1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/PrettyPrinter.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/IdentifierTable.h"
29 #include "clang/Basic/Module.h"
30 #include "clang/Basic/Specifiers.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Frontend/FrontendDiagnostic.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include <algorithm>
35
36 using namespace clang;
37
getPrimaryMergedDecl(Decl * D)38 Decl *clang::getPrimaryMergedDecl(Decl *D) {
39 return D->getASTContext().getPrimaryMergedDecl(D);
40 }
41
42 // Defined here so that it can be inlined into its direct callers.
isOutOfLine() const43 bool Decl::isOutOfLine() const {
44 return !getLexicalDeclContext()->Equals(getDeclContext());
45 }
46
47 //===----------------------------------------------------------------------===//
48 // NamedDecl Implementation
49 //===----------------------------------------------------------------------===//
50
51 // Visibility rules aren't rigorously externally specified, but here
52 // are the basic principles behind what we implement:
53 //
54 // 1. An explicit visibility attribute is generally a direct expression
55 // of the user's intent and should be honored. Only the innermost
56 // visibility attribute applies. If no visibility attribute applies,
57 // global visibility settings are considered.
58 //
59 // 2. There is one caveat to the above: on or in a template pattern,
60 // an explicit visibility attribute is just a default rule, and
61 // visibility can be decreased by the visibility of template
62 // arguments. But this, too, has an exception: an attribute on an
63 // explicit specialization or instantiation causes all the visibility
64 // restrictions of the template arguments to be ignored.
65 //
66 // 3. A variable that does not otherwise have explicit visibility can
67 // be restricted by the visibility of its type.
68 //
69 // 4. A visibility restriction is explicit if it comes from an
70 // attribute (or something like it), not a global visibility setting.
71 // When emitting a reference to an external symbol, visibility
72 // restrictions are ignored unless they are explicit.
73 //
74 // 5. When computing the visibility of a non-type, including a
75 // non-type member of a class, only non-type visibility restrictions
76 // are considered: the 'visibility' attribute, global value-visibility
77 // settings, and a few special cases like __private_extern.
78 //
79 // 6. When computing the visibility of a type, including a type member
80 // of a class, only type visibility restrictions are considered:
81 // the 'type_visibility' attribute and global type-visibility settings.
82 // However, a 'visibility' attribute counts as a 'type_visibility'
83 // attribute on any declaration that only has the former.
84 //
85 // The visibility of a "secondary" entity, like a template argument,
86 // is computed using the kind of that entity, not the kind of the
87 // primary entity for which we are computing visibility. For example,
88 // the visibility of a specialization of either of these templates:
89 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
90 // template <class T, bool (&compare)(T, X)> class matcher;
91 // is restricted according to the type visibility of the argument 'T',
92 // the type visibility of 'bool(&)(T,X)', and the value visibility of
93 // the argument function 'compare'. That 'has_match' is a value
94 // and 'matcher' is a type only matters when looking for attributes
95 // and settings from the immediate context.
96
97 const unsigned IgnoreExplicitVisibilityBit = 2;
98 const unsigned IgnoreAllVisibilityBit = 4;
99
100 /// Kinds of LV computation. The linkage side of the computation is
101 /// always the same, but different things can change how visibility is
102 /// computed.
103 enum LVComputationKind {
104 /// Do an LV computation for, ultimately, a type.
105 /// Visibility may be restricted by type visibility settings and
106 /// the visibility of template arguments.
107 LVForType = NamedDecl::VisibilityForType,
108
109 /// Do an LV computation for, ultimately, a non-type declaration.
110 /// Visibility may be restricted by value visibility settings and
111 /// the visibility of template arguments.
112 LVForValue = NamedDecl::VisibilityForValue,
113
114 /// Do an LV computation for, ultimately, a type that already has
115 /// some sort of explicit visibility. Visibility may only be
116 /// restricted by the visibility of template arguments.
117 LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
118
119 /// Do an LV computation for, ultimately, a non-type declaration
120 /// that already has some sort of explicit visibility. Visibility
121 /// may only be restricted by the visibility of template arguments.
122 LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
123
124 /// Do an LV computation when we only care about the linkage.
125 LVForLinkageOnly =
126 LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
127 };
128
129 /// Does this computation kind permit us to consider additional
130 /// visibility settings from attributes and the like?
hasExplicitVisibilityAlready(LVComputationKind computation)131 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
132 return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
133 }
134
135 /// Given an LVComputationKind, return one of the same type/value sort
136 /// that records that it already has explicit visibility.
137 static LVComputationKind
withExplicitVisibilityAlready(LVComputationKind oldKind)138 withExplicitVisibilityAlready(LVComputationKind oldKind) {
139 LVComputationKind newKind =
140 static_cast<LVComputationKind>(unsigned(oldKind) |
141 IgnoreExplicitVisibilityBit);
142 assert(oldKind != LVForType || newKind == LVForExplicitType);
143 assert(oldKind != LVForValue || newKind == LVForExplicitValue);
144 assert(oldKind != LVForExplicitType || newKind == LVForExplicitType);
145 assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
146 return newKind;
147 }
148
getExplicitVisibility(const NamedDecl * D,LVComputationKind kind)149 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
150 LVComputationKind kind) {
151 assert(!hasExplicitVisibilityAlready(kind) &&
152 "asking for explicit visibility when we shouldn't be");
153 return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
154 }
155
156 /// Is the given declaration a "type" or a "value" for the purposes of
157 /// visibility computation?
usesTypeVisibility(const NamedDecl * D)158 static bool usesTypeVisibility(const NamedDecl *D) {
159 return isa<TypeDecl>(D) ||
160 isa<ClassTemplateDecl>(D) ||
161 isa<ObjCInterfaceDecl>(D);
162 }
163
164 /// Does the given declaration have member specialization information,
165 /// and if so, is it an explicit specialization?
166 template <class T> static typename
167 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
isExplicitMemberSpecialization(const T * D)168 isExplicitMemberSpecialization(const T *D) {
169 if (const MemberSpecializationInfo *member =
170 D->getMemberSpecializationInfo()) {
171 return member->isExplicitSpecialization();
172 }
173 return false;
174 }
175
176 /// For templates, this question is easier: a member template can't be
177 /// explicitly instantiated, so there's a single bit indicating whether
178 /// or not this is an explicit member specialization.
isExplicitMemberSpecialization(const RedeclarableTemplateDecl * D)179 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
180 return D->isMemberSpecialization();
181 }
182
183 /// Given a visibility attribute, return the explicit visibility
184 /// associated with it.
185 template <class T>
getVisibilityFromAttr(const T * attr)186 static Visibility getVisibilityFromAttr(const T *attr) {
187 switch (attr->getVisibility()) {
188 case T::Default:
189 return DefaultVisibility;
190 case T::Hidden:
191 return HiddenVisibility;
192 case T::Protected:
193 return ProtectedVisibility;
194 }
195 llvm_unreachable("bad visibility kind");
196 }
197
198 /// Return the explicit visibility of the given declaration.
getVisibilityOf(const NamedDecl * D,NamedDecl::ExplicitVisibilityKind kind)199 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
200 NamedDecl::ExplicitVisibilityKind kind) {
201 // If we're ultimately computing the visibility of a type, look for
202 // a 'type_visibility' attribute before looking for 'visibility'.
203 if (kind == NamedDecl::VisibilityForType) {
204 if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) {
205 return getVisibilityFromAttr(A);
206 }
207 }
208
209 // If this declaration has an explicit visibility attribute, use it.
210 if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
211 return getVisibilityFromAttr(A);
212 }
213
214 // If we're on Mac OS X, an 'availability' for Mac OS X attribute
215 // implies visibility(default).
216 if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
217 for (const auto *A : D->specific_attrs<AvailabilityAttr>())
218 if (A->getPlatform()->getName().equals("macosx"))
219 return DefaultVisibility;
220 }
221
222 return None;
223 }
224
225 static LinkageInfo
getLVForType(const Type & T,LVComputationKind computation)226 getLVForType(const Type &T, LVComputationKind computation) {
227 if (computation == LVForLinkageOnly)
228 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
229 return T.getLinkageAndVisibility();
230 }
231
232 /// \brief Get the most restrictive linkage for the types in the given
233 /// template parameter list. For visibility purposes, template
234 /// parameters are part of the signature of a template.
235 static LinkageInfo
getLVForTemplateParameterList(const TemplateParameterList * Params,LVComputationKind computation)236 getLVForTemplateParameterList(const TemplateParameterList *Params,
237 LVComputationKind computation) {
238 LinkageInfo LV;
239 for (const NamedDecl *P : *Params) {
240 // Template type parameters are the most common and never
241 // contribute to visibility, pack or not.
242 if (isa<TemplateTypeParmDecl>(P))
243 continue;
244
245 // Non-type template parameters can be restricted by the value type, e.g.
246 // template <enum X> class A { ... };
247 // We have to be careful here, though, because we can be dealing with
248 // dependent types.
249 if (const NonTypeTemplateParmDecl *NTTP =
250 dyn_cast<NonTypeTemplateParmDecl>(P)) {
251 // Handle the non-pack case first.
252 if (!NTTP->isExpandedParameterPack()) {
253 if (!NTTP->getType()->isDependentType()) {
254 LV.merge(getLVForType(*NTTP->getType(), computation));
255 }
256 continue;
257 }
258
259 // Look at all the types in an expanded pack.
260 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
261 QualType type = NTTP->getExpansionType(i);
262 if (!type->isDependentType())
263 LV.merge(type->getLinkageAndVisibility());
264 }
265 continue;
266 }
267
268 // Template template parameters can be restricted by their
269 // template parameters, recursively.
270 const TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(P);
271
272 // Handle the non-pack case first.
273 if (!TTP->isExpandedParameterPack()) {
274 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
275 computation));
276 continue;
277 }
278
279 // Look at all expansions in an expanded pack.
280 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
281 i != n; ++i) {
282 LV.merge(getLVForTemplateParameterList(
283 TTP->getExpansionTemplateParameters(i), computation));
284 }
285 }
286
287 return LV;
288 }
289
290 /// getLVForDecl - Get the linkage and visibility for the given declaration.
291 static LinkageInfo getLVForDecl(const NamedDecl *D,
292 LVComputationKind computation);
293
getOutermostFuncOrBlockContext(const Decl * D)294 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
295 const Decl *Ret = nullptr;
296 const DeclContext *DC = D->getDeclContext();
297 while (DC->getDeclKind() != Decl::TranslationUnit) {
298 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
299 Ret = cast<Decl>(DC);
300 DC = DC->getParent();
301 }
302 return Ret;
303 }
304
305 /// \brief Get the most restrictive linkage for the types and
306 /// declarations in the given template argument list.
307 ///
308 /// Note that we don't take an LVComputationKind because we always
309 /// want to honor the visibility of template arguments in the same way.
getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,LVComputationKind computation)310 static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
311 LVComputationKind computation) {
312 LinkageInfo LV;
313
314 for (const TemplateArgument &Arg : Args) {
315 switch (Arg.getKind()) {
316 case TemplateArgument::Null:
317 case TemplateArgument::Integral:
318 case TemplateArgument::Expression:
319 continue;
320
321 case TemplateArgument::Type:
322 LV.merge(getLVForType(*Arg.getAsType(), computation));
323 continue;
324
325 case TemplateArgument::Declaration:
326 if (NamedDecl *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) {
327 assert(!usesTypeVisibility(ND));
328 LV.merge(getLVForDecl(ND, computation));
329 }
330 continue;
331
332 case TemplateArgument::NullPtr:
333 LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility());
334 continue;
335
336 case TemplateArgument::Template:
337 case TemplateArgument::TemplateExpansion:
338 if (TemplateDecl *Template =
339 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
340 LV.merge(getLVForDecl(Template, computation));
341 continue;
342
343 case TemplateArgument::Pack:
344 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
345 continue;
346 }
347 llvm_unreachable("bad template argument kind");
348 }
349
350 return LV;
351 }
352
353 static LinkageInfo
getLVForTemplateArgumentList(const TemplateArgumentList & TArgs,LVComputationKind computation)354 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
355 LVComputationKind computation) {
356 return getLVForTemplateArgumentList(TArgs.asArray(), computation);
357 }
358
shouldConsiderTemplateVisibility(const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo)359 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
360 const FunctionTemplateSpecializationInfo *specInfo) {
361 // Include visibility from the template parameters and arguments
362 // only if this is not an explicit instantiation or specialization
363 // with direct explicit visibility. (Implicit instantiations won't
364 // have a direct attribute.)
365 if (!specInfo->isExplicitInstantiationOrSpecialization())
366 return true;
367
368 return !fn->hasAttr<VisibilityAttr>();
369 }
370
371 /// Merge in template-related linkage and visibility for the given
372 /// function template specialization.
373 ///
374 /// We don't need a computation kind here because we can assume
375 /// LVForValue.
376 ///
377 /// \param[out] LV the computation to use for the parent
378 static void
mergeTemplateLV(LinkageInfo & LV,const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo,LVComputationKind computation)379 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
380 const FunctionTemplateSpecializationInfo *specInfo,
381 LVComputationKind computation) {
382 bool considerVisibility =
383 shouldConsiderTemplateVisibility(fn, specInfo);
384
385 // Merge information from the template parameters.
386 FunctionTemplateDecl *temp = specInfo->getTemplate();
387 LinkageInfo tempLV =
388 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
389 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
390
391 // Merge information from the template arguments.
392 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
393 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
394 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
395 }
396
397 /// Does the given declaration have a direct visibility attribute
398 /// that would match the given rules?
hasDirectVisibilityAttribute(const NamedDecl * D,LVComputationKind computation)399 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
400 LVComputationKind computation) {
401 switch (computation) {
402 case LVForType:
403 case LVForExplicitType:
404 if (D->hasAttr<TypeVisibilityAttr>())
405 return true;
406 // fallthrough
407 case LVForValue:
408 case LVForExplicitValue:
409 if (D->hasAttr<VisibilityAttr>())
410 return true;
411 return false;
412 case LVForLinkageOnly:
413 return false;
414 }
415 llvm_unreachable("bad visibility computation kind");
416 }
417
418 /// Should we consider visibility associated with the template
419 /// arguments and parameters of the given class template specialization?
shouldConsiderTemplateVisibility(const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)420 static bool shouldConsiderTemplateVisibility(
421 const ClassTemplateSpecializationDecl *spec,
422 LVComputationKind computation) {
423 // Include visibility from the template parameters and arguments
424 // only if this is not an explicit instantiation or specialization
425 // with direct explicit visibility (and note that implicit
426 // instantiations won't have a direct attribute).
427 //
428 // Furthermore, we want to ignore template parameters and arguments
429 // for an explicit specialization when computing the visibility of a
430 // member thereof with explicit visibility.
431 //
432 // This is a bit complex; let's unpack it.
433 //
434 // An explicit class specialization is an independent, top-level
435 // declaration. As such, if it or any of its members has an
436 // explicit visibility attribute, that must directly express the
437 // user's intent, and we should honor it. The same logic applies to
438 // an explicit instantiation of a member of such a thing.
439
440 // Fast path: if this is not an explicit instantiation or
441 // specialization, we always want to consider template-related
442 // visibility restrictions.
443 if (!spec->isExplicitInstantiationOrSpecialization())
444 return true;
445
446 // This is the 'member thereof' check.
447 if (spec->isExplicitSpecialization() &&
448 hasExplicitVisibilityAlready(computation))
449 return false;
450
451 return !hasDirectVisibilityAttribute(spec, computation);
452 }
453
454 /// Merge in template-related linkage and visibility for the given
455 /// class template specialization.
mergeTemplateLV(LinkageInfo & LV,const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)456 static void mergeTemplateLV(LinkageInfo &LV,
457 const ClassTemplateSpecializationDecl *spec,
458 LVComputationKind computation) {
459 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
460
461 // Merge information from the template parameters, but ignore
462 // visibility if we're only considering template arguments.
463
464 ClassTemplateDecl *temp = spec->getSpecializedTemplate();
465 LinkageInfo tempLV =
466 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
467 LV.mergeMaybeWithVisibility(tempLV,
468 considerVisibility && !hasExplicitVisibilityAlready(computation));
469
470 // Merge information from the template arguments. We ignore
471 // template-argument visibility if we've got an explicit
472 // instantiation with a visibility attribute.
473 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
474 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
475 if (considerVisibility)
476 LV.mergeVisibility(argsLV);
477 LV.mergeExternalVisibility(argsLV);
478 }
479
480 /// Should we consider visibility associated with the template
481 /// arguments and parameters of the given variable template
482 /// specialization? As usual, follow class template specialization
483 /// logic up to initialization.
shouldConsiderTemplateVisibility(const VarTemplateSpecializationDecl * spec,LVComputationKind computation)484 static bool shouldConsiderTemplateVisibility(
485 const VarTemplateSpecializationDecl *spec,
486 LVComputationKind computation) {
487 // Include visibility from the template parameters and arguments
488 // only if this is not an explicit instantiation or specialization
489 // with direct explicit visibility (and note that implicit
490 // instantiations won't have a direct attribute).
491 if (!spec->isExplicitInstantiationOrSpecialization())
492 return true;
493
494 // An explicit variable specialization is an independent, top-level
495 // declaration. As such, if it has an explicit visibility attribute,
496 // that must directly express the user's intent, and we should honor
497 // it.
498 if (spec->isExplicitSpecialization() &&
499 hasExplicitVisibilityAlready(computation))
500 return false;
501
502 return !hasDirectVisibilityAttribute(spec, computation);
503 }
504
505 /// Merge in template-related linkage and visibility for the given
506 /// variable template specialization. As usual, follow class template
507 /// specialization logic up to initialization.
mergeTemplateLV(LinkageInfo & LV,const VarTemplateSpecializationDecl * spec,LVComputationKind computation)508 static void mergeTemplateLV(LinkageInfo &LV,
509 const VarTemplateSpecializationDecl *spec,
510 LVComputationKind computation) {
511 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
512
513 // Merge information from the template parameters, but ignore
514 // visibility if we're only considering template arguments.
515
516 VarTemplateDecl *temp = spec->getSpecializedTemplate();
517 LinkageInfo tempLV =
518 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
519 LV.mergeMaybeWithVisibility(tempLV,
520 considerVisibility && !hasExplicitVisibilityAlready(computation));
521
522 // Merge information from the template arguments. We ignore
523 // template-argument visibility if we've got an explicit
524 // instantiation with a visibility attribute.
525 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
526 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
527 if (considerVisibility)
528 LV.mergeVisibility(argsLV);
529 LV.mergeExternalVisibility(argsLV);
530 }
531
useInlineVisibilityHidden(const NamedDecl * D)532 static bool useInlineVisibilityHidden(const NamedDecl *D) {
533 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
534 const LangOptions &Opts = D->getASTContext().getLangOpts();
535 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
536 return false;
537
538 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
539 if (!FD)
540 return false;
541
542 TemplateSpecializationKind TSK = TSK_Undeclared;
543 if (FunctionTemplateSpecializationInfo *spec
544 = FD->getTemplateSpecializationInfo()) {
545 TSK = spec->getTemplateSpecializationKind();
546 } else if (MemberSpecializationInfo *MSI =
547 FD->getMemberSpecializationInfo()) {
548 TSK = MSI->getTemplateSpecializationKind();
549 }
550
551 const FunctionDecl *Def = nullptr;
552 // InlineVisibilityHidden only applies to definitions, and
553 // isInlined() only gives meaningful answers on definitions
554 // anyway.
555 return TSK != TSK_ExplicitInstantiationDeclaration &&
556 TSK != TSK_ExplicitInstantiationDefinition &&
557 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
558 }
559
isFirstInExternCContext(T * D)560 template <typename T> static bool isFirstInExternCContext(T *D) {
561 const T *First = D->getFirstDecl();
562 return First->isInExternCContext();
563 }
564
isSingleLineLanguageLinkage(const Decl & D)565 static bool isSingleLineLanguageLinkage(const Decl &D) {
566 if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
567 if (!SD->hasBraces())
568 return true;
569 return false;
570 }
571
getLVForNamespaceScopeDecl(const NamedDecl * D,LVComputationKind computation)572 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
573 LVComputationKind computation) {
574 assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
575 "Not a name having namespace scope");
576 ASTContext &Context = D->getASTContext();
577
578 // C++ [basic.link]p3:
579 // A name having namespace scope (3.3.6) has internal linkage if it
580 // is the name of
581 // - an object, reference, function or function template that is
582 // explicitly declared static; or,
583 // (This bullet corresponds to C99 6.2.2p3.)
584 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
585 // Explicitly declared static.
586 if (Var->getStorageClass() == SC_Static)
587 return LinkageInfo::internal();
588
589 // - a non-volatile object or reference that is explicitly declared const
590 // or constexpr and neither explicitly declared extern nor previously
591 // declared to have external linkage; or (there is no equivalent in C99)
592 if (Context.getLangOpts().CPlusPlus &&
593 Var->getType().isConstQualified() &&
594 !Var->getType().isVolatileQualified()) {
595 const VarDecl *PrevVar = Var->getPreviousDecl();
596 if (PrevVar)
597 return getLVForDecl(PrevVar, computation);
598
599 if (Var->getStorageClass() != SC_Extern &&
600 Var->getStorageClass() != SC_PrivateExtern &&
601 !isSingleLineLanguageLinkage(*Var))
602 return LinkageInfo::internal();
603 }
604
605 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
606 PrevVar = PrevVar->getPreviousDecl()) {
607 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
608 Var->getStorageClass() == SC_None)
609 return PrevVar->getLinkageAndVisibility();
610 // Explicitly declared static.
611 if (PrevVar->getStorageClass() == SC_Static)
612 return LinkageInfo::internal();
613 }
614 } else if (const FunctionDecl *Function = D->getAsFunction()) {
615 // C++ [temp]p4:
616 // A non-member function template can have internal linkage; any
617 // other template name shall have external linkage.
618
619 // Explicitly declared static.
620 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
621 return LinkageInfo(InternalLinkage, DefaultVisibility, false);
622 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
623 // - a data member of an anonymous union.
624 const VarDecl *VD = IFD->getVarDecl();
625 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
626 return getLVForNamespaceScopeDecl(VD, computation);
627 }
628 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
629
630 if (D->isInAnonymousNamespace()) {
631 const VarDecl *Var = dyn_cast<VarDecl>(D);
632 const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
633 if ((!Var || !isFirstInExternCContext(Var)) &&
634 (!Func || !isFirstInExternCContext(Func)))
635 return LinkageInfo::uniqueExternal();
636 }
637
638 // Set up the defaults.
639
640 // C99 6.2.2p5:
641 // If the declaration of an identifier for an object has file
642 // scope and no storage-class specifier, its linkage is
643 // external.
644 LinkageInfo LV;
645
646 if (!hasExplicitVisibilityAlready(computation)) {
647 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
648 LV.mergeVisibility(*Vis, true);
649 } else {
650 // If we're declared in a namespace with a visibility attribute,
651 // use that namespace's visibility, and it still counts as explicit.
652 for (const DeclContext *DC = D->getDeclContext();
653 !isa<TranslationUnitDecl>(DC);
654 DC = DC->getParent()) {
655 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
656 if (!ND) continue;
657 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
658 LV.mergeVisibility(*Vis, true);
659 break;
660 }
661 }
662 }
663
664 // Add in global settings if the above didn't give us direct visibility.
665 if (!LV.isVisibilityExplicit()) {
666 // Use global type/value visibility as appropriate.
667 Visibility globalVisibility;
668 if (computation == LVForValue) {
669 globalVisibility = Context.getLangOpts().getValueVisibilityMode();
670 } else {
671 assert(computation == LVForType);
672 globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
673 }
674 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
675
676 // If we're paying attention to global visibility, apply
677 // -finline-visibility-hidden if this is an inline method.
678 if (useInlineVisibilityHidden(D))
679 LV.mergeVisibility(HiddenVisibility, true);
680 }
681 }
682
683 // C++ [basic.link]p4:
684
685 // A name having namespace scope has external linkage if it is the
686 // name of
687 //
688 // - an object or reference, unless it has internal linkage; or
689 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
690 // GCC applies the following optimization to variables and static
691 // data members, but not to functions:
692 //
693 // Modify the variable's LV by the LV of its type unless this is
694 // C or extern "C". This follows from [basic.link]p9:
695 // A type without linkage shall not be used as the type of a
696 // variable or function with external linkage unless
697 // - the entity has C language linkage, or
698 // - the entity is declared within an unnamed namespace, or
699 // - the entity is not used or is defined in the same
700 // translation unit.
701 // and [basic.link]p10:
702 // ...the types specified by all declarations referring to a
703 // given variable or function shall be identical...
704 // C does not have an equivalent rule.
705 //
706 // Ignore this if we've got an explicit attribute; the user
707 // probably knows what they're doing.
708 //
709 // Note that we don't want to make the variable non-external
710 // because of this, but unique-external linkage suits us.
711 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
712 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
713 if (TypeLV.getLinkage() != ExternalLinkage)
714 return LinkageInfo::uniqueExternal();
715 if (!LV.isVisibilityExplicit())
716 LV.mergeVisibility(TypeLV);
717 }
718
719 if (Var->getStorageClass() == SC_PrivateExtern)
720 LV.mergeVisibility(HiddenVisibility, true);
721
722 // Note that Sema::MergeVarDecl already takes care of implementing
723 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
724 // to do it here.
725
726 // As per function and class template specializations (below),
727 // consider LV for the template and template arguments. We're at file
728 // scope, so we do not need to worry about nested specializations.
729 if (const VarTemplateSpecializationDecl *spec
730 = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
731 mergeTemplateLV(LV, spec, computation);
732 }
733
734 // - a function, unless it has internal linkage; or
735 } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
736 // In theory, we can modify the function's LV by the LV of its
737 // type unless it has C linkage (see comment above about variables
738 // for justification). In practice, GCC doesn't do this, so it's
739 // just too painful to make work.
740
741 if (Function->getStorageClass() == SC_PrivateExtern)
742 LV.mergeVisibility(HiddenVisibility, true);
743
744 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
745 // merging storage classes and visibility attributes, so we don't have to
746 // look at previous decls in here.
747
748 // In C++, then if the type of the function uses a type with
749 // unique-external linkage, it's not legally usable from outside
750 // this translation unit. However, we should use the C linkage
751 // rules instead for extern "C" declarations.
752 if (Context.getLangOpts().CPlusPlus &&
753 !Function->isInExternCContext()) {
754 // Only look at the type-as-written. If this function has an auto-deduced
755 // return type, we can't compute the linkage of that type because it could
756 // require looking at the linkage of this function, and we don't need this
757 // for correctness because the type is not part of the function's
758 // signature.
759 // FIXME: This is a hack. We should be able to solve this circularity and
760 // the one in getLVForClassMember for Functions some other way.
761 QualType TypeAsWritten = Function->getType();
762 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
763 TypeAsWritten = TSI->getType();
764 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
765 return LinkageInfo::uniqueExternal();
766 }
767
768 // Consider LV from the template and the template arguments.
769 // We're at file scope, so we do not need to worry about nested
770 // specializations.
771 if (FunctionTemplateSpecializationInfo *specInfo
772 = Function->getTemplateSpecializationInfo()) {
773 mergeTemplateLV(LV, Function, specInfo, computation);
774 }
775
776 // - a named class (Clause 9), or an unnamed class defined in a
777 // typedef declaration in which the class has the typedef name
778 // for linkage purposes (7.1.3); or
779 // - a named enumeration (7.2), or an unnamed enumeration
780 // defined in a typedef declaration in which the enumeration
781 // has the typedef name for linkage purposes (7.1.3); or
782 } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
783 // Unnamed tags have no linkage.
784 if (!Tag->hasNameForLinkage())
785 return LinkageInfo::none();
786
787 // If this is a class template specialization, consider the
788 // linkage of the template and template arguments. We're at file
789 // scope, so we do not need to worry about nested specializations.
790 if (const ClassTemplateSpecializationDecl *spec
791 = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
792 mergeTemplateLV(LV, spec, computation);
793 }
794
795 // - an enumerator belonging to an enumeration with external linkage;
796 } else if (isa<EnumConstantDecl>(D)) {
797 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
798 computation);
799 if (!isExternalFormalLinkage(EnumLV.getLinkage()))
800 return LinkageInfo::none();
801 LV.merge(EnumLV);
802
803 // - a template, unless it is a function template that has
804 // internal linkage (Clause 14);
805 } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
806 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
807 LinkageInfo tempLV =
808 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
809 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
810
811 // - a namespace (7.3), unless it is declared within an unnamed
812 // namespace.
813 } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
814 return LV;
815
816 // By extension, we assign external linkage to Objective-C
817 // interfaces.
818 } else if (isa<ObjCInterfaceDecl>(D)) {
819 // fallout
820
821 // Everything not covered here has no linkage.
822 } else {
823 // FIXME: A typedef declaration has linkage if it gives a type a name for
824 // linkage purposes.
825 return LinkageInfo::none();
826 }
827
828 // If we ended up with non-external linkage, visibility should
829 // always be default.
830 if (LV.getLinkage() != ExternalLinkage)
831 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
832
833 return LV;
834 }
835
getLVForClassMember(const NamedDecl * D,LVComputationKind computation)836 static LinkageInfo getLVForClassMember(const NamedDecl *D,
837 LVComputationKind computation) {
838 // Only certain class members have linkage. Note that fields don't
839 // really have linkage, but it's convenient to say they do for the
840 // purposes of calculating linkage of pointer-to-data-member
841 // template arguments.
842 //
843 // Templates also don't officially have linkage, but since we ignore
844 // the C++ standard and look at template arguments when determining
845 // linkage and visibility of a template specialization, we might hit
846 // a template template argument that way. If we do, we need to
847 // consider its linkage.
848 if (!(isa<CXXMethodDecl>(D) ||
849 isa<VarDecl>(D) ||
850 isa<FieldDecl>(D) ||
851 isa<IndirectFieldDecl>(D) ||
852 isa<TagDecl>(D) ||
853 isa<TemplateDecl>(D)))
854 return LinkageInfo::none();
855
856 LinkageInfo LV;
857
858 // If we have an explicit visibility attribute, merge that in.
859 if (!hasExplicitVisibilityAlready(computation)) {
860 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
861 LV.mergeVisibility(*Vis, true);
862 // If we're paying attention to global visibility, apply
863 // -finline-visibility-hidden if this is an inline method.
864 //
865 // Note that we do this before merging information about
866 // the class visibility.
867 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
868 LV.mergeVisibility(HiddenVisibility, true);
869 }
870
871 // If this class member has an explicit visibility attribute, the only
872 // thing that can change its visibility is the template arguments, so
873 // only look for them when processing the class.
874 LVComputationKind classComputation = computation;
875 if (LV.isVisibilityExplicit())
876 classComputation = withExplicitVisibilityAlready(computation);
877
878 LinkageInfo classLV =
879 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
880 // If the class already has unique-external linkage, we can't improve.
881 if (classLV.getLinkage() == UniqueExternalLinkage)
882 return LinkageInfo::uniqueExternal();
883
884 if (!isExternallyVisible(classLV.getLinkage()))
885 return LinkageInfo::none();
886
887
888 // Otherwise, don't merge in classLV yet, because in certain cases
889 // we need to completely ignore the visibility from it.
890
891 // Specifically, if this decl exists and has an explicit attribute.
892 const NamedDecl *explicitSpecSuppressor = nullptr;
893
894 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
895 // If the type of the function uses a type with unique-external
896 // linkage, it's not legally usable from outside this translation unit.
897 // But only look at the type-as-written. If this function has an auto-deduced
898 // return type, we can't compute the linkage of that type because it could
899 // require looking at the linkage of this function, and we don't need this
900 // for correctness because the type is not part of the function's
901 // signature.
902 // FIXME: This is a hack. We should be able to solve this circularity and the
903 // one in getLVForNamespaceScopeDecl for Functions some other way.
904 {
905 QualType TypeAsWritten = MD->getType();
906 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
907 TypeAsWritten = TSI->getType();
908 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
909 return LinkageInfo::uniqueExternal();
910 }
911 // If this is a method template specialization, use the linkage for
912 // the template parameters and arguments.
913 if (FunctionTemplateSpecializationInfo *spec
914 = MD->getTemplateSpecializationInfo()) {
915 mergeTemplateLV(LV, MD, spec, computation);
916 if (spec->isExplicitSpecialization()) {
917 explicitSpecSuppressor = MD;
918 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
919 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
920 }
921 } else if (isExplicitMemberSpecialization(MD)) {
922 explicitSpecSuppressor = MD;
923 }
924
925 } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
926 if (const ClassTemplateSpecializationDecl *spec
927 = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
928 mergeTemplateLV(LV, spec, computation);
929 if (spec->isExplicitSpecialization()) {
930 explicitSpecSuppressor = spec;
931 } else {
932 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
933 if (isExplicitMemberSpecialization(temp)) {
934 explicitSpecSuppressor = temp->getTemplatedDecl();
935 }
936 }
937 } else if (isExplicitMemberSpecialization(RD)) {
938 explicitSpecSuppressor = RD;
939 }
940
941 // Static data members.
942 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
943 if (const VarTemplateSpecializationDecl *spec
944 = dyn_cast<VarTemplateSpecializationDecl>(VD))
945 mergeTemplateLV(LV, spec, computation);
946
947 // Modify the variable's linkage by its type, but ignore the
948 // type's visibility unless it's a definition.
949 LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
950 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
951 LV.mergeVisibility(typeLV);
952 LV.mergeExternalVisibility(typeLV);
953
954 if (isExplicitMemberSpecialization(VD)) {
955 explicitSpecSuppressor = VD;
956 }
957
958 // Template members.
959 } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
960 bool considerVisibility =
961 (!LV.isVisibilityExplicit() &&
962 !classLV.isVisibilityExplicit() &&
963 !hasExplicitVisibilityAlready(computation));
964 LinkageInfo tempLV =
965 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
966 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
967
968 if (const RedeclarableTemplateDecl *redeclTemp =
969 dyn_cast<RedeclarableTemplateDecl>(temp)) {
970 if (isExplicitMemberSpecialization(redeclTemp)) {
971 explicitSpecSuppressor = temp->getTemplatedDecl();
972 }
973 }
974 }
975
976 // We should never be looking for an attribute directly on a template.
977 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
978
979 // If this member is an explicit member specialization, and it has
980 // an explicit attribute, ignore visibility from the parent.
981 bool considerClassVisibility = true;
982 if (explicitSpecSuppressor &&
983 // optimization: hasDVA() is true only with explicit visibility.
984 LV.isVisibilityExplicit() &&
985 classLV.getVisibility() != DefaultVisibility &&
986 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
987 considerClassVisibility = false;
988 }
989
990 // Finally, merge in information from the class.
991 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
992 return LV;
993 }
994
anchor()995 void NamedDecl::anchor() { }
996
997 static LinkageInfo computeLVForDecl(const NamedDecl *D,
998 LVComputationKind computation);
999
isLinkageValid() const1000 bool NamedDecl::isLinkageValid() const {
1001 if (!hasCachedLinkage())
1002 return true;
1003
1004 return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
1005 getCachedLinkage();
1006 }
1007
getObjCFStringFormattingFamily() const1008 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1009 StringRef name = getName();
1010 if (name.empty()) return SFF_None;
1011
1012 if (name.front() == 'C')
1013 if (name == "CFStringCreateWithFormat" ||
1014 name == "CFStringCreateWithFormatAndArguments" ||
1015 name == "CFStringAppendFormat" ||
1016 name == "CFStringAppendFormatAndArguments")
1017 return SFF_CFString;
1018 return SFF_None;
1019 }
1020
getLinkageInternal() const1021 Linkage NamedDecl::getLinkageInternal() const {
1022 // We don't care about visibility here, so ask for the cheapest
1023 // possible visibility analysis.
1024 return getLVForDecl(this, LVForLinkageOnly).getLinkage();
1025 }
1026
getLinkageAndVisibility() const1027 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1028 LVComputationKind computation =
1029 (usesTypeVisibility(this) ? LVForType : LVForValue);
1030 return getLVForDecl(this, computation);
1031 }
1032
1033 static Optional<Visibility>
getExplicitVisibilityAux(const NamedDecl * ND,NamedDecl::ExplicitVisibilityKind kind,bool IsMostRecent)1034 getExplicitVisibilityAux(const NamedDecl *ND,
1035 NamedDecl::ExplicitVisibilityKind kind,
1036 bool IsMostRecent) {
1037 assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1038
1039 // Check the declaration itself first.
1040 if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1041 return V;
1042
1043 // If this is a member class of a specialization of a class template
1044 // and the corresponding decl has explicit visibility, use that.
1045 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND)) {
1046 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1047 if (InstantiatedFrom)
1048 return getVisibilityOf(InstantiatedFrom, kind);
1049 }
1050
1051 // If there wasn't explicit visibility there, and this is a
1052 // specialization of a class template, check for visibility
1053 // on the pattern.
1054 if (const ClassTemplateSpecializationDecl *spec
1055 = dyn_cast<ClassTemplateSpecializationDecl>(ND))
1056 return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
1057 kind);
1058
1059 // Use the most recent declaration.
1060 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1061 const NamedDecl *MostRecent = ND->getMostRecentDecl();
1062 if (MostRecent != ND)
1063 return getExplicitVisibilityAux(MostRecent, kind, true);
1064 }
1065
1066 if (const VarDecl *Var = dyn_cast<VarDecl>(ND)) {
1067 if (Var->isStaticDataMember()) {
1068 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1069 if (InstantiatedFrom)
1070 return getVisibilityOf(InstantiatedFrom, kind);
1071 }
1072
1073 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1074 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1075 kind);
1076
1077 return None;
1078 }
1079 // Also handle function template specializations.
1080 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) {
1081 // If the function is a specialization of a template with an
1082 // explicit visibility attribute, use that.
1083 if (FunctionTemplateSpecializationInfo *templateInfo
1084 = fn->getTemplateSpecializationInfo())
1085 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1086 kind);
1087
1088 // If the function is a member of a specialization of a class template
1089 // and the corresponding decl has explicit visibility, use that.
1090 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1091 if (InstantiatedFrom)
1092 return getVisibilityOf(InstantiatedFrom, kind);
1093
1094 return None;
1095 }
1096
1097 // The visibility of a template is stored in the templated decl.
1098 if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(ND))
1099 return getVisibilityOf(TD->getTemplatedDecl(), kind);
1100
1101 return None;
1102 }
1103
1104 Optional<Visibility>
getExplicitVisibility(ExplicitVisibilityKind kind) const1105 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1106 return getExplicitVisibilityAux(this, kind, false);
1107 }
1108
getLVForClosure(const DeclContext * DC,Decl * ContextDecl,LVComputationKind computation)1109 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
1110 LVComputationKind computation) {
1111 // This lambda has its linkage/visibility determined by its owner.
1112 if (ContextDecl) {
1113 if (isa<ParmVarDecl>(ContextDecl))
1114 DC = ContextDecl->getDeclContext()->getRedeclContext();
1115 else
1116 return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
1117 }
1118
1119 if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
1120 return getLVForDecl(ND, computation);
1121
1122 return LinkageInfo::external();
1123 }
1124
getLVForLocalDecl(const NamedDecl * D,LVComputationKind computation)1125 static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
1126 LVComputationKind computation) {
1127 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1128 if (Function->isInAnonymousNamespace() &&
1129 !Function->isInExternCContext())
1130 return LinkageInfo::uniqueExternal();
1131
1132 // This is a "void f();" which got merged with a file static.
1133 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1134 return LinkageInfo::internal();
1135
1136 LinkageInfo LV;
1137 if (!hasExplicitVisibilityAlready(computation)) {
1138 if (Optional<Visibility> Vis =
1139 getExplicitVisibility(Function, computation))
1140 LV.mergeVisibility(*Vis, true);
1141 }
1142
1143 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1144 // merging storage classes and visibility attributes, so we don't have to
1145 // look at previous decls in here.
1146
1147 return LV;
1148 }
1149
1150 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
1151 if (Var->hasExternalStorage()) {
1152 if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
1153 return LinkageInfo::uniqueExternal();
1154
1155 LinkageInfo LV;
1156 if (Var->getStorageClass() == SC_PrivateExtern)
1157 LV.mergeVisibility(HiddenVisibility, true);
1158 else if (!hasExplicitVisibilityAlready(computation)) {
1159 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1160 LV.mergeVisibility(*Vis, true);
1161 }
1162
1163 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1164 LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1165 if (PrevLV.getLinkage())
1166 LV.setLinkage(PrevLV.getLinkage());
1167 LV.mergeVisibility(PrevLV);
1168 }
1169
1170 return LV;
1171 }
1172
1173 if (!Var->isStaticLocal())
1174 return LinkageInfo::none();
1175 }
1176
1177 ASTContext &Context = D->getASTContext();
1178 if (!Context.getLangOpts().CPlusPlus)
1179 return LinkageInfo::none();
1180
1181 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1182 if (!OuterD)
1183 return LinkageInfo::none();
1184
1185 LinkageInfo LV;
1186 if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) {
1187 if (!BD->getBlockManglingNumber())
1188 return LinkageInfo::none();
1189
1190 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1191 BD->getBlockManglingContextDecl(), computation);
1192 } else {
1193 const FunctionDecl *FD = cast<FunctionDecl>(OuterD);
1194 if (!FD->isInlined() &&
1195 !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1196 return LinkageInfo::none();
1197
1198 LV = getLVForDecl(FD, computation);
1199 }
1200 if (!isExternallyVisible(LV.getLinkage()))
1201 return LinkageInfo::none();
1202 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1203 LV.isVisibilityExplicit());
1204 }
1205
1206 static inline const CXXRecordDecl*
getOutermostEnclosingLambda(const CXXRecordDecl * Record)1207 getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
1208 const CXXRecordDecl *Ret = Record;
1209 while (Record && Record->isLambda()) {
1210 Ret = Record;
1211 if (!Record->getParent()) break;
1212 // Get the Containing Class of this Lambda Class
1213 Record = dyn_cast_or_null<CXXRecordDecl>(
1214 Record->getParent()->getParent());
1215 }
1216 return Ret;
1217 }
1218
computeLVForDecl(const NamedDecl * D,LVComputationKind computation)1219 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1220 LVComputationKind computation) {
1221 // Objective-C: treat all Objective-C declarations as having external
1222 // linkage.
1223 switch (D->getKind()) {
1224 default:
1225 break;
1226 case Decl::ParmVar:
1227 return LinkageInfo::none();
1228 case Decl::TemplateTemplateParm: // count these as external
1229 case Decl::NonTypeTemplateParm:
1230 case Decl::ObjCAtDefsField:
1231 case Decl::ObjCCategory:
1232 case Decl::ObjCCategoryImpl:
1233 case Decl::ObjCCompatibleAlias:
1234 case Decl::ObjCImplementation:
1235 case Decl::ObjCMethod:
1236 case Decl::ObjCProperty:
1237 case Decl::ObjCPropertyImpl:
1238 case Decl::ObjCProtocol:
1239 return LinkageInfo::external();
1240
1241 case Decl::CXXRecord: {
1242 const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
1243 if (Record->isLambda()) {
1244 if (!Record->getLambdaManglingNumber()) {
1245 // This lambda has no mangling number, so it's internal.
1246 return LinkageInfo::internal();
1247 }
1248
1249 // This lambda has its linkage/visibility determined:
1250 // - either by the outermost lambda if that lambda has no mangling
1251 // number.
1252 // - or by the parent of the outer most lambda
1253 // This prevents infinite recursion in settings such as nested lambdas
1254 // used in NSDMI's, for e.g.
1255 // struct L {
1256 // int t{};
1257 // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1258 // };
1259 const CXXRecordDecl *OuterMostLambda =
1260 getOutermostEnclosingLambda(Record);
1261 if (!OuterMostLambda->getLambdaManglingNumber())
1262 return LinkageInfo::internal();
1263
1264 return getLVForClosure(
1265 OuterMostLambda->getDeclContext()->getRedeclContext(),
1266 OuterMostLambda->getLambdaContextDecl(), computation);
1267 }
1268
1269 break;
1270 }
1271 }
1272
1273 // Handle linkage for namespace-scope names.
1274 if (D->getDeclContext()->getRedeclContext()->isFileContext())
1275 return getLVForNamespaceScopeDecl(D, computation);
1276
1277 // C++ [basic.link]p5:
1278 // In addition, a member function, static data member, a named
1279 // class or enumeration of class scope, or an unnamed class or
1280 // enumeration defined in a class-scope typedef declaration such
1281 // that the class or enumeration has the typedef name for linkage
1282 // purposes (7.1.3), has external linkage if the name of the class
1283 // has external linkage.
1284 if (D->getDeclContext()->isRecord())
1285 return getLVForClassMember(D, computation);
1286
1287 // C++ [basic.link]p6:
1288 // The name of a function declared in block scope and the name of
1289 // an object declared by a block scope extern declaration have
1290 // linkage. If there is a visible declaration of an entity with
1291 // linkage having the same name and type, ignoring entities
1292 // declared outside the innermost enclosing namespace scope, the
1293 // block scope declaration declares that same entity and receives
1294 // the linkage of the previous declaration. If there is more than
1295 // one such matching entity, the program is ill-formed. Otherwise,
1296 // if no matching entity is found, the block scope entity receives
1297 // external linkage.
1298 if (D->getDeclContext()->isFunctionOrMethod())
1299 return getLVForLocalDecl(D, computation);
1300
1301 // C++ [basic.link]p6:
1302 // Names not covered by these rules have no linkage.
1303 return LinkageInfo::none();
1304 }
1305
1306 namespace clang {
1307 class LinkageComputer {
1308 public:
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1309 static LinkageInfo getLVForDecl(const NamedDecl *D,
1310 LVComputationKind computation) {
1311 if (computation == LVForLinkageOnly && D->hasCachedLinkage())
1312 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1313
1314 LinkageInfo LV = computeLVForDecl(D, computation);
1315 if (D->hasCachedLinkage())
1316 assert(D->getCachedLinkage() == LV.getLinkage());
1317
1318 D->setCachedLinkage(LV.getLinkage());
1319
1320 #ifndef NDEBUG
1321 // In C (because of gnu inline) and in c++ with microsoft extensions an
1322 // static can follow an extern, so we can have two decls with different
1323 // linkages.
1324 const LangOptions &Opts = D->getASTContext().getLangOpts();
1325 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1326 return LV;
1327
1328 // We have just computed the linkage for this decl. By induction we know
1329 // that all other computed linkages match, check that the one we just
1330 // computed also does.
1331 NamedDecl *Old = nullptr;
1332 for (auto I : D->redecls()) {
1333 NamedDecl *T = cast<NamedDecl>(I);
1334 if (T == D)
1335 continue;
1336 if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1337 Old = T;
1338 break;
1339 }
1340 }
1341 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1342 #endif
1343
1344 return LV;
1345 }
1346 };
1347 }
1348
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1349 static LinkageInfo getLVForDecl(const NamedDecl *D,
1350 LVComputationKind computation) {
1351 return clang::LinkageComputer::getLVForDecl(D, computation);
1352 }
1353
getQualifiedNameAsString() const1354 std::string NamedDecl::getQualifiedNameAsString() const {
1355 std::string QualName;
1356 llvm::raw_string_ostream OS(QualName);
1357 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1358 return OS.str();
1359 }
1360
printQualifiedName(raw_ostream & OS) const1361 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1362 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1363 }
1364
printQualifiedName(raw_ostream & OS,const PrintingPolicy & P) const1365 void NamedDecl::printQualifiedName(raw_ostream &OS,
1366 const PrintingPolicy &P) const {
1367 const DeclContext *Ctx = getDeclContext();
1368
1369 if (Ctx->isFunctionOrMethod()) {
1370 printName(OS);
1371 return;
1372 }
1373
1374 typedef SmallVector<const DeclContext *, 8> ContextsTy;
1375 ContextsTy Contexts;
1376
1377 // Collect contexts.
1378 while (Ctx && isa<NamedDecl>(Ctx)) {
1379 Contexts.push_back(Ctx);
1380 Ctx = Ctx->getParent();
1381 }
1382
1383 for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
1384 I != E; ++I) {
1385 if (const ClassTemplateSpecializationDecl *Spec
1386 = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
1387 OS << Spec->getName();
1388 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1389 TemplateSpecializationType::PrintTemplateArgumentList(OS,
1390 TemplateArgs.data(),
1391 TemplateArgs.size(),
1392 P);
1393 } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
1394 if (P.SuppressUnwrittenScope &&
1395 (ND->isAnonymousNamespace() || ND->isInline()))
1396 continue;
1397 if (ND->isAnonymousNamespace())
1398 OS << "(anonymous namespace)";
1399 else
1400 OS << *ND;
1401 } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
1402 if (!RD->getIdentifier())
1403 OS << "(anonymous " << RD->getKindName() << ')';
1404 else
1405 OS << *RD;
1406 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
1407 const FunctionProtoType *FT = nullptr;
1408 if (FD->hasWrittenPrototype())
1409 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1410
1411 OS << *FD << '(';
1412 if (FT) {
1413 unsigned NumParams = FD->getNumParams();
1414 for (unsigned i = 0; i < NumParams; ++i) {
1415 if (i)
1416 OS << ", ";
1417 OS << FD->getParamDecl(i)->getType().stream(P);
1418 }
1419
1420 if (FT->isVariadic()) {
1421 if (NumParams > 0)
1422 OS << ", ";
1423 OS << "...";
1424 }
1425 }
1426 OS << ')';
1427 } else {
1428 OS << *cast<NamedDecl>(*I);
1429 }
1430 OS << "::";
1431 }
1432
1433 if (getDeclName())
1434 OS << *this;
1435 else
1436 OS << "(anonymous)";
1437 }
1438
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const1439 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1440 const PrintingPolicy &Policy,
1441 bool Qualified) const {
1442 if (Qualified)
1443 printQualifiedName(OS, Policy);
1444 else
1445 printName(OS);
1446 }
1447
isKindReplaceableBy(Decl::Kind OldK,Decl::Kind NewK)1448 static bool isKindReplaceableBy(Decl::Kind OldK, Decl::Kind NewK) {
1449 // For method declarations, we never replace.
1450 if (ObjCMethodDecl::classofKind(NewK))
1451 return false;
1452
1453 if (OldK == NewK)
1454 return true;
1455
1456 // A compatibility alias for a class can be replaced by an interface.
1457 if (ObjCCompatibleAliasDecl::classofKind(OldK) &&
1458 ObjCInterfaceDecl::classofKind(NewK))
1459 return true;
1460
1461 // A typedef-declaration, alias-declaration, or Objective-C class declaration
1462 // can replace another declaration of the same type. Semantic analysis checks
1463 // that we have matching types.
1464 if ((TypedefNameDecl::classofKind(OldK) ||
1465 ObjCInterfaceDecl::classofKind(OldK)) &&
1466 (TypedefNameDecl::classofKind(NewK) ||
1467 ObjCInterfaceDecl::classofKind(NewK)))
1468 return true;
1469
1470 // Otherwise, a kind mismatch implies that the declaration is not replaced.
1471 return false;
1472 }
1473
isRedeclarableImpl(Redeclarable<T> *)1474 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1475 return true;
1476 }
isRedeclarableImpl(...)1477 static bool isRedeclarableImpl(...) { return false; }
isRedeclarable(Decl::Kind K)1478 static bool isRedeclarable(Decl::Kind K) {
1479 switch (K) {
1480 #define DECL(Type, Base) \
1481 case Decl::Type: \
1482 return isRedeclarableImpl((Type##Decl *)nullptr);
1483 #define ABSTRACT_DECL(DECL)
1484 #include "clang/AST/DeclNodes.inc"
1485 }
1486 llvm_unreachable("unknown decl kind");
1487 }
1488
declarationReplaces(NamedDecl * OldD,bool IsKnownNewer) const1489 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1490 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1491
1492 // Never replace one imported declaration with another; we need both results
1493 // when re-exporting.
1494 if (OldD->isFromASTFile() && isFromASTFile())
1495 return false;
1496
1497 if (!isKindReplaceableBy(OldD->getKind(), getKind()))
1498 return false;
1499
1500 // Inline namespaces can give us two declarations with the same
1501 // name and kind in the same scope but different contexts; we should
1502 // keep both declarations in this case.
1503 if (!this->getDeclContext()->getRedeclContext()->Equals(
1504 OldD->getDeclContext()->getRedeclContext()))
1505 return false;
1506
1507 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
1508 // For function declarations, we keep track of redeclarations.
1509 // FIXME: This returns false for functions that should in fact be replaced.
1510 // Instead, perform some kind of type check?
1511 if (FD->getPreviousDecl() != OldD)
1512 return false;
1513
1514 // For function templates, the underlying function declarations are linked.
1515 if (const FunctionTemplateDecl *FunctionTemplate =
1516 dyn_cast<FunctionTemplateDecl>(this))
1517 return FunctionTemplate->getTemplatedDecl()->declarationReplaces(
1518 cast<FunctionTemplateDecl>(OldD)->getTemplatedDecl());
1519
1520 // Using shadow declarations can be overloaded on their target declarations
1521 // if they introduce functions.
1522 // FIXME: If our target replaces the old target, can we replace the old
1523 // shadow declaration?
1524 if (auto *USD = dyn_cast<UsingShadowDecl>(this))
1525 if (USD->getTargetDecl() != cast<UsingShadowDecl>(OldD)->getTargetDecl())
1526 return false;
1527
1528 // Using declarations can be overloaded if they introduce functions.
1529 if (auto *UD = dyn_cast<UsingDecl>(this)) {
1530 ASTContext &Context = getASTContext();
1531 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1532 Context.getCanonicalNestedNameSpecifier(
1533 cast<UsingDecl>(OldD)->getQualifier());
1534 }
1535 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1536 ASTContext &Context = getASTContext();
1537 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1538 Context.getCanonicalNestedNameSpecifier(
1539 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1540 }
1541
1542 // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
1543 // We want to keep it, unless it nominates same namespace.
1544 if (auto *UD = dyn_cast<UsingDirectiveDecl>(this))
1545 return UD->getNominatedNamespace()->getOriginalNamespace() ==
1546 cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
1547 ->getOriginalNamespace();
1548
1549 if (!IsKnownNewer && isRedeclarable(getKind())) {
1550 // Check whether this is actually newer than OldD. We want to keep the
1551 // newer declaration. This loop will usually only iterate once, because
1552 // OldD is usually the previous declaration.
1553 for (auto D : redecls()) {
1554 if (D == OldD)
1555 break;
1556
1557 // If we reach the canonical declaration, then OldD is not actually older
1558 // than this one.
1559 //
1560 // FIXME: In this case, we should not add this decl to the lookup table.
1561 if (D->isCanonicalDecl())
1562 return false;
1563 }
1564 }
1565
1566 // It's a newer declaration of the same kind of declaration in the same scope,
1567 // and not an overload: we want this decl instead of the existing one.
1568 return true;
1569 }
1570
hasLinkage() const1571 bool NamedDecl::hasLinkage() const {
1572 return getFormalLinkage() != NoLinkage;
1573 }
1574
getUnderlyingDeclImpl()1575 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1576 NamedDecl *ND = this;
1577 while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
1578 ND = UD->getTargetDecl();
1579
1580 if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1581 return AD->getClassInterface();
1582
1583 return ND;
1584 }
1585
isCXXInstanceMember() const1586 bool NamedDecl::isCXXInstanceMember() const {
1587 if (!isCXXClassMember())
1588 return false;
1589
1590 const NamedDecl *D = this;
1591 if (isa<UsingShadowDecl>(D))
1592 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1593
1594 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1595 return true;
1596 if (const CXXMethodDecl *MD =
1597 dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1598 return MD->isInstance();
1599 return false;
1600 }
1601
1602 //===----------------------------------------------------------------------===//
1603 // DeclaratorDecl Implementation
1604 //===----------------------------------------------------------------------===//
1605
1606 template <typename DeclT>
getTemplateOrInnerLocStart(const DeclT * decl)1607 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1608 if (decl->getNumTemplateParameterLists() > 0)
1609 return decl->getTemplateParameterList(0)->getTemplateLoc();
1610 else
1611 return decl->getInnerLocStart();
1612 }
1613
getTypeSpecStartLoc() const1614 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1615 TypeSourceInfo *TSI = getTypeSourceInfo();
1616 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1617 return SourceLocation();
1618 }
1619
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)1620 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1621 if (QualifierLoc) {
1622 // Make sure the extended decl info is allocated.
1623 if (!hasExtInfo()) {
1624 // Save (non-extended) type source info pointer.
1625 TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1626 // Allocate external info struct.
1627 DeclInfo = new (getASTContext()) ExtInfo;
1628 // Restore savedTInfo into (extended) decl info.
1629 getExtInfo()->TInfo = savedTInfo;
1630 }
1631 // Set qualifier info.
1632 getExtInfo()->QualifierLoc = QualifierLoc;
1633 } else {
1634 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1635 if (hasExtInfo()) {
1636 if (getExtInfo()->NumTemplParamLists == 0) {
1637 // Save type source info pointer.
1638 TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1639 // Deallocate the extended decl info.
1640 getASTContext().Deallocate(getExtInfo());
1641 // Restore savedTInfo into (non-extended) decl info.
1642 DeclInfo = savedTInfo;
1643 }
1644 else
1645 getExtInfo()->QualifierLoc = QualifierLoc;
1646 }
1647 }
1648 }
1649
1650 void
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)1651 DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
1652 unsigned NumTPLists,
1653 TemplateParameterList **TPLists) {
1654 assert(NumTPLists > 0);
1655 // Make sure the extended decl info is allocated.
1656 if (!hasExtInfo()) {
1657 // Save (non-extended) type source info pointer.
1658 TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1659 // Allocate external info struct.
1660 DeclInfo = new (getASTContext()) ExtInfo;
1661 // Restore savedTInfo into (extended) decl info.
1662 getExtInfo()->TInfo = savedTInfo;
1663 }
1664 // Set the template parameter lists info.
1665 getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
1666 }
1667
getOuterLocStart() const1668 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1669 return getTemplateOrInnerLocStart(this);
1670 }
1671
1672 namespace {
1673
1674 // Helper function: returns true if QT is or contains a type
1675 // having a postfix component.
typeIsPostfix(clang::QualType QT)1676 bool typeIsPostfix(clang::QualType QT) {
1677 while (true) {
1678 const Type* T = QT.getTypePtr();
1679 switch (T->getTypeClass()) {
1680 default:
1681 return false;
1682 case Type::Pointer:
1683 QT = cast<PointerType>(T)->getPointeeType();
1684 break;
1685 case Type::BlockPointer:
1686 QT = cast<BlockPointerType>(T)->getPointeeType();
1687 break;
1688 case Type::MemberPointer:
1689 QT = cast<MemberPointerType>(T)->getPointeeType();
1690 break;
1691 case Type::LValueReference:
1692 case Type::RValueReference:
1693 QT = cast<ReferenceType>(T)->getPointeeType();
1694 break;
1695 case Type::PackExpansion:
1696 QT = cast<PackExpansionType>(T)->getPattern();
1697 break;
1698 case Type::Paren:
1699 case Type::ConstantArray:
1700 case Type::DependentSizedArray:
1701 case Type::IncompleteArray:
1702 case Type::VariableArray:
1703 case Type::FunctionProto:
1704 case Type::FunctionNoProto:
1705 return true;
1706 }
1707 }
1708 }
1709
1710 } // namespace
1711
getSourceRange() const1712 SourceRange DeclaratorDecl::getSourceRange() const {
1713 SourceLocation RangeEnd = getLocation();
1714 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1715 // If the declaration has no name or the type extends past the name take the
1716 // end location of the type.
1717 if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1718 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1719 }
1720 return SourceRange(getOuterLocStart(), RangeEnd);
1721 }
1722
1723 void
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)1724 QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
1725 unsigned NumTPLists,
1726 TemplateParameterList **TPLists) {
1727 assert((NumTPLists == 0 || TPLists != nullptr) &&
1728 "Empty array of template parameters with positive size!");
1729
1730 // Free previous template parameters (if any).
1731 if (NumTemplParamLists > 0) {
1732 Context.Deallocate(TemplParamLists);
1733 TemplParamLists = nullptr;
1734 NumTemplParamLists = 0;
1735 }
1736 // Set info on matched template parameter lists (if any).
1737 if (NumTPLists > 0) {
1738 TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
1739 NumTemplParamLists = NumTPLists;
1740 std::copy(TPLists, TPLists + NumTPLists, TemplParamLists);
1741 }
1742 }
1743
1744 //===----------------------------------------------------------------------===//
1745 // VarDecl Implementation
1746 //===----------------------------------------------------------------------===//
1747
getStorageClassSpecifierString(StorageClass SC)1748 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1749 switch (SC) {
1750 case SC_None: break;
1751 case SC_Auto: return "auto";
1752 case SC_Extern: return "extern";
1753 case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
1754 case SC_PrivateExtern: return "__private_extern__";
1755 case SC_Register: return "register";
1756 case SC_Static: return "static";
1757 }
1758
1759 llvm_unreachable("Invalid storage class");
1760 }
1761
VarDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass SC)1762 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1763 SourceLocation StartLoc, SourceLocation IdLoc,
1764 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1765 StorageClass SC)
1766 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1767 redeclarable_base(C), Init() {
1768 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1769 "VarDeclBitfields too large!");
1770 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1771 "ParmVarDeclBitfields too large!");
1772 AllBits = 0;
1773 VarDeclBits.SClass = SC;
1774 // Everything else is implicitly initialized to false.
1775 }
1776
Create(ASTContext & C,DeclContext * DC,SourceLocation StartL,SourceLocation IdL,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S)1777 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1778 SourceLocation StartL, SourceLocation IdL,
1779 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1780 StorageClass S) {
1781 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1782 }
1783
CreateDeserialized(ASTContext & C,unsigned ID)1784 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1785 return new (C, ID)
1786 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1787 QualType(), nullptr, SC_None);
1788 }
1789
setStorageClass(StorageClass SC)1790 void VarDecl::setStorageClass(StorageClass SC) {
1791 assert(isLegalForVariable(SC));
1792 VarDeclBits.SClass = SC;
1793 }
1794
getTLSKind() const1795 VarDecl::TLSKind VarDecl::getTLSKind() const {
1796 switch (VarDeclBits.TSCSpec) {
1797 case TSCS_unspecified:
1798 if (hasAttr<ThreadAttr>())
1799 return TLS_Static;
1800 return TLS_None;
1801 case TSCS___thread: // Fall through.
1802 case TSCS__Thread_local:
1803 return TLS_Static;
1804 case TSCS_thread_local:
1805 return TLS_Dynamic;
1806 }
1807 llvm_unreachable("Unknown thread storage class specifier!");
1808 }
1809
getSourceRange() const1810 SourceRange VarDecl::getSourceRange() const {
1811 if (const Expr *Init = getInit()) {
1812 SourceLocation InitEnd = Init->getLocEnd();
1813 // If Init is implicit, ignore its source range and fallback on
1814 // DeclaratorDecl::getSourceRange() to handle postfix elements.
1815 if (InitEnd.isValid() && InitEnd != getLocation())
1816 return SourceRange(getOuterLocStart(), InitEnd);
1817 }
1818 return DeclaratorDecl::getSourceRange();
1819 }
1820
1821 template<typename T>
getDeclLanguageLinkage(const T & D)1822 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
1823 // C++ [dcl.link]p1: All function types, function names with external linkage,
1824 // and variable names with external linkage have a language linkage.
1825 if (!D.hasExternalFormalLinkage())
1826 return NoLanguageLinkage;
1827
1828 // Language linkage is a C++ concept, but saying that everything else in C has
1829 // C language linkage fits the implementation nicely.
1830 ASTContext &Context = D.getASTContext();
1831 if (!Context.getLangOpts().CPlusPlus)
1832 return CLanguageLinkage;
1833
1834 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1835 // language linkage of the names of class members and the function type of
1836 // class member functions.
1837 const DeclContext *DC = D.getDeclContext();
1838 if (DC->isRecord())
1839 return CXXLanguageLinkage;
1840
1841 // If the first decl is in an extern "C" context, any other redeclaration
1842 // will have C language linkage. If the first one is not in an extern "C"
1843 // context, we would have reported an error for any other decl being in one.
1844 if (isFirstInExternCContext(&D))
1845 return CLanguageLinkage;
1846 return CXXLanguageLinkage;
1847 }
1848
1849 template<typename T>
isDeclExternC(const T & D)1850 static bool isDeclExternC(const T &D) {
1851 // Since the context is ignored for class members, they can only have C++
1852 // language linkage or no language linkage.
1853 const DeclContext *DC = D.getDeclContext();
1854 if (DC->isRecord()) {
1855 assert(D.getASTContext().getLangOpts().CPlusPlus);
1856 return false;
1857 }
1858
1859 return D.getLanguageLinkage() == CLanguageLinkage;
1860 }
1861
getLanguageLinkage() const1862 LanguageLinkage VarDecl::getLanguageLinkage() const {
1863 return getDeclLanguageLinkage(*this);
1864 }
1865
isExternC() const1866 bool VarDecl::isExternC() const {
1867 return isDeclExternC(*this);
1868 }
1869
isInExternCContext() const1870 bool VarDecl::isInExternCContext() const {
1871 return getLexicalDeclContext()->isExternCContext();
1872 }
1873
isInExternCXXContext() const1874 bool VarDecl::isInExternCXXContext() const {
1875 return getLexicalDeclContext()->isExternCXXContext();
1876 }
1877
getCanonicalDecl()1878 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
1879
1880 VarDecl::DefinitionKind
isThisDeclarationADefinition(ASTContext & C) const1881 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
1882 // C++ [basic.def]p2:
1883 // A declaration is a definition unless [...] it contains the 'extern'
1884 // specifier or a linkage-specification and neither an initializer [...],
1885 // it declares a static data member in a class declaration [...].
1886 // C++1y [temp.expl.spec]p15:
1887 // An explicit specialization of a static data member or an explicit
1888 // specialization of a static data member template is a definition if the
1889 // declaration includes an initializer; otherwise, it is a declaration.
1890 //
1891 // FIXME: How do you declare (but not define) a partial specialization of
1892 // a static data member template outside the containing class?
1893 if (isStaticDataMember()) {
1894 if (isOutOfLine() &&
1895 (hasInit() ||
1896 // If the first declaration is out-of-line, this may be an
1897 // instantiation of an out-of-line partial specialization of a variable
1898 // template for which we have not yet instantiated the initializer.
1899 (getFirstDecl()->isOutOfLine()
1900 ? getTemplateSpecializationKind() == TSK_Undeclared
1901 : getTemplateSpecializationKind() !=
1902 TSK_ExplicitSpecialization) ||
1903 isa<VarTemplatePartialSpecializationDecl>(this)))
1904 return Definition;
1905 else
1906 return DeclarationOnly;
1907 }
1908 // C99 6.7p5:
1909 // A definition of an identifier is a declaration for that identifier that
1910 // [...] causes storage to be reserved for that object.
1911 // Note: that applies for all non-file-scope objects.
1912 // C99 6.9.2p1:
1913 // If the declaration of an identifier for an object has file scope and an
1914 // initializer, the declaration is an external definition for the identifier
1915 if (hasInit())
1916 return Definition;
1917
1918 if (hasAttr<AliasAttr>() || hasAttr<SelectAnyAttr>())
1919 return Definition;
1920
1921 // A variable template specialization (other than a static data member
1922 // template or an explicit specialization) is a declaration until we
1923 // instantiate its initializer.
1924 if (isa<VarTemplateSpecializationDecl>(this) &&
1925 getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
1926 return DeclarationOnly;
1927
1928 if (hasExternalStorage())
1929 return DeclarationOnly;
1930
1931 // [dcl.link] p7:
1932 // A declaration directly contained in a linkage-specification is treated
1933 // as if it contains the extern specifier for the purpose of determining
1934 // the linkage of the declared name and whether it is a definition.
1935 if (isSingleLineLanguageLinkage(*this))
1936 return DeclarationOnly;
1937
1938 // C99 6.9.2p2:
1939 // A declaration of an object that has file scope without an initializer,
1940 // and without a storage class specifier or the scs 'static', constitutes
1941 // a tentative definition.
1942 // No such thing in C++.
1943 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
1944 return TentativeDefinition;
1945
1946 // What's left is (in C, block-scope) declarations without initializers or
1947 // external storage. These are definitions.
1948 return Definition;
1949 }
1950
getActingDefinition()1951 VarDecl *VarDecl::getActingDefinition() {
1952 DefinitionKind Kind = isThisDeclarationADefinition();
1953 if (Kind != TentativeDefinition)
1954 return nullptr;
1955
1956 VarDecl *LastTentative = nullptr;
1957 VarDecl *First = getFirstDecl();
1958 for (auto I : First->redecls()) {
1959 Kind = I->isThisDeclarationADefinition();
1960 if (Kind == Definition)
1961 return nullptr;
1962 else if (Kind == TentativeDefinition)
1963 LastTentative = I;
1964 }
1965 return LastTentative;
1966 }
1967
getDefinition(ASTContext & C)1968 VarDecl *VarDecl::getDefinition(ASTContext &C) {
1969 VarDecl *First = getFirstDecl();
1970 for (auto I : First->redecls()) {
1971 if (I->isThisDeclarationADefinition(C) == Definition)
1972 return I;
1973 }
1974 return nullptr;
1975 }
1976
hasDefinition(ASTContext & C) const1977 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
1978 DefinitionKind Kind = DeclarationOnly;
1979
1980 const VarDecl *First = getFirstDecl();
1981 for (auto I : First->redecls()) {
1982 Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
1983 if (Kind == Definition)
1984 break;
1985 }
1986
1987 return Kind;
1988 }
1989
getAnyInitializer(const VarDecl * & D) const1990 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
1991 for (auto I : redecls()) {
1992 if (auto Expr = I->getInit()) {
1993 D = I;
1994 return Expr;
1995 }
1996 }
1997 return nullptr;
1998 }
1999
isOutOfLine() const2000 bool VarDecl::isOutOfLine() const {
2001 if (Decl::isOutOfLine())
2002 return true;
2003
2004 if (!isStaticDataMember())
2005 return false;
2006
2007 // If this static data member was instantiated from a static data member of
2008 // a class template, check whether that static data member was defined
2009 // out-of-line.
2010 if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2011 return VD->isOutOfLine();
2012
2013 return false;
2014 }
2015
getOutOfLineDefinition()2016 VarDecl *VarDecl::getOutOfLineDefinition() {
2017 if (!isStaticDataMember())
2018 return nullptr;
2019
2020 for (auto RD : redecls()) {
2021 if (RD->getLexicalDeclContext()->isFileContext())
2022 return RD;
2023 }
2024
2025 return nullptr;
2026 }
2027
setInit(Expr * I)2028 void VarDecl::setInit(Expr *I) {
2029 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2030 Eval->~EvaluatedStmt();
2031 getASTContext().Deallocate(Eval);
2032 }
2033
2034 Init = I;
2035 }
2036
isUsableInConstantExpressions(ASTContext & C) const2037 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
2038 const LangOptions &Lang = C.getLangOpts();
2039
2040 if (!Lang.CPlusPlus)
2041 return false;
2042
2043 // In C++11, any variable of reference type can be used in a constant
2044 // expression if it is initialized by a constant expression.
2045 if (Lang.CPlusPlus11 && getType()->isReferenceType())
2046 return true;
2047
2048 // Only const objects can be used in constant expressions in C++. C++98 does
2049 // not require the variable to be non-volatile, but we consider this to be a
2050 // defect.
2051 if (!getType().isConstQualified() || getType().isVolatileQualified())
2052 return false;
2053
2054 // In C++, const, non-volatile variables of integral or enumeration types
2055 // can be used in constant expressions.
2056 if (getType()->isIntegralOrEnumerationType())
2057 return true;
2058
2059 // Additionally, in C++11, non-volatile constexpr variables can be used in
2060 // constant expressions.
2061 return Lang.CPlusPlus11 && isConstexpr();
2062 }
2063
2064 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2065 /// form, which contains extra information on the evaluated value of the
2066 /// initializer.
ensureEvaluatedStmt() const2067 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2068 EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
2069 if (!Eval) {
2070 Stmt *S = Init.get<Stmt *>();
2071 // Note: EvaluatedStmt contains an APValue, which usually holds
2072 // resources not allocated from the ASTContext. We need to do some
2073 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2074 // where we can detect whether there's anything to clean up or not.
2075 Eval = new (getASTContext()) EvaluatedStmt;
2076 Eval->Value = S;
2077 Init = Eval;
2078 }
2079 return Eval;
2080 }
2081
evaluateValue() const2082 APValue *VarDecl::evaluateValue() const {
2083 SmallVector<PartialDiagnosticAt, 8> Notes;
2084 return evaluateValue(Notes);
2085 }
2086
2087 namespace {
2088 // Destroy an APValue that was allocated in an ASTContext.
DestroyAPValue(void * UntypedValue)2089 void DestroyAPValue(void* UntypedValue) {
2090 static_cast<APValue*>(UntypedValue)->~APValue();
2091 }
2092 } // namespace
2093
evaluateValue(SmallVectorImpl<PartialDiagnosticAt> & Notes) const2094 APValue *VarDecl::evaluateValue(
2095 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2096 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2097
2098 // We only produce notes indicating why an initializer is non-constant the
2099 // first time it is evaluated. FIXME: The notes won't always be emitted the
2100 // first time we try evaluation, so might not be produced at all.
2101 if (Eval->WasEvaluated)
2102 return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
2103
2104 const Expr *Init = cast<Expr>(Eval->Value);
2105 assert(!Init->isValueDependent());
2106
2107 if (Eval->IsEvaluating) {
2108 // FIXME: Produce a diagnostic for self-initialization.
2109 Eval->CheckedICE = true;
2110 Eval->IsICE = false;
2111 return nullptr;
2112 }
2113
2114 Eval->IsEvaluating = true;
2115
2116 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2117 this, Notes);
2118
2119 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2120 // or that it's empty (so that there's nothing to clean up) if evaluation
2121 // failed.
2122 if (!Result)
2123 Eval->Evaluated = APValue();
2124 else if (Eval->Evaluated.needsCleanup())
2125 getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
2126
2127 Eval->IsEvaluating = false;
2128 Eval->WasEvaluated = true;
2129
2130 // In C++11, we have determined whether the initializer was a constant
2131 // expression as a side-effect.
2132 if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2133 Eval->CheckedICE = true;
2134 Eval->IsICE = Result && Notes.empty();
2135 }
2136
2137 return Result ? &Eval->Evaluated : nullptr;
2138 }
2139
checkInitIsICE() const2140 bool VarDecl::checkInitIsICE() const {
2141 // Initializers of weak variables are never ICEs.
2142 if (isWeak())
2143 return false;
2144
2145 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2146 if (Eval->CheckedICE)
2147 // We have already checked whether this subexpression is an
2148 // integral constant expression.
2149 return Eval->IsICE;
2150
2151 const Expr *Init = cast<Expr>(Eval->Value);
2152 assert(!Init->isValueDependent());
2153
2154 // In C++11, evaluate the initializer to check whether it's a constant
2155 // expression.
2156 if (getASTContext().getLangOpts().CPlusPlus11) {
2157 SmallVector<PartialDiagnosticAt, 8> Notes;
2158 evaluateValue(Notes);
2159 return Eval->IsICE;
2160 }
2161
2162 // It's an ICE whether or not the definition we found is
2163 // out-of-line. See DR 721 and the discussion in Clang PR
2164 // 6206 for details.
2165
2166 if (Eval->CheckingICE)
2167 return false;
2168 Eval->CheckingICE = true;
2169
2170 Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2171 Eval->CheckingICE = false;
2172 Eval->CheckedICE = true;
2173 return Eval->IsICE;
2174 }
2175
getInstantiatedFromStaticDataMember() const2176 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2177 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2178 return cast<VarDecl>(MSI->getInstantiatedFrom());
2179
2180 return nullptr;
2181 }
2182
getTemplateSpecializationKind() const2183 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2184 if (const VarTemplateSpecializationDecl *Spec =
2185 dyn_cast<VarTemplateSpecializationDecl>(this))
2186 return Spec->getSpecializationKind();
2187
2188 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2189 return MSI->getTemplateSpecializationKind();
2190
2191 return TSK_Undeclared;
2192 }
2193
getPointOfInstantiation() const2194 SourceLocation VarDecl::getPointOfInstantiation() const {
2195 if (const VarTemplateSpecializationDecl *Spec =
2196 dyn_cast<VarTemplateSpecializationDecl>(this))
2197 return Spec->getPointOfInstantiation();
2198
2199 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2200 return MSI->getPointOfInstantiation();
2201
2202 return SourceLocation();
2203 }
2204
getDescribedVarTemplate() const2205 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2206 return getASTContext().getTemplateOrSpecializationInfo(this)
2207 .dyn_cast<VarTemplateDecl *>();
2208 }
2209
setDescribedVarTemplate(VarTemplateDecl * Template)2210 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2211 getASTContext().setTemplateOrSpecializationInfo(this, Template);
2212 }
2213
getMemberSpecializationInfo() const2214 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2215 if (isStaticDataMember())
2216 // FIXME: Remove ?
2217 // return getASTContext().getInstantiatedFromStaticDataMember(this);
2218 return getASTContext().getTemplateOrSpecializationInfo(this)
2219 .dyn_cast<MemberSpecializationInfo *>();
2220 return nullptr;
2221 }
2222
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)2223 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2224 SourceLocation PointOfInstantiation) {
2225 assert((isa<VarTemplateSpecializationDecl>(this) ||
2226 getMemberSpecializationInfo()) &&
2227 "not a variable or static data member template specialization");
2228
2229 if (VarTemplateSpecializationDecl *Spec =
2230 dyn_cast<VarTemplateSpecializationDecl>(this)) {
2231 Spec->setSpecializationKind(TSK);
2232 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2233 Spec->getPointOfInstantiation().isInvalid())
2234 Spec->setPointOfInstantiation(PointOfInstantiation);
2235 }
2236
2237 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2238 MSI->setTemplateSpecializationKind(TSK);
2239 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2240 MSI->getPointOfInstantiation().isInvalid())
2241 MSI->setPointOfInstantiation(PointOfInstantiation);
2242 }
2243 }
2244
2245 void
setInstantiationOfStaticDataMember(VarDecl * VD,TemplateSpecializationKind TSK)2246 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2247 TemplateSpecializationKind TSK) {
2248 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2249 "Previous template or instantiation?");
2250 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2251 }
2252
2253 //===----------------------------------------------------------------------===//
2254 // ParmVarDecl Implementation
2255 //===----------------------------------------------------------------------===//
2256
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,Expr * DefArg)2257 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2258 SourceLocation StartLoc,
2259 SourceLocation IdLoc, IdentifierInfo *Id,
2260 QualType T, TypeSourceInfo *TInfo,
2261 StorageClass S, Expr *DefArg) {
2262 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2263 S, DefArg);
2264 }
2265
getOriginalType() const2266 QualType ParmVarDecl::getOriginalType() const {
2267 TypeSourceInfo *TSI = getTypeSourceInfo();
2268 QualType T = TSI ? TSI->getType() : getType();
2269 if (const DecayedType *DT = dyn_cast<DecayedType>(T))
2270 return DT->getOriginalType();
2271 return T;
2272 }
2273
CreateDeserialized(ASTContext & C,unsigned ID)2274 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2275 return new (C, ID)
2276 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2277 nullptr, QualType(), nullptr, SC_None, nullptr);
2278 }
2279
getSourceRange() const2280 SourceRange ParmVarDecl::getSourceRange() const {
2281 if (!hasInheritedDefaultArg()) {
2282 SourceRange ArgRange = getDefaultArgRange();
2283 if (ArgRange.isValid())
2284 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2285 }
2286
2287 // DeclaratorDecl considers the range of postfix types as overlapping with the
2288 // declaration name, but this is not the case with parameters in ObjC methods.
2289 if (isa<ObjCMethodDecl>(getDeclContext()))
2290 return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
2291
2292 return DeclaratorDecl::getSourceRange();
2293 }
2294
getDefaultArg()2295 Expr *ParmVarDecl::getDefaultArg() {
2296 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2297 assert(!hasUninstantiatedDefaultArg() &&
2298 "Default argument is not yet instantiated!");
2299
2300 Expr *Arg = getInit();
2301 if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
2302 return E->getSubExpr();
2303
2304 return Arg;
2305 }
2306
getDefaultArgRange() const2307 SourceRange ParmVarDecl::getDefaultArgRange() const {
2308 if (const Expr *E = getInit())
2309 return E->getSourceRange();
2310
2311 if (hasUninstantiatedDefaultArg())
2312 return getUninstantiatedDefaultArg()->getSourceRange();
2313
2314 return SourceRange();
2315 }
2316
isParameterPack() const2317 bool ParmVarDecl::isParameterPack() const {
2318 return isa<PackExpansionType>(getType());
2319 }
2320
setParameterIndexLarge(unsigned parameterIndex)2321 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2322 getASTContext().setParameterIndex(this, parameterIndex);
2323 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2324 }
2325
getParameterIndexLarge() const2326 unsigned ParmVarDecl::getParameterIndexLarge() const {
2327 return getASTContext().getParameterIndex(this);
2328 }
2329
2330 //===----------------------------------------------------------------------===//
2331 // FunctionDecl Implementation
2332 //===----------------------------------------------------------------------===//
2333
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const2334 void FunctionDecl::getNameForDiagnostic(
2335 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2336 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2337 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2338 if (TemplateArgs)
2339 TemplateSpecializationType::PrintTemplateArgumentList(
2340 OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
2341 }
2342
isVariadic() const2343 bool FunctionDecl::isVariadic() const {
2344 if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
2345 return FT->isVariadic();
2346 return false;
2347 }
2348
hasBody(const FunctionDecl * & Definition) const2349 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2350 for (auto I : redecls()) {
2351 if (I->Body || I->IsLateTemplateParsed) {
2352 Definition = I;
2353 return true;
2354 }
2355 }
2356
2357 return false;
2358 }
2359
hasTrivialBody() const2360 bool FunctionDecl::hasTrivialBody() const
2361 {
2362 Stmt *S = getBody();
2363 if (!S) {
2364 // Since we don't have a body for this function, we don't know if it's
2365 // trivial or not.
2366 return false;
2367 }
2368
2369 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2370 return true;
2371 return false;
2372 }
2373
isDefined(const FunctionDecl * & Definition) const2374 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2375 for (auto I : redecls()) {
2376 if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed ||
2377 I->hasAttr<AliasAttr>()) {
2378 Definition = I->IsDeleted ? I->getCanonicalDecl() : I;
2379 return true;
2380 }
2381 }
2382
2383 return false;
2384 }
2385
getBody(const FunctionDecl * & Definition) const2386 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2387 if (!hasBody(Definition))
2388 return nullptr;
2389
2390 if (Definition->Body)
2391 return Definition->Body.get(getASTContext().getExternalSource());
2392
2393 return nullptr;
2394 }
2395
setBody(Stmt * B)2396 void FunctionDecl::setBody(Stmt *B) {
2397 Body = B;
2398 if (B)
2399 EndRangeLoc = B->getLocEnd();
2400 }
2401
setPure(bool P)2402 void FunctionDecl::setPure(bool P) {
2403 IsPure = P;
2404 if (P)
2405 if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2406 Parent->markedVirtualFunctionPure();
2407 }
2408
2409 template<std::size_t Len>
isNamed(const NamedDecl * ND,const char (& Str)[Len])2410 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2411 IdentifierInfo *II = ND->getIdentifier();
2412 return II && II->isStr(Str);
2413 }
2414
isMain() const2415 bool FunctionDecl::isMain() const {
2416 const TranslationUnitDecl *tunit =
2417 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2418 return tunit &&
2419 !tunit->getASTContext().getLangOpts().Freestanding &&
2420 isNamed(this, "main");
2421 }
2422
isMSVCRTEntryPoint() const2423 bool FunctionDecl::isMSVCRTEntryPoint() const {
2424 const TranslationUnitDecl *TUnit =
2425 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2426 if (!TUnit)
2427 return false;
2428
2429 // Even though we aren't really targeting MSVCRT if we are freestanding,
2430 // semantic analysis for these functions remains the same.
2431
2432 // MSVCRT entry points only exist on MSVCRT targets.
2433 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2434 return false;
2435
2436 // Nameless functions like constructors cannot be entry points.
2437 if (!getIdentifier())
2438 return false;
2439
2440 return llvm::StringSwitch<bool>(getName())
2441 .Cases("main", // an ANSI console app
2442 "wmain", // a Unicode console App
2443 "WinMain", // an ANSI GUI app
2444 "wWinMain", // a Unicode GUI app
2445 "DllMain", // a DLL
2446 true)
2447 .Default(false);
2448 }
2449
isReservedGlobalPlacementOperator() const2450 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2451 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2452 assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2453 getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2454 getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2455 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2456
2457 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2458 return false;
2459
2460 const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
2461 if (proto->getNumParams() != 2 || proto->isVariadic())
2462 return false;
2463
2464 ASTContext &Context =
2465 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2466 ->getASTContext();
2467
2468 // The result type and first argument type are constant across all
2469 // these operators. The second argument must be exactly void*.
2470 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2471 }
2472
isReplaceableGlobalAllocationFunction() const2473 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
2474 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2475 return false;
2476 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2477 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2478 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2479 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2480 return false;
2481
2482 if (isa<CXXRecordDecl>(getDeclContext()))
2483 return false;
2484
2485 // This can only fail for an invalid 'operator new' declaration.
2486 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2487 return false;
2488
2489 const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>();
2490 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic())
2491 return false;
2492
2493 // If this is a single-parameter function, it must be a replaceable global
2494 // allocation or deallocation function.
2495 if (FPT->getNumParams() == 1)
2496 return true;
2497
2498 // Otherwise, we're looking for a second parameter whose type is
2499 // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'.
2500 QualType Ty = FPT->getParamType(1);
2501 ASTContext &Ctx = getASTContext();
2502 if (Ctx.getLangOpts().SizedDeallocation &&
2503 Ctx.hasSameType(Ty, Ctx.getSizeType()))
2504 return true;
2505 if (!Ty->isReferenceType())
2506 return false;
2507 Ty = Ty->getPointeeType();
2508 if (Ty.getCVRQualifiers() != Qualifiers::Const)
2509 return false;
2510 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2511 return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace();
2512 }
2513
getLanguageLinkage() const2514 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
2515 return getDeclLanguageLinkage(*this);
2516 }
2517
isExternC() const2518 bool FunctionDecl::isExternC() const {
2519 return isDeclExternC(*this);
2520 }
2521
isInExternCContext() const2522 bool FunctionDecl::isInExternCContext() const {
2523 return getLexicalDeclContext()->isExternCContext();
2524 }
2525
isInExternCXXContext() const2526 bool FunctionDecl::isInExternCXXContext() const {
2527 return getLexicalDeclContext()->isExternCXXContext();
2528 }
2529
isGlobal() const2530 bool FunctionDecl::isGlobal() const {
2531 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
2532 return Method->isStatic();
2533
2534 if (getCanonicalDecl()->getStorageClass() == SC_Static)
2535 return false;
2536
2537 for (const DeclContext *DC = getDeclContext();
2538 DC->isNamespace();
2539 DC = DC->getParent()) {
2540 if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
2541 if (!Namespace->getDeclName())
2542 return false;
2543 break;
2544 }
2545 }
2546
2547 return true;
2548 }
2549
isNoReturn() const2550 bool FunctionDecl::isNoReturn() const {
2551 return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2552 hasAttr<C11NoReturnAttr>() ||
2553 getType()->getAs<FunctionType>()->getNoReturnAttr();
2554 }
2555
2556 void
setPreviousDeclaration(FunctionDecl * PrevDecl)2557 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
2558 redeclarable_base::setPreviousDecl(PrevDecl);
2559
2560 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
2561 FunctionTemplateDecl *PrevFunTmpl
2562 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
2563 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2564 FunTmpl->setPreviousDecl(PrevFunTmpl);
2565 }
2566
2567 if (PrevDecl && PrevDecl->IsInline)
2568 IsInline = true;
2569 }
2570
getCanonicalDecl() const2571 const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
2572 return getFirstDecl();
2573 }
2574
getCanonicalDecl()2575 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
2576
2577 /// \brief Returns a value indicating whether this function
2578 /// corresponds to a builtin function.
2579 ///
2580 /// The function corresponds to a built-in function if it is
2581 /// declared at translation scope or within an extern "C" block and
2582 /// its name matches with the name of a builtin. The returned value
2583 /// will be 0 for functions that do not correspond to a builtin, a
2584 /// value of type \c Builtin::ID if in the target-independent range
2585 /// \c [1,Builtin::First), or a target-specific builtin value.
getBuiltinID() const2586 unsigned FunctionDecl::getBuiltinID() const {
2587 if (!getIdentifier())
2588 return 0;
2589
2590 unsigned BuiltinID = getIdentifier()->getBuiltinID();
2591 if (!BuiltinID)
2592 return 0;
2593
2594 ASTContext &Context = getASTContext();
2595 if (Context.getLangOpts().CPlusPlus) {
2596 const LinkageSpecDecl *LinkageDecl = dyn_cast<LinkageSpecDecl>(
2597 getFirstDecl()->getDeclContext());
2598 // In C++, the first declaration of a builtin is always inside an implicit
2599 // extern "C".
2600 // FIXME: A recognised library function may not be directly in an extern "C"
2601 // declaration, for instance "extern "C" { namespace std { decl } }".
2602 if (!LinkageDecl) {
2603 if (BuiltinID == Builtin::BI__GetExceptionInfo &&
2604 Context.getTargetInfo().getCXXABI().isMicrosoft() &&
2605 isInStdNamespace())
2606 return Builtin::BI__GetExceptionInfo;
2607 return 0;
2608 }
2609 if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
2610 return 0;
2611 }
2612
2613 // If the function is marked "overloadable", it has a different mangled name
2614 // and is not the C library function.
2615 if (hasAttr<OverloadableAttr>())
2616 return 0;
2617
2618 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2619 return BuiltinID;
2620
2621 // This function has the name of a known C library
2622 // function. Determine whether it actually refers to the C library
2623 // function or whether it just has the same name.
2624
2625 // If this is a static function, it's not a builtin.
2626 if (getStorageClass() == SC_Static)
2627 return 0;
2628
2629 return BuiltinID;
2630 }
2631
2632
2633 /// getNumParams - Return the number of parameters this function must have
2634 /// based on its FunctionType. This is the length of the ParamInfo array
2635 /// after it has been created.
getNumParams() const2636 unsigned FunctionDecl::getNumParams() const {
2637 const FunctionProtoType *FPT = getType()->getAs<FunctionProtoType>();
2638 return FPT ? FPT->getNumParams() : 0;
2639 }
2640
setParams(ASTContext & C,ArrayRef<ParmVarDecl * > NewParamInfo)2641 void FunctionDecl::setParams(ASTContext &C,
2642 ArrayRef<ParmVarDecl *> NewParamInfo) {
2643 assert(!ParamInfo && "Already has param info!");
2644 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
2645
2646 // Zero params -> null pointer.
2647 if (!NewParamInfo.empty()) {
2648 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
2649 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
2650 }
2651 }
2652
setDeclsInPrototypeScope(ArrayRef<NamedDecl * > NewDecls)2653 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
2654 assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
2655
2656 if (!NewDecls.empty()) {
2657 NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
2658 std::copy(NewDecls.begin(), NewDecls.end(), A);
2659 DeclsInPrototypeScope = llvm::makeArrayRef(A, NewDecls.size());
2660 // Move declarations introduced in prototype to the function context.
2661 for (auto I : NewDecls) {
2662 DeclContext *DC = I->getDeclContext();
2663 // Forward-declared reference to an enumeration is not added to
2664 // declaration scope, so skip declaration that is absent from its
2665 // declaration contexts.
2666 if (DC->containsDecl(I)) {
2667 DC->removeDecl(I);
2668 I->setDeclContext(this);
2669 addDecl(I);
2670 }
2671 }
2672 }
2673 }
2674
2675 /// getMinRequiredArguments - Returns the minimum number of arguments
2676 /// needed to call this function. This may be fewer than the number of
2677 /// function parameters, if some of the parameters have default
2678 /// arguments (in C++) or are parameter packs (C++11).
getMinRequiredArguments() const2679 unsigned FunctionDecl::getMinRequiredArguments() const {
2680 if (!getASTContext().getLangOpts().CPlusPlus)
2681 return getNumParams();
2682
2683 unsigned NumRequiredArgs = 0;
2684 for (auto *Param : params())
2685 if (!Param->isParameterPack() && !Param->hasDefaultArg())
2686 ++NumRequiredArgs;
2687 return NumRequiredArgs;
2688 }
2689
2690 /// \brief The combination of the extern and inline keywords under MSVC forces
2691 /// the function to be required.
2692 ///
2693 /// Note: This function assumes that we will only get called when isInlined()
2694 /// would return true for this FunctionDecl.
isMSExternInline() const2695 bool FunctionDecl::isMSExternInline() const {
2696 assert(isInlined() && "expected to get called on an inlined function!");
2697
2698 const ASTContext &Context = getASTContext();
2699 if (!Context.getLangOpts().MSVCCompat && !hasAttr<DLLExportAttr>())
2700 return false;
2701
2702 for (const FunctionDecl *FD = getMostRecentDecl(); FD;
2703 FD = FD->getPreviousDecl())
2704 if (FD->getStorageClass() == SC_Extern)
2705 return true;
2706
2707 return false;
2708 }
2709
redeclForcesDefMSVC(const FunctionDecl * Redecl)2710 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
2711 if (Redecl->getStorageClass() != SC_Extern)
2712 return false;
2713
2714 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
2715 FD = FD->getPreviousDecl())
2716 if (FD->getStorageClass() == SC_Extern)
2717 return false;
2718
2719 return true;
2720 }
2721
RedeclForcesDefC99(const FunctionDecl * Redecl)2722 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
2723 // Only consider file-scope declarations in this test.
2724 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
2725 return false;
2726
2727 // Only consider explicit declarations; the presence of a builtin for a
2728 // libcall shouldn't affect whether a definition is externally visible.
2729 if (Redecl->isImplicit())
2730 return false;
2731
2732 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
2733 return true; // Not an inline definition
2734
2735 return false;
2736 }
2737
2738 /// \brief For a function declaration in C or C++, determine whether this
2739 /// declaration causes the definition to be externally visible.
2740 ///
2741 /// For instance, this determines if adding the current declaration to the set
2742 /// of redeclarations of the given functions causes
2743 /// isInlineDefinitionExternallyVisible to change from false to true.
doesDeclarationForceExternallyVisibleDefinition() const2744 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
2745 assert(!doesThisDeclarationHaveABody() &&
2746 "Must have a declaration without a body.");
2747
2748 ASTContext &Context = getASTContext();
2749
2750 if (Context.getLangOpts().MSVCCompat) {
2751 const FunctionDecl *Definition;
2752 if (hasBody(Definition) && Definition->isInlined() &&
2753 redeclForcesDefMSVC(this))
2754 return true;
2755 }
2756
2757 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2758 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
2759 // an externally visible definition.
2760 //
2761 // FIXME: What happens if gnu_inline gets added on after the first
2762 // declaration?
2763 if (!isInlineSpecified() || getStorageClass() == SC_Extern)
2764 return false;
2765
2766 const FunctionDecl *Prev = this;
2767 bool FoundBody = false;
2768 while ((Prev = Prev->getPreviousDecl())) {
2769 FoundBody |= Prev->Body.isValid();
2770
2771 if (Prev->Body) {
2772 // If it's not the case that both 'inline' and 'extern' are
2773 // specified on the definition, then it is always externally visible.
2774 if (!Prev->isInlineSpecified() ||
2775 Prev->getStorageClass() != SC_Extern)
2776 return false;
2777 } else if (Prev->isInlineSpecified() &&
2778 Prev->getStorageClass() != SC_Extern) {
2779 return false;
2780 }
2781 }
2782 return FoundBody;
2783 }
2784
2785 if (Context.getLangOpts().CPlusPlus)
2786 return false;
2787
2788 // C99 6.7.4p6:
2789 // [...] If all of the file scope declarations for a function in a
2790 // translation unit include the inline function specifier without extern,
2791 // then the definition in that translation unit is an inline definition.
2792 if (isInlineSpecified() && getStorageClass() != SC_Extern)
2793 return false;
2794 const FunctionDecl *Prev = this;
2795 bool FoundBody = false;
2796 while ((Prev = Prev->getPreviousDecl())) {
2797 FoundBody |= Prev->Body.isValid();
2798 if (RedeclForcesDefC99(Prev))
2799 return false;
2800 }
2801 return FoundBody;
2802 }
2803
getReturnTypeSourceRange() const2804 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
2805 const TypeSourceInfo *TSI = getTypeSourceInfo();
2806 if (!TSI)
2807 return SourceRange();
2808 FunctionTypeLoc FTL =
2809 TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
2810 if (!FTL)
2811 return SourceRange();
2812
2813 // Skip self-referential return types.
2814 const SourceManager &SM = getASTContext().getSourceManager();
2815 SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
2816 SourceLocation Boundary = getNameInfo().getLocStart();
2817 if (RTRange.isInvalid() || Boundary.isInvalid() ||
2818 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
2819 return SourceRange();
2820
2821 return RTRange;
2822 }
2823
hasUnusedResultAttr() const2824 bool FunctionDecl::hasUnusedResultAttr() const {
2825 QualType RetType = getReturnType();
2826 if (RetType->isRecordType()) {
2827 const CXXRecordDecl *Ret = RetType->getAsCXXRecordDecl();
2828 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(this);
2829 if (Ret && Ret->hasAttr<WarnUnusedResultAttr>() &&
2830 !(MD && MD->getCorrespondingMethodInClass(Ret, true)))
2831 return true;
2832 }
2833 return hasAttr<WarnUnusedResultAttr>();
2834 }
2835
2836 /// \brief For an inline function definition in C, or for a gnu_inline function
2837 /// in C++, determine whether the definition will be externally visible.
2838 ///
2839 /// Inline function definitions are always available for inlining optimizations.
2840 /// However, depending on the language dialect, declaration specifiers, and
2841 /// attributes, the definition of an inline function may or may not be
2842 /// "externally" visible to other translation units in the program.
2843 ///
2844 /// In C99, inline definitions are not externally visible by default. However,
2845 /// if even one of the global-scope declarations is marked "extern inline", the
2846 /// inline definition becomes externally visible (C99 6.7.4p6).
2847 ///
2848 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
2849 /// definition, we use the GNU semantics for inline, which are nearly the
2850 /// opposite of C99 semantics. In particular, "inline" by itself will create
2851 /// an externally visible symbol, but "extern inline" will not create an
2852 /// externally visible symbol.
isInlineDefinitionExternallyVisible() const2853 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
2854 assert(doesThisDeclarationHaveABody() && "Must have the function definition");
2855 assert(isInlined() && "Function must be inline");
2856 ASTContext &Context = getASTContext();
2857
2858 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2859 // Note: If you change the logic here, please change
2860 // doesDeclarationForceExternallyVisibleDefinition as well.
2861 //
2862 // If it's not the case that both 'inline' and 'extern' are
2863 // specified on the definition, then this inline definition is
2864 // externally visible.
2865 if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
2866 return true;
2867
2868 // If any declaration is 'inline' but not 'extern', then this definition
2869 // is externally visible.
2870 for (auto Redecl : redecls()) {
2871 if (Redecl->isInlineSpecified() &&
2872 Redecl->getStorageClass() != SC_Extern)
2873 return true;
2874 }
2875
2876 return false;
2877 }
2878
2879 // The rest of this function is C-only.
2880 assert(!Context.getLangOpts().CPlusPlus &&
2881 "should not use C inline rules in C++");
2882
2883 // C99 6.7.4p6:
2884 // [...] If all of the file scope declarations for a function in a
2885 // translation unit include the inline function specifier without extern,
2886 // then the definition in that translation unit is an inline definition.
2887 for (auto Redecl : redecls()) {
2888 if (RedeclForcesDefC99(Redecl))
2889 return true;
2890 }
2891
2892 // C99 6.7.4p6:
2893 // An inline definition does not provide an external definition for the
2894 // function, and does not forbid an external definition in another
2895 // translation unit.
2896 return false;
2897 }
2898
2899 /// getOverloadedOperator - Which C++ overloaded operator this
2900 /// function represents, if any.
getOverloadedOperator() const2901 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
2902 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
2903 return getDeclName().getCXXOverloadedOperator();
2904 else
2905 return OO_None;
2906 }
2907
2908 /// getLiteralIdentifier - The literal suffix identifier this function
2909 /// represents, if any.
getLiteralIdentifier() const2910 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
2911 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
2912 return getDeclName().getCXXLiteralIdentifier();
2913 else
2914 return nullptr;
2915 }
2916
getTemplatedKind() const2917 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
2918 if (TemplateOrSpecialization.isNull())
2919 return TK_NonTemplate;
2920 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
2921 return TK_FunctionTemplate;
2922 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
2923 return TK_MemberSpecialization;
2924 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
2925 return TK_FunctionTemplateSpecialization;
2926 if (TemplateOrSpecialization.is
2927 <DependentFunctionTemplateSpecializationInfo*>())
2928 return TK_DependentFunctionTemplateSpecialization;
2929
2930 llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
2931 }
2932
getInstantiatedFromMemberFunction() const2933 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
2934 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
2935 return cast<FunctionDecl>(Info->getInstantiatedFrom());
2936
2937 return nullptr;
2938 }
2939
2940 void
setInstantiationOfMemberFunction(ASTContext & C,FunctionDecl * FD,TemplateSpecializationKind TSK)2941 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
2942 FunctionDecl *FD,
2943 TemplateSpecializationKind TSK) {
2944 assert(TemplateOrSpecialization.isNull() &&
2945 "Member function is already a specialization");
2946 MemberSpecializationInfo *Info
2947 = new (C) MemberSpecializationInfo(FD, TSK);
2948 TemplateOrSpecialization = Info;
2949 }
2950
isImplicitlyInstantiable() const2951 bool FunctionDecl::isImplicitlyInstantiable() const {
2952 // If the function is invalid, it can't be implicitly instantiated.
2953 if (isInvalidDecl())
2954 return false;
2955
2956 switch (getTemplateSpecializationKind()) {
2957 case TSK_Undeclared:
2958 case TSK_ExplicitInstantiationDefinition:
2959 return false;
2960
2961 case TSK_ImplicitInstantiation:
2962 return true;
2963
2964 // It is possible to instantiate TSK_ExplicitSpecialization kind
2965 // if the FunctionDecl has a class scope specialization pattern.
2966 case TSK_ExplicitSpecialization:
2967 return getClassScopeSpecializationPattern() != nullptr;
2968
2969 case TSK_ExplicitInstantiationDeclaration:
2970 // Handled below.
2971 break;
2972 }
2973
2974 // Find the actual template from which we will instantiate.
2975 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
2976 bool HasPattern = false;
2977 if (PatternDecl)
2978 HasPattern = PatternDecl->hasBody(PatternDecl);
2979
2980 // C++0x [temp.explicit]p9:
2981 // Except for inline functions, other explicit instantiation declarations
2982 // have the effect of suppressing the implicit instantiation of the entity
2983 // to which they refer.
2984 if (!HasPattern || !PatternDecl)
2985 return true;
2986
2987 return PatternDecl->isInlined();
2988 }
2989
isTemplateInstantiation() const2990 bool FunctionDecl::isTemplateInstantiation() const {
2991 switch (getTemplateSpecializationKind()) {
2992 case TSK_Undeclared:
2993 case TSK_ExplicitSpecialization:
2994 return false;
2995 case TSK_ImplicitInstantiation:
2996 case TSK_ExplicitInstantiationDeclaration:
2997 case TSK_ExplicitInstantiationDefinition:
2998 return true;
2999 }
3000 llvm_unreachable("All TSK values handled.");
3001 }
3002
getTemplateInstantiationPattern() const3003 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
3004 // Handle class scope explicit specialization special case.
3005 if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3006 return getClassScopeSpecializationPattern();
3007
3008 // If this is a generic lambda call operator specialization, its
3009 // instantiation pattern is always its primary template's pattern
3010 // even if its primary template was instantiated from another
3011 // member template (which happens with nested generic lambdas).
3012 // Since a lambda's call operator's body is transformed eagerly,
3013 // we don't have to go hunting for a prototype definition template
3014 // (i.e. instantiated-from-member-template) to use as an instantiation
3015 // pattern.
3016
3017 if (isGenericLambdaCallOperatorSpecialization(
3018 dyn_cast<CXXMethodDecl>(this))) {
3019 assert(getPrimaryTemplate() && "A generic lambda specialization must be "
3020 "generated from a primary call operator "
3021 "template");
3022 assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() &&
3023 "A generic lambda call operator template must always have a body - "
3024 "even if instantiated from a prototype (i.e. as written) member "
3025 "template");
3026 return getPrimaryTemplate()->getTemplatedDecl();
3027 }
3028
3029 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3030 while (Primary->getInstantiatedFromMemberTemplate()) {
3031 // If we have hit a point where the user provided a specialization of
3032 // this template, we're done looking.
3033 if (Primary->isMemberSpecialization())
3034 break;
3035 Primary = Primary->getInstantiatedFromMemberTemplate();
3036 }
3037
3038 return Primary->getTemplatedDecl();
3039 }
3040
3041 return getInstantiatedFromMemberFunction();
3042 }
3043
getPrimaryTemplate() const3044 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3045 if (FunctionTemplateSpecializationInfo *Info
3046 = TemplateOrSpecialization
3047 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3048 return Info->Template.getPointer();
3049 }
3050 return nullptr;
3051 }
3052
getClassScopeSpecializationPattern() const3053 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
3054 return getASTContext().getClassScopeSpecializationPattern(this);
3055 }
3056
3057 const TemplateArgumentList *
getTemplateSpecializationArgs() const3058 FunctionDecl::getTemplateSpecializationArgs() const {
3059 if (FunctionTemplateSpecializationInfo *Info
3060 = TemplateOrSpecialization
3061 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3062 return Info->TemplateArguments;
3063 }
3064 return nullptr;
3065 }
3066
3067 const ASTTemplateArgumentListInfo *
getTemplateSpecializationArgsAsWritten() const3068 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3069 if (FunctionTemplateSpecializationInfo *Info
3070 = TemplateOrSpecialization
3071 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3072 return Info->TemplateArgumentsAsWritten;
3073 }
3074 return nullptr;
3075 }
3076
3077 void
setFunctionTemplateSpecialization(ASTContext & C,FunctionTemplateDecl * Template,const TemplateArgumentList * TemplateArgs,void * InsertPos,TemplateSpecializationKind TSK,const TemplateArgumentListInfo * TemplateArgsAsWritten,SourceLocation PointOfInstantiation)3078 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3079 FunctionTemplateDecl *Template,
3080 const TemplateArgumentList *TemplateArgs,
3081 void *InsertPos,
3082 TemplateSpecializationKind TSK,
3083 const TemplateArgumentListInfo *TemplateArgsAsWritten,
3084 SourceLocation PointOfInstantiation) {
3085 assert(TSK != TSK_Undeclared &&
3086 "Must specify the type of function template specialization");
3087 FunctionTemplateSpecializationInfo *Info
3088 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3089 if (!Info)
3090 Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
3091 TemplateArgs,
3092 TemplateArgsAsWritten,
3093 PointOfInstantiation);
3094 TemplateOrSpecialization = Info;
3095 Template->addSpecialization(Info, InsertPos);
3096 }
3097
3098 void
setDependentTemplateSpecialization(ASTContext & Context,const UnresolvedSetImpl & Templates,const TemplateArgumentListInfo & TemplateArgs)3099 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3100 const UnresolvedSetImpl &Templates,
3101 const TemplateArgumentListInfo &TemplateArgs) {
3102 assert(TemplateOrSpecialization.isNull());
3103 size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
3104 Size += Templates.size() * sizeof(FunctionTemplateDecl*);
3105 Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
3106 void *Buffer = Context.Allocate(Size);
3107 DependentFunctionTemplateSpecializationInfo *Info =
3108 new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
3109 TemplateArgs);
3110 TemplateOrSpecialization = Info;
3111 }
3112
3113 DependentFunctionTemplateSpecializationInfo::
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)3114 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3115 const TemplateArgumentListInfo &TArgs)
3116 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3117 static_assert(sizeof(*this) % llvm::AlignOf<void *>::Alignment == 0,
3118 "Trailing data is unaligned!");
3119
3120 d.NumTemplates = Ts.size();
3121 d.NumArgs = TArgs.size();
3122
3123 FunctionTemplateDecl **TsArray =
3124 const_cast<FunctionTemplateDecl**>(getTemplates());
3125 for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3126 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3127
3128 TemplateArgumentLoc *ArgsArray =
3129 const_cast<TemplateArgumentLoc*>(getTemplateArgs());
3130 for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3131 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3132 }
3133
getTemplateSpecializationKind() const3134 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3135 // For a function template specialization, query the specialization
3136 // information object.
3137 FunctionTemplateSpecializationInfo *FTSInfo
3138 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3139 if (FTSInfo)
3140 return FTSInfo->getTemplateSpecializationKind();
3141
3142 MemberSpecializationInfo *MSInfo
3143 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
3144 if (MSInfo)
3145 return MSInfo->getTemplateSpecializationKind();
3146
3147 return TSK_Undeclared;
3148 }
3149
3150 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)3151 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3152 SourceLocation PointOfInstantiation) {
3153 if (FunctionTemplateSpecializationInfo *FTSInfo
3154 = TemplateOrSpecialization.dyn_cast<
3155 FunctionTemplateSpecializationInfo*>()) {
3156 FTSInfo->setTemplateSpecializationKind(TSK);
3157 if (TSK != TSK_ExplicitSpecialization &&
3158 PointOfInstantiation.isValid() &&
3159 FTSInfo->getPointOfInstantiation().isInvalid())
3160 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3161 } else if (MemberSpecializationInfo *MSInfo
3162 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3163 MSInfo->setTemplateSpecializationKind(TSK);
3164 if (TSK != TSK_ExplicitSpecialization &&
3165 PointOfInstantiation.isValid() &&
3166 MSInfo->getPointOfInstantiation().isInvalid())
3167 MSInfo->setPointOfInstantiation(PointOfInstantiation);
3168 } else
3169 llvm_unreachable("Function cannot have a template specialization kind");
3170 }
3171
getPointOfInstantiation() const3172 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3173 if (FunctionTemplateSpecializationInfo *FTSInfo
3174 = TemplateOrSpecialization.dyn_cast<
3175 FunctionTemplateSpecializationInfo*>())
3176 return FTSInfo->getPointOfInstantiation();
3177 else if (MemberSpecializationInfo *MSInfo
3178 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3179 return MSInfo->getPointOfInstantiation();
3180
3181 return SourceLocation();
3182 }
3183
isOutOfLine() const3184 bool FunctionDecl::isOutOfLine() const {
3185 if (Decl::isOutOfLine())
3186 return true;
3187
3188 // If this function was instantiated from a member function of a
3189 // class template, check whether that member function was defined out-of-line.
3190 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3191 const FunctionDecl *Definition;
3192 if (FD->hasBody(Definition))
3193 return Definition->isOutOfLine();
3194 }
3195
3196 // If this function was instantiated from a function template,
3197 // check whether that function template was defined out-of-line.
3198 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3199 const FunctionDecl *Definition;
3200 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3201 return Definition->isOutOfLine();
3202 }
3203
3204 return false;
3205 }
3206
getSourceRange() const3207 SourceRange FunctionDecl::getSourceRange() const {
3208 return SourceRange(getOuterLocStart(), EndRangeLoc);
3209 }
3210
getMemoryFunctionKind() const3211 unsigned FunctionDecl::getMemoryFunctionKind() const {
3212 IdentifierInfo *FnInfo = getIdentifier();
3213
3214 if (!FnInfo)
3215 return 0;
3216
3217 // Builtin handling.
3218 switch (getBuiltinID()) {
3219 case Builtin::BI__builtin_memset:
3220 case Builtin::BI__builtin___memset_chk:
3221 case Builtin::BImemset:
3222 return Builtin::BImemset;
3223
3224 case Builtin::BI__builtin_memcpy:
3225 case Builtin::BI__builtin___memcpy_chk:
3226 case Builtin::BImemcpy:
3227 return Builtin::BImemcpy;
3228
3229 case Builtin::BI__builtin_memmove:
3230 case Builtin::BI__builtin___memmove_chk:
3231 case Builtin::BImemmove:
3232 return Builtin::BImemmove;
3233
3234 case Builtin::BIstrlcpy:
3235 case Builtin::BI__builtin___strlcpy_chk:
3236 return Builtin::BIstrlcpy;
3237
3238 case Builtin::BIstrlcat:
3239 case Builtin::BI__builtin___strlcat_chk:
3240 return Builtin::BIstrlcat;
3241
3242 case Builtin::BI__builtin_memcmp:
3243 case Builtin::BImemcmp:
3244 return Builtin::BImemcmp;
3245
3246 case Builtin::BI__builtin_strncpy:
3247 case Builtin::BI__builtin___strncpy_chk:
3248 case Builtin::BIstrncpy:
3249 return Builtin::BIstrncpy;
3250
3251 case Builtin::BI__builtin_strncmp:
3252 case Builtin::BIstrncmp:
3253 return Builtin::BIstrncmp;
3254
3255 case Builtin::BI__builtin_strncasecmp:
3256 case Builtin::BIstrncasecmp:
3257 return Builtin::BIstrncasecmp;
3258
3259 case Builtin::BI__builtin_strncat:
3260 case Builtin::BI__builtin___strncat_chk:
3261 case Builtin::BIstrncat:
3262 return Builtin::BIstrncat;
3263
3264 case Builtin::BI__builtin_strndup:
3265 case Builtin::BIstrndup:
3266 return Builtin::BIstrndup;
3267
3268 case Builtin::BI__builtin_strlen:
3269 case Builtin::BIstrlen:
3270 return Builtin::BIstrlen;
3271
3272 default:
3273 if (isExternC()) {
3274 if (FnInfo->isStr("memset"))
3275 return Builtin::BImemset;
3276 else if (FnInfo->isStr("memcpy"))
3277 return Builtin::BImemcpy;
3278 else if (FnInfo->isStr("memmove"))
3279 return Builtin::BImemmove;
3280 else if (FnInfo->isStr("memcmp"))
3281 return Builtin::BImemcmp;
3282 else if (FnInfo->isStr("strncpy"))
3283 return Builtin::BIstrncpy;
3284 else if (FnInfo->isStr("strncmp"))
3285 return Builtin::BIstrncmp;
3286 else if (FnInfo->isStr("strncasecmp"))
3287 return Builtin::BIstrncasecmp;
3288 else if (FnInfo->isStr("strncat"))
3289 return Builtin::BIstrncat;
3290 else if (FnInfo->isStr("strndup"))
3291 return Builtin::BIstrndup;
3292 else if (FnInfo->isStr("strlen"))
3293 return Builtin::BIstrlen;
3294 }
3295 break;
3296 }
3297 return 0;
3298 }
3299
3300 //===----------------------------------------------------------------------===//
3301 // FieldDecl Implementation
3302 //===----------------------------------------------------------------------===//
3303
Create(const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,Expr * BW,bool Mutable,InClassInitStyle InitStyle)3304 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
3305 SourceLocation StartLoc, SourceLocation IdLoc,
3306 IdentifierInfo *Id, QualType T,
3307 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3308 InClassInitStyle InitStyle) {
3309 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3310 BW, Mutable, InitStyle);
3311 }
3312
CreateDeserialized(ASTContext & C,unsigned ID)3313 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3314 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3315 SourceLocation(), nullptr, QualType(), nullptr,
3316 nullptr, false, ICIS_NoInit);
3317 }
3318
isAnonymousStructOrUnion() const3319 bool FieldDecl::isAnonymousStructOrUnion() const {
3320 if (!isImplicit() || getDeclName())
3321 return false;
3322
3323 if (const RecordType *Record = getType()->getAs<RecordType>())
3324 return Record->getDecl()->isAnonymousStructOrUnion();
3325
3326 return false;
3327 }
3328
getBitWidthValue(const ASTContext & Ctx) const3329 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3330 assert(isBitField() && "not a bitfield");
3331 Expr *BitWidth = static_cast<Expr *>(InitStorage.getPointer());
3332 return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
3333 }
3334
getFieldIndex() const3335 unsigned FieldDecl::getFieldIndex() const {
3336 const FieldDecl *Canonical = getCanonicalDecl();
3337 if (Canonical != this)
3338 return Canonical->getFieldIndex();
3339
3340 if (CachedFieldIndex) return CachedFieldIndex - 1;
3341
3342 unsigned Index = 0;
3343 const RecordDecl *RD = getParent();
3344
3345 for (auto *Field : RD->fields()) {
3346 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3347 ++Index;
3348 }
3349
3350 assert(CachedFieldIndex && "failed to find field in parent");
3351 return CachedFieldIndex - 1;
3352 }
3353
getSourceRange() const3354 SourceRange FieldDecl::getSourceRange() const {
3355 switch (InitStorage.getInt()) {
3356 // All three of these cases store an optional Expr*.
3357 case ISK_BitWidthOrNothing:
3358 case ISK_InClassCopyInit:
3359 case ISK_InClassListInit:
3360 if (const Expr *E = static_cast<const Expr *>(InitStorage.getPointer()))
3361 return SourceRange(getInnerLocStart(), E->getLocEnd());
3362 // FALLTHROUGH
3363
3364 case ISK_CapturedVLAType:
3365 return DeclaratorDecl::getSourceRange();
3366 }
3367 llvm_unreachable("bad init storage kind");
3368 }
3369
setCapturedVLAType(const VariableArrayType * VLAType)3370 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
3371 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
3372 "capturing type in non-lambda or captured record.");
3373 assert(InitStorage.getInt() == ISK_BitWidthOrNothing &&
3374 InitStorage.getPointer() == nullptr &&
3375 "bit width, initializer or captured type already set");
3376 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
3377 ISK_CapturedVLAType);
3378 }
3379
3380 //===----------------------------------------------------------------------===//
3381 // TagDecl Implementation
3382 //===----------------------------------------------------------------------===//
3383
getOuterLocStart() const3384 SourceLocation TagDecl::getOuterLocStart() const {
3385 return getTemplateOrInnerLocStart(this);
3386 }
3387
getSourceRange() const3388 SourceRange TagDecl::getSourceRange() const {
3389 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3390 return SourceRange(getOuterLocStart(), E);
3391 }
3392
getCanonicalDecl()3393 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
3394
setTypedefNameForAnonDecl(TypedefNameDecl * TDD)3395 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
3396 NamedDeclOrQualifier = TDD;
3397 if (const Type *T = getTypeForDecl()) {
3398 (void)T;
3399 assert(T->isLinkageValid());
3400 }
3401 assert(isLinkageValid());
3402 }
3403
startDefinition()3404 void TagDecl::startDefinition() {
3405 IsBeingDefined = true;
3406
3407 if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) {
3408 struct CXXRecordDecl::DefinitionData *Data =
3409 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3410 for (auto I : redecls())
3411 cast<CXXRecordDecl>(I)->DefinitionData = Data;
3412 }
3413 }
3414
completeDefinition()3415 void TagDecl::completeDefinition() {
3416 assert((!isa<CXXRecordDecl>(this) ||
3417 cast<CXXRecordDecl>(this)->hasDefinition()) &&
3418 "definition completed but not started");
3419
3420 IsCompleteDefinition = true;
3421 IsBeingDefined = false;
3422
3423 if (ASTMutationListener *L = getASTMutationListener())
3424 L->CompletedTagDefinition(this);
3425 }
3426
getDefinition() const3427 TagDecl *TagDecl::getDefinition() const {
3428 if (isCompleteDefinition())
3429 return const_cast<TagDecl *>(this);
3430
3431 // If it's possible for us to have an out-of-date definition, check now.
3432 if (MayHaveOutOfDateDef) {
3433 if (IdentifierInfo *II = getIdentifier()) {
3434 if (II->isOutOfDate()) {
3435 updateOutOfDate(*II);
3436 }
3437 }
3438 }
3439
3440 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
3441 return CXXRD->getDefinition();
3442
3443 for (auto R : redecls())
3444 if (R->isCompleteDefinition())
3445 return R;
3446
3447 return nullptr;
3448 }
3449
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)3450 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
3451 if (QualifierLoc) {
3452 // Make sure the extended qualifier info is allocated.
3453 if (!hasExtInfo())
3454 NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
3455 // Set qualifier info.
3456 getExtInfo()->QualifierLoc = QualifierLoc;
3457 } else {
3458 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3459 if (hasExtInfo()) {
3460 if (getExtInfo()->NumTemplParamLists == 0) {
3461 getASTContext().Deallocate(getExtInfo());
3462 NamedDeclOrQualifier = (TypedefNameDecl*)nullptr;
3463 }
3464 else
3465 getExtInfo()->QualifierLoc = QualifierLoc;
3466 }
3467 }
3468 }
3469
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)3470 void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
3471 unsigned NumTPLists,
3472 TemplateParameterList **TPLists) {
3473 assert(NumTPLists > 0);
3474 // Make sure the extended decl info is allocated.
3475 if (!hasExtInfo())
3476 // Allocate external info struct.
3477 NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
3478 // Set the template parameter lists info.
3479 getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
3480 }
3481
3482 //===----------------------------------------------------------------------===//
3483 // EnumDecl Implementation
3484 //===----------------------------------------------------------------------===//
3485
anchor()3486 void EnumDecl::anchor() { }
3487
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,EnumDecl * PrevDecl,bool IsScoped,bool IsScopedUsingClassTag,bool IsFixed)3488 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
3489 SourceLocation StartLoc, SourceLocation IdLoc,
3490 IdentifierInfo *Id,
3491 EnumDecl *PrevDecl, bool IsScoped,
3492 bool IsScopedUsingClassTag, bool IsFixed) {
3493 EnumDecl *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
3494 IsScoped, IsScopedUsingClassTag,
3495 IsFixed);
3496 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3497 C.getTypeDeclType(Enum, PrevDecl);
3498 return Enum;
3499 }
3500
CreateDeserialized(ASTContext & C,unsigned ID)3501 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3502 EnumDecl *Enum =
3503 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
3504 nullptr, nullptr, false, false, false);
3505 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3506 return Enum;
3507 }
3508
getIntegerTypeRange() const3509 SourceRange EnumDecl::getIntegerTypeRange() const {
3510 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
3511 return TI->getTypeLoc().getSourceRange();
3512 return SourceRange();
3513 }
3514
completeDefinition(QualType NewType,QualType NewPromotionType,unsigned NumPositiveBits,unsigned NumNegativeBits)3515 void EnumDecl::completeDefinition(QualType NewType,
3516 QualType NewPromotionType,
3517 unsigned NumPositiveBits,
3518 unsigned NumNegativeBits) {
3519 assert(!isCompleteDefinition() && "Cannot redefine enums!");
3520 if (!IntegerType)
3521 IntegerType = NewType.getTypePtr();
3522 PromotionType = NewPromotionType;
3523 setNumPositiveBits(NumPositiveBits);
3524 setNumNegativeBits(NumNegativeBits);
3525 TagDecl::completeDefinition();
3526 }
3527
getTemplateSpecializationKind() const3528 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
3529 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
3530 return MSI->getTemplateSpecializationKind();
3531
3532 return TSK_Undeclared;
3533 }
3534
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)3535 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3536 SourceLocation PointOfInstantiation) {
3537 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
3538 assert(MSI && "Not an instantiated member enumeration?");
3539 MSI->setTemplateSpecializationKind(TSK);
3540 if (TSK != TSK_ExplicitSpecialization &&
3541 PointOfInstantiation.isValid() &&
3542 MSI->getPointOfInstantiation().isInvalid())
3543 MSI->setPointOfInstantiation(PointOfInstantiation);
3544 }
3545
getInstantiatedFromMemberEnum() const3546 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
3547 if (SpecializationInfo)
3548 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
3549
3550 return nullptr;
3551 }
3552
setInstantiationOfMemberEnum(ASTContext & C,EnumDecl * ED,TemplateSpecializationKind TSK)3553 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3554 TemplateSpecializationKind TSK) {
3555 assert(!SpecializationInfo && "Member enum is already a specialization");
3556 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
3557 }
3558
3559 //===----------------------------------------------------------------------===//
3560 // RecordDecl Implementation
3561 //===----------------------------------------------------------------------===//
3562
RecordDecl(Kind DK,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3563 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
3564 DeclContext *DC, SourceLocation StartLoc,
3565 SourceLocation IdLoc, IdentifierInfo *Id,
3566 RecordDecl *PrevDecl)
3567 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
3568 HasFlexibleArrayMember = false;
3569 AnonymousStructOrUnion = false;
3570 HasObjectMember = false;
3571 HasVolatileMember = false;
3572 LoadedFieldsFromExternalStorage = false;
3573 assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
3574 }
3575
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3576 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3577 SourceLocation StartLoc, SourceLocation IdLoc,
3578 IdentifierInfo *Id, RecordDecl* PrevDecl) {
3579 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
3580 StartLoc, IdLoc, Id, PrevDecl);
3581 R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3582
3583 C.getTypeDeclType(R, PrevDecl);
3584 return R;
3585 }
3586
CreateDeserialized(const ASTContext & C,unsigned ID)3587 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
3588 RecordDecl *R =
3589 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
3590 SourceLocation(), nullptr, nullptr);
3591 R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3592 return R;
3593 }
3594
isInjectedClassName() const3595 bool RecordDecl::isInjectedClassName() const {
3596 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
3597 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
3598 }
3599
isLambda() const3600 bool RecordDecl::isLambda() const {
3601 if (auto RD = dyn_cast<CXXRecordDecl>(this))
3602 return RD->isLambda();
3603 return false;
3604 }
3605
isCapturedRecord() const3606 bool RecordDecl::isCapturedRecord() const {
3607 return hasAttr<CapturedRecordAttr>();
3608 }
3609
setCapturedRecord()3610 void RecordDecl::setCapturedRecord() {
3611 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
3612 }
3613
field_begin() const3614 RecordDecl::field_iterator RecordDecl::field_begin() const {
3615 if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
3616 LoadFieldsFromExternalStorage();
3617
3618 return field_iterator(decl_iterator(FirstDecl));
3619 }
3620
3621 /// completeDefinition - Notes that the definition of this type is now
3622 /// complete.
completeDefinition()3623 void RecordDecl::completeDefinition() {
3624 assert(!isCompleteDefinition() && "Cannot redefine record!");
3625 TagDecl::completeDefinition();
3626 }
3627
3628 /// isMsStruct - Get whether or not this record uses ms_struct layout.
3629 /// This which can be turned on with an attribute, pragma, or the
3630 /// -mms-bitfields command-line option.
isMsStruct(const ASTContext & C) const3631 bool RecordDecl::isMsStruct(const ASTContext &C) const {
3632 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
3633 }
3634
isFieldOrIndirectField(Decl::Kind K)3635 static bool isFieldOrIndirectField(Decl::Kind K) {
3636 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
3637 }
3638
LoadFieldsFromExternalStorage() const3639 void RecordDecl::LoadFieldsFromExternalStorage() const {
3640 ExternalASTSource *Source = getASTContext().getExternalSource();
3641 assert(hasExternalLexicalStorage() && Source && "No external storage?");
3642
3643 // Notify that we have a RecordDecl doing some initialization.
3644 ExternalASTSource::Deserializing TheFields(Source);
3645
3646 SmallVector<Decl*, 64> Decls;
3647 LoadedFieldsFromExternalStorage = true;
3648 switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField,
3649 Decls)) {
3650 case ELR_Success:
3651 break;
3652
3653 case ELR_AlreadyLoaded:
3654 case ELR_Failure:
3655 return;
3656 }
3657
3658 #ifndef NDEBUG
3659 // Check that all decls we got were FieldDecls.
3660 for (unsigned i=0, e=Decls.size(); i != e; ++i)
3661 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
3662 #endif
3663
3664 if (Decls.empty())
3665 return;
3666
3667 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
3668 /*FieldsAlreadyLoaded=*/false);
3669 }
3670
mayInsertExtraPadding(bool EmitRemark) const3671 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
3672 ASTContext &Context = getASTContext();
3673 if (!Context.getLangOpts().Sanitize.has(SanitizerKind::Address) ||
3674 !Context.getLangOpts().SanitizeAddressFieldPadding)
3675 return false;
3676 const auto &Blacklist = Context.getSanitizerBlacklist();
3677 const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this);
3678 // We may be able to relax some of these requirements.
3679 int ReasonToReject = -1;
3680 if (!CXXRD || CXXRD->isExternCContext())
3681 ReasonToReject = 0; // is not C++.
3682 else if (CXXRD->hasAttr<PackedAttr>())
3683 ReasonToReject = 1; // is packed.
3684 else if (CXXRD->isUnion())
3685 ReasonToReject = 2; // is a union.
3686 else if (CXXRD->isTriviallyCopyable())
3687 ReasonToReject = 3; // is trivially copyable.
3688 else if (CXXRD->hasTrivialDestructor())
3689 ReasonToReject = 4; // has trivial destructor.
3690 else if (CXXRD->isStandardLayout())
3691 ReasonToReject = 5; // is standard layout.
3692 else if (Blacklist.isBlacklistedLocation(getLocation(), "field-padding"))
3693 ReasonToReject = 6; // is in a blacklisted file.
3694 else if (Blacklist.isBlacklistedType(getQualifiedNameAsString(),
3695 "field-padding"))
3696 ReasonToReject = 7; // is blacklisted.
3697
3698 if (EmitRemark) {
3699 if (ReasonToReject >= 0)
3700 Context.getDiagnostics().Report(
3701 getLocation(),
3702 diag::remark_sanitize_address_insert_extra_padding_rejected)
3703 << getQualifiedNameAsString() << ReasonToReject;
3704 else
3705 Context.getDiagnostics().Report(
3706 getLocation(),
3707 diag::remark_sanitize_address_insert_extra_padding_accepted)
3708 << getQualifiedNameAsString();
3709 }
3710 return ReasonToReject < 0;
3711 }
3712
findFirstNamedDataMember() const3713 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
3714 for (const auto *I : fields()) {
3715 if (I->getIdentifier())
3716 return I;
3717
3718 if (const RecordType *RT = I->getType()->getAs<RecordType>())
3719 if (const FieldDecl *NamedDataMember =
3720 RT->getDecl()->findFirstNamedDataMember())
3721 return NamedDataMember;
3722 }
3723
3724 // We didn't find a named data member.
3725 return nullptr;
3726 }
3727
3728
3729 //===----------------------------------------------------------------------===//
3730 // BlockDecl Implementation
3731 //===----------------------------------------------------------------------===//
3732
setParams(ArrayRef<ParmVarDecl * > NewParamInfo)3733 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
3734 assert(!ParamInfo && "Already has param info!");
3735
3736 // Zero params -> null pointer.
3737 if (!NewParamInfo.empty()) {
3738 NumParams = NewParamInfo.size();
3739 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
3740 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3741 }
3742 }
3743
setCaptures(ASTContext & Context,const Capture * begin,const Capture * end,bool capturesCXXThis)3744 void BlockDecl::setCaptures(ASTContext &Context,
3745 const Capture *begin,
3746 const Capture *end,
3747 bool capturesCXXThis) {
3748 CapturesCXXThis = capturesCXXThis;
3749
3750 if (begin == end) {
3751 NumCaptures = 0;
3752 Captures = nullptr;
3753 return;
3754 }
3755
3756 NumCaptures = end - begin;
3757
3758 // Avoid new Capture[] because we don't want to provide a default
3759 // constructor.
3760 size_t allocationSize = NumCaptures * sizeof(Capture);
3761 void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
3762 memcpy(buffer, begin, allocationSize);
3763 Captures = static_cast<Capture*>(buffer);
3764 }
3765
capturesVariable(const VarDecl * variable) const3766 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
3767 for (const auto &I : captures())
3768 // Only auto vars can be captured, so no redeclaration worries.
3769 if (I.getVariable() == variable)
3770 return true;
3771
3772 return false;
3773 }
3774
getSourceRange() const3775 SourceRange BlockDecl::getSourceRange() const {
3776 return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
3777 }
3778
3779 //===----------------------------------------------------------------------===//
3780 // Other Decl Allocation/Deallocation Method Implementations
3781 //===----------------------------------------------------------------------===//
3782
anchor()3783 void TranslationUnitDecl::anchor() { }
3784
Create(ASTContext & C)3785 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
3786 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
3787 }
3788
anchor()3789 void ExternCContextDecl::anchor() { }
3790
Create(const ASTContext & C,TranslationUnitDecl * DC)3791 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
3792 TranslationUnitDecl *DC) {
3793 return new (C, DC) ExternCContextDecl(DC);
3794 }
3795
anchor()3796 void LabelDecl::anchor() { }
3797
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II)3798 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3799 SourceLocation IdentL, IdentifierInfo *II) {
3800 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
3801 }
3802
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II,SourceLocation GnuLabelL)3803 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3804 SourceLocation IdentL, IdentifierInfo *II,
3805 SourceLocation GnuLabelL) {
3806 assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
3807 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
3808 }
3809
CreateDeserialized(ASTContext & C,unsigned ID)3810 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3811 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
3812 SourceLocation());
3813 }
3814
setMSAsmLabel(StringRef Name)3815 void LabelDecl::setMSAsmLabel(StringRef Name) {
3816 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
3817 memcpy(Buffer, Name.data(), Name.size());
3818 Buffer[Name.size()] = '\0';
3819 MSAsmName = Buffer;
3820 }
3821
anchor()3822 void ValueDecl::anchor() { }
3823
isWeak() const3824 bool ValueDecl::isWeak() const {
3825 for (const auto *I : attrs())
3826 if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
3827 return true;
3828
3829 return isWeakImported();
3830 }
3831
anchor()3832 void ImplicitParamDecl::anchor() { }
3833
Create(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id,QualType Type)3834 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
3835 SourceLocation IdLoc,
3836 IdentifierInfo *Id,
3837 QualType Type) {
3838 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type);
3839 }
3840
CreateDeserialized(ASTContext & C,unsigned ID)3841 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
3842 unsigned ID) {
3843 return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr,
3844 QualType());
3845 }
3846
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool isInlineSpecified,bool hasWrittenPrototype,bool isConstexprSpecified)3847 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
3848 SourceLocation StartLoc,
3849 const DeclarationNameInfo &NameInfo,
3850 QualType T, TypeSourceInfo *TInfo,
3851 StorageClass SC,
3852 bool isInlineSpecified,
3853 bool hasWrittenPrototype,
3854 bool isConstexprSpecified) {
3855 FunctionDecl *New =
3856 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
3857 SC, isInlineSpecified, isConstexprSpecified);
3858 New->HasWrittenPrototype = hasWrittenPrototype;
3859 return New;
3860 }
3861
CreateDeserialized(ASTContext & C,unsigned ID)3862 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3863 return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
3864 DeclarationNameInfo(), QualType(), nullptr,
3865 SC_None, false, false);
3866 }
3867
Create(ASTContext & C,DeclContext * DC,SourceLocation L)3868 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3869 return new (C, DC) BlockDecl(DC, L);
3870 }
3871
CreateDeserialized(ASTContext & C,unsigned ID)3872 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3873 return new (C, ID) BlockDecl(nullptr, SourceLocation());
3874 }
3875
Create(ASTContext & C,DeclContext * DC,unsigned NumParams)3876 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
3877 unsigned NumParams) {
3878 return new (C, DC, NumParams * sizeof(ImplicitParamDecl *))
3879 CapturedDecl(DC, NumParams);
3880 }
3881
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumParams)3882 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3883 unsigned NumParams) {
3884 return new (C, ID, NumParams * sizeof(ImplicitParamDecl *))
3885 CapturedDecl(nullptr, NumParams);
3886 }
3887
Create(ASTContext & C,EnumDecl * CD,SourceLocation L,IdentifierInfo * Id,QualType T,Expr * E,const llvm::APSInt & V)3888 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
3889 SourceLocation L,
3890 IdentifierInfo *Id, QualType T,
3891 Expr *E, const llvm::APSInt &V) {
3892 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
3893 }
3894
3895 EnumConstantDecl *
CreateDeserialized(ASTContext & C,unsigned ID)3896 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3897 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
3898 QualType(), nullptr, llvm::APSInt());
3899 }
3900
anchor()3901 void IndirectFieldDecl::anchor() { }
3902
3903 IndirectFieldDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation L,IdentifierInfo * Id,QualType T,NamedDecl ** CH,unsigned CHS)3904 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
3905 IdentifierInfo *Id, QualType T, NamedDecl **CH,
3906 unsigned CHS) {
3907 return new (C, DC) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
3908 }
3909
CreateDeserialized(ASTContext & C,unsigned ID)3910 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
3911 unsigned ID) {
3912 return new (C, ID) IndirectFieldDecl(nullptr, SourceLocation(),
3913 DeclarationName(), QualType(), nullptr,
3914 0);
3915 }
3916
getSourceRange() const3917 SourceRange EnumConstantDecl::getSourceRange() const {
3918 SourceLocation End = getLocation();
3919 if (Init)
3920 End = Init->getLocEnd();
3921 return SourceRange(getLocation(), End);
3922 }
3923
anchor()3924 void TypeDecl::anchor() { }
3925
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3926 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
3927 SourceLocation StartLoc, SourceLocation IdLoc,
3928 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
3929 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
3930 }
3931
anchor()3932 void TypedefNameDecl::anchor() { }
3933
getAnonDeclWithTypedefName() const3934 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName() const {
3935 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>())
3936 if (TT->getDecl()->getTypedefNameForAnonDecl() == this)
3937 return TT->getDecl();
3938
3939 return nullptr;
3940 }
3941
CreateDeserialized(ASTContext & C,unsigned ID)3942 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3943 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
3944 nullptr, nullptr);
3945 }
3946
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3947 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
3948 SourceLocation StartLoc,
3949 SourceLocation IdLoc, IdentifierInfo *Id,
3950 TypeSourceInfo *TInfo) {
3951 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
3952 }
3953
CreateDeserialized(ASTContext & C,unsigned ID)3954 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3955 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
3956 SourceLocation(), nullptr, nullptr);
3957 }
3958
getSourceRange() const3959 SourceRange TypedefDecl::getSourceRange() const {
3960 SourceLocation RangeEnd = getLocation();
3961 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
3962 if (typeIsPostfix(TInfo->getType()))
3963 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3964 }
3965 return SourceRange(getLocStart(), RangeEnd);
3966 }
3967
getSourceRange() const3968 SourceRange TypeAliasDecl::getSourceRange() const {
3969 SourceLocation RangeEnd = getLocStart();
3970 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
3971 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3972 return SourceRange(getLocStart(), RangeEnd);
3973 }
3974
anchor()3975 void FileScopeAsmDecl::anchor() { }
3976
Create(ASTContext & C,DeclContext * DC,StringLiteral * Str,SourceLocation AsmLoc,SourceLocation RParenLoc)3977 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
3978 StringLiteral *Str,
3979 SourceLocation AsmLoc,
3980 SourceLocation RParenLoc) {
3981 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
3982 }
3983
CreateDeserialized(ASTContext & C,unsigned ID)3984 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
3985 unsigned ID) {
3986 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
3987 SourceLocation());
3988 }
3989
anchor()3990 void EmptyDecl::anchor() {}
3991
Create(ASTContext & C,DeclContext * DC,SourceLocation L)3992 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3993 return new (C, DC) EmptyDecl(DC, L);
3994 }
3995
CreateDeserialized(ASTContext & C,unsigned ID)3996 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3997 return new (C, ID) EmptyDecl(nullptr, SourceLocation());
3998 }
3999
4000 //===----------------------------------------------------------------------===//
4001 // ImportDecl Implementation
4002 //===----------------------------------------------------------------------===//
4003
4004 /// \brief Retrieve the number of module identifiers needed to name the given
4005 /// module.
getNumModuleIdentifiers(Module * Mod)4006 static unsigned getNumModuleIdentifiers(Module *Mod) {
4007 unsigned Result = 1;
4008 while (Mod->Parent) {
4009 Mod = Mod->Parent;
4010 ++Result;
4011 }
4012 return Result;
4013 }
4014
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)4015 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4016 Module *Imported,
4017 ArrayRef<SourceLocation> IdentifierLocs)
4018 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
4019 NextLocalImport()
4020 {
4021 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4022 SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
4023 memcpy(StoredLocs, IdentifierLocs.data(),
4024 IdentifierLocs.size() * sizeof(SourceLocation));
4025 }
4026
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)4027 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4028 Module *Imported, SourceLocation EndLoc)
4029 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
4030 NextLocalImport()
4031 {
4032 *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
4033 }
4034
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)4035 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
4036 SourceLocation StartLoc, Module *Imported,
4037 ArrayRef<SourceLocation> IdentifierLocs) {
4038 return new (C, DC, IdentifierLocs.size() * sizeof(SourceLocation))
4039 ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4040 }
4041
CreateImplicit(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)4042 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
4043 SourceLocation StartLoc,
4044 Module *Imported,
4045 SourceLocation EndLoc) {
4046 ImportDecl *Import =
4047 new (C, DC, sizeof(SourceLocation)) ImportDecl(DC, StartLoc,
4048 Imported, EndLoc);
4049 Import->setImplicit();
4050 return Import;
4051 }
4052
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumLocations)4053 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4054 unsigned NumLocations) {
4055 return new (C, ID, NumLocations * sizeof(SourceLocation))
4056 ImportDecl(EmptyShell());
4057 }
4058
getIdentifierLocs() const4059 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
4060 if (!ImportedAndComplete.getInt())
4061 return None;
4062
4063 const SourceLocation *StoredLocs
4064 = reinterpret_cast<const SourceLocation *>(this + 1);
4065 return llvm::makeArrayRef(StoredLocs,
4066 getNumModuleIdentifiers(getImportedModule()));
4067 }
4068
getSourceRange() const4069 SourceRange ImportDecl::getSourceRange() const {
4070 if (!ImportedAndComplete.getInt())
4071 return SourceRange(getLocation(),
4072 *reinterpret_cast<const SourceLocation *>(this + 1));
4073
4074 return SourceRange(getLocation(), getIdentifierLocs().back());
4075 }
4076