1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 //       of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/Hashing.h"
59 #include "llvm/ADT/STLExtras.h"
60 #include "llvm/ADT/SetVector.h"
61 #include "llvm/ADT/SmallBitVector.h"
62 #include "llvm/Analysis/IVUsers.h"
63 #include "llvm/Analysis/LoopPass.h"
64 #include "llvm/Analysis/ScalarEvolutionExpander.h"
65 #include "llvm/Analysis/TargetTransformInfo.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/IR/IntrinsicInst.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include <algorithm>
79 using namespace llvm;
80 
81 #define DEBUG_TYPE "loop-reduce"
82 
83 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
84 /// bail out. This threshold is far beyond the number of users that LSR can
85 /// conceivably solve, so it should not affect generated code, but catches the
86 /// worst cases before LSR burns too much compile time and stack space.
87 static const unsigned MaxIVUsers = 200;
88 
89 // Temporary flag to cleanup congruent phis after LSR phi expansion.
90 // It's currently disabled until we can determine whether it's truly useful or
91 // not. The flag should be removed after the v3.0 release.
92 // This is now needed for ivchains.
93 static cl::opt<bool> EnablePhiElim(
94   "enable-lsr-phielim", cl::Hidden, cl::init(true),
95   cl::desc("Enable LSR phi elimination"));
96 
97 #ifndef NDEBUG
98 // Stress test IV chain generation.
99 static cl::opt<bool> StressIVChain(
100   "stress-ivchain", cl::Hidden, cl::init(false),
101   cl::desc("Stress test LSR IV chains"));
102 #else
103 static bool StressIVChain = false;
104 #endif
105 
106 namespace {
107 
108 /// RegSortData - This class holds data which is used to order reuse candidates.
109 class RegSortData {
110 public:
111   /// UsedByIndices - This represents the set of LSRUse indices which reference
112   /// a particular register.
113   SmallBitVector UsedByIndices;
114 
115   void print(raw_ostream &OS) const;
116   void dump() const;
117 };
118 
119 }
120 
print(raw_ostream & OS) const121 void RegSortData::print(raw_ostream &OS) const {
122   OS << "[NumUses=" << UsedByIndices.count() << ']';
123 }
124 
125 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const126 void RegSortData::dump() const {
127   print(errs()); errs() << '\n';
128 }
129 #endif
130 
131 namespace {
132 
133 /// RegUseTracker - Map register candidates to information about how they are
134 /// used.
135 class RegUseTracker {
136   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
137 
138   RegUsesTy RegUsesMap;
139   SmallVector<const SCEV *, 16> RegSequence;
140 
141 public:
142   void CountRegister(const SCEV *Reg, size_t LUIdx);
143   void DropRegister(const SCEV *Reg, size_t LUIdx);
144   void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
145 
146   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
147 
148   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
149 
150   void clear();
151 
152   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
153   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
begin()154   iterator begin() { return RegSequence.begin(); }
end()155   iterator end()   { return RegSequence.end(); }
begin() const156   const_iterator begin() const { return RegSequence.begin(); }
end() const157   const_iterator end() const   { return RegSequence.end(); }
158 };
159 
160 }
161 
162 void
CountRegister(const SCEV * Reg,size_t LUIdx)163 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
164   std::pair<RegUsesTy::iterator, bool> Pair =
165     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
166   RegSortData &RSD = Pair.first->second;
167   if (Pair.second)
168     RegSequence.push_back(Reg);
169   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
170   RSD.UsedByIndices.set(LUIdx);
171 }
172 
173 void
DropRegister(const SCEV * Reg,size_t LUIdx)174 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
175   RegUsesTy::iterator It = RegUsesMap.find(Reg);
176   assert(It != RegUsesMap.end());
177   RegSortData &RSD = It->second;
178   assert(RSD.UsedByIndices.size() > LUIdx);
179   RSD.UsedByIndices.reset(LUIdx);
180 }
181 
182 void
SwapAndDropUse(size_t LUIdx,size_t LastLUIdx)183 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
184   assert(LUIdx <= LastLUIdx);
185 
186   // Update RegUses. The data structure is not optimized for this purpose;
187   // we must iterate through it and update each of the bit vectors.
188   for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
189        I != E; ++I) {
190     SmallBitVector &UsedByIndices = I->second.UsedByIndices;
191     if (LUIdx < UsedByIndices.size())
192       UsedByIndices[LUIdx] =
193         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
194     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
195   }
196 }
197 
198 bool
isRegUsedByUsesOtherThan(const SCEV * Reg,size_t LUIdx) const199 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
200   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
201   if (I == RegUsesMap.end())
202     return false;
203   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
204   int i = UsedByIndices.find_first();
205   if (i == -1) return false;
206   if ((size_t)i != LUIdx) return true;
207   return UsedByIndices.find_next(i) != -1;
208 }
209 
getUsedByIndices(const SCEV * Reg) const210 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
211   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
212   assert(I != RegUsesMap.end() && "Unknown register!");
213   return I->second.UsedByIndices;
214 }
215 
clear()216 void RegUseTracker::clear() {
217   RegUsesMap.clear();
218   RegSequence.clear();
219 }
220 
221 namespace {
222 
223 /// Formula - This class holds information that describes a formula for
224 /// computing satisfying a use. It may include broken-out immediates and scaled
225 /// registers.
226 struct Formula {
227   /// Global base address used for complex addressing.
228   GlobalValue *BaseGV;
229 
230   /// Base offset for complex addressing.
231   int64_t BaseOffset;
232 
233   /// Whether any complex addressing has a base register.
234   bool HasBaseReg;
235 
236   /// The scale of any complex addressing.
237   int64_t Scale;
238 
239   /// BaseRegs - The list of "base" registers for this use. When this is
240   /// non-empty. The canonical representation of a formula is
241   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
242   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
243   /// #1 enforces that the scaled register is always used when at least two
244   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
245   /// #2 enforces that 1 * reg is reg.
246   /// This invariant can be temporarly broken while building a formula.
247   /// However, every formula inserted into the LSRInstance must be in canonical
248   /// form.
249   SmallVector<const SCEV *, 4> BaseRegs;
250 
251   /// ScaledReg - The 'scaled' register for this use. This should be non-null
252   /// when Scale is not zero.
253   const SCEV *ScaledReg;
254 
255   /// UnfoldedOffset - An additional constant offset which added near the
256   /// use. This requires a temporary register, but the offset itself can
257   /// live in an add immediate field rather than a register.
258   int64_t UnfoldedOffset;
259 
Formula__anonb19727160311::Formula260   Formula()
261       : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
262         ScaledReg(nullptr), UnfoldedOffset(0) {}
263 
264   void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
265 
266   bool isCanonical() const;
267 
268   void Canonicalize();
269 
270   bool Unscale();
271 
272   size_t getNumRegs() const;
273   Type *getType() const;
274 
275   void DeleteBaseReg(const SCEV *&S);
276 
277   bool referencesReg(const SCEV *S) const;
278   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
279                                   const RegUseTracker &RegUses) const;
280 
281   void print(raw_ostream &OS) const;
282   void dump() const;
283 };
284 
285 }
286 
287 /// DoInitialMatch - Recursion helper for InitialMatch.
DoInitialMatch(const SCEV * S,Loop * L,SmallVectorImpl<const SCEV * > & Good,SmallVectorImpl<const SCEV * > & Bad,ScalarEvolution & SE)288 static void DoInitialMatch(const SCEV *S, Loop *L,
289                            SmallVectorImpl<const SCEV *> &Good,
290                            SmallVectorImpl<const SCEV *> &Bad,
291                            ScalarEvolution &SE) {
292   // Collect expressions which properly dominate the loop header.
293   if (SE.properlyDominates(S, L->getHeader())) {
294     Good.push_back(S);
295     return;
296   }
297 
298   // Look at add operands.
299   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
300     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
301          I != E; ++I)
302       DoInitialMatch(*I, L, Good, Bad, SE);
303     return;
304   }
305 
306   // Look at addrec operands.
307   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
308     if (!AR->getStart()->isZero()) {
309       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
310       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
311                                       AR->getStepRecurrence(SE),
312                                       // FIXME: AR->getNoWrapFlags()
313                                       AR->getLoop(), SCEV::FlagAnyWrap),
314                      L, Good, Bad, SE);
315       return;
316     }
317 
318   // Handle a multiplication by -1 (negation) if it didn't fold.
319   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
320     if (Mul->getOperand(0)->isAllOnesValue()) {
321       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
322       const SCEV *NewMul = SE.getMulExpr(Ops);
323 
324       SmallVector<const SCEV *, 4> MyGood;
325       SmallVector<const SCEV *, 4> MyBad;
326       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
327       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
328         SE.getEffectiveSCEVType(NewMul->getType())));
329       for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
330            E = MyGood.end(); I != E; ++I)
331         Good.push_back(SE.getMulExpr(NegOne, *I));
332       for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
333            E = MyBad.end(); I != E; ++I)
334         Bad.push_back(SE.getMulExpr(NegOne, *I));
335       return;
336     }
337 
338   // Ok, we can't do anything interesting. Just stuff the whole thing into a
339   // register and hope for the best.
340   Bad.push_back(S);
341 }
342 
343 /// InitialMatch - Incorporate loop-variant parts of S into this Formula,
344 /// attempting to keep all loop-invariant and loop-computable values in a
345 /// single base register.
InitialMatch(const SCEV * S,Loop * L,ScalarEvolution & SE)346 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
347   SmallVector<const SCEV *, 4> Good;
348   SmallVector<const SCEV *, 4> Bad;
349   DoInitialMatch(S, L, Good, Bad, SE);
350   if (!Good.empty()) {
351     const SCEV *Sum = SE.getAddExpr(Good);
352     if (!Sum->isZero())
353       BaseRegs.push_back(Sum);
354     HasBaseReg = true;
355   }
356   if (!Bad.empty()) {
357     const SCEV *Sum = SE.getAddExpr(Bad);
358     if (!Sum->isZero())
359       BaseRegs.push_back(Sum);
360     HasBaseReg = true;
361   }
362   Canonicalize();
363 }
364 
365 /// \brief Check whether or not this formula statisfies the canonical
366 /// representation.
367 /// \see Formula::BaseRegs.
isCanonical() const368 bool Formula::isCanonical() const {
369   if (ScaledReg)
370     return Scale != 1 || !BaseRegs.empty();
371   return BaseRegs.size() <= 1;
372 }
373 
374 /// \brief Helper method to morph a formula into its canonical representation.
375 /// \see Formula::BaseRegs.
376 /// Every formula having more than one base register, must use the ScaledReg
377 /// field. Otherwise, we would have to do special cases everywhere in LSR
378 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
379 /// On the other hand, 1*reg should be canonicalized into reg.
Canonicalize()380 void Formula::Canonicalize() {
381   if (isCanonical())
382     return;
383   // So far we did not need this case. This is easy to implement but it is
384   // useless to maintain dead code. Beside it could hurt compile time.
385   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
386   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
387   ScaledReg = BaseRegs.back();
388   BaseRegs.pop_back();
389   Scale = 1;
390   size_t BaseRegsSize = BaseRegs.size();
391   size_t Try = 0;
392   // If ScaledReg is an invariant, try to find a variant expression.
393   while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
394     std::swap(ScaledReg, BaseRegs[Try++]);
395 }
396 
397 /// \brief Get rid of the scale in the formula.
398 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
399 /// \return true if it was possible to get rid of the scale, false otherwise.
400 /// \note After this operation the formula may not be in the canonical form.
Unscale()401 bool Formula::Unscale() {
402   if (Scale != 1)
403     return false;
404   Scale = 0;
405   BaseRegs.push_back(ScaledReg);
406   ScaledReg = nullptr;
407   return true;
408 }
409 
410 /// getNumRegs - Return the total number of register operands used by this
411 /// formula. This does not include register uses implied by non-constant
412 /// addrec strides.
getNumRegs() const413 size_t Formula::getNumRegs() const {
414   return !!ScaledReg + BaseRegs.size();
415 }
416 
417 /// getType - Return the type of this formula, if it has one, or null
418 /// otherwise. This type is meaningless except for the bit size.
getType() const419 Type *Formula::getType() const {
420   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
421          ScaledReg ? ScaledReg->getType() :
422          BaseGV ? BaseGV->getType() :
423          nullptr;
424 }
425 
426 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
DeleteBaseReg(const SCEV * & S)427 void Formula::DeleteBaseReg(const SCEV *&S) {
428   if (&S != &BaseRegs.back())
429     std::swap(S, BaseRegs.back());
430   BaseRegs.pop_back();
431 }
432 
433 /// referencesReg - Test if this formula references the given register.
referencesReg(const SCEV * S) const434 bool Formula::referencesReg(const SCEV *S) const {
435   return S == ScaledReg ||
436          std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
437 }
438 
439 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
440 /// which are used by uses other than the use with the given index.
hasRegsUsedByUsesOtherThan(size_t LUIdx,const RegUseTracker & RegUses) const441 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
442                                          const RegUseTracker &RegUses) const {
443   if (ScaledReg)
444     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
445       return true;
446   for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
447        E = BaseRegs.end(); I != E; ++I)
448     if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
449       return true;
450   return false;
451 }
452 
print(raw_ostream & OS) const453 void Formula::print(raw_ostream &OS) const {
454   bool First = true;
455   if (BaseGV) {
456     if (!First) OS << " + "; else First = false;
457     BaseGV->printAsOperand(OS, /*PrintType=*/false);
458   }
459   if (BaseOffset != 0) {
460     if (!First) OS << " + "; else First = false;
461     OS << BaseOffset;
462   }
463   for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
464        E = BaseRegs.end(); I != E; ++I) {
465     if (!First) OS << " + "; else First = false;
466     OS << "reg(" << **I << ')';
467   }
468   if (HasBaseReg && BaseRegs.empty()) {
469     if (!First) OS << " + "; else First = false;
470     OS << "**error: HasBaseReg**";
471   } else if (!HasBaseReg && !BaseRegs.empty()) {
472     if (!First) OS << " + "; else First = false;
473     OS << "**error: !HasBaseReg**";
474   }
475   if (Scale != 0) {
476     if (!First) OS << " + "; else First = false;
477     OS << Scale << "*reg(";
478     if (ScaledReg)
479       OS << *ScaledReg;
480     else
481       OS << "<unknown>";
482     OS << ')';
483   }
484   if (UnfoldedOffset != 0) {
485     if (!First) OS << " + ";
486     OS << "imm(" << UnfoldedOffset << ')';
487   }
488 }
489 
490 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const491 void Formula::dump() const {
492   print(errs()); errs() << '\n';
493 }
494 #endif
495 
496 /// isAddRecSExtable - Return true if the given addrec can be sign-extended
497 /// without changing its value.
isAddRecSExtable(const SCEVAddRecExpr * AR,ScalarEvolution & SE)498 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
499   Type *WideTy =
500     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
501   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
502 }
503 
504 /// isAddSExtable - Return true if the given add can be sign-extended
505 /// without changing its value.
isAddSExtable(const SCEVAddExpr * A,ScalarEvolution & SE)506 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
507   Type *WideTy =
508     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
509   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
510 }
511 
512 /// isMulSExtable - Return true if the given mul can be sign-extended
513 /// without changing its value.
isMulSExtable(const SCEVMulExpr * M,ScalarEvolution & SE)514 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
515   Type *WideTy =
516     IntegerType::get(SE.getContext(),
517                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
518   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
519 }
520 
521 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
522 /// and if the remainder is known to be zero,  or null otherwise. If
523 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
524 /// to Y, ignoring that the multiplication may overflow, which is useful when
525 /// the result will be used in a context where the most significant bits are
526 /// ignored.
getExactSDiv(const SCEV * LHS,const SCEV * RHS,ScalarEvolution & SE,bool IgnoreSignificantBits=false)527 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
528                                 ScalarEvolution &SE,
529                                 bool IgnoreSignificantBits = false) {
530   // Handle the trivial case, which works for any SCEV type.
531   if (LHS == RHS)
532     return SE.getConstant(LHS->getType(), 1);
533 
534   // Handle a few RHS special cases.
535   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
536   if (RC) {
537     const APInt &RA = RC->getValue()->getValue();
538     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
539     // some folding.
540     if (RA.isAllOnesValue())
541       return SE.getMulExpr(LHS, RC);
542     // Handle x /s 1 as x.
543     if (RA == 1)
544       return LHS;
545   }
546 
547   // Check for a division of a constant by a constant.
548   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
549     if (!RC)
550       return nullptr;
551     const APInt &LA = C->getValue()->getValue();
552     const APInt &RA = RC->getValue()->getValue();
553     if (LA.srem(RA) != 0)
554       return nullptr;
555     return SE.getConstant(LA.sdiv(RA));
556   }
557 
558   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
559   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
560     if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
561       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
562                                       IgnoreSignificantBits);
563       if (!Step) return nullptr;
564       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
565                                        IgnoreSignificantBits);
566       if (!Start) return nullptr;
567       // FlagNW is independent of the start value, step direction, and is
568       // preserved with smaller magnitude steps.
569       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
570       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
571     }
572     return nullptr;
573   }
574 
575   // Distribute the sdiv over add operands, if the add doesn't overflow.
576   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
577     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
578       SmallVector<const SCEV *, 8> Ops;
579       for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
580            I != E; ++I) {
581         const SCEV *Op = getExactSDiv(*I, RHS, SE,
582                                       IgnoreSignificantBits);
583         if (!Op) return nullptr;
584         Ops.push_back(Op);
585       }
586       return SE.getAddExpr(Ops);
587     }
588     return nullptr;
589   }
590 
591   // Check for a multiply operand that we can pull RHS out of.
592   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
593     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
594       SmallVector<const SCEV *, 4> Ops;
595       bool Found = false;
596       for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
597            I != E; ++I) {
598         const SCEV *S = *I;
599         if (!Found)
600           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
601                                            IgnoreSignificantBits)) {
602             S = Q;
603             Found = true;
604           }
605         Ops.push_back(S);
606       }
607       return Found ? SE.getMulExpr(Ops) : nullptr;
608     }
609     return nullptr;
610   }
611 
612   // Otherwise we don't know.
613   return nullptr;
614 }
615 
616 /// ExtractImmediate - If S involves the addition of a constant integer value,
617 /// return that integer value, and mutate S to point to a new SCEV with that
618 /// value excluded.
ExtractImmediate(const SCEV * & S,ScalarEvolution & SE)619 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
620   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
621     if (C->getValue()->getValue().getMinSignedBits() <= 64) {
622       S = SE.getConstant(C->getType(), 0);
623       return C->getValue()->getSExtValue();
624     }
625   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
626     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
627     int64_t Result = ExtractImmediate(NewOps.front(), SE);
628     if (Result != 0)
629       S = SE.getAddExpr(NewOps);
630     return Result;
631   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
632     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
633     int64_t Result = ExtractImmediate(NewOps.front(), SE);
634     if (Result != 0)
635       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
636                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
637                            SCEV::FlagAnyWrap);
638     return Result;
639   }
640   return 0;
641 }
642 
643 /// ExtractSymbol - If S involves the addition of a GlobalValue address,
644 /// return that symbol, and mutate S to point to a new SCEV with that
645 /// value excluded.
ExtractSymbol(const SCEV * & S,ScalarEvolution & SE)646 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
647   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
648     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
649       S = SE.getConstant(GV->getType(), 0);
650       return GV;
651     }
652   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
653     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
654     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
655     if (Result)
656       S = SE.getAddExpr(NewOps);
657     return Result;
658   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
659     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
660     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
661     if (Result)
662       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
663                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
664                            SCEV::FlagAnyWrap);
665     return Result;
666   }
667   return nullptr;
668 }
669 
670 /// isAddressUse - Returns true if the specified instruction is using the
671 /// specified value as an address.
isAddressUse(Instruction * Inst,Value * OperandVal)672 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
673   bool isAddress = isa<LoadInst>(Inst);
674   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
675     if (SI->getOperand(1) == OperandVal)
676       isAddress = true;
677   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
678     // Addressing modes can also be folded into prefetches and a variety
679     // of intrinsics.
680     switch (II->getIntrinsicID()) {
681       default: break;
682       case Intrinsic::prefetch:
683       case Intrinsic::x86_sse_storeu_ps:
684       case Intrinsic::x86_sse2_storeu_pd:
685       case Intrinsic::x86_sse2_storeu_dq:
686       case Intrinsic::x86_sse2_storel_dq:
687         if (II->getArgOperand(0) == OperandVal)
688           isAddress = true;
689         break;
690     }
691   }
692   return isAddress;
693 }
694 
695 /// getAccessType - Return the type of the memory being accessed.
getAccessType(const Instruction * Inst)696 static Type *getAccessType(const Instruction *Inst) {
697   Type *AccessTy = Inst->getType();
698   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
699     AccessTy = SI->getOperand(0)->getType();
700   else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
701     // Addressing modes can also be folded into prefetches and a variety
702     // of intrinsics.
703     switch (II->getIntrinsicID()) {
704     default: break;
705     case Intrinsic::x86_sse_storeu_ps:
706     case Intrinsic::x86_sse2_storeu_pd:
707     case Intrinsic::x86_sse2_storeu_dq:
708     case Intrinsic::x86_sse2_storel_dq:
709       AccessTy = II->getArgOperand(0)->getType();
710       break;
711     }
712   }
713 
714   // All pointers have the same requirements, so canonicalize them to an
715   // arbitrary pointer type to minimize variation.
716   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
717     AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
718                                 PTy->getAddressSpace());
719 
720   return AccessTy;
721 }
722 
723 /// isExistingPhi - Return true if this AddRec is already a phi in its loop.
isExistingPhi(const SCEVAddRecExpr * AR,ScalarEvolution & SE)724 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
725   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
726        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
727     if (SE.isSCEVable(PN->getType()) &&
728         (SE.getEffectiveSCEVType(PN->getType()) ==
729          SE.getEffectiveSCEVType(AR->getType())) &&
730         SE.getSCEV(PN) == AR)
731       return true;
732   }
733   return false;
734 }
735 
736 /// Check if expanding this expression is likely to incur significant cost. This
737 /// is tricky because SCEV doesn't track which expressions are actually computed
738 /// by the current IR.
739 ///
740 /// We currently allow expansion of IV increments that involve adds,
741 /// multiplication by constants, and AddRecs from existing phis.
742 ///
743 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
744 /// obvious multiple of the UDivExpr.
isHighCostExpansion(const SCEV * S,SmallPtrSetImpl<const SCEV * > & Processed,ScalarEvolution & SE)745 static bool isHighCostExpansion(const SCEV *S,
746                                 SmallPtrSetImpl<const SCEV*> &Processed,
747                                 ScalarEvolution &SE) {
748   // Zero/One operand expressions
749   switch (S->getSCEVType()) {
750   case scUnknown:
751   case scConstant:
752     return false;
753   case scTruncate:
754     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
755                                Processed, SE);
756   case scZeroExtend:
757     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
758                                Processed, SE);
759   case scSignExtend:
760     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
761                                Processed, SE);
762   }
763 
764   if (!Processed.insert(S).second)
765     return false;
766 
767   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
768     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
769          I != E; ++I) {
770       if (isHighCostExpansion(*I, Processed, SE))
771         return true;
772     }
773     return false;
774   }
775 
776   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
777     if (Mul->getNumOperands() == 2) {
778       // Multiplication by a constant is ok
779       if (isa<SCEVConstant>(Mul->getOperand(0)))
780         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
781 
782       // If we have the value of one operand, check if an existing
783       // multiplication already generates this expression.
784       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
785         Value *UVal = U->getValue();
786         for (User *UR : UVal->users()) {
787           // If U is a constant, it may be used by a ConstantExpr.
788           Instruction *UI = dyn_cast<Instruction>(UR);
789           if (UI && UI->getOpcode() == Instruction::Mul &&
790               SE.isSCEVable(UI->getType())) {
791             return SE.getSCEV(UI) == Mul;
792           }
793         }
794       }
795     }
796   }
797 
798   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
799     if (isExistingPhi(AR, SE))
800       return false;
801   }
802 
803   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
804   return true;
805 }
806 
807 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
808 /// specified set are trivially dead, delete them and see if this makes any of
809 /// their operands subsequently dead.
810 static bool
DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> & DeadInsts)811 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
812   bool Changed = false;
813 
814   while (!DeadInsts.empty()) {
815     Value *V = DeadInsts.pop_back_val();
816     Instruction *I = dyn_cast_or_null<Instruction>(V);
817 
818     if (!I || !isInstructionTriviallyDead(I))
819       continue;
820 
821     for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
822       if (Instruction *U = dyn_cast<Instruction>(*OI)) {
823         *OI = nullptr;
824         if (U->use_empty())
825           DeadInsts.push_back(U);
826       }
827 
828     I->eraseFromParent();
829     Changed = true;
830   }
831 
832   return Changed;
833 }
834 
835 namespace {
836 class LSRUse;
837 }
838 
839 /// \brief Check if the addressing mode defined by \p F is completely
840 /// folded in \p LU at isel time.
841 /// This includes address-mode folding and special icmp tricks.
842 /// This function returns true if \p LU can accommodate what \p F
843 /// defines and up to 1 base + 1 scaled + offset.
844 /// In other words, if \p F has several base registers, this function may
845 /// still return true. Therefore, users still need to account for
846 /// additional base registers and/or unfolded offsets to derive an
847 /// accurate cost model.
848 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
849                                  const LSRUse &LU, const Formula &F);
850 // Get the cost of the scaling factor used in F for LU.
851 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
852                                      const LSRUse &LU, const Formula &F);
853 
854 namespace {
855 
856 /// Cost - This class is used to measure and compare candidate formulae.
857 class Cost {
858   /// TODO: Some of these could be merged. Also, a lexical ordering
859   /// isn't always optimal.
860   unsigned NumRegs;
861   unsigned AddRecCost;
862   unsigned NumIVMuls;
863   unsigned NumBaseAdds;
864   unsigned ImmCost;
865   unsigned SetupCost;
866   unsigned ScaleCost;
867 
868 public:
Cost()869   Cost()
870     : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
871       SetupCost(0), ScaleCost(0) {}
872 
873   bool operator<(const Cost &Other) const;
874 
875   void Lose();
876 
877 #ifndef NDEBUG
878   // Once any of the metrics loses, they must all remain losers.
isValid()879   bool isValid() {
880     return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
881              | ImmCost | SetupCost | ScaleCost) != ~0u)
882       || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
883            & ImmCost & SetupCost & ScaleCost) == ~0u);
884   }
885 #endif
886 
isLoser()887   bool isLoser() {
888     assert(isValid() && "invalid cost");
889     return NumRegs == ~0u;
890   }
891 
892   void RateFormula(const TargetTransformInfo &TTI,
893                    const Formula &F,
894                    SmallPtrSetImpl<const SCEV *> &Regs,
895                    const DenseSet<const SCEV *> &VisitedRegs,
896                    const Loop *L,
897                    const SmallVectorImpl<int64_t> &Offsets,
898                    ScalarEvolution &SE, DominatorTree &DT,
899                    const LSRUse &LU,
900                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
901 
902   void print(raw_ostream &OS) const;
903   void dump() const;
904 
905 private:
906   void RateRegister(const SCEV *Reg,
907                     SmallPtrSetImpl<const SCEV *> &Regs,
908                     const Loop *L,
909                     ScalarEvolution &SE, DominatorTree &DT);
910   void RatePrimaryRegister(const SCEV *Reg,
911                            SmallPtrSetImpl<const SCEV *> &Regs,
912                            const Loop *L,
913                            ScalarEvolution &SE, DominatorTree &DT,
914                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
915 };
916 
917 }
918 
919 /// RateRegister - Tally up interesting quantities from the given register.
RateRegister(const SCEV * Reg,SmallPtrSetImpl<const SCEV * > & Regs,const Loop * L,ScalarEvolution & SE,DominatorTree & DT)920 void Cost::RateRegister(const SCEV *Reg,
921                         SmallPtrSetImpl<const SCEV *> &Regs,
922                         const Loop *L,
923                         ScalarEvolution &SE, DominatorTree &DT) {
924   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
925     // If this is an addrec for another loop, don't second-guess its addrec phi
926     // nodes. LSR isn't currently smart enough to reason about more than one
927     // loop at a time. LSR has already run on inner loops, will not run on outer
928     // loops, and cannot be expected to change sibling loops.
929     if (AR->getLoop() != L) {
930       // If the AddRec exists, consider it's register free and leave it alone.
931       if (isExistingPhi(AR, SE))
932         return;
933 
934       // Otherwise, do not consider this formula at all.
935       Lose();
936       return;
937     }
938     AddRecCost += 1; /// TODO: This should be a function of the stride.
939 
940     // Add the step value register, if it needs one.
941     // TODO: The non-affine case isn't precisely modeled here.
942     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
943       if (!Regs.count(AR->getOperand(1))) {
944         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
945         if (isLoser())
946           return;
947       }
948     }
949   }
950   ++NumRegs;
951 
952   // Rough heuristic; favor registers which don't require extra setup
953   // instructions in the preheader.
954   if (!isa<SCEVUnknown>(Reg) &&
955       !isa<SCEVConstant>(Reg) &&
956       !(isa<SCEVAddRecExpr>(Reg) &&
957         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
958          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
959     ++SetupCost;
960 
961     NumIVMuls += isa<SCEVMulExpr>(Reg) &&
962                  SE.hasComputableLoopEvolution(Reg, L);
963 }
964 
965 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it
966 /// before, rate it. Optional LoserRegs provides a way to declare any formula
967 /// that refers to one of those regs an instant loser.
RatePrimaryRegister(const SCEV * Reg,SmallPtrSetImpl<const SCEV * > & Regs,const Loop * L,ScalarEvolution & SE,DominatorTree & DT,SmallPtrSetImpl<const SCEV * > * LoserRegs)968 void Cost::RatePrimaryRegister(const SCEV *Reg,
969                                SmallPtrSetImpl<const SCEV *> &Regs,
970                                const Loop *L,
971                                ScalarEvolution &SE, DominatorTree &DT,
972                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
973   if (LoserRegs && LoserRegs->count(Reg)) {
974     Lose();
975     return;
976   }
977   if (Regs.insert(Reg).second) {
978     RateRegister(Reg, Regs, L, SE, DT);
979     if (LoserRegs && isLoser())
980       LoserRegs->insert(Reg);
981   }
982 }
983 
RateFormula(const TargetTransformInfo & TTI,const Formula & F,SmallPtrSetImpl<const SCEV * > & Regs,const DenseSet<const SCEV * > & VisitedRegs,const Loop * L,const SmallVectorImpl<int64_t> & Offsets,ScalarEvolution & SE,DominatorTree & DT,const LSRUse & LU,SmallPtrSetImpl<const SCEV * > * LoserRegs)984 void Cost::RateFormula(const TargetTransformInfo &TTI,
985                        const Formula &F,
986                        SmallPtrSetImpl<const SCEV *> &Regs,
987                        const DenseSet<const SCEV *> &VisitedRegs,
988                        const Loop *L,
989                        const SmallVectorImpl<int64_t> &Offsets,
990                        ScalarEvolution &SE, DominatorTree &DT,
991                        const LSRUse &LU,
992                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
993   assert(F.isCanonical() && "Cost is accurate only for canonical formula");
994   // Tally up the registers.
995   if (const SCEV *ScaledReg = F.ScaledReg) {
996     if (VisitedRegs.count(ScaledReg)) {
997       Lose();
998       return;
999     }
1000     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
1001     if (isLoser())
1002       return;
1003   }
1004   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
1005        E = F.BaseRegs.end(); I != E; ++I) {
1006     const SCEV *BaseReg = *I;
1007     if (VisitedRegs.count(BaseReg)) {
1008       Lose();
1009       return;
1010     }
1011     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
1012     if (isLoser())
1013       return;
1014   }
1015 
1016   // Determine how many (unfolded) adds we'll need inside the loop.
1017   size_t NumBaseParts = F.getNumRegs();
1018   if (NumBaseParts > 1)
1019     // Do not count the base and a possible second register if the target
1020     // allows to fold 2 registers.
1021     NumBaseAdds +=
1022         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1023   NumBaseAdds += (F.UnfoldedOffset != 0);
1024 
1025   // Accumulate non-free scaling amounts.
1026   ScaleCost += getScalingFactorCost(TTI, LU, F);
1027 
1028   // Tally up the non-zero immediates.
1029   for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1030        E = Offsets.end(); I != E; ++I) {
1031     int64_t Offset = (uint64_t)*I + F.BaseOffset;
1032     if (F.BaseGV)
1033       ImmCost += 64; // Handle symbolic values conservatively.
1034                      // TODO: This should probably be the pointer size.
1035     else if (Offset != 0)
1036       ImmCost += APInt(64, Offset, true).getMinSignedBits();
1037   }
1038   assert(isValid() && "invalid cost");
1039 }
1040 
1041 /// Lose - Set this cost to a losing value.
Lose()1042 void Cost::Lose() {
1043   NumRegs = ~0u;
1044   AddRecCost = ~0u;
1045   NumIVMuls = ~0u;
1046   NumBaseAdds = ~0u;
1047   ImmCost = ~0u;
1048   SetupCost = ~0u;
1049   ScaleCost = ~0u;
1050 }
1051 
1052 /// operator< - Choose the lower cost.
operator <(const Cost & Other) const1053 bool Cost::operator<(const Cost &Other) const {
1054   return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
1055                   ImmCost, SetupCost) <
1056          std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
1057                   Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
1058                   Other.SetupCost);
1059 }
1060 
print(raw_ostream & OS) const1061 void Cost::print(raw_ostream &OS) const {
1062   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
1063   if (AddRecCost != 0)
1064     OS << ", with addrec cost " << AddRecCost;
1065   if (NumIVMuls != 0)
1066     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
1067   if (NumBaseAdds != 0)
1068     OS << ", plus " << NumBaseAdds << " base add"
1069        << (NumBaseAdds == 1 ? "" : "s");
1070   if (ScaleCost != 0)
1071     OS << ", plus " << ScaleCost << " scale cost";
1072   if (ImmCost != 0)
1073     OS << ", plus " << ImmCost << " imm cost";
1074   if (SetupCost != 0)
1075     OS << ", plus " << SetupCost << " setup cost";
1076 }
1077 
1078 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1079 void Cost::dump() const {
1080   print(errs()); errs() << '\n';
1081 }
1082 #endif
1083 
1084 namespace {
1085 
1086 /// LSRFixup - An operand value in an instruction which is to be replaced
1087 /// with some equivalent, possibly strength-reduced, replacement.
1088 struct LSRFixup {
1089   /// UserInst - The instruction which will be updated.
1090   Instruction *UserInst;
1091 
1092   /// OperandValToReplace - The operand of the instruction which will
1093   /// be replaced. The operand may be used more than once; every instance
1094   /// will be replaced.
1095   Value *OperandValToReplace;
1096 
1097   /// PostIncLoops - If this user is to use the post-incremented value of an
1098   /// induction variable, this variable is non-null and holds the loop
1099   /// associated with the induction variable.
1100   PostIncLoopSet PostIncLoops;
1101 
1102   /// LUIdx - The index of the LSRUse describing the expression which
1103   /// this fixup needs, minus an offset (below).
1104   size_t LUIdx;
1105 
1106   /// Offset - A constant offset to be added to the LSRUse expression.
1107   /// This allows multiple fixups to share the same LSRUse with different
1108   /// offsets, for example in an unrolled loop.
1109   int64_t Offset;
1110 
1111   bool isUseFullyOutsideLoop(const Loop *L) const;
1112 
1113   LSRFixup();
1114 
1115   void print(raw_ostream &OS) const;
1116   void dump() const;
1117 };
1118 
1119 }
1120 
LSRFixup()1121 LSRFixup::LSRFixup()
1122   : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)),
1123     Offset(0) {}
1124 
1125 /// isUseFullyOutsideLoop - Test whether this fixup always uses its
1126 /// value outside of the given loop.
isUseFullyOutsideLoop(const Loop * L) const1127 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1128   // PHI nodes use their value in their incoming blocks.
1129   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1130     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1131       if (PN->getIncomingValue(i) == OperandValToReplace &&
1132           L->contains(PN->getIncomingBlock(i)))
1133         return false;
1134     return true;
1135   }
1136 
1137   return !L->contains(UserInst);
1138 }
1139 
print(raw_ostream & OS) const1140 void LSRFixup::print(raw_ostream &OS) const {
1141   OS << "UserInst=";
1142   // Store is common and interesting enough to be worth special-casing.
1143   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1144     OS << "store ";
1145     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1146   } else if (UserInst->getType()->isVoidTy())
1147     OS << UserInst->getOpcodeName();
1148   else
1149     UserInst->printAsOperand(OS, /*PrintType=*/false);
1150 
1151   OS << ", OperandValToReplace=";
1152   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1153 
1154   for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
1155        E = PostIncLoops.end(); I != E; ++I) {
1156     OS << ", PostIncLoop=";
1157     (*I)->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1158   }
1159 
1160   if (LUIdx != ~size_t(0))
1161     OS << ", LUIdx=" << LUIdx;
1162 
1163   if (Offset != 0)
1164     OS << ", Offset=" << Offset;
1165 }
1166 
1167 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1168 void LSRFixup::dump() const {
1169   print(errs()); errs() << '\n';
1170 }
1171 #endif
1172 
1173 namespace {
1174 
1175 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
1176 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
1177 struct UniquifierDenseMapInfo {
getEmptyKey__anonb19727160711::UniquifierDenseMapInfo1178   static SmallVector<const SCEV *, 4> getEmptyKey() {
1179     SmallVector<const SCEV *, 4>  V;
1180     V.push_back(reinterpret_cast<const SCEV *>(-1));
1181     return V;
1182   }
1183 
getTombstoneKey__anonb19727160711::UniquifierDenseMapInfo1184   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1185     SmallVector<const SCEV *, 4> V;
1186     V.push_back(reinterpret_cast<const SCEV *>(-2));
1187     return V;
1188   }
1189 
getHashValue__anonb19727160711::UniquifierDenseMapInfo1190   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1191     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1192   }
1193 
isEqual__anonb19727160711::UniquifierDenseMapInfo1194   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1195                       const SmallVector<const SCEV *, 4> &RHS) {
1196     return LHS == RHS;
1197   }
1198 };
1199 
1200 /// LSRUse - This class holds the state that LSR keeps for each use in
1201 /// IVUsers, as well as uses invented by LSR itself. It includes information
1202 /// about what kinds of things can be folded into the user, information about
1203 /// the user itself, and information about how the use may be satisfied.
1204 /// TODO: Represent multiple users of the same expression in common?
1205 class LSRUse {
1206   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1207 
1208 public:
1209   /// KindType - An enum for a kind of use, indicating what types of
1210   /// scaled and immediate operands it might support.
1211   enum KindType {
1212     Basic,   ///< A normal use, with no folding.
1213     Special, ///< A special case of basic, allowing -1 scales.
1214     Address, ///< An address use; folding according to TargetLowering
1215     ICmpZero ///< An equality icmp with both operands folded into one.
1216     // TODO: Add a generic icmp too?
1217   };
1218 
1219   typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
1220 
1221   KindType Kind;
1222   Type *AccessTy;
1223 
1224   SmallVector<int64_t, 8> Offsets;
1225   int64_t MinOffset;
1226   int64_t MaxOffset;
1227 
1228   /// AllFixupsOutsideLoop - This records whether all of the fixups using this
1229   /// LSRUse are outside of the loop, in which case some special-case heuristics
1230   /// may be used.
1231   bool AllFixupsOutsideLoop;
1232 
1233   /// RigidFormula is set to true to guarantee that this use will be associated
1234   /// with a single formula--the one that initially matched. Some SCEV
1235   /// expressions cannot be expanded. This allows LSR to consider the registers
1236   /// used by those expressions without the need to expand them later after
1237   /// changing the formula.
1238   bool RigidFormula;
1239 
1240   /// WidestFixupType - This records the widest use type for any fixup using
1241   /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
1242   /// max fixup widths to be equivalent, because the narrower one may be relying
1243   /// on the implicit truncation to truncate away bogus bits.
1244   Type *WidestFixupType;
1245 
1246   /// Formulae - A list of ways to build a value that can satisfy this user.
1247   /// After the list is populated, one of these is selected heuristically and
1248   /// used to formulate a replacement for OperandValToReplace in UserInst.
1249   SmallVector<Formula, 12> Formulae;
1250 
1251   /// Regs - The set of register candidates used by all formulae in this LSRUse.
1252   SmallPtrSet<const SCEV *, 4> Regs;
1253 
LSRUse(KindType K,Type * T)1254   LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
1255                                       MinOffset(INT64_MAX),
1256                                       MaxOffset(INT64_MIN),
1257                                       AllFixupsOutsideLoop(true),
1258                                       RigidFormula(false),
1259                                       WidestFixupType(nullptr) {}
1260 
1261   bool HasFormulaWithSameRegs(const Formula &F) const;
1262   bool InsertFormula(const Formula &F);
1263   void DeleteFormula(Formula &F);
1264   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1265 
1266   void print(raw_ostream &OS) const;
1267   void dump() const;
1268 };
1269 
1270 }
1271 
1272 /// HasFormula - Test whether this use as a formula which has the same
1273 /// registers as the given formula.
HasFormulaWithSameRegs(const Formula & F) const1274 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1275   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1276   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1277   // Unstable sort by host order ok, because this is only used for uniquifying.
1278   std::sort(Key.begin(), Key.end());
1279   return Uniquifier.count(Key);
1280 }
1281 
1282 /// InsertFormula - If the given formula has not yet been inserted, add it to
1283 /// the list, and return true. Return false otherwise.
1284 /// The formula must be in canonical form.
InsertFormula(const Formula & F)1285 bool LSRUse::InsertFormula(const Formula &F) {
1286   assert(F.isCanonical() && "Invalid canonical representation");
1287 
1288   if (!Formulae.empty() && RigidFormula)
1289     return false;
1290 
1291   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1292   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1293   // Unstable sort by host order ok, because this is only used for uniquifying.
1294   std::sort(Key.begin(), Key.end());
1295 
1296   if (!Uniquifier.insert(Key).second)
1297     return false;
1298 
1299   // Using a register to hold the value of 0 is not profitable.
1300   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1301          "Zero allocated in a scaled register!");
1302 #ifndef NDEBUG
1303   for (SmallVectorImpl<const SCEV *>::const_iterator I =
1304        F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1305     assert(!(*I)->isZero() && "Zero allocated in a base register!");
1306 #endif
1307 
1308   // Add the formula to the list.
1309   Formulae.push_back(F);
1310 
1311   // Record registers now being used by this use.
1312   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1313   if (F.ScaledReg)
1314     Regs.insert(F.ScaledReg);
1315 
1316   return true;
1317 }
1318 
1319 /// DeleteFormula - Remove the given formula from this use's list.
DeleteFormula(Formula & F)1320 void LSRUse::DeleteFormula(Formula &F) {
1321   if (&F != &Formulae.back())
1322     std::swap(F, Formulae.back());
1323   Formulae.pop_back();
1324 }
1325 
1326 /// RecomputeRegs - Recompute the Regs field, and update RegUses.
RecomputeRegs(size_t LUIdx,RegUseTracker & RegUses)1327 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1328   // Now that we've filtered out some formulae, recompute the Regs set.
1329   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1330   Regs.clear();
1331   for (const Formula &F : Formulae) {
1332     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1333     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1334   }
1335 
1336   // Update the RegTracker.
1337   for (const SCEV *S : OldRegs)
1338     if (!Regs.count(S))
1339       RegUses.DropRegister(S, LUIdx);
1340 }
1341 
print(raw_ostream & OS) const1342 void LSRUse::print(raw_ostream &OS) const {
1343   OS << "LSR Use: Kind=";
1344   switch (Kind) {
1345   case Basic:    OS << "Basic"; break;
1346   case Special:  OS << "Special"; break;
1347   case ICmpZero: OS << "ICmpZero"; break;
1348   case Address:
1349     OS << "Address of ";
1350     if (AccessTy->isPointerTy())
1351       OS << "pointer"; // the full pointer type could be really verbose
1352     else
1353       OS << *AccessTy;
1354   }
1355 
1356   OS << ", Offsets={";
1357   for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1358        E = Offsets.end(); I != E; ++I) {
1359     OS << *I;
1360     if (std::next(I) != E)
1361       OS << ',';
1362   }
1363   OS << '}';
1364 
1365   if (AllFixupsOutsideLoop)
1366     OS << ", all-fixups-outside-loop";
1367 
1368   if (WidestFixupType)
1369     OS << ", widest fixup type: " << *WidestFixupType;
1370 }
1371 
1372 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1373 void LSRUse::dump() const {
1374   print(errs()); errs() << '\n';
1375 }
1376 #endif
1377 
isAMCompletelyFolded(const TargetTransformInfo & TTI,LSRUse::KindType Kind,Type * AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale)1378 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1379                                  LSRUse::KindType Kind, Type *AccessTy,
1380                                  GlobalValue *BaseGV, int64_t BaseOffset,
1381                                  bool HasBaseReg, int64_t Scale) {
1382   switch (Kind) {
1383   case LSRUse::Address:
1384     return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
1385 
1386     // Otherwise, just guess that reg+reg addressing is legal.
1387     //return ;
1388 
1389   case LSRUse::ICmpZero:
1390     // There's not even a target hook for querying whether it would be legal to
1391     // fold a GV into an ICmp.
1392     if (BaseGV)
1393       return false;
1394 
1395     // ICmp only has two operands; don't allow more than two non-trivial parts.
1396     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1397       return false;
1398 
1399     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1400     // putting the scaled register in the other operand of the icmp.
1401     if (Scale != 0 && Scale != -1)
1402       return false;
1403 
1404     // If we have low-level target information, ask the target if it can fold an
1405     // integer immediate on an icmp.
1406     if (BaseOffset != 0) {
1407       // We have one of:
1408       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1409       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1410       // Offs is the ICmp immediate.
1411       if (Scale == 0)
1412         // The cast does the right thing with INT64_MIN.
1413         BaseOffset = -(uint64_t)BaseOffset;
1414       return TTI.isLegalICmpImmediate(BaseOffset);
1415     }
1416 
1417     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1418     return true;
1419 
1420   case LSRUse::Basic:
1421     // Only handle single-register values.
1422     return !BaseGV && Scale == 0 && BaseOffset == 0;
1423 
1424   case LSRUse::Special:
1425     // Special case Basic to handle -1 scales.
1426     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1427   }
1428 
1429   llvm_unreachable("Invalid LSRUse Kind!");
1430 }
1431 
isAMCompletelyFolded(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,Type * AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale)1432 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1433                                  int64_t MinOffset, int64_t MaxOffset,
1434                                  LSRUse::KindType Kind, Type *AccessTy,
1435                                  GlobalValue *BaseGV, int64_t BaseOffset,
1436                                  bool HasBaseReg, int64_t Scale) {
1437   // Check for overflow.
1438   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1439       (MinOffset > 0))
1440     return false;
1441   MinOffset = (uint64_t)BaseOffset + MinOffset;
1442   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1443       (MaxOffset > 0))
1444     return false;
1445   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1446 
1447   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1448                               HasBaseReg, Scale) &&
1449          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1450                               HasBaseReg, Scale);
1451 }
1452 
isAMCompletelyFolded(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,Type * AccessTy,const Formula & F)1453 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1454                                  int64_t MinOffset, int64_t MaxOffset,
1455                                  LSRUse::KindType Kind, Type *AccessTy,
1456                                  const Formula &F) {
1457   // For the purpose of isAMCompletelyFolded either having a canonical formula
1458   // or a scale not equal to zero is correct.
1459   // Problems may arise from non canonical formulae having a scale == 0.
1460   // Strictly speaking it would best to just rely on canonical formulae.
1461   // However, when we generate the scaled formulae, we first check that the
1462   // scaling factor is profitable before computing the actual ScaledReg for
1463   // compile time sake.
1464   assert((F.isCanonical() || F.Scale != 0));
1465   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1466                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1467 }
1468 
1469 /// isLegalUse - Test whether we know how to expand the current formula.
isLegalUse(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,Type * AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale)1470 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1471                        int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
1472                        GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
1473                        int64_t Scale) {
1474   // We know how to expand completely foldable formulae.
1475   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1476                               BaseOffset, HasBaseReg, Scale) ||
1477          // Or formulae that use a base register produced by a sum of base
1478          // registers.
1479          (Scale == 1 &&
1480           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1481                                BaseGV, BaseOffset, true, 0));
1482 }
1483 
isLegalUse(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,Type * AccessTy,const Formula & F)1484 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1485                        int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
1486                        const Formula &F) {
1487   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1488                     F.BaseOffset, F.HasBaseReg, F.Scale);
1489 }
1490 
isAMCompletelyFolded(const TargetTransformInfo & TTI,const LSRUse & LU,const Formula & F)1491 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1492                                  const LSRUse &LU, const Formula &F) {
1493   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1494                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1495                               F.Scale);
1496 }
1497 
getScalingFactorCost(const TargetTransformInfo & TTI,const LSRUse & LU,const Formula & F)1498 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1499                                      const LSRUse &LU, const Formula &F) {
1500   if (!F.Scale)
1501     return 0;
1502 
1503   // If the use is not completely folded in that instruction, we will have to
1504   // pay an extra cost only for scale != 1.
1505   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1506                             LU.AccessTy, F))
1507     return F.Scale != 1;
1508 
1509   switch (LU.Kind) {
1510   case LSRUse::Address: {
1511     // Check the scaling factor cost with both the min and max offsets.
1512     int ScaleCostMinOffset =
1513       TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
1514                                F.BaseOffset + LU.MinOffset,
1515                                F.HasBaseReg, F.Scale);
1516     int ScaleCostMaxOffset =
1517       TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
1518                                F.BaseOffset + LU.MaxOffset,
1519                                F.HasBaseReg, F.Scale);
1520 
1521     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1522            "Legal addressing mode has an illegal cost!");
1523     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1524   }
1525   case LSRUse::ICmpZero:
1526   case LSRUse::Basic:
1527   case LSRUse::Special:
1528     // The use is completely folded, i.e., everything is folded into the
1529     // instruction.
1530     return 0;
1531   }
1532 
1533   llvm_unreachable("Invalid LSRUse Kind!");
1534 }
1535 
isAlwaysFoldable(const TargetTransformInfo & TTI,LSRUse::KindType Kind,Type * AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg)1536 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1537                              LSRUse::KindType Kind, Type *AccessTy,
1538                              GlobalValue *BaseGV, int64_t BaseOffset,
1539                              bool HasBaseReg) {
1540   // Fast-path: zero is always foldable.
1541   if (BaseOffset == 0 && !BaseGV) return true;
1542 
1543   // Conservatively, create an address with an immediate and a
1544   // base and a scale.
1545   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1546 
1547   // Canonicalize a scale of 1 to a base register if the formula doesn't
1548   // already have a base register.
1549   if (!HasBaseReg && Scale == 1) {
1550     Scale = 0;
1551     HasBaseReg = true;
1552   }
1553 
1554   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1555                               HasBaseReg, Scale);
1556 }
1557 
isAlwaysFoldable(const TargetTransformInfo & TTI,ScalarEvolution & SE,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,Type * AccessTy,const SCEV * S,bool HasBaseReg)1558 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1559                              ScalarEvolution &SE, int64_t MinOffset,
1560                              int64_t MaxOffset, LSRUse::KindType Kind,
1561                              Type *AccessTy, const SCEV *S, bool HasBaseReg) {
1562   // Fast-path: zero is always foldable.
1563   if (S->isZero()) return true;
1564 
1565   // Conservatively, create an address with an immediate and a
1566   // base and a scale.
1567   int64_t BaseOffset = ExtractImmediate(S, SE);
1568   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1569 
1570   // If there's anything else involved, it's not foldable.
1571   if (!S->isZero()) return false;
1572 
1573   // Fast-path: zero is always foldable.
1574   if (BaseOffset == 0 && !BaseGV) return true;
1575 
1576   // Conservatively, create an address with an immediate and a
1577   // base and a scale.
1578   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1579 
1580   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1581                               BaseOffset, HasBaseReg, Scale);
1582 }
1583 
1584 namespace {
1585 
1586 /// IVInc - An individual increment in a Chain of IV increments.
1587 /// Relate an IV user to an expression that computes the IV it uses from the IV
1588 /// used by the previous link in the Chain.
1589 ///
1590 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1591 /// original IVOperand. The head of the chain's IVOperand is only valid during
1592 /// chain collection, before LSR replaces IV users. During chain generation,
1593 /// IncExpr can be used to find the new IVOperand that computes the same
1594 /// expression.
1595 struct IVInc {
1596   Instruction *UserInst;
1597   Value* IVOperand;
1598   const SCEV *IncExpr;
1599 
IVInc__anonb19727160811::IVInc1600   IVInc(Instruction *U, Value *O, const SCEV *E):
1601     UserInst(U), IVOperand(O), IncExpr(E) {}
1602 };
1603 
1604 // IVChain - The list of IV increments in program order.
1605 // We typically add the head of a chain without finding subsequent links.
1606 struct IVChain {
1607   SmallVector<IVInc,1> Incs;
1608   const SCEV *ExprBase;
1609 
IVChain__anonb19727160811::IVChain1610   IVChain() : ExprBase(nullptr) {}
1611 
IVChain__anonb19727160811::IVChain1612   IVChain(const IVInc &Head, const SCEV *Base)
1613     : Incs(1, Head), ExprBase(Base) {}
1614 
1615   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1616 
1617   // begin - return the first increment in the chain.
begin__anonb19727160811::IVChain1618   const_iterator begin() const {
1619     assert(!Incs.empty());
1620     return std::next(Incs.begin());
1621   }
end__anonb19727160811::IVChain1622   const_iterator end() const {
1623     return Incs.end();
1624   }
1625 
1626   // hasIncs - Returns true if this chain contains any increments.
hasIncs__anonb19727160811::IVChain1627   bool hasIncs() const { return Incs.size() >= 2; }
1628 
1629   // add - Add an IVInc to the end of this chain.
add__anonb19727160811::IVChain1630   void add(const IVInc &X) { Incs.push_back(X); }
1631 
1632   // tailUserInst - Returns the last UserInst in the chain.
tailUserInst__anonb19727160811::IVChain1633   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1634 
1635   // isProfitableIncrement - Returns true if IncExpr can be profitably added to
1636   // this chain.
1637   bool isProfitableIncrement(const SCEV *OperExpr,
1638                              const SCEV *IncExpr,
1639                              ScalarEvolution&);
1640 };
1641 
1642 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
1643 /// Distinguish between FarUsers that definitely cross IV increments and
1644 /// NearUsers that may be used between IV increments.
1645 struct ChainUsers {
1646   SmallPtrSet<Instruction*, 4> FarUsers;
1647   SmallPtrSet<Instruction*, 4> NearUsers;
1648 };
1649 
1650 /// LSRInstance - This class holds state for the main loop strength reduction
1651 /// logic.
1652 class LSRInstance {
1653   IVUsers &IU;
1654   ScalarEvolution &SE;
1655   DominatorTree &DT;
1656   LoopInfo &LI;
1657   const TargetTransformInfo &TTI;
1658   Loop *const L;
1659   bool Changed;
1660 
1661   /// IVIncInsertPos - This is the insert position that the current loop's
1662   /// induction variable increment should be placed. In simple loops, this is
1663   /// the latch block's terminator. But in more complicated cases, this is a
1664   /// position which will dominate all the in-loop post-increment users.
1665   Instruction *IVIncInsertPos;
1666 
1667   /// Factors - Interesting factors between use strides.
1668   SmallSetVector<int64_t, 8> Factors;
1669 
1670   /// Types - Interesting use types, to facilitate truncation reuse.
1671   SmallSetVector<Type *, 4> Types;
1672 
1673   /// Fixups - The list of operands which are to be replaced.
1674   SmallVector<LSRFixup, 16> Fixups;
1675 
1676   /// Uses - The list of interesting uses.
1677   SmallVector<LSRUse, 16> Uses;
1678 
1679   /// RegUses - Track which uses use which register candidates.
1680   RegUseTracker RegUses;
1681 
1682   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1683   // have more than a few IV increment chains in a loop. Missing a Chain falls
1684   // back to normal LSR behavior for those uses.
1685   static const unsigned MaxChains = 8;
1686 
1687   /// IVChainVec - IV users can form a chain of IV increments.
1688   SmallVector<IVChain, MaxChains> IVChainVec;
1689 
1690   /// IVIncSet - IV users that belong to profitable IVChains.
1691   SmallPtrSet<Use*, MaxChains> IVIncSet;
1692 
1693   void OptimizeShadowIV();
1694   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1695   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1696   void OptimizeLoopTermCond();
1697 
1698   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1699                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1700   void FinalizeChain(IVChain &Chain);
1701   void CollectChains();
1702   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1703                        SmallVectorImpl<WeakVH> &DeadInsts);
1704 
1705   void CollectInterestingTypesAndFactors();
1706   void CollectFixupsAndInitialFormulae();
1707 
getNewFixup()1708   LSRFixup &getNewFixup() {
1709     Fixups.push_back(LSRFixup());
1710     return Fixups.back();
1711   }
1712 
1713   // Support for sharing of LSRUses between LSRFixups.
1714   typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
1715   UseMapTy UseMap;
1716 
1717   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1718                           LSRUse::KindType Kind, Type *AccessTy);
1719 
1720   std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1721                                     LSRUse::KindType Kind,
1722                                     Type *AccessTy);
1723 
1724   void DeleteUse(LSRUse &LU, size_t LUIdx);
1725 
1726   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1727 
1728   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1729   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1730   void CountRegisters(const Formula &F, size_t LUIdx);
1731   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1732 
1733   void CollectLoopInvariantFixupsAndFormulae();
1734 
1735   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1736                               unsigned Depth = 0);
1737 
1738   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1739                                   const Formula &Base, unsigned Depth,
1740                                   size_t Idx, bool IsScaledReg = false);
1741   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1742   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1743                                    const Formula &Base, size_t Idx,
1744                                    bool IsScaledReg = false);
1745   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1746   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1747                                    const Formula &Base,
1748                                    const SmallVectorImpl<int64_t> &Worklist,
1749                                    size_t Idx, bool IsScaledReg = false);
1750   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1751   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1752   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1753   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1754   void GenerateCrossUseConstantOffsets();
1755   void GenerateAllReuseFormulae();
1756 
1757   void FilterOutUndesirableDedicatedRegisters();
1758 
1759   size_t EstimateSearchSpaceComplexity() const;
1760   void NarrowSearchSpaceByDetectingSupersets();
1761   void NarrowSearchSpaceByCollapsingUnrolledCode();
1762   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1763   void NarrowSearchSpaceByPickingWinnerRegs();
1764   void NarrowSearchSpaceUsingHeuristics();
1765 
1766   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1767                     Cost &SolutionCost,
1768                     SmallVectorImpl<const Formula *> &Workspace,
1769                     const Cost &CurCost,
1770                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1771                     DenseSet<const SCEV *> &VisitedRegs) const;
1772   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1773 
1774   BasicBlock::iterator
1775     HoistInsertPosition(BasicBlock::iterator IP,
1776                         const SmallVectorImpl<Instruction *> &Inputs) const;
1777   BasicBlock::iterator
1778     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1779                                   const LSRFixup &LF,
1780                                   const LSRUse &LU,
1781                                   SCEVExpander &Rewriter) const;
1782 
1783   Value *Expand(const LSRFixup &LF,
1784                 const Formula &F,
1785                 BasicBlock::iterator IP,
1786                 SCEVExpander &Rewriter,
1787                 SmallVectorImpl<WeakVH> &DeadInsts) const;
1788   void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1789                      const Formula &F,
1790                      SCEVExpander &Rewriter,
1791                      SmallVectorImpl<WeakVH> &DeadInsts,
1792                      Pass *P) const;
1793   void Rewrite(const LSRFixup &LF,
1794                const Formula &F,
1795                SCEVExpander &Rewriter,
1796                SmallVectorImpl<WeakVH> &DeadInsts,
1797                Pass *P) const;
1798   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1799                          Pass *P);
1800 
1801 public:
1802   LSRInstance(Loop *L, Pass *P);
1803 
getChanged() const1804   bool getChanged() const { return Changed; }
1805 
1806   void print_factors_and_types(raw_ostream &OS) const;
1807   void print_fixups(raw_ostream &OS) const;
1808   void print_uses(raw_ostream &OS) const;
1809   void print(raw_ostream &OS) const;
1810   void dump() const;
1811 };
1812 
1813 }
1814 
1815 /// OptimizeShadowIV - If IV is used in a int-to-float cast
1816 /// inside the loop then try to eliminate the cast operation.
OptimizeShadowIV()1817 void LSRInstance::OptimizeShadowIV() {
1818   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1819   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1820     return;
1821 
1822   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1823        UI != E; /* empty */) {
1824     IVUsers::const_iterator CandidateUI = UI;
1825     ++UI;
1826     Instruction *ShadowUse = CandidateUI->getUser();
1827     Type *DestTy = nullptr;
1828     bool IsSigned = false;
1829 
1830     /* If shadow use is a int->float cast then insert a second IV
1831        to eliminate this cast.
1832 
1833          for (unsigned i = 0; i < n; ++i)
1834            foo((double)i);
1835 
1836        is transformed into
1837 
1838          double d = 0.0;
1839          for (unsigned i = 0; i < n; ++i, ++d)
1840            foo(d);
1841     */
1842     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1843       IsSigned = false;
1844       DestTy = UCast->getDestTy();
1845     }
1846     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1847       IsSigned = true;
1848       DestTy = SCast->getDestTy();
1849     }
1850     if (!DestTy) continue;
1851 
1852     // If target does not support DestTy natively then do not apply
1853     // this transformation.
1854     if (!TTI.isTypeLegal(DestTy)) continue;
1855 
1856     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1857     if (!PH) continue;
1858     if (PH->getNumIncomingValues() != 2) continue;
1859 
1860     Type *SrcTy = PH->getType();
1861     int Mantissa = DestTy->getFPMantissaWidth();
1862     if (Mantissa == -1) continue;
1863     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1864       continue;
1865 
1866     unsigned Entry, Latch;
1867     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1868       Entry = 0;
1869       Latch = 1;
1870     } else {
1871       Entry = 1;
1872       Latch = 0;
1873     }
1874 
1875     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1876     if (!Init) continue;
1877     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1878                                         (double)Init->getSExtValue() :
1879                                         (double)Init->getZExtValue());
1880 
1881     BinaryOperator *Incr =
1882       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1883     if (!Incr) continue;
1884     if (Incr->getOpcode() != Instruction::Add
1885         && Incr->getOpcode() != Instruction::Sub)
1886       continue;
1887 
1888     /* Initialize new IV, double d = 0.0 in above example. */
1889     ConstantInt *C = nullptr;
1890     if (Incr->getOperand(0) == PH)
1891       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1892     else if (Incr->getOperand(1) == PH)
1893       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1894     else
1895       continue;
1896 
1897     if (!C) continue;
1898 
1899     // Ignore negative constants, as the code below doesn't handle them
1900     // correctly. TODO: Remove this restriction.
1901     if (!C->getValue().isStrictlyPositive()) continue;
1902 
1903     /* Add new PHINode. */
1904     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1905 
1906     /* create new increment. '++d' in above example. */
1907     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1908     BinaryOperator *NewIncr =
1909       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1910                                Instruction::FAdd : Instruction::FSub,
1911                              NewPH, CFP, "IV.S.next.", Incr);
1912 
1913     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1914     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1915 
1916     /* Remove cast operation */
1917     ShadowUse->replaceAllUsesWith(NewPH);
1918     ShadowUse->eraseFromParent();
1919     Changed = true;
1920     break;
1921   }
1922 }
1923 
1924 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1925 /// set the IV user and stride information and return true, otherwise return
1926 /// false.
FindIVUserForCond(ICmpInst * Cond,IVStrideUse * & CondUse)1927 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1928   for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1929     if (UI->getUser() == Cond) {
1930       // NOTE: we could handle setcc instructions with multiple uses here, but
1931       // InstCombine does it as well for simple uses, it's not clear that it
1932       // occurs enough in real life to handle.
1933       CondUse = UI;
1934       return true;
1935     }
1936   return false;
1937 }
1938 
1939 /// OptimizeMax - Rewrite the loop's terminating condition if it uses
1940 /// a max computation.
1941 ///
1942 /// This is a narrow solution to a specific, but acute, problem. For loops
1943 /// like this:
1944 ///
1945 ///   i = 0;
1946 ///   do {
1947 ///     p[i] = 0.0;
1948 ///   } while (++i < n);
1949 ///
1950 /// the trip count isn't just 'n', because 'n' might not be positive. And
1951 /// unfortunately this can come up even for loops where the user didn't use
1952 /// a C do-while loop. For example, seemingly well-behaved top-test loops
1953 /// will commonly be lowered like this:
1954 //
1955 ///   if (n > 0) {
1956 ///     i = 0;
1957 ///     do {
1958 ///       p[i] = 0.0;
1959 ///     } while (++i < n);
1960 ///   }
1961 ///
1962 /// and then it's possible for subsequent optimization to obscure the if
1963 /// test in such a way that indvars can't find it.
1964 ///
1965 /// When indvars can't find the if test in loops like this, it creates a
1966 /// max expression, which allows it to give the loop a canonical
1967 /// induction variable:
1968 ///
1969 ///   i = 0;
1970 ///   max = n < 1 ? 1 : n;
1971 ///   do {
1972 ///     p[i] = 0.0;
1973 ///   } while (++i != max);
1974 ///
1975 /// Canonical induction variables are necessary because the loop passes
1976 /// are designed around them. The most obvious example of this is the
1977 /// LoopInfo analysis, which doesn't remember trip count values. It
1978 /// expects to be able to rediscover the trip count each time it is
1979 /// needed, and it does this using a simple analysis that only succeeds if
1980 /// the loop has a canonical induction variable.
1981 ///
1982 /// However, when it comes time to generate code, the maximum operation
1983 /// can be quite costly, especially if it's inside of an outer loop.
1984 ///
1985 /// This function solves this problem by detecting this type of loop and
1986 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1987 /// the instructions for the maximum computation.
1988 ///
OptimizeMax(ICmpInst * Cond,IVStrideUse * & CondUse)1989 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1990   // Check that the loop matches the pattern we're looking for.
1991   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1992       Cond->getPredicate() != CmpInst::ICMP_NE)
1993     return Cond;
1994 
1995   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1996   if (!Sel || !Sel->hasOneUse()) return Cond;
1997 
1998   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1999   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2000     return Cond;
2001   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2002 
2003   // Add one to the backedge-taken count to get the trip count.
2004   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2005   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2006 
2007   // Check for a max calculation that matches the pattern. There's no check
2008   // for ICMP_ULE here because the comparison would be with zero, which
2009   // isn't interesting.
2010   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2011   const SCEVNAryExpr *Max = nullptr;
2012   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2013     Pred = ICmpInst::ICMP_SLE;
2014     Max = S;
2015   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2016     Pred = ICmpInst::ICMP_SLT;
2017     Max = S;
2018   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2019     Pred = ICmpInst::ICMP_ULT;
2020     Max = U;
2021   } else {
2022     // No match; bail.
2023     return Cond;
2024   }
2025 
2026   // To handle a max with more than two operands, this optimization would
2027   // require additional checking and setup.
2028   if (Max->getNumOperands() != 2)
2029     return Cond;
2030 
2031   const SCEV *MaxLHS = Max->getOperand(0);
2032   const SCEV *MaxRHS = Max->getOperand(1);
2033 
2034   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2035   // for a comparison with 1. For <= and >=, a comparison with zero.
2036   if (!MaxLHS ||
2037       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2038     return Cond;
2039 
2040   // Check the relevant induction variable for conformance to
2041   // the pattern.
2042   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2043   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2044   if (!AR || !AR->isAffine() ||
2045       AR->getStart() != One ||
2046       AR->getStepRecurrence(SE) != One)
2047     return Cond;
2048 
2049   assert(AR->getLoop() == L &&
2050          "Loop condition operand is an addrec in a different loop!");
2051 
2052   // Check the right operand of the select, and remember it, as it will
2053   // be used in the new comparison instruction.
2054   Value *NewRHS = nullptr;
2055   if (ICmpInst::isTrueWhenEqual(Pred)) {
2056     // Look for n+1, and grab n.
2057     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2058       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2059          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2060            NewRHS = BO->getOperand(0);
2061     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2062       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2063         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2064           NewRHS = BO->getOperand(0);
2065     if (!NewRHS)
2066       return Cond;
2067   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2068     NewRHS = Sel->getOperand(1);
2069   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2070     NewRHS = Sel->getOperand(2);
2071   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2072     NewRHS = SU->getValue();
2073   else
2074     // Max doesn't match expected pattern.
2075     return Cond;
2076 
2077   // Determine the new comparison opcode. It may be signed or unsigned,
2078   // and the original comparison may be either equality or inequality.
2079   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2080     Pred = CmpInst::getInversePredicate(Pred);
2081 
2082   // Ok, everything looks ok to change the condition into an SLT or SGE and
2083   // delete the max calculation.
2084   ICmpInst *NewCond =
2085     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2086 
2087   // Delete the max calculation instructions.
2088   Cond->replaceAllUsesWith(NewCond);
2089   CondUse->setUser(NewCond);
2090   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2091   Cond->eraseFromParent();
2092   Sel->eraseFromParent();
2093   if (Cmp->use_empty())
2094     Cmp->eraseFromParent();
2095   return NewCond;
2096 }
2097 
2098 /// OptimizeLoopTermCond - Change loop terminating condition to use the
2099 /// postinc iv when possible.
2100 void
OptimizeLoopTermCond()2101 LSRInstance::OptimizeLoopTermCond() {
2102   SmallPtrSet<Instruction *, 4> PostIncs;
2103 
2104   BasicBlock *LatchBlock = L->getLoopLatch();
2105   SmallVector<BasicBlock*, 8> ExitingBlocks;
2106   L->getExitingBlocks(ExitingBlocks);
2107 
2108   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
2109     BasicBlock *ExitingBlock = ExitingBlocks[i];
2110 
2111     // Get the terminating condition for the loop if possible.  If we
2112     // can, we want to change it to use a post-incremented version of its
2113     // induction variable, to allow coalescing the live ranges for the IV into
2114     // one register value.
2115 
2116     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2117     if (!TermBr)
2118       continue;
2119     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2120     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2121       continue;
2122 
2123     // Search IVUsesByStride to find Cond's IVUse if there is one.
2124     IVStrideUse *CondUse = nullptr;
2125     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2126     if (!FindIVUserForCond(Cond, CondUse))
2127       continue;
2128 
2129     // If the trip count is computed in terms of a max (due to ScalarEvolution
2130     // being unable to find a sufficient guard, for example), change the loop
2131     // comparison to use SLT or ULT instead of NE.
2132     // One consequence of doing this now is that it disrupts the count-down
2133     // optimization. That's not always a bad thing though, because in such
2134     // cases it may still be worthwhile to avoid a max.
2135     Cond = OptimizeMax(Cond, CondUse);
2136 
2137     // If this exiting block dominates the latch block, it may also use
2138     // the post-inc value if it won't be shared with other uses.
2139     // Check for dominance.
2140     if (!DT.dominates(ExitingBlock, LatchBlock))
2141       continue;
2142 
2143     // Conservatively avoid trying to use the post-inc value in non-latch
2144     // exits if there may be pre-inc users in intervening blocks.
2145     if (LatchBlock != ExitingBlock)
2146       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2147         // Test if the use is reachable from the exiting block. This dominator
2148         // query is a conservative approximation of reachability.
2149         if (&*UI != CondUse &&
2150             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2151           // Conservatively assume there may be reuse if the quotient of their
2152           // strides could be a legal scale.
2153           const SCEV *A = IU.getStride(*CondUse, L);
2154           const SCEV *B = IU.getStride(*UI, L);
2155           if (!A || !B) continue;
2156           if (SE.getTypeSizeInBits(A->getType()) !=
2157               SE.getTypeSizeInBits(B->getType())) {
2158             if (SE.getTypeSizeInBits(A->getType()) >
2159                 SE.getTypeSizeInBits(B->getType()))
2160               B = SE.getSignExtendExpr(B, A->getType());
2161             else
2162               A = SE.getSignExtendExpr(A, B->getType());
2163           }
2164           if (const SCEVConstant *D =
2165                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2166             const ConstantInt *C = D->getValue();
2167             // Stride of one or negative one can have reuse with non-addresses.
2168             if (C->isOne() || C->isAllOnesValue())
2169               goto decline_post_inc;
2170             // Avoid weird situations.
2171             if (C->getValue().getMinSignedBits() >= 64 ||
2172                 C->getValue().isMinSignedValue())
2173               goto decline_post_inc;
2174             // Check for possible scaled-address reuse.
2175             Type *AccessTy = getAccessType(UI->getUser());
2176             int64_t Scale = C->getSExtValue();
2177             if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr,
2178                                           /*BaseOffset=*/ 0,
2179                                           /*HasBaseReg=*/ false, Scale))
2180               goto decline_post_inc;
2181             Scale = -Scale;
2182             if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr,
2183                                           /*BaseOffset=*/ 0,
2184                                           /*HasBaseReg=*/ false, Scale))
2185               goto decline_post_inc;
2186           }
2187         }
2188 
2189     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2190                  << *Cond << '\n');
2191 
2192     // It's possible for the setcc instruction to be anywhere in the loop, and
2193     // possible for it to have multiple users.  If it is not immediately before
2194     // the exiting block branch, move it.
2195     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2196       if (Cond->hasOneUse()) {
2197         Cond->moveBefore(TermBr);
2198       } else {
2199         // Clone the terminating condition and insert into the loopend.
2200         ICmpInst *OldCond = Cond;
2201         Cond = cast<ICmpInst>(Cond->clone());
2202         Cond->setName(L->getHeader()->getName() + ".termcond");
2203         ExitingBlock->getInstList().insert(TermBr, Cond);
2204 
2205         // Clone the IVUse, as the old use still exists!
2206         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2207         TermBr->replaceUsesOfWith(OldCond, Cond);
2208       }
2209     }
2210 
2211     // If we get to here, we know that we can transform the setcc instruction to
2212     // use the post-incremented version of the IV, allowing us to coalesce the
2213     // live ranges for the IV correctly.
2214     CondUse->transformToPostInc(L);
2215     Changed = true;
2216 
2217     PostIncs.insert(Cond);
2218   decline_post_inc:;
2219   }
2220 
2221   // Determine an insertion point for the loop induction variable increment. It
2222   // must dominate all the post-inc comparisons we just set up, and it must
2223   // dominate the loop latch edge.
2224   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2225   for (Instruction *Inst : PostIncs) {
2226     BasicBlock *BB =
2227       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2228                                     Inst->getParent());
2229     if (BB == Inst->getParent())
2230       IVIncInsertPos = Inst;
2231     else if (BB != IVIncInsertPos->getParent())
2232       IVIncInsertPos = BB->getTerminator();
2233   }
2234 }
2235 
2236 /// reconcileNewOffset - Determine if the given use can accommodate a fixup
2237 /// at the given offset and other details. If so, update the use and
2238 /// return true.
2239 bool
reconcileNewOffset(LSRUse & LU,int64_t NewOffset,bool HasBaseReg,LSRUse::KindType Kind,Type * AccessTy)2240 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2241                                 LSRUse::KindType Kind, Type *AccessTy) {
2242   int64_t NewMinOffset = LU.MinOffset;
2243   int64_t NewMaxOffset = LU.MaxOffset;
2244   Type *NewAccessTy = AccessTy;
2245 
2246   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2247   // something conservative, however this can pessimize in the case that one of
2248   // the uses will have all its uses outside the loop, for example.
2249   if (LU.Kind != Kind)
2250     return false;
2251 
2252   // Check for a mismatched access type, and fall back conservatively as needed.
2253   // TODO: Be less conservative when the type is similar and can use the same
2254   // addressing modes.
2255   if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
2256     NewAccessTy = Type::getVoidTy(AccessTy->getContext());
2257 
2258   // Conservatively assume HasBaseReg is true for now.
2259   if (NewOffset < LU.MinOffset) {
2260     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2261                           LU.MaxOffset - NewOffset, HasBaseReg))
2262       return false;
2263     NewMinOffset = NewOffset;
2264   } else if (NewOffset > LU.MaxOffset) {
2265     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2266                           NewOffset - LU.MinOffset, HasBaseReg))
2267       return false;
2268     NewMaxOffset = NewOffset;
2269   }
2270 
2271   // Update the use.
2272   LU.MinOffset = NewMinOffset;
2273   LU.MaxOffset = NewMaxOffset;
2274   LU.AccessTy = NewAccessTy;
2275   if (NewOffset != LU.Offsets.back())
2276     LU.Offsets.push_back(NewOffset);
2277   return true;
2278 }
2279 
2280 /// getUse - Return an LSRUse index and an offset value for a fixup which
2281 /// needs the given expression, with the given kind and optional access type.
2282 /// Either reuse an existing use or create a new one, as needed.
2283 std::pair<size_t, int64_t>
getUse(const SCEV * & Expr,LSRUse::KindType Kind,Type * AccessTy)2284 LSRInstance::getUse(const SCEV *&Expr,
2285                     LSRUse::KindType Kind, Type *AccessTy) {
2286   const SCEV *Copy = Expr;
2287   int64_t Offset = ExtractImmediate(Expr, SE);
2288 
2289   // Basic uses can't accept any offset, for example.
2290   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2291                         Offset, /*HasBaseReg=*/ true)) {
2292     Expr = Copy;
2293     Offset = 0;
2294   }
2295 
2296   std::pair<UseMapTy::iterator, bool> P =
2297     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2298   if (!P.second) {
2299     // A use already existed with this base.
2300     size_t LUIdx = P.first->second;
2301     LSRUse &LU = Uses[LUIdx];
2302     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2303       // Reuse this use.
2304       return std::make_pair(LUIdx, Offset);
2305   }
2306 
2307   // Create a new use.
2308   size_t LUIdx = Uses.size();
2309   P.first->second = LUIdx;
2310   Uses.push_back(LSRUse(Kind, AccessTy));
2311   LSRUse &LU = Uses[LUIdx];
2312 
2313   // We don't need to track redundant offsets, but we don't need to go out
2314   // of our way here to avoid them.
2315   if (LU.Offsets.empty() || Offset != LU.Offsets.back())
2316     LU.Offsets.push_back(Offset);
2317 
2318   LU.MinOffset = Offset;
2319   LU.MaxOffset = Offset;
2320   return std::make_pair(LUIdx, Offset);
2321 }
2322 
2323 /// DeleteUse - Delete the given use from the Uses list.
DeleteUse(LSRUse & LU,size_t LUIdx)2324 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2325   if (&LU != &Uses.back())
2326     std::swap(LU, Uses.back());
2327   Uses.pop_back();
2328 
2329   // Update RegUses.
2330   RegUses.SwapAndDropUse(LUIdx, Uses.size());
2331 }
2332 
2333 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has
2334 /// a formula that has the same registers as the given formula.
2335 LSRUse *
FindUseWithSimilarFormula(const Formula & OrigF,const LSRUse & OrigLU)2336 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2337                                        const LSRUse &OrigLU) {
2338   // Search all uses for the formula. This could be more clever.
2339   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2340     LSRUse &LU = Uses[LUIdx];
2341     // Check whether this use is close enough to OrigLU, to see whether it's
2342     // worthwhile looking through its formulae.
2343     // Ignore ICmpZero uses because they may contain formulae generated by
2344     // GenerateICmpZeroScales, in which case adding fixup offsets may
2345     // be invalid.
2346     if (&LU != &OrigLU &&
2347         LU.Kind != LSRUse::ICmpZero &&
2348         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2349         LU.WidestFixupType == OrigLU.WidestFixupType &&
2350         LU.HasFormulaWithSameRegs(OrigF)) {
2351       // Scan through this use's formulae.
2352       for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2353            E = LU.Formulae.end(); I != E; ++I) {
2354         const Formula &F = *I;
2355         // Check to see if this formula has the same registers and symbols
2356         // as OrigF.
2357         if (F.BaseRegs == OrigF.BaseRegs &&
2358             F.ScaledReg == OrigF.ScaledReg &&
2359             F.BaseGV == OrigF.BaseGV &&
2360             F.Scale == OrigF.Scale &&
2361             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2362           if (F.BaseOffset == 0)
2363             return &LU;
2364           // This is the formula where all the registers and symbols matched;
2365           // there aren't going to be any others. Since we declined it, we
2366           // can skip the rest of the formulae and proceed to the next LSRUse.
2367           break;
2368         }
2369       }
2370     }
2371   }
2372 
2373   // Nothing looked good.
2374   return nullptr;
2375 }
2376 
CollectInterestingTypesAndFactors()2377 void LSRInstance::CollectInterestingTypesAndFactors() {
2378   SmallSetVector<const SCEV *, 4> Strides;
2379 
2380   // Collect interesting types and strides.
2381   SmallVector<const SCEV *, 4> Worklist;
2382   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2383     const SCEV *Expr = IU.getExpr(*UI);
2384 
2385     // Collect interesting types.
2386     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2387 
2388     // Add strides for mentioned loops.
2389     Worklist.push_back(Expr);
2390     do {
2391       const SCEV *S = Worklist.pop_back_val();
2392       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2393         if (AR->getLoop() == L)
2394           Strides.insert(AR->getStepRecurrence(SE));
2395         Worklist.push_back(AR->getStart());
2396       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2397         Worklist.append(Add->op_begin(), Add->op_end());
2398       }
2399     } while (!Worklist.empty());
2400   }
2401 
2402   // Compute interesting factors from the set of interesting strides.
2403   for (SmallSetVector<const SCEV *, 4>::const_iterator
2404        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2405     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2406          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2407       const SCEV *OldStride = *I;
2408       const SCEV *NewStride = *NewStrideIter;
2409 
2410       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2411           SE.getTypeSizeInBits(NewStride->getType())) {
2412         if (SE.getTypeSizeInBits(OldStride->getType()) >
2413             SE.getTypeSizeInBits(NewStride->getType()))
2414           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2415         else
2416           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2417       }
2418       if (const SCEVConstant *Factor =
2419             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2420                                                         SE, true))) {
2421         if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2422           Factors.insert(Factor->getValue()->getValue().getSExtValue());
2423       } else if (const SCEVConstant *Factor =
2424                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2425                                                                NewStride,
2426                                                                SE, true))) {
2427         if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2428           Factors.insert(Factor->getValue()->getValue().getSExtValue());
2429       }
2430     }
2431 
2432   // If all uses use the same type, don't bother looking for truncation-based
2433   // reuse.
2434   if (Types.size() == 1)
2435     Types.clear();
2436 
2437   DEBUG(print_factors_and_types(dbgs()));
2438 }
2439 
2440 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed
2441 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
2442 /// Instructions to IVStrideUses, we could partially skip this.
2443 static User::op_iterator
findIVOperand(User::op_iterator OI,User::op_iterator OE,Loop * L,ScalarEvolution & SE)2444 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2445               Loop *L, ScalarEvolution &SE) {
2446   for(; OI != OE; ++OI) {
2447     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2448       if (!SE.isSCEVable(Oper->getType()))
2449         continue;
2450 
2451       if (const SCEVAddRecExpr *AR =
2452           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2453         if (AR->getLoop() == L)
2454           break;
2455       }
2456     }
2457   }
2458   return OI;
2459 }
2460 
2461 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst
2462 /// operands, so wrap it in a convenient helper.
getWideOperand(Value * Oper)2463 static Value *getWideOperand(Value *Oper) {
2464   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2465     return Trunc->getOperand(0);
2466   return Oper;
2467 }
2468 
2469 /// isCompatibleIVType - Return true if we allow an IV chain to include both
2470 /// types.
isCompatibleIVType(Value * LVal,Value * RVal)2471 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2472   Type *LType = LVal->getType();
2473   Type *RType = RVal->getType();
2474   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2475 }
2476 
2477 /// getExprBase - Return an approximation of this SCEV expression's "base", or
2478 /// NULL for any constant. Returning the expression itself is
2479 /// conservative. Returning a deeper subexpression is more precise and valid as
2480 /// long as it isn't less complex than another subexpression. For expressions
2481 /// involving multiple unscaled values, we need to return the pointer-type
2482 /// SCEVUnknown. This avoids forming chains across objects, such as:
2483 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
2484 ///
2485 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2486 /// SCEVUnknown, we simply return the rightmost SCEV operand.
getExprBase(const SCEV * S)2487 static const SCEV *getExprBase(const SCEV *S) {
2488   switch (S->getSCEVType()) {
2489   default: // uncluding scUnknown.
2490     return S;
2491   case scConstant:
2492     return nullptr;
2493   case scTruncate:
2494     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2495   case scZeroExtend:
2496     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2497   case scSignExtend:
2498     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2499   case scAddExpr: {
2500     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2501     // there's nothing more complex.
2502     // FIXME: not sure if we want to recognize negation.
2503     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2504     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2505            E(Add->op_begin()); I != E; ++I) {
2506       const SCEV *SubExpr = *I;
2507       if (SubExpr->getSCEVType() == scAddExpr)
2508         return getExprBase(SubExpr);
2509 
2510       if (SubExpr->getSCEVType() != scMulExpr)
2511         return SubExpr;
2512     }
2513     return S; // all operands are scaled, be conservative.
2514   }
2515   case scAddRecExpr:
2516     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2517   }
2518 }
2519 
2520 /// Return true if the chain increment is profitable to expand into a loop
2521 /// invariant value, which may require its own register. A profitable chain
2522 /// increment will be an offset relative to the same base. We allow such offsets
2523 /// to potentially be used as chain increment as long as it's not obviously
2524 /// expensive to expand using real instructions.
isProfitableIncrement(const SCEV * OperExpr,const SCEV * IncExpr,ScalarEvolution & SE)2525 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2526                                     const SCEV *IncExpr,
2527                                     ScalarEvolution &SE) {
2528   // Aggressively form chains when -stress-ivchain.
2529   if (StressIVChain)
2530     return true;
2531 
2532   // Do not replace a constant offset from IV head with a nonconstant IV
2533   // increment.
2534   if (!isa<SCEVConstant>(IncExpr)) {
2535     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2536     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2537       return 0;
2538   }
2539 
2540   SmallPtrSet<const SCEV*, 8> Processed;
2541   return !isHighCostExpansion(IncExpr, Processed, SE);
2542 }
2543 
2544 /// Return true if the number of registers needed for the chain is estimated to
2545 /// be less than the number required for the individual IV users. First prohibit
2546 /// any IV users that keep the IV live across increments (the Users set should
2547 /// be empty). Next count the number and type of increments in the chain.
2548 ///
2549 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2550 /// effectively use postinc addressing modes. Only consider it profitable it the
2551 /// increments can be computed in fewer registers when chained.
2552 ///
2553 /// TODO: Consider IVInc free if it's already used in another chains.
2554 static bool
isProfitableChain(IVChain & Chain,SmallPtrSetImpl<Instruction * > & Users,ScalarEvolution & SE,const TargetTransformInfo & TTI)2555 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2556                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2557   if (StressIVChain)
2558     return true;
2559 
2560   if (!Chain.hasIncs())
2561     return false;
2562 
2563   if (!Users.empty()) {
2564     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2565           for (Instruction *Inst : Users) {
2566             dbgs() << "  " << *Inst << "\n";
2567           });
2568     return false;
2569   }
2570   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2571 
2572   // The chain itself may require a register, so intialize cost to 1.
2573   int cost = 1;
2574 
2575   // A complete chain likely eliminates the need for keeping the original IV in
2576   // a register. LSR does not currently know how to form a complete chain unless
2577   // the header phi already exists.
2578   if (isa<PHINode>(Chain.tailUserInst())
2579       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2580     --cost;
2581   }
2582   const SCEV *LastIncExpr = nullptr;
2583   unsigned NumConstIncrements = 0;
2584   unsigned NumVarIncrements = 0;
2585   unsigned NumReusedIncrements = 0;
2586   for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
2587        I != E; ++I) {
2588 
2589     if (I->IncExpr->isZero())
2590       continue;
2591 
2592     // Incrementing by zero or some constant is neutral. We assume constants can
2593     // be folded into an addressing mode or an add's immediate operand.
2594     if (isa<SCEVConstant>(I->IncExpr)) {
2595       ++NumConstIncrements;
2596       continue;
2597     }
2598 
2599     if (I->IncExpr == LastIncExpr)
2600       ++NumReusedIncrements;
2601     else
2602       ++NumVarIncrements;
2603 
2604     LastIncExpr = I->IncExpr;
2605   }
2606   // An IV chain with a single increment is handled by LSR's postinc
2607   // uses. However, a chain with multiple increments requires keeping the IV's
2608   // value live longer than it needs to be if chained.
2609   if (NumConstIncrements > 1)
2610     --cost;
2611 
2612   // Materializing increment expressions in the preheader that didn't exist in
2613   // the original code may cost a register. For example, sign-extended array
2614   // indices can produce ridiculous increments like this:
2615   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2616   cost += NumVarIncrements;
2617 
2618   // Reusing variable increments likely saves a register to hold the multiple of
2619   // the stride.
2620   cost -= NumReusedIncrements;
2621 
2622   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2623                << "\n");
2624 
2625   return cost < 0;
2626 }
2627 
2628 /// ChainInstruction - Add this IV user to an existing chain or make it the head
2629 /// of a new chain.
ChainInstruction(Instruction * UserInst,Instruction * IVOper,SmallVectorImpl<ChainUsers> & ChainUsersVec)2630 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2631                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2632   // When IVs are used as types of varying widths, they are generally converted
2633   // to a wider type with some uses remaining narrow under a (free) trunc.
2634   Value *const NextIV = getWideOperand(IVOper);
2635   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2636   const SCEV *const OperExprBase = getExprBase(OperExpr);
2637 
2638   // Visit all existing chains. Check if its IVOper can be computed as a
2639   // profitable loop invariant increment from the last link in the Chain.
2640   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2641   const SCEV *LastIncExpr = nullptr;
2642   for (; ChainIdx < NChains; ++ChainIdx) {
2643     IVChain &Chain = IVChainVec[ChainIdx];
2644 
2645     // Prune the solution space aggressively by checking that both IV operands
2646     // are expressions that operate on the same unscaled SCEVUnknown. This
2647     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2648     // first avoids creating extra SCEV expressions.
2649     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2650       continue;
2651 
2652     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2653     if (!isCompatibleIVType(PrevIV, NextIV))
2654       continue;
2655 
2656     // A phi node terminates a chain.
2657     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2658       continue;
2659 
2660     // The increment must be loop-invariant so it can be kept in a register.
2661     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2662     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2663     if (!SE.isLoopInvariant(IncExpr, L))
2664       continue;
2665 
2666     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2667       LastIncExpr = IncExpr;
2668       break;
2669     }
2670   }
2671   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2672   // bother for phi nodes, because they must be last in the chain.
2673   if (ChainIdx == NChains) {
2674     if (isa<PHINode>(UserInst))
2675       return;
2676     if (NChains >= MaxChains && !StressIVChain) {
2677       DEBUG(dbgs() << "IV Chain Limit\n");
2678       return;
2679     }
2680     LastIncExpr = OperExpr;
2681     // IVUsers may have skipped over sign/zero extensions. We don't currently
2682     // attempt to form chains involving extensions unless they can be hoisted
2683     // into this loop's AddRec.
2684     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2685       return;
2686     ++NChains;
2687     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2688                                  OperExprBase));
2689     ChainUsersVec.resize(NChains);
2690     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2691                  << ") IV=" << *LastIncExpr << "\n");
2692   } else {
2693     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2694                  << ") IV+" << *LastIncExpr << "\n");
2695     // Add this IV user to the end of the chain.
2696     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2697   }
2698   IVChain &Chain = IVChainVec[ChainIdx];
2699 
2700   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2701   // This chain's NearUsers become FarUsers.
2702   if (!LastIncExpr->isZero()) {
2703     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2704                                             NearUsers.end());
2705     NearUsers.clear();
2706   }
2707 
2708   // All other uses of IVOperand become near uses of the chain.
2709   // We currently ignore intermediate values within SCEV expressions, assuming
2710   // they will eventually be used be the current chain, or can be computed
2711   // from one of the chain increments. To be more precise we could
2712   // transitively follow its user and only add leaf IV users to the set.
2713   for (User *U : IVOper->users()) {
2714     Instruction *OtherUse = dyn_cast<Instruction>(U);
2715     if (!OtherUse)
2716       continue;
2717     // Uses in the chain will no longer be uses if the chain is formed.
2718     // Include the head of the chain in this iteration (not Chain.begin()).
2719     IVChain::const_iterator IncIter = Chain.Incs.begin();
2720     IVChain::const_iterator IncEnd = Chain.Incs.end();
2721     for( ; IncIter != IncEnd; ++IncIter) {
2722       if (IncIter->UserInst == OtherUse)
2723         break;
2724     }
2725     if (IncIter != IncEnd)
2726       continue;
2727 
2728     if (SE.isSCEVable(OtherUse->getType())
2729         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2730         && IU.isIVUserOrOperand(OtherUse)) {
2731       continue;
2732     }
2733     NearUsers.insert(OtherUse);
2734   }
2735 
2736   // Since this user is part of the chain, it's no longer considered a use
2737   // of the chain.
2738   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2739 }
2740 
2741 /// CollectChains - Populate the vector of Chains.
2742 ///
2743 /// This decreases ILP at the architecture level. Targets with ample registers,
2744 /// multiple memory ports, and no register renaming probably don't want
2745 /// this. However, such targets should probably disable LSR altogether.
2746 ///
2747 /// The job of LSR is to make a reasonable choice of induction variables across
2748 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2749 /// ILP *within the loop* if the target wants it.
2750 ///
2751 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2752 /// will not reorder memory operations, it will recognize this as a chain, but
2753 /// will generate redundant IV increments. Ideally this would be corrected later
2754 /// by a smart scheduler:
2755 ///        = A[i]
2756 ///        = A[i+x]
2757 /// A[i]   =
2758 /// A[i+x] =
2759 ///
2760 /// TODO: Walk the entire domtree within this loop, not just the path to the
2761 /// loop latch. This will discover chains on side paths, but requires
2762 /// maintaining multiple copies of the Chains state.
CollectChains()2763 void LSRInstance::CollectChains() {
2764   DEBUG(dbgs() << "Collecting IV Chains.\n");
2765   SmallVector<ChainUsers, 8> ChainUsersVec;
2766 
2767   SmallVector<BasicBlock *,8> LatchPath;
2768   BasicBlock *LoopHeader = L->getHeader();
2769   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2770        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2771     LatchPath.push_back(Rung->getBlock());
2772   }
2773   LatchPath.push_back(LoopHeader);
2774 
2775   // Walk the instruction stream from the loop header to the loop latch.
2776   for (SmallVectorImpl<BasicBlock *>::reverse_iterator
2777          BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
2778        BBIter != BBEnd; ++BBIter) {
2779     for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
2780          I != E; ++I) {
2781       // Skip instructions that weren't seen by IVUsers analysis.
2782       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
2783         continue;
2784 
2785       // Ignore users that are part of a SCEV expression. This way we only
2786       // consider leaf IV Users. This effectively rediscovers a portion of
2787       // IVUsers analysis but in program order this time.
2788       if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
2789         continue;
2790 
2791       // Remove this instruction from any NearUsers set it may be in.
2792       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2793            ChainIdx < NChains; ++ChainIdx) {
2794         ChainUsersVec[ChainIdx].NearUsers.erase(I);
2795       }
2796       // Search for operands that can be chained.
2797       SmallPtrSet<Instruction*, 4> UniqueOperands;
2798       User::op_iterator IVOpEnd = I->op_end();
2799       User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
2800       while (IVOpIter != IVOpEnd) {
2801         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2802         if (UniqueOperands.insert(IVOpInst).second)
2803           ChainInstruction(I, IVOpInst, ChainUsersVec);
2804         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2805       }
2806     } // Continue walking down the instructions.
2807   } // Continue walking down the domtree.
2808   // Visit phi backedges to determine if the chain can generate the IV postinc.
2809   for (BasicBlock::iterator I = L->getHeader()->begin();
2810        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2811     if (!SE.isSCEVable(PN->getType()))
2812       continue;
2813 
2814     Instruction *IncV =
2815       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2816     if (IncV)
2817       ChainInstruction(PN, IncV, ChainUsersVec);
2818   }
2819   // Remove any unprofitable chains.
2820   unsigned ChainIdx = 0;
2821   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2822        UsersIdx < NChains; ++UsersIdx) {
2823     if (!isProfitableChain(IVChainVec[UsersIdx],
2824                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
2825       continue;
2826     // Preserve the chain at UsesIdx.
2827     if (ChainIdx != UsersIdx)
2828       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2829     FinalizeChain(IVChainVec[ChainIdx]);
2830     ++ChainIdx;
2831   }
2832   IVChainVec.resize(ChainIdx);
2833 }
2834 
FinalizeChain(IVChain & Chain)2835 void LSRInstance::FinalizeChain(IVChain &Chain) {
2836   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2837   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
2838 
2839   for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
2840        I != E; ++I) {
2841     DEBUG(dbgs() << "        Inc: " << *I->UserInst << "\n");
2842     User::op_iterator UseI =
2843       std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
2844     assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
2845     IVIncSet.insert(UseI);
2846   }
2847 }
2848 
2849 /// Return true if the IVInc can be folded into an addressing mode.
canFoldIVIncExpr(const SCEV * IncExpr,Instruction * UserInst,Value * Operand,const TargetTransformInfo & TTI)2850 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2851                              Value *Operand, const TargetTransformInfo &TTI) {
2852   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2853   if (!IncConst || !isAddressUse(UserInst, Operand))
2854     return false;
2855 
2856   if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
2857     return false;
2858 
2859   int64_t IncOffset = IncConst->getValue()->getSExtValue();
2860   if (!isAlwaysFoldable(TTI, LSRUse::Address,
2861                         getAccessType(UserInst), /*BaseGV=*/ nullptr,
2862                         IncOffset, /*HaseBaseReg=*/ false))
2863     return false;
2864 
2865   return true;
2866 }
2867 
2868 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
2869 /// materialize the IV user's operand from the previous IV user's operand.
GenerateIVChain(const IVChain & Chain,SCEVExpander & Rewriter,SmallVectorImpl<WeakVH> & DeadInsts)2870 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2871                                   SmallVectorImpl<WeakVH> &DeadInsts) {
2872   // Find the new IVOperand for the head of the chain. It may have been replaced
2873   // by LSR.
2874   const IVInc &Head = Chain.Incs[0];
2875   User::op_iterator IVOpEnd = Head.UserInst->op_end();
2876   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
2877   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2878                                              IVOpEnd, L, SE);
2879   Value *IVSrc = nullptr;
2880   while (IVOpIter != IVOpEnd) {
2881     IVSrc = getWideOperand(*IVOpIter);
2882 
2883     // If this operand computes the expression that the chain needs, we may use
2884     // it. (Check this after setting IVSrc which is used below.)
2885     //
2886     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2887     // narrow for the chain, so we can no longer use it. We do allow using a
2888     // wider phi, assuming the LSR checked for free truncation. In that case we
2889     // should already have a truncate on this operand such that
2890     // getSCEV(IVSrc) == IncExpr.
2891     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2892         || SE.getSCEV(IVSrc) == Head.IncExpr) {
2893       break;
2894     }
2895     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2896   }
2897   if (IVOpIter == IVOpEnd) {
2898     // Gracefully give up on this chain.
2899     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2900     return;
2901   }
2902 
2903   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2904   Type *IVTy = IVSrc->getType();
2905   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2906   const SCEV *LeftOverExpr = nullptr;
2907   for (IVChain::const_iterator IncI = Chain.begin(),
2908          IncE = Chain.end(); IncI != IncE; ++IncI) {
2909 
2910     Instruction *InsertPt = IncI->UserInst;
2911     if (isa<PHINode>(InsertPt))
2912       InsertPt = L->getLoopLatch()->getTerminator();
2913 
2914     // IVOper will replace the current IV User's operand. IVSrc is the IV
2915     // value currently held in a register.
2916     Value *IVOper = IVSrc;
2917     if (!IncI->IncExpr->isZero()) {
2918       // IncExpr was the result of subtraction of two narrow values, so must
2919       // be signed.
2920       const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
2921       LeftOverExpr = LeftOverExpr ?
2922         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2923     }
2924     if (LeftOverExpr && !LeftOverExpr->isZero()) {
2925       // Expand the IV increment.
2926       Rewriter.clearPostInc();
2927       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2928       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2929                                              SE.getUnknown(IncV));
2930       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2931 
2932       // If an IV increment can't be folded, use it as the next IV value.
2933       if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
2934                             TTI)) {
2935         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2936         IVSrc = IVOper;
2937         LeftOverExpr = nullptr;
2938       }
2939     }
2940     Type *OperTy = IncI->IVOperand->getType();
2941     if (IVTy != OperTy) {
2942       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2943              "cannot extend a chained IV");
2944       IRBuilder<> Builder(InsertPt);
2945       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2946     }
2947     IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
2948     DeadInsts.push_back(IncI->IVOperand);
2949   }
2950   // If LSR created a new, wider phi, we may also replace its postinc. We only
2951   // do this if we also found a wide value for the head of the chain.
2952   if (isa<PHINode>(Chain.tailUserInst())) {
2953     for (BasicBlock::iterator I = L->getHeader()->begin();
2954          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2955       if (!isCompatibleIVType(Phi, IVSrc))
2956         continue;
2957       Instruction *PostIncV = dyn_cast<Instruction>(
2958         Phi->getIncomingValueForBlock(L->getLoopLatch()));
2959       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2960         continue;
2961       Value *IVOper = IVSrc;
2962       Type *PostIncTy = PostIncV->getType();
2963       if (IVTy != PostIncTy) {
2964         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2965         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2966         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2967         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2968       }
2969       Phi->replaceUsesOfWith(PostIncV, IVOper);
2970       DeadInsts.push_back(PostIncV);
2971     }
2972   }
2973 }
2974 
CollectFixupsAndInitialFormulae()2975 void LSRInstance::CollectFixupsAndInitialFormulae() {
2976   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2977     Instruction *UserInst = UI->getUser();
2978     // Skip IV users that are part of profitable IV Chains.
2979     User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
2980                                        UI->getOperandValToReplace());
2981     assert(UseI != UserInst->op_end() && "cannot find IV operand");
2982     if (IVIncSet.count(UseI))
2983       continue;
2984 
2985     // Record the uses.
2986     LSRFixup &LF = getNewFixup();
2987     LF.UserInst = UserInst;
2988     LF.OperandValToReplace = UI->getOperandValToReplace();
2989     LF.PostIncLoops = UI->getPostIncLoops();
2990 
2991     LSRUse::KindType Kind = LSRUse::Basic;
2992     Type *AccessTy = nullptr;
2993     if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2994       Kind = LSRUse::Address;
2995       AccessTy = getAccessType(LF.UserInst);
2996     }
2997 
2998     const SCEV *S = IU.getExpr(*UI);
2999 
3000     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3001     // (N - i == 0), and this allows (N - i) to be the expression that we work
3002     // with rather than just N or i, so we can consider the register
3003     // requirements for both N and i at the same time. Limiting this code to
3004     // equality icmps is not a problem because all interesting loops use
3005     // equality icmps, thanks to IndVarSimplify.
3006     if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
3007       if (CI->isEquality()) {
3008         // Swap the operands if needed to put the OperandValToReplace on the
3009         // left, for consistency.
3010         Value *NV = CI->getOperand(1);
3011         if (NV == LF.OperandValToReplace) {
3012           CI->setOperand(1, CI->getOperand(0));
3013           CI->setOperand(0, NV);
3014           NV = CI->getOperand(1);
3015           Changed = true;
3016         }
3017 
3018         // x == y  -->  x - y == 0
3019         const SCEV *N = SE.getSCEV(NV);
3020         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3021           // S is normalized, so normalize N before folding it into S
3022           // to keep the result normalized.
3023           N = TransformForPostIncUse(Normalize, N, CI, nullptr,
3024                                      LF.PostIncLoops, SE, DT);
3025           Kind = LSRUse::ICmpZero;
3026           S = SE.getMinusSCEV(N, S);
3027         }
3028 
3029         // -1 and the negations of all interesting strides (except the negation
3030         // of -1) are now also interesting.
3031         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3032           if (Factors[i] != -1)
3033             Factors.insert(-(uint64_t)Factors[i]);
3034         Factors.insert(-1);
3035       }
3036 
3037     // Set up the initial formula for this use.
3038     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3039     LF.LUIdx = P.first;
3040     LF.Offset = P.second;
3041     LSRUse &LU = Uses[LF.LUIdx];
3042     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3043     if (!LU.WidestFixupType ||
3044         SE.getTypeSizeInBits(LU.WidestFixupType) <
3045         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3046       LU.WidestFixupType = LF.OperandValToReplace->getType();
3047 
3048     // If this is the first use of this LSRUse, give it a formula.
3049     if (LU.Formulae.empty()) {
3050       InsertInitialFormula(S, LU, LF.LUIdx);
3051       CountRegisters(LU.Formulae.back(), LF.LUIdx);
3052     }
3053   }
3054 
3055   DEBUG(print_fixups(dbgs()));
3056 }
3057 
3058 /// InsertInitialFormula - Insert a formula for the given expression into
3059 /// the given use, separating out loop-variant portions from loop-invariant
3060 /// and loop-computable portions.
3061 void
InsertInitialFormula(const SCEV * S,LSRUse & LU,size_t LUIdx)3062 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3063   // Mark uses whose expressions cannot be expanded.
3064   if (!isSafeToExpand(S, SE))
3065     LU.RigidFormula = true;
3066 
3067   Formula F;
3068   F.InitialMatch(S, L, SE);
3069   bool Inserted = InsertFormula(LU, LUIdx, F);
3070   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3071 }
3072 
3073 /// InsertSupplementalFormula - Insert a simple single-register formula for
3074 /// the given expression into the given use.
3075 void
InsertSupplementalFormula(const SCEV * S,LSRUse & LU,size_t LUIdx)3076 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3077                                        LSRUse &LU, size_t LUIdx) {
3078   Formula F;
3079   F.BaseRegs.push_back(S);
3080   F.HasBaseReg = true;
3081   bool Inserted = InsertFormula(LU, LUIdx, F);
3082   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3083 }
3084 
3085 /// CountRegisters - Note which registers are used by the given formula,
3086 /// updating RegUses.
CountRegisters(const Formula & F,size_t LUIdx)3087 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3088   if (F.ScaledReg)
3089     RegUses.CountRegister(F.ScaledReg, LUIdx);
3090   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3091        E = F.BaseRegs.end(); I != E; ++I)
3092     RegUses.CountRegister(*I, LUIdx);
3093 }
3094 
3095 /// InsertFormula - If the given formula has not yet been inserted, add it to
3096 /// the list, and return true. Return false otherwise.
InsertFormula(LSRUse & LU,unsigned LUIdx,const Formula & F)3097 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3098   // Do not insert formula that we will not be able to expand.
3099   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3100          "Formula is illegal");
3101   if (!LU.InsertFormula(F))
3102     return false;
3103 
3104   CountRegisters(F, LUIdx);
3105   return true;
3106 }
3107 
3108 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
3109 /// loop-invariant values which we're tracking. These other uses will pin these
3110 /// values in registers, making them less profitable for elimination.
3111 /// TODO: This currently misses non-constant addrec step registers.
3112 /// TODO: Should this give more weight to users inside the loop?
3113 void
CollectLoopInvariantFixupsAndFormulae()3114 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3115   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3116   SmallPtrSet<const SCEV *, 32> Visited;
3117 
3118   while (!Worklist.empty()) {
3119     const SCEV *S = Worklist.pop_back_val();
3120 
3121     // Don't process the same SCEV twice
3122     if (!Visited.insert(S).second)
3123       continue;
3124 
3125     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3126       Worklist.append(N->op_begin(), N->op_end());
3127     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3128       Worklist.push_back(C->getOperand());
3129     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3130       Worklist.push_back(D->getLHS());
3131       Worklist.push_back(D->getRHS());
3132     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3133       const Value *V = US->getValue();
3134       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3135         // Look for instructions defined outside the loop.
3136         if (L->contains(Inst)) continue;
3137       } else if (isa<UndefValue>(V))
3138         // Undef doesn't have a live range, so it doesn't matter.
3139         continue;
3140       for (const Use &U : V->uses()) {
3141         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3142         // Ignore non-instructions.
3143         if (!UserInst)
3144           continue;
3145         // Ignore instructions in other functions (as can happen with
3146         // Constants).
3147         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3148           continue;
3149         // Ignore instructions not dominated by the loop.
3150         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3151           UserInst->getParent() :
3152           cast<PHINode>(UserInst)->getIncomingBlock(
3153             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3154         if (!DT.dominates(L->getHeader(), UseBB))
3155           continue;
3156         // Ignore uses which are part of other SCEV expressions, to avoid
3157         // analyzing them multiple times.
3158         if (SE.isSCEVable(UserInst->getType())) {
3159           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3160           // If the user is a no-op, look through to its uses.
3161           if (!isa<SCEVUnknown>(UserS))
3162             continue;
3163           if (UserS == US) {
3164             Worklist.push_back(
3165               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3166             continue;
3167           }
3168         }
3169         // Ignore icmp instructions which are already being analyzed.
3170         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3171           unsigned OtherIdx = !U.getOperandNo();
3172           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3173           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3174             continue;
3175         }
3176 
3177         LSRFixup &LF = getNewFixup();
3178         LF.UserInst = const_cast<Instruction *>(UserInst);
3179         LF.OperandValToReplace = U;
3180         std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, nullptr);
3181         LF.LUIdx = P.first;
3182         LF.Offset = P.second;
3183         LSRUse &LU = Uses[LF.LUIdx];
3184         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3185         if (!LU.WidestFixupType ||
3186             SE.getTypeSizeInBits(LU.WidestFixupType) <
3187             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3188           LU.WidestFixupType = LF.OperandValToReplace->getType();
3189         InsertSupplementalFormula(US, LU, LF.LUIdx);
3190         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3191         break;
3192       }
3193     }
3194   }
3195 }
3196 
3197 /// CollectSubexprs - Split S into subexpressions which can be pulled out into
3198 /// separate registers. If C is non-null, multiply each subexpression by C.
3199 ///
3200 /// Return remainder expression after factoring the subexpressions captured by
3201 /// Ops. If Ops is complete, return NULL.
CollectSubexprs(const SCEV * S,const SCEVConstant * C,SmallVectorImpl<const SCEV * > & Ops,const Loop * L,ScalarEvolution & SE,unsigned Depth=0)3202 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3203                                    SmallVectorImpl<const SCEV *> &Ops,
3204                                    const Loop *L,
3205                                    ScalarEvolution &SE,
3206                                    unsigned Depth = 0) {
3207   // Arbitrarily cap recursion to protect compile time.
3208   if (Depth >= 3)
3209     return S;
3210 
3211   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3212     // Break out add operands.
3213     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
3214          I != E; ++I) {
3215       const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1);
3216       if (Remainder)
3217         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3218     }
3219     return nullptr;
3220   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3221     // Split a non-zero base out of an addrec.
3222     if (AR->getStart()->isZero())
3223       return S;
3224 
3225     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3226                                             C, Ops, L, SE, Depth+1);
3227     // Split the non-zero AddRec unless it is part of a nested recurrence that
3228     // does not pertain to this loop.
3229     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3230       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3231       Remainder = nullptr;
3232     }
3233     if (Remainder != AR->getStart()) {
3234       if (!Remainder)
3235         Remainder = SE.getConstant(AR->getType(), 0);
3236       return SE.getAddRecExpr(Remainder,
3237                               AR->getStepRecurrence(SE),
3238                               AR->getLoop(),
3239                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3240                               SCEV::FlagAnyWrap);
3241     }
3242   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3243     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3244     if (Mul->getNumOperands() != 2)
3245       return S;
3246     if (const SCEVConstant *Op0 =
3247         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3248       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3249       const SCEV *Remainder =
3250         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3251       if (Remainder)
3252         Ops.push_back(SE.getMulExpr(C, Remainder));
3253       return nullptr;
3254     }
3255   }
3256   return S;
3257 }
3258 
3259 /// \brief Helper function for LSRInstance::GenerateReassociations.
GenerateReassociationsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,unsigned Depth,size_t Idx,bool IsScaledReg)3260 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3261                                              const Formula &Base,
3262                                              unsigned Depth, size_t Idx,
3263                                              bool IsScaledReg) {
3264   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3265   SmallVector<const SCEV *, 8> AddOps;
3266   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3267   if (Remainder)
3268     AddOps.push_back(Remainder);
3269 
3270   if (AddOps.size() == 1)
3271     return;
3272 
3273   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3274                                                      JE = AddOps.end();
3275        J != JE; ++J) {
3276 
3277     // Loop-variant "unknown" values are uninteresting; we won't be able to
3278     // do anything meaningful with them.
3279     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3280       continue;
3281 
3282     // Don't pull a constant into a register if the constant could be folded
3283     // into an immediate field.
3284     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3285                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3286       continue;
3287 
3288     // Collect all operands except *J.
3289     SmallVector<const SCEV *, 8> InnerAddOps(
3290         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3291     InnerAddOps.append(std::next(J),
3292                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3293 
3294     // Don't leave just a constant behind in a register if the constant could
3295     // be folded into an immediate field.
3296     if (InnerAddOps.size() == 1 &&
3297         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3298                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3299       continue;
3300 
3301     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3302     if (InnerSum->isZero())
3303       continue;
3304     Formula F = Base;
3305 
3306     // Add the remaining pieces of the add back into the new formula.
3307     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3308     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3309         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3310                                 InnerSumSC->getValue()->getZExtValue())) {
3311       F.UnfoldedOffset =
3312           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3313       if (IsScaledReg)
3314         F.ScaledReg = nullptr;
3315       else
3316         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3317     } else if (IsScaledReg)
3318       F.ScaledReg = InnerSum;
3319     else
3320       F.BaseRegs[Idx] = InnerSum;
3321 
3322     // Add J as its own register, or an unfolded immediate.
3323     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3324     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3325         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3326                                 SC->getValue()->getZExtValue()))
3327       F.UnfoldedOffset =
3328           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3329     else
3330       F.BaseRegs.push_back(*J);
3331     // We may have changed the number of register in base regs, adjust the
3332     // formula accordingly.
3333     F.Canonicalize();
3334 
3335     if (InsertFormula(LU, LUIdx, F))
3336       // If that formula hadn't been seen before, recurse to find more like
3337       // it.
3338       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3339   }
3340 }
3341 
3342 /// GenerateReassociations - Split out subexpressions from adds and the bases of
3343 /// addrecs.
GenerateReassociations(LSRUse & LU,unsigned LUIdx,Formula Base,unsigned Depth)3344 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3345                                          Formula Base, unsigned Depth) {
3346   assert(Base.isCanonical() && "Input must be in the canonical form");
3347   // Arbitrarily cap recursion to protect compile time.
3348   if (Depth >= 3)
3349     return;
3350 
3351   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3352     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3353 
3354   if (Base.Scale == 1)
3355     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3356                                /* Idx */ -1, /* IsScaledReg */ true);
3357 }
3358 
3359 /// GenerateCombinations - Generate a formula consisting of all of the
3360 /// loop-dominating registers added into a single register.
GenerateCombinations(LSRUse & LU,unsigned LUIdx,Formula Base)3361 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3362                                        Formula Base) {
3363   // This method is only interesting on a plurality of registers.
3364   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3365     return;
3366 
3367   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3368   // processing the formula.
3369   Base.Unscale();
3370   Formula F = Base;
3371   F.BaseRegs.clear();
3372   SmallVector<const SCEV *, 4> Ops;
3373   for (SmallVectorImpl<const SCEV *>::const_iterator
3374        I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
3375     const SCEV *BaseReg = *I;
3376     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3377         !SE.hasComputableLoopEvolution(BaseReg, L))
3378       Ops.push_back(BaseReg);
3379     else
3380       F.BaseRegs.push_back(BaseReg);
3381   }
3382   if (Ops.size() > 1) {
3383     const SCEV *Sum = SE.getAddExpr(Ops);
3384     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3385     // opportunity to fold something. For now, just ignore such cases
3386     // rather than proceed with zero in a register.
3387     if (!Sum->isZero()) {
3388       F.BaseRegs.push_back(Sum);
3389       F.Canonicalize();
3390       (void)InsertFormula(LU, LUIdx, F);
3391     }
3392   }
3393 }
3394 
3395 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
GenerateSymbolicOffsetsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,size_t Idx,bool IsScaledReg)3396 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3397                                               const Formula &Base, size_t Idx,
3398                                               bool IsScaledReg) {
3399   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3400   GlobalValue *GV = ExtractSymbol(G, SE);
3401   if (G->isZero() || !GV)
3402     return;
3403   Formula F = Base;
3404   F.BaseGV = GV;
3405   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3406     return;
3407   if (IsScaledReg)
3408     F.ScaledReg = G;
3409   else
3410     F.BaseRegs[Idx] = G;
3411   (void)InsertFormula(LU, LUIdx, F);
3412 }
3413 
3414 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
GenerateSymbolicOffsets(LSRUse & LU,unsigned LUIdx,Formula Base)3415 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3416                                           Formula Base) {
3417   // We can't add a symbolic offset if the address already contains one.
3418   if (Base.BaseGV) return;
3419 
3420   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3421     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3422   if (Base.Scale == 1)
3423     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3424                                 /* IsScaledReg */ true);
3425 }
3426 
3427 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
GenerateConstantOffsetsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,const SmallVectorImpl<int64_t> & Worklist,size_t Idx,bool IsScaledReg)3428 void LSRInstance::GenerateConstantOffsetsImpl(
3429     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3430     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3431   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3432   for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
3433                                                 E = Worklist.end();
3434        I != E; ++I) {
3435     Formula F = Base;
3436     F.BaseOffset = (uint64_t)Base.BaseOffset - *I;
3437     if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind,
3438                    LU.AccessTy, F)) {
3439       // Add the offset to the base register.
3440       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
3441       // If it cancelled out, drop the base register, otherwise update it.
3442       if (NewG->isZero()) {
3443         if (IsScaledReg) {
3444           F.Scale = 0;
3445           F.ScaledReg = nullptr;
3446         } else
3447           F.DeleteBaseReg(F.BaseRegs[Idx]);
3448         F.Canonicalize();
3449       } else if (IsScaledReg)
3450         F.ScaledReg = NewG;
3451       else
3452         F.BaseRegs[Idx] = NewG;
3453 
3454       (void)InsertFormula(LU, LUIdx, F);
3455     }
3456   }
3457 
3458   int64_t Imm = ExtractImmediate(G, SE);
3459   if (G->isZero() || Imm == 0)
3460     return;
3461   Formula F = Base;
3462   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3463   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3464     return;
3465   if (IsScaledReg)
3466     F.ScaledReg = G;
3467   else
3468     F.BaseRegs[Idx] = G;
3469   (void)InsertFormula(LU, LUIdx, F);
3470 }
3471 
3472 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
GenerateConstantOffsets(LSRUse & LU,unsigned LUIdx,Formula Base)3473 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3474                                           Formula Base) {
3475   // TODO: For now, just add the min and max offset, because it usually isn't
3476   // worthwhile looking at everything inbetween.
3477   SmallVector<int64_t, 2> Worklist;
3478   Worklist.push_back(LU.MinOffset);
3479   if (LU.MaxOffset != LU.MinOffset)
3480     Worklist.push_back(LU.MaxOffset);
3481 
3482   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3483     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3484   if (Base.Scale == 1)
3485     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3486                                 /* IsScaledReg */ true);
3487 }
3488 
3489 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
3490 /// the comparison. For example, x == y -> x*c == y*c.
GenerateICmpZeroScales(LSRUse & LU,unsigned LUIdx,Formula Base)3491 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3492                                          Formula Base) {
3493   if (LU.Kind != LSRUse::ICmpZero) return;
3494 
3495   // Determine the integer type for the base formula.
3496   Type *IntTy = Base.getType();
3497   if (!IntTy) return;
3498   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3499 
3500   // Don't do this if there is more than one offset.
3501   if (LU.MinOffset != LU.MaxOffset) return;
3502 
3503   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3504 
3505   // Check each interesting stride.
3506   for (SmallSetVector<int64_t, 8>::const_iterator
3507        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3508     int64_t Factor = *I;
3509 
3510     // Check that the multiplication doesn't overflow.
3511     if (Base.BaseOffset == INT64_MIN && Factor == -1)
3512       continue;
3513     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3514     if (NewBaseOffset / Factor != Base.BaseOffset)
3515       continue;
3516     // If the offset will be truncated at this use, check that it is in bounds.
3517     if (!IntTy->isPointerTy() &&
3518         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3519       continue;
3520 
3521     // Check that multiplying with the use offset doesn't overflow.
3522     int64_t Offset = LU.MinOffset;
3523     if (Offset == INT64_MIN && Factor == -1)
3524       continue;
3525     Offset = (uint64_t)Offset * Factor;
3526     if (Offset / Factor != LU.MinOffset)
3527       continue;
3528     // If the offset will be truncated at this use, check that it is in bounds.
3529     if (!IntTy->isPointerTy() &&
3530         !ConstantInt::isValueValidForType(IntTy, Offset))
3531       continue;
3532 
3533     Formula F = Base;
3534     F.BaseOffset = NewBaseOffset;
3535 
3536     // Check that this scale is legal.
3537     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3538       continue;
3539 
3540     // Compensate for the use having MinOffset built into it.
3541     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3542 
3543     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3544 
3545     // Check that multiplying with each base register doesn't overflow.
3546     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3547       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3548       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3549         goto next;
3550     }
3551 
3552     // Check that multiplying with the scaled register doesn't overflow.
3553     if (F.ScaledReg) {
3554       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3555       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3556         continue;
3557     }
3558 
3559     // Check that multiplying with the unfolded offset doesn't overflow.
3560     if (F.UnfoldedOffset != 0) {
3561       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3562         continue;
3563       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3564       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3565         continue;
3566       // If the offset will be truncated, check that it is in bounds.
3567       if (!IntTy->isPointerTy() &&
3568           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3569         continue;
3570     }
3571 
3572     // If we make it here and it's legal, add it.
3573     (void)InsertFormula(LU, LUIdx, F);
3574   next:;
3575   }
3576 }
3577 
3578 /// GenerateScales - Generate stride factor reuse formulae by making use of
3579 /// scaled-offset address modes, for example.
GenerateScales(LSRUse & LU,unsigned LUIdx,Formula Base)3580 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3581   // Determine the integer type for the base formula.
3582   Type *IntTy = Base.getType();
3583   if (!IntTy) return;
3584 
3585   // If this Formula already has a scaled register, we can't add another one.
3586   // Try to unscale the formula to generate a better scale.
3587   if (Base.Scale != 0 && !Base.Unscale())
3588     return;
3589 
3590   assert(Base.Scale == 0 && "Unscale did not did its job!");
3591 
3592   // Check each interesting stride.
3593   for (SmallSetVector<int64_t, 8>::const_iterator
3594        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3595     int64_t Factor = *I;
3596 
3597     Base.Scale = Factor;
3598     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3599     // Check whether this scale is going to be legal.
3600     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3601                     Base)) {
3602       // As a special-case, handle special out-of-loop Basic users specially.
3603       // TODO: Reconsider this special case.
3604       if (LU.Kind == LSRUse::Basic &&
3605           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3606                      LU.AccessTy, Base) &&
3607           LU.AllFixupsOutsideLoop)
3608         LU.Kind = LSRUse::Special;
3609       else
3610         continue;
3611     }
3612     // For an ICmpZero, negating a solitary base register won't lead to
3613     // new solutions.
3614     if (LU.Kind == LSRUse::ICmpZero &&
3615         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3616       continue;
3617     // For each addrec base reg, apply the scale, if possible.
3618     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3619       if (const SCEVAddRecExpr *AR =
3620             dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3621         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3622         if (FactorS->isZero())
3623           continue;
3624         // Divide out the factor, ignoring high bits, since we'll be
3625         // scaling the value back up in the end.
3626         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3627           // TODO: This could be optimized to avoid all the copying.
3628           Formula F = Base;
3629           F.ScaledReg = Quotient;
3630           F.DeleteBaseReg(F.BaseRegs[i]);
3631           // The canonical representation of 1*reg is reg, which is already in
3632           // Base. In that case, do not try to insert the formula, it will be
3633           // rejected anyway.
3634           if (F.Scale == 1 && F.BaseRegs.empty())
3635             continue;
3636           (void)InsertFormula(LU, LUIdx, F);
3637         }
3638       }
3639   }
3640 }
3641 
3642 /// GenerateTruncates - Generate reuse formulae from different IV types.
GenerateTruncates(LSRUse & LU,unsigned LUIdx,Formula Base)3643 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3644   // Don't bother truncating symbolic values.
3645   if (Base.BaseGV) return;
3646 
3647   // Determine the integer type for the base formula.
3648   Type *DstTy = Base.getType();
3649   if (!DstTy) return;
3650   DstTy = SE.getEffectiveSCEVType(DstTy);
3651 
3652   for (SmallSetVector<Type *, 4>::const_iterator
3653        I = Types.begin(), E = Types.end(); I != E; ++I) {
3654     Type *SrcTy = *I;
3655     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3656       Formula F = Base;
3657 
3658       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
3659       for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
3660            JE = F.BaseRegs.end(); J != JE; ++J)
3661         *J = SE.getAnyExtendExpr(*J, SrcTy);
3662 
3663       // TODO: This assumes we've done basic processing on all uses and
3664       // have an idea what the register usage is.
3665       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3666         continue;
3667 
3668       (void)InsertFormula(LU, LUIdx, F);
3669     }
3670   }
3671 }
3672 
3673 namespace {
3674 
3675 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
3676 /// defer modifications so that the search phase doesn't have to worry about
3677 /// the data structures moving underneath it.
3678 struct WorkItem {
3679   size_t LUIdx;
3680   int64_t Imm;
3681   const SCEV *OrigReg;
3682 
WorkItem__anonb19727160911::WorkItem3683   WorkItem(size_t LI, int64_t I, const SCEV *R)
3684     : LUIdx(LI), Imm(I), OrigReg(R) {}
3685 
3686   void print(raw_ostream &OS) const;
3687   void dump() const;
3688 };
3689 
3690 }
3691 
print(raw_ostream & OS) const3692 void WorkItem::print(raw_ostream &OS) const {
3693   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3694      << " , add offset " << Imm;
3695 }
3696 
3697 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const3698 void WorkItem::dump() const {
3699   print(errs()); errs() << '\n';
3700 }
3701 #endif
3702 
3703 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant
3704 /// distance apart and try to form reuse opportunities between them.
GenerateCrossUseConstantOffsets()3705 void LSRInstance::GenerateCrossUseConstantOffsets() {
3706   // Group the registers by their value without any added constant offset.
3707   typedef std::map<int64_t, const SCEV *> ImmMapTy;
3708   typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
3709   RegMapTy Map;
3710   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3711   SmallVector<const SCEV *, 8> Sequence;
3712   for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3713        I != E; ++I) {
3714     const SCEV *Reg = *I;
3715     int64_t Imm = ExtractImmediate(Reg, SE);
3716     std::pair<RegMapTy::iterator, bool> Pair =
3717       Map.insert(std::make_pair(Reg, ImmMapTy()));
3718     if (Pair.second)
3719       Sequence.push_back(Reg);
3720     Pair.first->second.insert(std::make_pair(Imm, *I));
3721     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
3722   }
3723 
3724   // Now examine each set of registers with the same base value. Build up
3725   // a list of work to do and do the work in a separate step so that we're
3726   // not adding formulae and register counts while we're searching.
3727   SmallVector<WorkItem, 32> WorkItems;
3728   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3729   for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
3730        E = Sequence.end(); I != E; ++I) {
3731     const SCEV *Reg = *I;
3732     const ImmMapTy &Imms = Map.find(Reg)->second;
3733 
3734     // It's not worthwhile looking for reuse if there's only one offset.
3735     if (Imms.size() == 1)
3736       continue;
3737 
3738     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3739           for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3740                J != JE; ++J)
3741             dbgs() << ' ' << J->first;
3742           dbgs() << '\n');
3743 
3744     // Examine each offset.
3745     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3746          J != JE; ++J) {
3747       const SCEV *OrigReg = J->second;
3748 
3749       int64_t JImm = J->first;
3750       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3751 
3752       if (!isa<SCEVConstant>(OrigReg) &&
3753           UsedByIndicesMap[Reg].count() == 1) {
3754         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3755         continue;
3756       }
3757 
3758       // Conservatively examine offsets between this orig reg a few selected
3759       // other orig regs.
3760       ImmMapTy::const_iterator OtherImms[] = {
3761         Imms.begin(), std::prev(Imms.end()),
3762         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3763                          2)
3764       };
3765       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3766         ImmMapTy::const_iterator M = OtherImms[i];
3767         if (M == J || M == JE) continue;
3768 
3769         // Compute the difference between the two.
3770         int64_t Imm = (uint64_t)JImm - M->first;
3771         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3772              LUIdx = UsedByIndices.find_next(LUIdx))
3773           // Make a memo of this use, offset, and register tuple.
3774           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3775             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3776       }
3777     }
3778   }
3779 
3780   Map.clear();
3781   Sequence.clear();
3782   UsedByIndicesMap.clear();
3783   UniqueItems.clear();
3784 
3785   // Now iterate through the worklist and add new formulae.
3786   for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
3787        E = WorkItems.end(); I != E; ++I) {
3788     const WorkItem &WI = *I;
3789     size_t LUIdx = WI.LUIdx;
3790     LSRUse &LU = Uses[LUIdx];
3791     int64_t Imm = WI.Imm;
3792     const SCEV *OrigReg = WI.OrigReg;
3793 
3794     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3795     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3796     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3797 
3798     // TODO: Use a more targeted data structure.
3799     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3800       Formula F = LU.Formulae[L];
3801       // FIXME: The code for the scaled and unscaled registers looks
3802       // very similar but slightly different. Investigate if they
3803       // could be merged. That way, we would not have to unscale the
3804       // Formula.
3805       F.Unscale();
3806       // Use the immediate in the scaled register.
3807       if (F.ScaledReg == OrigReg) {
3808         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3809         // Don't create 50 + reg(-50).
3810         if (F.referencesReg(SE.getSCEV(
3811                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
3812           continue;
3813         Formula NewF = F;
3814         NewF.BaseOffset = Offset;
3815         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3816                         NewF))
3817           continue;
3818         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3819 
3820         // If the new scale is a constant in a register, and adding the constant
3821         // value to the immediate would produce a value closer to zero than the
3822         // immediate itself, then the formula isn't worthwhile.
3823         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3824           if (C->getValue()->isNegative() !=
3825                 (NewF.BaseOffset < 0) &&
3826               (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale))
3827                 .ule(std::abs(NewF.BaseOffset)))
3828             continue;
3829 
3830         // OK, looks good.
3831         NewF.Canonicalize();
3832         (void)InsertFormula(LU, LUIdx, NewF);
3833       } else {
3834         // Use the immediate in a base register.
3835         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3836           const SCEV *BaseReg = F.BaseRegs[N];
3837           if (BaseReg != OrigReg)
3838             continue;
3839           Formula NewF = F;
3840           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
3841           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
3842                           LU.Kind, LU.AccessTy, NewF)) {
3843             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3844               continue;
3845             NewF = F;
3846             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3847           }
3848           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3849 
3850           // If the new formula has a constant in a register, and adding the
3851           // constant value to the immediate would produce a value closer to
3852           // zero than the immediate itself, then the formula isn't worthwhile.
3853           for (SmallVectorImpl<const SCEV *>::const_iterator
3854                J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
3855                J != JE; ++J)
3856             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
3857               if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt(
3858                    std::abs(NewF.BaseOffset)) &&
3859                   (C->getValue()->getValue() +
3860                    NewF.BaseOffset).countTrailingZeros() >=
3861                    countTrailingZeros<uint64_t>(NewF.BaseOffset))
3862                 goto skip_formula;
3863 
3864           // Ok, looks good.
3865           NewF.Canonicalize();
3866           (void)InsertFormula(LU, LUIdx, NewF);
3867           break;
3868         skip_formula:;
3869         }
3870       }
3871     }
3872   }
3873 }
3874 
3875 /// GenerateAllReuseFormulae - Generate formulae for each use.
3876 void
GenerateAllReuseFormulae()3877 LSRInstance::GenerateAllReuseFormulae() {
3878   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3879   // queries are more precise.
3880   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3881     LSRUse &LU = Uses[LUIdx];
3882     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3883       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3884     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3885       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3886   }
3887   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3888     LSRUse &LU = Uses[LUIdx];
3889     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3890       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3891     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3892       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3893     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3894       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3895     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3896       GenerateScales(LU, LUIdx, LU.Formulae[i]);
3897   }
3898   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3899     LSRUse &LU = Uses[LUIdx];
3900     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3901       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3902   }
3903 
3904   GenerateCrossUseConstantOffsets();
3905 
3906   DEBUG(dbgs() << "\n"
3907                   "After generating reuse formulae:\n";
3908         print_uses(dbgs()));
3909 }
3910 
3911 /// If there are multiple formulae with the same set of registers used
3912 /// by other uses, pick the best one and delete the others.
FilterOutUndesirableDedicatedRegisters()3913 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3914   DenseSet<const SCEV *> VisitedRegs;
3915   SmallPtrSet<const SCEV *, 16> Regs;
3916   SmallPtrSet<const SCEV *, 16> LoserRegs;
3917 #ifndef NDEBUG
3918   bool ChangedFormulae = false;
3919 #endif
3920 
3921   // Collect the best formula for each unique set of shared registers. This
3922   // is reset for each use.
3923   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
3924     BestFormulaeTy;
3925   BestFormulaeTy BestFormulae;
3926 
3927   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3928     LSRUse &LU = Uses[LUIdx];
3929     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3930 
3931     bool Any = false;
3932     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3933          FIdx != NumForms; ++FIdx) {
3934       Formula &F = LU.Formulae[FIdx];
3935 
3936       // Some formulas are instant losers. For example, they may depend on
3937       // nonexistent AddRecs from other loops. These need to be filtered
3938       // immediately, otherwise heuristics could choose them over others leading
3939       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3940       // avoids the need to recompute this information across formulae using the
3941       // same bad AddRec. Passing LoserRegs is also essential unless we remove
3942       // the corresponding bad register from the Regs set.
3943       Cost CostF;
3944       Regs.clear();
3945       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU,
3946                         &LoserRegs);
3947       if (CostF.isLoser()) {
3948         // During initial formula generation, undesirable formulae are generated
3949         // by uses within other loops that have some non-trivial address mode or
3950         // use the postinc form of the IV. LSR needs to provide these formulae
3951         // as the basis of rediscovering the desired formula that uses an AddRec
3952         // corresponding to the existing phi. Once all formulae have been
3953         // generated, these initial losers may be pruned.
3954         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
3955               dbgs() << "\n");
3956       }
3957       else {
3958         SmallVector<const SCEV *, 4> Key;
3959         for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
3960                JE = F.BaseRegs.end(); J != JE; ++J) {
3961           const SCEV *Reg = *J;
3962           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3963             Key.push_back(Reg);
3964         }
3965         if (F.ScaledReg &&
3966             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3967           Key.push_back(F.ScaledReg);
3968         // Unstable sort by host order ok, because this is only used for
3969         // uniquifying.
3970         std::sort(Key.begin(), Key.end());
3971 
3972         std::pair<BestFormulaeTy::const_iterator, bool> P =
3973           BestFormulae.insert(std::make_pair(Key, FIdx));
3974         if (P.second)
3975           continue;
3976 
3977         Formula &Best = LU.Formulae[P.first->second];
3978 
3979         Cost CostBest;
3980         Regs.clear();
3981         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE,
3982                              DT, LU);
3983         if (CostF < CostBest)
3984           std::swap(F, Best);
3985         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
3986               dbgs() << "\n"
3987                         "    in favor of formula "; Best.print(dbgs());
3988               dbgs() << '\n');
3989       }
3990 #ifndef NDEBUG
3991       ChangedFormulae = true;
3992 #endif
3993       LU.DeleteFormula(F);
3994       --FIdx;
3995       --NumForms;
3996       Any = true;
3997     }
3998 
3999     // Now that we've filtered out some formulae, recompute the Regs set.
4000     if (Any)
4001       LU.RecomputeRegs(LUIdx, RegUses);
4002 
4003     // Reset this to prepare for the next use.
4004     BestFormulae.clear();
4005   }
4006 
4007   DEBUG(if (ChangedFormulae) {
4008           dbgs() << "\n"
4009                     "After filtering out undesirable candidates:\n";
4010           print_uses(dbgs());
4011         });
4012 }
4013 
4014 // This is a rough guess that seems to work fairly well.
4015 static const size_t ComplexityLimit = UINT16_MAX;
4016 
4017 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of
4018 /// solutions the solver might have to consider. It almost never considers
4019 /// this many solutions because it prune the search space, but the pruning
4020 /// isn't always sufficient.
EstimateSearchSpaceComplexity() const4021 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4022   size_t Power = 1;
4023   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
4024        E = Uses.end(); I != E; ++I) {
4025     size_t FSize = I->Formulae.size();
4026     if (FSize >= ComplexityLimit) {
4027       Power = ComplexityLimit;
4028       break;
4029     }
4030     Power *= FSize;
4031     if (Power >= ComplexityLimit)
4032       break;
4033   }
4034   return Power;
4035 }
4036 
4037 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
4038 /// of the registers of another formula, it won't help reduce register
4039 /// pressure (though it may not necessarily hurt register pressure); remove
4040 /// it to simplify the system.
NarrowSearchSpaceByDetectingSupersets()4041 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4042   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4043     DEBUG(dbgs() << "The search space is too complex.\n");
4044 
4045     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4046                     "which use a superset of registers used by other "
4047                     "formulae.\n");
4048 
4049     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4050       LSRUse &LU = Uses[LUIdx];
4051       bool Any = false;
4052       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4053         Formula &F = LU.Formulae[i];
4054         // Look for a formula with a constant or GV in a register. If the use
4055         // also has a formula with that same value in an immediate field,
4056         // delete the one that uses a register.
4057         for (SmallVectorImpl<const SCEV *>::const_iterator
4058              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4059           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4060             Formula NewF = F;
4061             NewF.BaseOffset += C->getValue()->getSExtValue();
4062             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4063                                 (I - F.BaseRegs.begin()));
4064             if (LU.HasFormulaWithSameRegs(NewF)) {
4065               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4066               LU.DeleteFormula(F);
4067               --i;
4068               --e;
4069               Any = true;
4070               break;
4071             }
4072           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4073             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4074               if (!F.BaseGV) {
4075                 Formula NewF = F;
4076                 NewF.BaseGV = GV;
4077                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4078                                     (I - F.BaseRegs.begin()));
4079                 if (LU.HasFormulaWithSameRegs(NewF)) {
4080                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4081                         dbgs() << '\n');
4082                   LU.DeleteFormula(F);
4083                   --i;
4084                   --e;
4085                   Any = true;
4086                   break;
4087                 }
4088               }
4089           }
4090         }
4091       }
4092       if (Any)
4093         LU.RecomputeRegs(LUIdx, RegUses);
4094     }
4095 
4096     DEBUG(dbgs() << "After pre-selection:\n";
4097           print_uses(dbgs()));
4098   }
4099 }
4100 
4101 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
4102 /// for expressions like A, A+1, A+2, etc., allocate a single register for
4103 /// them.
NarrowSearchSpaceByCollapsingUnrolledCode()4104 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4105   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4106     return;
4107 
4108   DEBUG(dbgs() << "The search space is too complex.\n"
4109                   "Narrowing the search space by assuming that uses separated "
4110                   "by a constant offset will use the same registers.\n");
4111 
4112   // This is especially useful for unrolled loops.
4113 
4114   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4115     LSRUse &LU = Uses[LUIdx];
4116     for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
4117          E = LU.Formulae.end(); I != E; ++I) {
4118       const Formula &F = *I;
4119       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4120         continue;
4121 
4122       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4123       if (!LUThatHas)
4124         continue;
4125 
4126       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4127                               LU.Kind, LU.AccessTy))
4128         continue;
4129 
4130       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4131 
4132       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4133 
4134       // Update the relocs to reference the new use.
4135       for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
4136            E = Fixups.end(); I != E; ++I) {
4137         LSRFixup &Fixup = *I;
4138         if (Fixup.LUIdx == LUIdx) {
4139           Fixup.LUIdx = LUThatHas - &Uses.front();
4140           Fixup.Offset += F.BaseOffset;
4141           // Add the new offset to LUThatHas' offset list.
4142           if (LUThatHas->Offsets.back() != Fixup.Offset) {
4143             LUThatHas->Offsets.push_back(Fixup.Offset);
4144             if (Fixup.Offset > LUThatHas->MaxOffset)
4145               LUThatHas->MaxOffset = Fixup.Offset;
4146             if (Fixup.Offset < LUThatHas->MinOffset)
4147               LUThatHas->MinOffset = Fixup.Offset;
4148           }
4149           DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4150         }
4151         if (Fixup.LUIdx == NumUses-1)
4152           Fixup.LUIdx = LUIdx;
4153       }
4154 
4155       // Delete formulae from the new use which are no longer legal.
4156       bool Any = false;
4157       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4158         Formula &F = LUThatHas->Formulae[i];
4159         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4160                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4161           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4162                 dbgs() << '\n');
4163           LUThatHas->DeleteFormula(F);
4164           --i;
4165           --e;
4166           Any = true;
4167         }
4168       }
4169 
4170       if (Any)
4171         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4172 
4173       // Delete the old use.
4174       DeleteUse(LU, LUIdx);
4175       --LUIdx;
4176       --NumUses;
4177       break;
4178     }
4179   }
4180 
4181   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4182 }
4183 
4184 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
4185 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4186 /// we've done more filtering, as it may be able to find more formulae to
4187 /// eliminate.
NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters()4188 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4189   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4190     DEBUG(dbgs() << "The search space is too complex.\n");
4191 
4192     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4193                     "undesirable dedicated registers.\n");
4194 
4195     FilterOutUndesirableDedicatedRegisters();
4196 
4197     DEBUG(dbgs() << "After pre-selection:\n";
4198           print_uses(dbgs()));
4199   }
4200 }
4201 
4202 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
4203 /// to be profitable, and then in any use which has any reference to that
4204 /// register, delete all formulae which do not reference that register.
NarrowSearchSpaceByPickingWinnerRegs()4205 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4206   // With all other options exhausted, loop until the system is simple
4207   // enough to handle.
4208   SmallPtrSet<const SCEV *, 4> Taken;
4209   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4210     // Ok, we have too many of formulae on our hands to conveniently handle.
4211     // Use a rough heuristic to thin out the list.
4212     DEBUG(dbgs() << "The search space is too complex.\n");
4213 
4214     // Pick the register which is used by the most LSRUses, which is likely
4215     // to be a good reuse register candidate.
4216     const SCEV *Best = nullptr;
4217     unsigned BestNum = 0;
4218     for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
4219          I != E; ++I) {
4220       const SCEV *Reg = *I;
4221       if (Taken.count(Reg))
4222         continue;
4223       if (!Best)
4224         Best = Reg;
4225       else {
4226         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4227         if (Count > BestNum) {
4228           Best = Reg;
4229           BestNum = Count;
4230         }
4231       }
4232     }
4233 
4234     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4235                  << " will yield profitable reuse.\n");
4236     Taken.insert(Best);
4237 
4238     // In any use with formulae which references this register, delete formulae
4239     // which don't reference it.
4240     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4241       LSRUse &LU = Uses[LUIdx];
4242       if (!LU.Regs.count(Best)) continue;
4243 
4244       bool Any = false;
4245       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4246         Formula &F = LU.Formulae[i];
4247         if (!F.referencesReg(Best)) {
4248           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4249           LU.DeleteFormula(F);
4250           --e;
4251           --i;
4252           Any = true;
4253           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4254           continue;
4255         }
4256       }
4257 
4258       if (Any)
4259         LU.RecomputeRegs(LUIdx, RegUses);
4260     }
4261 
4262     DEBUG(dbgs() << "After pre-selection:\n";
4263           print_uses(dbgs()));
4264   }
4265 }
4266 
4267 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
4268 /// formulae to choose from, use some rough heuristics to prune down the number
4269 /// of formulae. This keeps the main solver from taking an extraordinary amount
4270 /// of time in some worst-case scenarios.
NarrowSearchSpaceUsingHeuristics()4271 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4272   NarrowSearchSpaceByDetectingSupersets();
4273   NarrowSearchSpaceByCollapsingUnrolledCode();
4274   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4275   NarrowSearchSpaceByPickingWinnerRegs();
4276 }
4277 
4278 /// SolveRecurse - This is the recursive solver.
SolveRecurse(SmallVectorImpl<const Formula * > & Solution,Cost & SolutionCost,SmallVectorImpl<const Formula * > & Workspace,const Cost & CurCost,const SmallPtrSet<const SCEV *,16> & CurRegs,DenseSet<const SCEV * > & VisitedRegs) const4279 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4280                                Cost &SolutionCost,
4281                                SmallVectorImpl<const Formula *> &Workspace,
4282                                const Cost &CurCost,
4283                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4284                                DenseSet<const SCEV *> &VisitedRegs) const {
4285   // Some ideas:
4286   //  - prune more:
4287   //    - use more aggressive filtering
4288   //    - sort the formula so that the most profitable solutions are found first
4289   //    - sort the uses too
4290   //  - search faster:
4291   //    - don't compute a cost, and then compare. compare while computing a cost
4292   //      and bail early.
4293   //    - track register sets with SmallBitVector
4294 
4295   const LSRUse &LU = Uses[Workspace.size()];
4296 
4297   // If this use references any register that's already a part of the
4298   // in-progress solution, consider it a requirement that a formula must
4299   // reference that register in order to be considered. This prunes out
4300   // unprofitable searching.
4301   SmallSetVector<const SCEV *, 4> ReqRegs;
4302   for (const SCEV *S : CurRegs)
4303     if (LU.Regs.count(S))
4304       ReqRegs.insert(S);
4305 
4306   SmallPtrSet<const SCEV *, 16> NewRegs;
4307   Cost NewCost;
4308   for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
4309        E = LU.Formulae.end(); I != E; ++I) {
4310     const Formula &F = *I;
4311 
4312     // Ignore formulae which may not be ideal in terms of register reuse of
4313     // ReqRegs.  The formula should use all required registers before
4314     // introducing new ones.
4315     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4316     for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
4317          JE = ReqRegs.end(); J != JE; ++J) {
4318       const SCEV *Reg = *J;
4319       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4320           std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) !=
4321           F.BaseRegs.end()) {
4322         --NumReqRegsToFind;
4323         if (NumReqRegsToFind == 0)
4324           break;
4325       }
4326     }
4327     if (NumReqRegsToFind != 0) {
4328       // If none of the formulae satisfied the required registers, then we could
4329       // clear ReqRegs and try again. Currently, we simply give up in this case.
4330       continue;
4331     }
4332 
4333     // Evaluate the cost of the current formula. If it's already worse than
4334     // the current best, prune the search at that point.
4335     NewCost = CurCost;
4336     NewRegs = CurRegs;
4337     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT,
4338                         LU);
4339     if (NewCost < SolutionCost) {
4340       Workspace.push_back(&F);
4341       if (Workspace.size() != Uses.size()) {
4342         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4343                      NewRegs, VisitedRegs);
4344         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4345           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4346       } else {
4347         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4348               dbgs() << ".\n Regs:";
4349               for (const SCEV *S : NewRegs)
4350                 dbgs() << ' ' << *S;
4351               dbgs() << '\n');
4352 
4353         SolutionCost = NewCost;
4354         Solution = Workspace;
4355       }
4356       Workspace.pop_back();
4357     }
4358   }
4359 }
4360 
4361 /// Solve - Choose one formula from each use. Return the results in the given
4362 /// Solution vector.
Solve(SmallVectorImpl<const Formula * > & Solution) const4363 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4364   SmallVector<const Formula *, 8> Workspace;
4365   Cost SolutionCost;
4366   SolutionCost.Lose();
4367   Cost CurCost;
4368   SmallPtrSet<const SCEV *, 16> CurRegs;
4369   DenseSet<const SCEV *> VisitedRegs;
4370   Workspace.reserve(Uses.size());
4371 
4372   // SolveRecurse does all the work.
4373   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4374                CurRegs, VisitedRegs);
4375   if (Solution.empty()) {
4376     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4377     return;
4378   }
4379 
4380   // Ok, we've now made all our decisions.
4381   DEBUG(dbgs() << "\n"
4382                   "The chosen solution requires "; SolutionCost.print(dbgs());
4383         dbgs() << ":\n";
4384         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4385           dbgs() << "  ";
4386           Uses[i].print(dbgs());
4387           dbgs() << "\n"
4388                     "    ";
4389           Solution[i]->print(dbgs());
4390           dbgs() << '\n';
4391         });
4392 
4393   assert(Solution.size() == Uses.size() && "Malformed solution!");
4394 }
4395 
4396 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
4397 /// the dominator tree far as we can go while still being dominated by the
4398 /// input positions. This helps canonicalize the insert position, which
4399 /// encourages sharing.
4400 BasicBlock::iterator
HoistInsertPosition(BasicBlock::iterator IP,const SmallVectorImpl<Instruction * > & Inputs) const4401 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4402                                  const SmallVectorImpl<Instruction *> &Inputs)
4403                                                                          const {
4404   for (;;) {
4405     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4406     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4407 
4408     BasicBlock *IDom;
4409     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4410       if (!Rung) return IP;
4411       Rung = Rung->getIDom();
4412       if (!Rung) return IP;
4413       IDom = Rung->getBlock();
4414 
4415       // Don't climb into a loop though.
4416       const Loop *IDomLoop = LI.getLoopFor(IDom);
4417       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4418       if (IDomDepth <= IPLoopDepth &&
4419           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4420         break;
4421     }
4422 
4423     bool AllDominate = true;
4424     Instruction *BetterPos = nullptr;
4425     Instruction *Tentative = IDom->getTerminator();
4426     for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
4427          E = Inputs.end(); I != E; ++I) {
4428       Instruction *Inst = *I;
4429       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4430         AllDominate = false;
4431         break;
4432       }
4433       // Attempt to find an insert position in the middle of the block,
4434       // instead of at the end, so that it can be used for other expansions.
4435       if (IDom == Inst->getParent() &&
4436           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4437         BetterPos = std::next(BasicBlock::iterator(Inst));
4438     }
4439     if (!AllDominate)
4440       break;
4441     if (BetterPos)
4442       IP = BetterPos;
4443     else
4444       IP = Tentative;
4445   }
4446 
4447   return IP;
4448 }
4449 
4450 /// AdjustInsertPositionForExpand - Determine an input position which will be
4451 /// dominated by the operands and which will dominate the result.
4452 BasicBlock::iterator
AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,const LSRFixup & LF,const LSRUse & LU,SCEVExpander & Rewriter) const4453 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4454                                            const LSRFixup &LF,
4455                                            const LSRUse &LU,
4456                                            SCEVExpander &Rewriter) const {
4457   // Collect some instructions which must be dominated by the
4458   // expanding replacement. These must be dominated by any operands that
4459   // will be required in the expansion.
4460   SmallVector<Instruction *, 4> Inputs;
4461   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4462     Inputs.push_back(I);
4463   if (LU.Kind == LSRUse::ICmpZero)
4464     if (Instruction *I =
4465           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4466       Inputs.push_back(I);
4467   if (LF.PostIncLoops.count(L)) {
4468     if (LF.isUseFullyOutsideLoop(L))
4469       Inputs.push_back(L->getLoopLatch()->getTerminator());
4470     else
4471       Inputs.push_back(IVIncInsertPos);
4472   }
4473   // The expansion must also be dominated by the increment positions of any
4474   // loops it for which it is using post-inc mode.
4475   for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
4476        E = LF.PostIncLoops.end(); I != E; ++I) {
4477     const Loop *PIL = *I;
4478     if (PIL == L) continue;
4479 
4480     // Be dominated by the loop exit.
4481     SmallVector<BasicBlock *, 4> ExitingBlocks;
4482     PIL->getExitingBlocks(ExitingBlocks);
4483     if (!ExitingBlocks.empty()) {
4484       BasicBlock *BB = ExitingBlocks[0];
4485       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4486         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4487       Inputs.push_back(BB->getTerminator());
4488     }
4489   }
4490 
4491   assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
4492          && !isa<DbgInfoIntrinsic>(LowestIP) &&
4493          "Insertion point must be a normal instruction");
4494 
4495   // Then, climb up the immediate dominator tree as far as we can go while
4496   // still being dominated by the input positions.
4497   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4498 
4499   // Don't insert instructions before PHI nodes.
4500   while (isa<PHINode>(IP)) ++IP;
4501 
4502   // Ignore landingpad instructions.
4503   while (isa<LandingPadInst>(IP)) ++IP;
4504 
4505   // Ignore debug intrinsics.
4506   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4507 
4508   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4509   // IP consistent across expansions and allows the previously inserted
4510   // instructions to be reused by subsequent expansion.
4511   while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
4512 
4513   return IP;
4514 }
4515 
4516 /// Expand - Emit instructions for the leading candidate expression for this
4517 /// LSRUse (this is called "expanding").
Expand(const LSRFixup & LF,const Formula & F,BasicBlock::iterator IP,SCEVExpander & Rewriter,SmallVectorImpl<WeakVH> & DeadInsts) const4518 Value *LSRInstance::Expand(const LSRFixup &LF,
4519                            const Formula &F,
4520                            BasicBlock::iterator IP,
4521                            SCEVExpander &Rewriter,
4522                            SmallVectorImpl<WeakVH> &DeadInsts) const {
4523   const LSRUse &LU = Uses[LF.LUIdx];
4524   if (LU.RigidFormula)
4525     return LF.OperandValToReplace;
4526 
4527   // Determine an input position which will be dominated by the operands and
4528   // which will dominate the result.
4529   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4530 
4531   // Inform the Rewriter if we have a post-increment use, so that it can
4532   // perform an advantageous expansion.
4533   Rewriter.setPostInc(LF.PostIncLoops);
4534 
4535   // This is the type that the user actually needs.
4536   Type *OpTy = LF.OperandValToReplace->getType();
4537   // This will be the type that we'll initially expand to.
4538   Type *Ty = F.getType();
4539   if (!Ty)
4540     // No type known; just expand directly to the ultimate type.
4541     Ty = OpTy;
4542   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4543     // Expand directly to the ultimate type if it's the right size.
4544     Ty = OpTy;
4545   // This is the type to do integer arithmetic in.
4546   Type *IntTy = SE.getEffectiveSCEVType(Ty);
4547 
4548   // Build up a list of operands to add together to form the full base.
4549   SmallVector<const SCEV *, 8> Ops;
4550 
4551   // Expand the BaseRegs portion.
4552   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
4553        E = F.BaseRegs.end(); I != E; ++I) {
4554     const SCEV *Reg = *I;
4555     assert(!Reg->isZero() && "Zero allocated in a base register!");
4556 
4557     // If we're expanding for a post-inc user, make the post-inc adjustment.
4558     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4559     Reg = TransformForPostIncUse(Denormalize, Reg,
4560                                  LF.UserInst, LF.OperandValToReplace,
4561                                  Loops, SE, DT);
4562 
4563     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, IP)));
4564   }
4565 
4566   // Expand the ScaledReg portion.
4567   Value *ICmpScaledV = nullptr;
4568   if (F.Scale != 0) {
4569     const SCEV *ScaledS = F.ScaledReg;
4570 
4571     // If we're expanding for a post-inc user, make the post-inc adjustment.
4572     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4573     ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4574                                      LF.UserInst, LF.OperandValToReplace,
4575                                      Loops, SE, DT);
4576 
4577     if (LU.Kind == LSRUse::ICmpZero) {
4578       // Expand ScaleReg as if it was part of the base regs.
4579       if (F.Scale == 1)
4580         Ops.push_back(
4581             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP)));
4582       else {
4583         // An interesting way of "folding" with an icmp is to use a negated
4584         // scale, which we'll implement by inserting it into the other operand
4585         // of the icmp.
4586         assert(F.Scale == -1 &&
4587                "The only scale supported by ICmpZero uses is -1!");
4588         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, IP);
4589       }
4590     } else {
4591       // Otherwise just expand the scaled register and an explicit scale,
4592       // which is expected to be matched as part of the address.
4593 
4594       // Flush the operand list to suppress SCEVExpander hoisting address modes.
4595       // Unless the addressing mode will not be folded.
4596       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4597           isAMCompletelyFolded(TTI, LU, F)) {
4598         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4599         Ops.clear();
4600         Ops.push_back(SE.getUnknown(FullV));
4601       }
4602       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP));
4603       if (F.Scale != 1)
4604         ScaledS =
4605             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
4606       Ops.push_back(ScaledS);
4607     }
4608   }
4609 
4610   // Expand the GV portion.
4611   if (F.BaseGV) {
4612     // Flush the operand list to suppress SCEVExpander hoisting.
4613     if (!Ops.empty()) {
4614       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4615       Ops.clear();
4616       Ops.push_back(SE.getUnknown(FullV));
4617     }
4618     Ops.push_back(SE.getUnknown(F.BaseGV));
4619   }
4620 
4621   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4622   // unfolded offsets. LSR assumes they both live next to their uses.
4623   if (!Ops.empty()) {
4624     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4625     Ops.clear();
4626     Ops.push_back(SE.getUnknown(FullV));
4627   }
4628 
4629   // Expand the immediate portion.
4630   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
4631   if (Offset != 0) {
4632     if (LU.Kind == LSRUse::ICmpZero) {
4633       // The other interesting way of "folding" with an ICmpZero is to use a
4634       // negated immediate.
4635       if (!ICmpScaledV)
4636         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4637       else {
4638         Ops.push_back(SE.getUnknown(ICmpScaledV));
4639         ICmpScaledV = ConstantInt::get(IntTy, Offset);
4640       }
4641     } else {
4642       // Just add the immediate values. These again are expected to be matched
4643       // as part of the address.
4644       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4645     }
4646   }
4647 
4648   // Expand the unfolded offset portion.
4649   int64_t UnfoldedOffset = F.UnfoldedOffset;
4650   if (UnfoldedOffset != 0) {
4651     // Just add the immediate values.
4652     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4653                                                        UnfoldedOffset)));
4654   }
4655 
4656   // Emit instructions summing all the operands.
4657   const SCEV *FullS = Ops.empty() ?
4658                       SE.getConstant(IntTy, 0) :
4659                       SE.getAddExpr(Ops);
4660   Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
4661 
4662   // We're done expanding now, so reset the rewriter.
4663   Rewriter.clearPostInc();
4664 
4665   // An ICmpZero Formula represents an ICmp which we're handling as a
4666   // comparison against zero. Now that we've expanded an expression for that
4667   // form, update the ICmp's other operand.
4668   if (LU.Kind == LSRUse::ICmpZero) {
4669     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4670     DeadInsts.push_back(CI->getOperand(1));
4671     assert(!F.BaseGV && "ICmp does not support folding a global value and "
4672                            "a scale at the same time!");
4673     if (F.Scale == -1) {
4674       if (ICmpScaledV->getType() != OpTy) {
4675         Instruction *Cast =
4676           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4677                                                    OpTy, false),
4678                            ICmpScaledV, OpTy, "tmp", CI);
4679         ICmpScaledV = Cast;
4680       }
4681       CI->setOperand(1, ICmpScaledV);
4682     } else {
4683       // A scale of 1 means that the scale has been expanded as part of the
4684       // base regs.
4685       assert((F.Scale == 0 || F.Scale == 1) &&
4686              "ICmp does not support folding a global value and "
4687              "a scale at the same time!");
4688       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4689                                            -(uint64_t)Offset);
4690       if (C->getType() != OpTy)
4691         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4692                                                           OpTy, false),
4693                                   C, OpTy);
4694 
4695       CI->setOperand(1, C);
4696     }
4697   }
4698 
4699   return FullV;
4700 }
4701 
4702 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
4703 /// of their operands effectively happens in their predecessor blocks, so the
4704 /// expression may need to be expanded in multiple places.
RewriteForPHI(PHINode * PN,const LSRFixup & LF,const Formula & F,SCEVExpander & Rewriter,SmallVectorImpl<WeakVH> & DeadInsts,Pass * P) const4705 void LSRInstance::RewriteForPHI(PHINode *PN,
4706                                 const LSRFixup &LF,
4707                                 const Formula &F,
4708                                 SCEVExpander &Rewriter,
4709                                 SmallVectorImpl<WeakVH> &DeadInsts,
4710                                 Pass *P) const {
4711   DenseMap<BasicBlock *, Value *> Inserted;
4712   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4713     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4714       BasicBlock *BB = PN->getIncomingBlock(i);
4715 
4716       // If this is a critical edge, split the edge so that we do not insert
4717       // the code on all predecessor/successor paths.  We do this unless this
4718       // is the canonical backedge for this loop, which complicates post-inc
4719       // users.
4720       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4721           !isa<IndirectBrInst>(BB->getTerminator())) {
4722         BasicBlock *Parent = PN->getParent();
4723         Loop *PNLoop = LI.getLoopFor(Parent);
4724         if (!PNLoop || Parent != PNLoop->getHeader()) {
4725           // Split the critical edge.
4726           BasicBlock *NewBB = nullptr;
4727           if (!Parent->isLandingPad()) {
4728             NewBB = SplitCriticalEdge(BB, Parent,
4729                                       CriticalEdgeSplittingOptions(&DT, &LI)
4730                                           .setMergeIdenticalEdges()
4731                                           .setDontDeleteUselessPHIs());
4732           } else {
4733             SmallVector<BasicBlock*, 2> NewBBs;
4734             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs,
4735                                         /*AliasAnalysis*/ nullptr, &DT, &LI);
4736             NewBB = NewBBs[0];
4737           }
4738           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
4739           // phi predecessors are identical. The simple thing to do is skip
4740           // splitting in this case rather than complicate the API.
4741           if (NewBB) {
4742             // If PN is outside of the loop and BB is in the loop, we want to
4743             // move the block to be immediately before the PHI block, not
4744             // immediately after BB.
4745             if (L->contains(BB) && !L->contains(PN))
4746               NewBB->moveBefore(PN->getParent());
4747 
4748             // Splitting the edge can reduce the number of PHI entries we have.
4749             e = PN->getNumIncomingValues();
4750             BB = NewBB;
4751             i = PN->getBasicBlockIndex(BB);
4752           }
4753         }
4754       }
4755 
4756       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4757         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
4758       if (!Pair.second)
4759         PN->setIncomingValue(i, Pair.first->second);
4760       else {
4761         Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
4762 
4763         // If this is reuse-by-noop-cast, insert the noop cast.
4764         Type *OpTy = LF.OperandValToReplace->getType();
4765         if (FullV->getType() != OpTy)
4766           FullV =
4767             CastInst::Create(CastInst::getCastOpcode(FullV, false,
4768                                                      OpTy, false),
4769                              FullV, LF.OperandValToReplace->getType(),
4770                              "tmp", BB->getTerminator());
4771 
4772         PN->setIncomingValue(i, FullV);
4773         Pair.first->second = FullV;
4774       }
4775     }
4776 }
4777 
4778 /// Rewrite - Emit instructions for the leading candidate expression for this
4779 /// LSRUse (this is called "expanding"), and update the UserInst to reference
4780 /// the newly expanded value.
Rewrite(const LSRFixup & LF,const Formula & F,SCEVExpander & Rewriter,SmallVectorImpl<WeakVH> & DeadInsts,Pass * P) const4781 void LSRInstance::Rewrite(const LSRFixup &LF,
4782                           const Formula &F,
4783                           SCEVExpander &Rewriter,
4784                           SmallVectorImpl<WeakVH> &DeadInsts,
4785                           Pass *P) const {
4786   // First, find an insertion point that dominates UserInst. For PHI nodes,
4787   // find the nearest block which dominates all the relevant uses.
4788   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4789     RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
4790   } else {
4791     Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
4792 
4793     // If this is reuse-by-noop-cast, insert the noop cast.
4794     Type *OpTy = LF.OperandValToReplace->getType();
4795     if (FullV->getType() != OpTy) {
4796       Instruction *Cast =
4797         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4798                          FullV, OpTy, "tmp", LF.UserInst);
4799       FullV = Cast;
4800     }
4801 
4802     // Update the user. ICmpZero is handled specially here (for now) because
4803     // Expand may have updated one of the operands of the icmp already, and
4804     // its new value may happen to be equal to LF.OperandValToReplace, in
4805     // which case doing replaceUsesOfWith leads to replacing both operands
4806     // with the same value. TODO: Reorganize this.
4807     if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
4808       LF.UserInst->setOperand(0, FullV);
4809     else
4810       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4811   }
4812 
4813   DeadInsts.push_back(LF.OperandValToReplace);
4814 }
4815 
4816 /// ImplementSolution - Rewrite all the fixup locations with new values,
4817 /// following the chosen solution.
4818 void
ImplementSolution(const SmallVectorImpl<const Formula * > & Solution,Pass * P)4819 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
4820                                Pass *P) {
4821   // Keep track of instructions we may have made dead, so that
4822   // we can remove them after we are done working.
4823   SmallVector<WeakVH, 16> DeadInsts;
4824 
4825   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
4826                         "lsr");
4827 #ifndef NDEBUG
4828   Rewriter.setDebugType(DEBUG_TYPE);
4829 #endif
4830   Rewriter.disableCanonicalMode();
4831   Rewriter.enableLSRMode();
4832   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4833 
4834   // Mark phi nodes that terminate chains so the expander tries to reuse them.
4835   for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4836          ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4837     if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst()))
4838       Rewriter.setChainedPhi(PN);
4839   }
4840 
4841   // Expand the new value definitions and update the users.
4842   for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
4843        E = Fixups.end(); I != E; ++I) {
4844     const LSRFixup &Fixup = *I;
4845 
4846     Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
4847 
4848     Changed = true;
4849   }
4850 
4851   for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4852          ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4853     GenerateIVChain(*ChainI, Rewriter, DeadInsts);
4854     Changed = true;
4855   }
4856   // Clean up after ourselves. This must be done before deleting any
4857   // instructions.
4858   Rewriter.clear();
4859 
4860   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4861 }
4862 
LSRInstance(Loop * L,Pass * P)4863 LSRInstance::LSRInstance(Loop *L, Pass *P)
4864     : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()),
4865       DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()),
4866       LI(P->getAnalysis<LoopInfoWrapperPass>().getLoopInfo()),
4867       TTI(P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
4868           *L->getHeader()->getParent())),
4869       L(L), Changed(false), IVIncInsertPos(nullptr) {
4870   // If LoopSimplify form is not available, stay out of trouble.
4871   if (!L->isLoopSimplifyForm())
4872     return;
4873 
4874   // If there's no interesting work to be done, bail early.
4875   if (IU.empty()) return;
4876 
4877   // If there's too much analysis to be done, bail early. We won't be able to
4878   // model the problem anyway.
4879   unsigned NumUsers = 0;
4880   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
4881     if (++NumUsers > MaxIVUsers) {
4882       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L
4883             << "\n");
4884       return;
4885     }
4886   }
4887 
4888 #ifndef NDEBUG
4889   // All dominating loops must have preheaders, or SCEVExpander may not be able
4890   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4891   //
4892   // IVUsers analysis should only create users that are dominated by simple loop
4893   // headers. Since this loop should dominate all of its users, its user list
4894   // should be empty if this loop itself is not within a simple loop nest.
4895   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4896        Rung; Rung = Rung->getIDom()) {
4897     BasicBlock *BB = Rung->getBlock();
4898     const Loop *DomLoop = LI.getLoopFor(BB);
4899     if (DomLoop && DomLoop->getHeader() == BB) {
4900       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
4901     }
4902   }
4903 #endif // DEBUG
4904 
4905   DEBUG(dbgs() << "\nLSR on loop ";
4906         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
4907         dbgs() << ":\n");
4908 
4909   // First, perform some low-level loop optimizations.
4910   OptimizeShadowIV();
4911   OptimizeLoopTermCond();
4912 
4913   // If loop preparation eliminates all interesting IV users, bail.
4914   if (IU.empty()) return;
4915 
4916   // Skip nested loops until we can model them better with formulae.
4917   if (!L->empty()) {
4918     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4919     return;
4920   }
4921 
4922   // Start collecting data and preparing for the solver.
4923   CollectChains();
4924   CollectInterestingTypesAndFactors();
4925   CollectFixupsAndInitialFormulae();
4926   CollectLoopInvariantFixupsAndFormulae();
4927 
4928   assert(!Uses.empty() && "IVUsers reported at least one use");
4929   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4930         print_uses(dbgs()));
4931 
4932   // Now use the reuse data to generate a bunch of interesting ways
4933   // to formulate the values needed for the uses.
4934   GenerateAllReuseFormulae();
4935 
4936   FilterOutUndesirableDedicatedRegisters();
4937   NarrowSearchSpaceUsingHeuristics();
4938 
4939   SmallVector<const Formula *, 8> Solution;
4940   Solve(Solution);
4941 
4942   // Release memory that is no longer needed.
4943   Factors.clear();
4944   Types.clear();
4945   RegUses.clear();
4946 
4947   if (Solution.empty())
4948     return;
4949 
4950 #ifndef NDEBUG
4951   // Formulae should be legal.
4952   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end();
4953        I != E; ++I) {
4954     const LSRUse &LU = *I;
4955     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
4956                                                   JE = LU.Formulae.end();
4957          J != JE; ++J)
4958       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4959                         *J) && "Illegal formula generated!");
4960   };
4961 #endif
4962 
4963   // Now that we've decided what we want, make it so.
4964   ImplementSolution(Solution, P);
4965 }
4966 
print_factors_and_types(raw_ostream & OS) const4967 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4968   if (Factors.empty() && Types.empty()) return;
4969 
4970   OS << "LSR has identified the following interesting factors and types: ";
4971   bool First = true;
4972 
4973   for (SmallSetVector<int64_t, 8>::const_iterator
4974        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
4975     if (!First) OS << ", ";
4976     First = false;
4977     OS << '*' << *I;
4978   }
4979 
4980   for (SmallSetVector<Type *, 4>::const_iterator
4981        I = Types.begin(), E = Types.end(); I != E; ++I) {
4982     if (!First) OS << ", ";
4983     First = false;
4984     OS << '(' << **I << ')';
4985   }
4986   OS << '\n';
4987 }
4988 
print_fixups(raw_ostream & OS) const4989 void LSRInstance::print_fixups(raw_ostream &OS) const {
4990   OS << "LSR is examining the following fixup sites:\n";
4991   for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
4992        E = Fixups.end(); I != E; ++I) {
4993     dbgs() << "  ";
4994     I->print(OS);
4995     OS << '\n';
4996   }
4997 }
4998 
print_uses(raw_ostream & OS) const4999 void LSRInstance::print_uses(raw_ostream &OS) const {
5000   OS << "LSR is examining the following uses:\n";
5001   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
5002        E = Uses.end(); I != E; ++I) {
5003     const LSRUse &LU = *I;
5004     dbgs() << "  ";
5005     LU.print(OS);
5006     OS << '\n';
5007     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
5008          JE = LU.Formulae.end(); J != JE; ++J) {
5009       OS << "    ";
5010       J->print(OS);
5011       OS << '\n';
5012     }
5013   }
5014 }
5015 
print(raw_ostream & OS) const5016 void LSRInstance::print(raw_ostream &OS) const {
5017   print_factors_and_types(OS);
5018   print_fixups(OS);
5019   print_uses(OS);
5020 }
5021 
5022 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const5023 void LSRInstance::dump() const {
5024   print(errs()); errs() << '\n';
5025 }
5026 #endif
5027 
5028 namespace {
5029 
5030 class LoopStrengthReduce : public LoopPass {
5031 public:
5032   static char ID; // Pass ID, replacement for typeid
5033   LoopStrengthReduce();
5034 
5035 private:
5036   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5037   void getAnalysisUsage(AnalysisUsage &AU) const override;
5038 };
5039 
5040 }
5041 
5042 char LoopStrengthReduce::ID = 0;
5043 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5044                 "Loop Strength Reduction", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)5045 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5046 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5047 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
5048 INITIALIZE_PASS_DEPENDENCY(IVUsers)
5049 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5050 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5051 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5052                 "Loop Strength Reduction", false, false)
5053 
5054 
5055 Pass *llvm::createLoopStrengthReducePass() {
5056   return new LoopStrengthReduce();
5057 }
5058 
LoopStrengthReduce()5059 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5060   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5061 }
5062 
getAnalysisUsage(AnalysisUsage & AU) const5063 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5064   // We split critical edges, so we change the CFG.  However, we do update
5065   // many analyses if they are around.
5066   AU.addPreservedID(LoopSimplifyID);
5067 
5068   AU.addRequired<LoopInfoWrapperPass>();
5069   AU.addPreserved<LoopInfoWrapperPass>();
5070   AU.addRequiredID(LoopSimplifyID);
5071   AU.addRequired<DominatorTreeWrapperPass>();
5072   AU.addPreserved<DominatorTreeWrapperPass>();
5073   AU.addRequired<ScalarEvolution>();
5074   AU.addPreserved<ScalarEvolution>();
5075   // Requiring LoopSimplify a second time here prevents IVUsers from running
5076   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5077   AU.addRequiredID(LoopSimplifyID);
5078   AU.addRequired<IVUsers>();
5079   AU.addPreserved<IVUsers>();
5080   AU.addRequired<TargetTransformInfoWrapperPass>();
5081 }
5082 
runOnLoop(Loop * L,LPPassManager &)5083 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5084   if (skipOptnoneFunction(L))
5085     return false;
5086 
5087   bool Changed = false;
5088 
5089   // Run the main LSR transformation.
5090   Changed |= LSRInstance(L, this).getChanged();
5091 
5092   // Remove any extra phis created by processing inner loops.
5093   Changed |= DeleteDeadPHIs(L->getHeader());
5094   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5095     SmallVector<WeakVH, 16> DeadInsts;
5096     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5097     SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), DL, "lsr");
5098 #ifndef NDEBUG
5099     Rewriter.setDebugType(DEBUG_TYPE);
5100 #endif
5101     unsigned numFolded = Rewriter.replaceCongruentIVs(
5102         L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts,
5103         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5104             *L->getHeader()->getParent()));
5105     if (numFolded) {
5106       Changed = true;
5107       DeleteTriviallyDeadInstructions(DeadInsts);
5108       DeleteDeadPHIs(L->getHeader());
5109     }
5110   }
5111   return Changed;
5112 }
5113