 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2959 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2960 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2961 }
2962
PtrToIntInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2963 PtrToIntInst::PtrToIntInst(
2964 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2965 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2966 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2967 }
2968
IntToPtrInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2969 IntToPtrInst::IntToPtrInst(
2970 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2971 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2972 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2973 }
2974
IntToPtrInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2975 IntToPtrInst::IntToPtrInst(
2976 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2977 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2978 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2979 }
2980
BitCastInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2981 BitCastInst::BitCastInst(
2982 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2983 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2984 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2985 }
2986
BitCastInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2987 BitCastInst::BitCastInst(
2988 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2989 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2990 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2991 }
2992
AddrSpaceCastInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2993 AddrSpaceCastInst::AddrSpaceCastInst(
2994 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2995 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
2996 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
2997 }
2998
AddrSpaceCastInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2999 AddrSpaceCastInst::AddrSpaceCastInst(
3000 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3001 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3002 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3003 }
3004
3005 //===----------------------------------------------------------------------===//
3006 // CmpInst Classes
3007 //===----------------------------------------------------------------------===//
3008
anchor()3009 void CmpInst::anchor() {}
3010
CmpInst(Type * ty,OtherOps op,unsigned short predicate,Value * LHS,Value * RHS,const Twine & Name,Instruction * InsertBefore)3011 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
3012 Value *LHS, Value *RHS, const Twine &Name,
3013 Instruction *InsertBefore)
3014 : Instruction(ty, op,
3015 OperandTraits<CmpInst>::op_begin(this),
3016 OperandTraits<CmpInst>::operands(this),
3017 InsertBefore) {
3018 Op<0>() = LHS;
3019 Op<1>() = RHS;
3020 setPredicate((Predicate)predicate);
3021 setName(Name);
3022 }
3023
CmpInst(Type * ty,OtherOps op,unsigned short predicate,Value * LHS,Value * RHS,const Twine & Name,BasicBlock * InsertAtEnd)3024 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
3025 Value *LHS, Value *RHS, const Twine &Name,
3026 BasicBlock *InsertAtEnd)
3027 : Instruction(ty, op,
3028 OperandTraits<CmpInst>::op_begin(this),
3029 OperandTraits<CmpInst>::operands(this),
3030 InsertAtEnd) {
3031 Op<0>() = LHS;
3032 Op<1>() = RHS;
3033 setPredicate((Predicate)predicate);
3034 setName(Name);
3035 }
3036
3037 CmpInst *
Create(OtherOps Op,unsigned short predicate,Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore)3038 CmpInst::Create(OtherOps Op, unsigned short predicate,
3039 Value *S1, Value *S2,
3040 const Twine &Name, Instruction *InsertBefore) {
3041 if (Op == Instruction::ICmp) {
3042 if (InsertBefore)
3043 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3044 S1, S2, Name);
3045 else
3046 return new ICmpInst(CmpInst::Predicate(predicate),
3047 S1, S2, Name);
3048 }
3049
3050 if (InsertBefore)
3051 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3052 S1, S2, Name);
3053 else
3054 return new FCmpInst(CmpInst::Predicate(predicate),
3055 S1, S2, Name);
3056 }
3057
3058 CmpInst *
Create(OtherOps Op,unsigned short predicate,Value * S1,Value * S2,const Twine & Name,BasicBlock * InsertAtEnd)3059 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
3060 const Twine &Name, BasicBlock *InsertAtEnd) {
3061 if (Op == Instruction::ICmp) {
3062 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3063 S1, S2, Name);
3064 }
3065 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3066 S1, S2, Name);
3067 }
3068
swapOperands()3069 void CmpInst::swapOperands() {
3070 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3071 IC->swapOperands();
3072 else
3073 cast<FCmpInst>(this)->swapOperands();
3074 }
3075
isCommutative() const3076 bool CmpInst::isCommutative() const {
3077 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3078 return IC->isCommutative();
3079 return cast<FCmpInst>(this)->isCommutative();
3080 }
3081
isEquality() const3082 bool CmpInst::isEquality() const {
3083 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3084 return IC->isEquality();
3085 return cast<FCmpInst>(this)->isEquality();
3086 }
3087
3088
getInversePredicate(Predicate pred)3089 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3090 switch (pred) {
3091 default: llvm_unreachable("Unknown cmp predicate!");
3092 case ICMP_EQ: return ICMP_NE;
3093 case ICMP_NE: return ICMP_EQ;
3094 case ICMP_UGT: return ICMP_ULE;
3095 case ICMP_ULT: return ICMP_UGE;
3096 case ICMP_UGE: return ICMP_ULT;
3097 case ICMP_ULE: return ICMP_UGT;
3098 case ICMP_SGT: return ICMP_SLE;
3099 case ICMP_SLT: return ICMP_SGE;
3100 case ICMP_SGE: return ICMP_SLT;
3101 case ICMP_SLE: return ICMP_SGT;
3102
3103 case FCMP_OEQ: return FCMP_UNE;
3104 case FCMP_ONE: return FCMP_UEQ;
3105 case FCMP_OGT: return FCMP_ULE;
3106 case FCMP_OLT: return FCMP_UGE;
3107 case FCMP_OGE: return FCMP_ULT;
3108 case FCMP_OLE: return FCMP_UGT;
3109 case FCMP_UEQ: return FCMP_ONE;
3110 case FCMP_UNE: return FCMP_OEQ;
3111 case FCMP_UGT: return FCMP_OLE;
3112 case FCMP_ULT: return FCMP_OGE;
3113 case FCMP_UGE: return FCMP_OLT;
3114 case FCMP_ULE: return FCMP_OGT;
3115 case FCMP_ORD: return FCMP_UNO;
3116 case FCMP_UNO: return FCMP_ORD;
3117 case FCMP_TRUE: return FCMP_FALSE;
3118 case FCMP_FALSE: return FCMP_TRUE;
3119 }
3120 }
3121
getSignedPredicate(Predicate pred)3122 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3123 switch (pred) {
3124 default: llvm_unreachable("Unknown icmp predicate!");
3125 case ICMP_EQ: case ICMP_NE:
3126 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3127 return pred;
3128 case ICMP_UGT: return ICMP_SGT;
3129 case ICMP_ULT: return ICMP_SLT;
3130 case ICMP_UGE: return ICMP_SGE;
3131 case ICMP_ULE: return ICMP_SLE;
3132 }
3133 }
3134
getUnsignedPredicate(Predicate pred)3135 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3136 switch (pred) {
3137 default: llvm_unreachable("Unknown icmp predicate!");
3138 case ICMP_EQ: case ICMP_NE:
3139 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3140 return pred;
3141 case ICMP_SGT: return ICMP_UGT;
3142 case ICMP_SLT: return ICMP_ULT;
3143 case ICMP_SGE: return ICMP_UGE;
3144 case ICMP_SLE: return ICMP_ULE;
3145 }
3146 }
3147
3148 /// Initialize a set of values that all satisfy the condition with C.
3149 ///
3150 ConstantRange
makeConstantRange(Predicate pred,const APInt & C)3151 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
3152 APInt Lower(C);
3153 APInt Upper(C);
3154 uint32_t BitWidth = C.getBitWidth();
3155 switch (pred) {
3156 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
3157 case ICmpInst::ICMP_EQ: ++Upper; break;
3158 case ICmpInst::ICMP_NE: ++Lower; break;
3159 case ICmpInst::ICMP_ULT:
3160 Lower = APInt::getMinValue(BitWidth);
3161 // Check for an empty-set condition.
3162 if (Lower == Upper)
3163 return ConstantRange(BitWidth, /*isFullSet=*/false);
3164 break;
3165 case ICmpInst::ICMP_SLT:
3166 Lower = APInt::getSignedMinValue(BitWidth);
3167 // Check for an empty-set condition.
3168 if (Lower == Upper)
3169 return ConstantRange(BitWidth, /*isFullSet=*/false);
3170 break;
3171 case ICmpInst::ICMP_UGT:
3172 ++Lower; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
3173 // Check for an empty-set condition.
3174 if (Lower == Upper)
3175 return ConstantRange(BitWidth, /*isFullSet=*/false);
3176 break;
3177 case ICmpInst::ICMP_SGT:
3178 ++Lower; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
3179 // Check for an empty-set condition.
3180 if (Lower == Upper)
3181 return ConstantRange(BitWidth, /*isFullSet=*/false);
3182 break;
3183 case ICmpInst::ICMP_ULE:
3184 Lower = APInt::getMinValue(BitWidth); ++Upper;
3185 // Check for a full-set condition.
3186 if (Lower == Upper)
3187 return ConstantRange(BitWidth, /*isFullSet=*/true);
3188 break;
3189 case ICmpInst::ICMP_SLE:
3190 Lower = APInt::getSignedMinValue(BitWidth); ++Upper;
3191 // Check for a full-set condition.
3192 if (Lower == Upper)
3193 return ConstantRange(BitWidth, /*isFullSet=*/true);
3194 break;
3195 case ICmpInst::ICMP_UGE:
3196 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
3197 // Check for a full-set condition.
3198 if (Lower == Upper)
3199 return ConstantRange(BitWidth, /*isFullSet=*/true);
3200 break;
3201 case ICmpInst::ICMP_SGE:
3202 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
3203 // Check for a full-set condition.
3204 if (Lower == Upper)
3205 return ConstantRange(BitWidth, /*isFullSet=*/true);
3206 break;
3207 }
3208 return ConstantRange(Lower, Upper);
3209 }
3210
getSwappedPredicate(Predicate pred)3211 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3212 switch (pred) {
3213 default: llvm_unreachable("Unknown cmp predicate!");
3214 case ICMP_EQ: case ICMP_NE:
3215 return pred;
3216 case ICMP_SGT: return ICMP_SLT;
3217 case ICMP_SLT: return ICMP_SGT;
3218 case ICMP_SGE: return ICMP_SLE;
3219 case ICMP_SLE: return ICMP_SGE;
3220 case ICMP_UGT: return ICMP_ULT;
3221 case ICMP_ULT: return ICMP_UGT;
3222 case ICMP_UGE: return ICMP_ULE;
3223 case ICMP_ULE: return ICMP_UGE;
3224
3225 case FCMP_FALSE: case FCMP_TRUE:
3226 case FCMP_OEQ: case FCMP_ONE:
3227 case FCMP_UEQ: case FCMP_UNE:
3228 case FCMP_ORD: case FCMP_UNO:
3229 return pred;
3230 case FCMP_OGT: return FCMP_OLT;
3231 case FCMP_OLT: return FCMP_OGT;
3232 case FCMP_OGE: return FCMP_OLE;
3233 case FCMP_OLE: return FCMP_OGE;
3234 case FCMP_UGT: return FCMP_ULT;
3235 case FCMP_ULT: return FCMP_UGT;
3236 case FCMP_UGE: return FCMP_ULE;
3237 case FCMP_ULE: return FCMP_UGE;
3238 }
3239 }
3240
isUnsigned(unsigned short predicate)3241 bool CmpInst::isUnsigned(unsigned short predicate) {
3242 switch (predicate) {
3243 default: return false;
3244 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3245 case ICmpInst::ICMP_UGE: return true;
3246 }
3247 }
3248
isSigned(unsigned short predicate)3249 bool CmpInst::isSigned(unsigned short predicate) {
3250 switch (predicate) {
3251 default: return false;
3252 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3253 case ICmpInst::ICMP_SGE: return true;
3254 }
3255 }
3256
isOrdered(unsigned short predicate)3257 bool CmpInst::isOrdered(unsigned short predicate) {
3258 switch (predicate) {
3259 default: return false;
3260 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3261 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3262 case FCmpInst::FCMP_ORD: return true;
3263 }
3264 }
3265
isUnordered(unsigned short predicate)3266 bool CmpInst::isUnordered(unsigned short predicate) {
3267 switch (predicate) {
3268 default: return false;
3269 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3270 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3271 case FCmpInst::FCMP_UNO: return true;
3272 }
3273 }
3274
isTrueWhenEqual(unsigned short predicate)3275 bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
3276 switch(predicate) {
3277 default: return false;
3278 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3279 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3280 }
3281 }
3282
isFalseWhenEqual(unsigned short predicate)3283 bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
3284 switch(predicate) {
3285 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3286 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3287 default: return false;
3288 }
3289 }
3290
3291
3292 //===----------------------------------------------------------------------===//
3293 // SwitchInst Implementation
3294 //===----------------------------------------------------------------------===//
3295
init(Value * Value,BasicBlock * Default,unsigned NumReserved)3296 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3297 assert(Value && Default && NumReserved);
3298 ReservedSpace = NumReserved;
3299 NumOperands = 2;
3300 OperandList = allocHungoffUses(ReservedSpace);
3301
3302 OperandList[0] = Value;
3303 OperandList[1] = Default;
3304 }
3305
3306 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3307 /// switch on and a default destination. The number of additional cases can
3308 /// be specified here to make memory allocation more efficient. This
3309 /// constructor can also autoinsert before another instruction.
SwitchInst(Value * Value,BasicBlock * Default,unsigned NumCases,Instruction * InsertBefore)3310 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3311 Instruction *InsertBefore)
3312 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3313 nullptr, 0, InsertBefore) {
3314 init(Value, Default, 2+NumCases*2);
3315 }
3316
3317 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3318 /// switch on and a default destination. The number of additional cases can
3319 /// be specified here to make memory allocation more efficient. This
3320 /// constructor also autoinserts at the end of the specified BasicBlock.
SwitchInst(Value * Value,BasicBlock * Default,unsigned NumCases,BasicBlock * InsertAtEnd)3321 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3322 BasicBlock *InsertAtEnd)
3323 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3324 nullptr, 0, InsertAtEnd) {
3325 init(Value, Default, 2+NumCases*2);
3326 }
3327
SwitchInst(const SwitchInst & SI)3328 SwitchInst::SwitchInst(const SwitchInst &SI)
3329 : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) {
3330 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3331 NumOperands = SI.getNumOperands();
3332 Use *OL = OperandList, *InOL = SI.OperandList;
3333 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3334 OL[i] = InOL[i];
3335 OL[i+1] = InOL[i+1];
3336 }
3337 SubclassOptionalData = SI.SubclassOptionalData;
3338 }
3339
~SwitchInst()3340 SwitchInst::~SwitchInst() {
3341 dropHungoffUses();
3342 }
3343
3344
3345 /// addCase - Add an entry to the switch instruction...
3346 ///
addCase(ConstantInt * OnVal,BasicBlock * Dest)3347 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3348 unsigned NewCaseIdx = getNumCases();
3349 unsigned OpNo = NumOperands;
3350 if (OpNo+2 > ReservedSpace)
3351 growOperands(); // Get more space!
3352 // Initialize some new operands.
3353 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3354 NumOperands = OpNo+2;
3355 CaseIt Case(this, NewCaseIdx);
3356 Case.setValue(OnVal);
3357 Case.setSuccessor(Dest);
3358 }
3359
3360 /// removeCase - This method removes the specified case and its successor
3361 /// from the switch instruction.
removeCase(CaseIt i)3362 void SwitchInst::removeCase(CaseIt i) {
3363 unsigned idx = i.getCaseIndex();
3364
3365 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3366
3367 unsigned NumOps = getNumOperands();
3368 Use *OL = OperandList;
3369
3370 // Overwrite this case with the end of the list.
3371 if (2 + (idx + 1) * 2 != NumOps) {
3372 OL[2 + idx * 2] = OL[NumOps - 2];
3373 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3374 }
3375
3376 // Nuke the last value.
3377 OL[NumOps-2].set(nullptr);
3378 OL[NumOps-2+1].set(nullptr);
3379 NumOperands = NumOps-2;
3380 }
3381
3382 /// growOperands - grow operands - This grows the operand list in response
3383 /// to a push_back style of operation. This grows the number of ops by 3 times.
3384 ///
growOperands()3385 void SwitchInst::growOperands() {
3386 unsigned e = getNumOperands();
3387 unsigned NumOps = e*3;
3388
3389 ReservedSpace = NumOps;
3390 Use *NewOps = allocHungoffUses(NumOps);
3391 Use *OldOps = OperandList;
3392 for (unsigned i = 0; i != e; ++i) {
3393 NewOps[i] = OldOps[i];
3394 }
3395 OperandList = NewOps;
3396 Use::zap(OldOps, OldOps + e, true);
3397 }
3398
3399
getSuccessorV(unsigned idx) const3400 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3401 return getSuccessor(idx);
3402 }
getNumSuccessorsV() const3403 unsigned SwitchInst::getNumSuccessorsV() const {
3404 return getNumSuccessors();
3405 }
setSuccessorV(unsigned idx,BasicBlock * B)3406 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3407 setSuccessor(idx, B);
3408 }
3409
3410 //===----------------------------------------------------------------------===//
3411 // IndirectBrInst Implementation
3412 //===----------------------------------------------------------------------===//
3413
init(Value * Address,unsigned NumDests)3414 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3415 assert(Address && Address->getType()->isPointerTy() &&
3416 "Address of indirectbr must be a pointer");
3417 ReservedSpace = 1+NumDests;
3418 NumOperands = 1;
3419 OperandList = allocHungoffUses(ReservedSpace);
3420
3421 OperandList[0] = Address;
3422 }
3423
3424
3425 /// growOperands - grow operands - This grows the operand list in response
3426 /// to a push_back style of operation. This grows the number of ops by 2 times.
3427 ///
growOperands()3428 void IndirectBrInst::growOperands() {
3429 unsigned e = getNumOperands();
3430 unsigned NumOps = e*2;
3431
3432 ReservedSpace = NumOps;
3433 Use *NewOps = allocHungoffUses(NumOps);
3434 Use *OldOps = OperandList;
3435 for (unsigned i = 0; i != e; ++i)
3436 NewOps[i] = OldOps[i];
3437 OperandList = NewOps;
3438 Use::zap(OldOps, OldOps + e, true);
3439 }
3440
IndirectBrInst(Value * Address,unsigned NumCases,Instruction * InsertBefore)3441 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3442 Instruction *InsertBefore)
3443 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3444 nullptr, 0, InsertBefore) {
3445 init(Address, NumCases);
3446 }
3447
IndirectBrInst(Value * Address,unsigned NumCases,BasicBlock * InsertAtEnd)3448 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3449 BasicBlock *InsertAtEnd)
3450 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3451 nullptr, 0, InsertAtEnd) {
3452 init(Address, NumCases);
3453 }
3454
IndirectBrInst(const IndirectBrInst & IBI)3455 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3456 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3457 allocHungoffUses(IBI.getNumOperands()),
3458 IBI.getNumOperands()) {
3459 Use *OL = OperandList, *InOL = IBI.OperandList;
3460 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3461 OL[i] = InOL[i];
3462 SubclassOptionalData = IBI.SubclassOptionalData;
3463 }
3464
~IndirectBrInst()3465 IndirectBrInst::~IndirectBrInst() {
3466 dropHungoffUses();
3467 }
3468
3469 /// addDestination - Add a destination.
3470 ///
addDestination(BasicBlock * DestBB)3471 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3472 unsigned OpNo = NumOperands;
3473 if (OpNo+1 > ReservedSpace)
3474 growOperands(); // Get more space!
3475 // Initialize some new operands.
3476 assert(OpNo < ReservedSpace && "Growing didn't work!");
3477 NumOperands = OpNo+1;
3478 OperandList[OpNo] = DestBB;
3479 }
3480
3481 /// removeDestination - This method removes the specified successor from the
3482 /// indirectbr instruction.
removeDestination(unsigned idx)3483 void IndirectBrInst::removeDestination(unsigned idx) {
3484 assert(idx < getNumOperands()-1 && "Successor index out of range!");
3485
3486 unsigned NumOps = getNumOperands();
3487 Use *OL = OperandList;
3488
3489 // Replace this value with the last one.
3490 OL[idx+1] = OL[NumOps-1];
3491
3492 // Nuke the last value.
3493 OL[NumOps-1].set(nullptr);
3494 NumOperands = NumOps-1;
3495 }
3496
getSuccessorV(unsigned idx) const3497 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3498 return getSuccessor(idx);
3499 }
getNumSuccessorsV() const3500 unsigned IndirectBrInst::getNumSuccessorsV() const {
3501 return getNumSuccessors();
3502 }
setSuccessorV(unsigned idx,BasicBlock * B)3503 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3504 setSuccessor(idx, B);
3505 }
3506
3507 //===----------------------------------------------------------------------===//
3508 // clone_impl() implementations
3509 //===----------------------------------------------------------------------===//
3510
3511 // Define these methods here so vtables don't get emitted into every translation
3512 // unit that uses these classes.
3513
clone_impl() const3514 GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3515 return new (getNumOperands()) GetElementPtrInst(*this);
3516 }
3517
clone_impl() const3518 BinaryOperator *BinaryOperator::clone_impl() const {
3519 return Create(getOpcode(), Op<0>(), Op<1>());
3520 }
3521
clone_impl() const3522 FCmpInst* FCmpInst::clone_impl() const {
3523 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3524 }
3525
clone_impl() const3526 ICmpInst* ICmpInst::clone_impl() const {
3527 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3528 }
3529
clone_impl() const3530 ExtractValueInst *ExtractValueInst::clone_impl() const {
3531 return new ExtractValueInst(*this);
3532 }
3533
clone_impl() const3534 InsertValueInst *InsertValueInst::clone_impl() const {
3535 return new InsertValueInst(*this);
3536 }
3537
clone_impl() const3538 AllocaInst *AllocaInst::clone_impl() const {
3539 AllocaInst *Result = new AllocaInst(getAllocatedType(),
3540 (Value *)getOperand(0), getAlignment());
3541 Result->setUsedWithInAlloca(isUsedWithInAlloca());
3542 return Result;
3543 }
3544
clone_impl() const3545 LoadInst *LoadInst::clone_impl() const {
3546 return new LoadInst(getOperand(0), Twine(), isVolatile(),
3547 getAlignment(), getOrdering(), getSynchScope());
3548 }
3549
clone_impl() const3550 StoreInst *StoreInst::clone_impl() const {
3551 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3552 getAlignment(), getOrdering(), getSynchScope());
3553
3554 }
3555
clone_impl() const3556 AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
3557 AtomicCmpXchgInst *Result =
3558 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3559 getSuccessOrdering(), getFailureOrdering(),
3560 getSynchScope());
3561 Result->setVolatile(isVolatile());
3562 Result->setWeak(isWeak());
3563 return Result;
3564 }
3565
clone_impl() const3566 AtomicRMWInst *AtomicRMWInst::clone_impl() const {
3567 AtomicRMWInst *Result =
3568 new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
3569 getOrdering(), getSynchScope());
3570 Result->setVolatile(isVolatile());
3571 return Result;
3572 }
3573
clone_impl() const3574 FenceInst *FenceInst::clone_impl() const {
3575 return new FenceInst(getContext(), getOrdering(), getSynchScope());
3576 }
3577
clone_impl() const3578 TruncInst *TruncInst::clone_impl() const {
3579 return new TruncInst(getOperand(0), getType());
3580 }
3581
clone_impl() const3582 ZExtInst *ZExtInst::clone_impl() const {
3583 return new ZExtInst(getOperand(0), getType());
3584 }
3585
clone_impl() const3586 SExtInst *SExtInst::clone_impl() const {
3587 return new SExtInst(getOperand(0), getType());
3588 }
3589
clone_impl() const3590 FPTruncInst *FPTruncInst::clone_impl() const {
3591 return new FPTruncInst(getOperand(0), getType());
3592 }
3593
clone_impl() const3594 FPExtInst *FPExtInst::clone_impl() const {
3595 return new FPExtInst(getOperand(0), getType());
3596 }
3597
clone_impl() const3598 UIToFPInst *UIToFPInst::clone_impl() const {
3599 return new UIToFPInst(getOperand(0), getType());
3600 }
3601
clone_impl() const3602 SIToFPInst *SIToFPInst::clone_impl() const {
3603 return new SIToFPInst(getOperand(0), getType());
3604 }
3605
clone_impl() const3606 FPToUIInst *FPToUIInst::clone_impl() const {
3607 return new FPToUIInst(getOperand(0), getType());
3608 }
3609
clone_impl() const3610 FPToSIInst *FPToSIInst::clone_impl() const {
3611 return new FPToSIInst(getOperand(0), getType());
3612 }
3613
clone_impl() const3614 PtrToIntInst *PtrToIntInst::clone_impl() const {
3615 return new PtrToIntInst(getOperand(0), getType());
3616 }
3617
clone_impl() const3618 IntToPtrInst *IntToPtrInst::clone_impl() const {
3619 return new IntToPtrInst(getOperand(0), getType());
3620 }
3621
clone_impl() const3622 BitCastInst *BitCastInst::clone_impl() const {
3623 return new BitCastInst(getOperand(0), getType());
3624 }
3625
clone_impl() const3626 AddrSpaceCastInst *AddrSpaceCastInst::clone_impl() const {
3627 return new AddrSpaceCastInst(getOperand(0), getType());
3628 }
3629
clone_impl() const3630 CallInst *CallInst::clone_impl() const {
3631 return new(getNumOperands()) CallInst(*this);
3632 }
3633
clone_impl() const3634 SelectInst *SelectInst::clone_impl() const {
3635 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3636 }
3637
clone_impl() const3638 VAArgInst *VAArgInst::clone_impl() const {
3639 return new VAArgInst(getOperand(0), getType());
3640 }
3641
clone_impl() const3642 ExtractElementInst *ExtractElementInst::clone_impl() const {
3643 return ExtractElementInst::Create(getOperand(0), getOperand(1));
3644 }
3645
clone_impl() const3646 InsertElementInst *InsertElementInst::clone_impl() const {
3647 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3648 }
3649
clone_impl() const3650 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3651 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3652 }
3653
clone_impl() const3654 PHINode *PHINode::clone_impl() const {
3655 return new PHINode(*this);
3656 }
3657
clone_impl() const3658 LandingPadInst *LandingPadInst::clone_impl() const {
3659 return new LandingPadInst(*this);
3660 }
3661
clone_impl() const3662 ReturnInst *ReturnInst::clone_impl() const {
3663 return new(getNumOperands()) ReturnInst(*this);
3664 }
3665
clone_impl() const3666 BranchInst *BranchInst::clone_impl() const {
3667 return new(getNumOperands()) BranchInst(*this);
3668 }
3669
clone_impl() const3670 SwitchInst *SwitchInst::clone_impl() const {
3671 return new SwitchInst(*this);
3672 }
3673
clone_impl() const3674 IndirectBrInst *IndirectBrInst::clone_impl() const {
3675 return new IndirectBrInst(*this);
3676 }
3677
3678
clone_impl() const3679 InvokeInst *InvokeInst::clone_impl() const {
3680 return new(getNumOperands()) InvokeInst(*this);
3681 }
3682
clone_impl() const3683 ResumeInst *ResumeInst::clone_impl() const {
3684 return new(1) ResumeInst(*this);
3685 }
3686
clone_impl() const3687 UnreachableInst *UnreachableInst::clone_impl() const {
3688 LLVMContext &Context = getContext();
3689 return new UnreachableInst(Context);
3690 }
3691