1 //===------ MemoryBuiltins.cpp - Identify calls to memory builtins --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions identifies calls to builtin functions that allocate
11 // or free memory.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/MemoryBuiltins.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/Metadata.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 using namespace llvm;
31
32 #define DEBUG_TYPE "memory-builtins"
33
34 enum AllocType {
35 OpNewLike = 1<<0, // allocates; never returns null
36 MallocLike = 1<<1 | OpNewLike, // allocates; may return null
37 CallocLike = 1<<2, // allocates + bzero
38 ReallocLike = 1<<3, // reallocates
39 StrDupLike = 1<<4,
40 AllocLike = MallocLike | CallocLike | StrDupLike,
41 AnyAlloc = AllocLike | ReallocLike
42 };
43
44 struct AllocFnsTy {
45 LibFunc::Func Func;
46 AllocType AllocTy;
47 unsigned char NumParams;
48 // First and Second size parameters (or -1 if unused)
49 signed char FstParam, SndParam;
50 };
51
52 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
53 // know which functions are nounwind, noalias, nocapture parameters, etc.
54 static const AllocFnsTy AllocationFnData[] = {
55 {LibFunc::malloc, MallocLike, 1, 0, -1},
56 {LibFunc::valloc, MallocLike, 1, 0, -1},
57 {LibFunc::Znwj, OpNewLike, 1, 0, -1}, // new(unsigned int)
58 {LibFunc::ZnwjRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new(unsigned int, nothrow)
59 {LibFunc::Znwm, OpNewLike, 1, 0, -1}, // new(unsigned long)
60 {LibFunc::ZnwmRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new(unsigned long, nothrow)
61 {LibFunc::Znaj, OpNewLike, 1, 0, -1}, // new[](unsigned int)
62 {LibFunc::ZnajRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new[](unsigned int, nothrow)
63 {LibFunc::Znam, OpNewLike, 1, 0, -1}, // new[](unsigned long)
64 {LibFunc::ZnamRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new[](unsigned long, nothrow)
65 {LibFunc::calloc, CallocLike, 2, 0, 1},
66 {LibFunc::realloc, ReallocLike, 2, 1, -1},
67 {LibFunc::reallocf, ReallocLike, 2, 1, -1},
68 {LibFunc::strdup, StrDupLike, 1, -1, -1},
69 {LibFunc::strndup, StrDupLike, 2, 1, -1}
70 // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
71 };
72
73
getCalledFunction(const Value * V,bool LookThroughBitCast)74 static Function *getCalledFunction(const Value *V, bool LookThroughBitCast) {
75 if (LookThroughBitCast)
76 V = V->stripPointerCasts();
77
78 CallSite CS(const_cast<Value*>(V));
79 if (!CS.getInstruction())
80 return nullptr;
81
82 if (CS.isNoBuiltin())
83 return nullptr;
84
85 Function *Callee = CS.getCalledFunction();
86 if (!Callee || !Callee->isDeclaration())
87 return nullptr;
88 return Callee;
89 }
90
91 /// \brief Returns the allocation data for the given value if it is a call to a
92 /// known allocation function, and NULL otherwise.
getAllocationData(const Value * V,AllocType AllocTy,const TargetLibraryInfo * TLI,bool LookThroughBitCast=false)93 static const AllocFnsTy *getAllocationData(const Value *V, AllocType AllocTy,
94 const TargetLibraryInfo *TLI,
95 bool LookThroughBitCast = false) {
96 // Skip intrinsics
97 if (isa<IntrinsicInst>(V))
98 return nullptr;
99
100 Function *Callee = getCalledFunction(V, LookThroughBitCast);
101 if (!Callee)
102 return nullptr;
103
104 // Make sure that the function is available.
105 StringRef FnName = Callee->getName();
106 LibFunc::Func TLIFn;
107 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
108 return nullptr;
109
110 unsigned i = 0;
111 bool found = false;
112 for ( ; i < array_lengthof(AllocationFnData); ++i) {
113 if (AllocationFnData[i].Func == TLIFn) {
114 found = true;
115 break;
116 }
117 }
118 if (!found)
119 return nullptr;
120
121 const AllocFnsTy *FnData = &AllocationFnData[i];
122 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
123 return nullptr;
124
125 // Check function prototype.
126 int FstParam = FnData->FstParam;
127 int SndParam = FnData->SndParam;
128 FunctionType *FTy = Callee->getFunctionType();
129
130 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
131 FTy->getNumParams() == FnData->NumParams &&
132 (FstParam < 0 ||
133 (FTy->getParamType(FstParam)->isIntegerTy(32) ||
134 FTy->getParamType(FstParam)->isIntegerTy(64))) &&
135 (SndParam < 0 ||
136 FTy->getParamType(SndParam)->isIntegerTy(32) ||
137 FTy->getParamType(SndParam)->isIntegerTy(64)))
138 return FnData;
139 return nullptr;
140 }
141
hasNoAliasAttr(const Value * V,bool LookThroughBitCast)142 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
143 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
144 return CS && CS.hasFnAttr(Attribute::NoAlias);
145 }
146
147
148 /// \brief Tests if a value is a call or invoke to a library function that
149 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
150 /// like).
isAllocationFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)151 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
152 bool LookThroughBitCast) {
153 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast);
154 }
155
156 /// \brief Tests if a value is a call or invoke to a function that returns a
157 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
isNoAliasFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)158 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
159 bool LookThroughBitCast) {
160 // it's safe to consider realloc as noalias since accessing the original
161 // pointer is undefined behavior
162 return isAllocationFn(V, TLI, LookThroughBitCast) ||
163 hasNoAliasAttr(V, LookThroughBitCast);
164 }
165
166 /// \brief Tests if a value is a call or invoke to a library function that
167 /// allocates uninitialized memory (such as malloc).
isMallocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)168 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
169 bool LookThroughBitCast) {
170 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast);
171 }
172
173 /// \brief Tests if a value is a call or invoke to a library function that
174 /// allocates zero-filled memory (such as calloc).
isCallocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)175 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
176 bool LookThroughBitCast) {
177 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast);
178 }
179
180 /// \brief Tests if a value is a call or invoke to a library function that
181 /// allocates memory (either malloc, calloc, or strdup like).
isAllocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)182 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
183 bool LookThroughBitCast) {
184 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast);
185 }
186
187 /// \brief Tests if a value is a call or invoke to a library function that
188 /// reallocates memory (such as realloc).
isReallocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)189 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
190 bool LookThroughBitCast) {
191 return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast);
192 }
193
194 /// \brief Tests if a value is a call or invoke to a library function that
195 /// allocates memory and never returns null (such as operator new).
isOperatorNewLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)196 bool llvm::isOperatorNewLikeFn(const Value *V, const TargetLibraryInfo *TLI,
197 bool LookThroughBitCast) {
198 return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast);
199 }
200
201 /// extractMallocCall - Returns the corresponding CallInst if the instruction
202 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we
203 /// ignore InvokeInst here.
extractMallocCall(const Value * I,const TargetLibraryInfo * TLI)204 const CallInst *llvm::extractMallocCall(const Value *I,
205 const TargetLibraryInfo *TLI) {
206 return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr;
207 }
208
computeArraySize(const CallInst * CI,const DataLayout & DL,const TargetLibraryInfo * TLI,bool LookThroughSExt=false)209 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
210 const TargetLibraryInfo *TLI,
211 bool LookThroughSExt = false) {
212 if (!CI)
213 return nullptr;
214
215 // The size of the malloc's result type must be known to determine array size.
216 Type *T = getMallocAllocatedType(CI, TLI);
217 if (!T || !T->isSized())
218 return nullptr;
219
220 unsigned ElementSize = DL.getTypeAllocSize(T);
221 if (StructType *ST = dyn_cast<StructType>(T))
222 ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
223
224 // If malloc call's arg can be determined to be a multiple of ElementSize,
225 // return the multiple. Otherwise, return NULL.
226 Value *MallocArg = CI->getArgOperand(0);
227 Value *Multiple = nullptr;
228 if (ComputeMultiple(MallocArg, ElementSize, Multiple,
229 LookThroughSExt))
230 return Multiple;
231
232 return nullptr;
233 }
234
235 /// getMallocType - Returns the PointerType resulting from the malloc call.
236 /// The PointerType depends on the number of bitcast uses of the malloc call:
237 /// 0: PointerType is the calls' return type.
238 /// 1: PointerType is the bitcast's result type.
239 /// >1: Unique PointerType cannot be determined, return NULL.
getMallocType(const CallInst * CI,const TargetLibraryInfo * TLI)240 PointerType *llvm::getMallocType(const CallInst *CI,
241 const TargetLibraryInfo *TLI) {
242 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
243
244 PointerType *MallocType = nullptr;
245 unsigned NumOfBitCastUses = 0;
246
247 // Determine if CallInst has a bitcast use.
248 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
249 UI != E;)
250 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
251 MallocType = cast<PointerType>(BCI->getDestTy());
252 NumOfBitCastUses++;
253 }
254
255 // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
256 if (NumOfBitCastUses == 1)
257 return MallocType;
258
259 // Malloc call was not bitcast, so type is the malloc function's return type.
260 if (NumOfBitCastUses == 0)
261 return cast<PointerType>(CI->getType());
262
263 // Type could not be determined.
264 return nullptr;
265 }
266
267 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
268 /// The Type depends on the number of bitcast uses of the malloc call:
269 /// 0: PointerType is the malloc calls' return type.
270 /// 1: PointerType is the bitcast's result type.
271 /// >1: Unique PointerType cannot be determined, return NULL.
getMallocAllocatedType(const CallInst * CI,const TargetLibraryInfo * TLI)272 Type *llvm::getMallocAllocatedType(const CallInst *CI,
273 const TargetLibraryInfo *TLI) {
274 PointerType *PT = getMallocType(CI, TLI);
275 return PT ? PT->getElementType() : nullptr;
276 }
277
278 /// getMallocArraySize - Returns the array size of a malloc call. If the
279 /// argument passed to malloc is a multiple of the size of the malloced type,
280 /// then return that multiple. For non-array mallocs, the multiple is
281 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
282 /// determined.
getMallocArraySize(CallInst * CI,const DataLayout & DL,const TargetLibraryInfo * TLI,bool LookThroughSExt)283 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
284 const TargetLibraryInfo *TLI,
285 bool LookThroughSExt) {
286 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
287 return computeArraySize(CI, DL, TLI, LookThroughSExt);
288 }
289
290
291 /// extractCallocCall - Returns the corresponding CallInst if the instruction
292 /// is a calloc call.
extractCallocCall(const Value * I,const TargetLibraryInfo * TLI)293 const CallInst *llvm::extractCallocCall(const Value *I,
294 const TargetLibraryInfo *TLI) {
295 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
296 }
297
298
299 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
isFreeCall(const Value * I,const TargetLibraryInfo * TLI)300 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
301 const CallInst *CI = dyn_cast<CallInst>(I);
302 if (!CI || isa<IntrinsicInst>(CI))
303 return nullptr;
304 Function *Callee = CI->getCalledFunction();
305 if (Callee == nullptr)
306 return nullptr;
307
308 StringRef FnName = Callee->getName();
309 LibFunc::Func TLIFn;
310 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
311 return nullptr;
312
313 unsigned ExpectedNumParams;
314 if (TLIFn == LibFunc::free ||
315 TLIFn == LibFunc::ZdlPv || // operator delete(void*)
316 TLIFn == LibFunc::ZdaPv) // operator delete[](void*)
317 ExpectedNumParams = 1;
318 else if (TLIFn == LibFunc::ZdlPvj || // delete(void*, uint)
319 TLIFn == LibFunc::ZdlPvm || // delete(void*, ulong)
320 TLIFn == LibFunc::ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
321 TLIFn == LibFunc::ZdaPvj || // delete[](void*, uint)
322 TLIFn == LibFunc::ZdaPvm || // delete[](void*, ulong)
323 TLIFn == LibFunc::ZdaPvRKSt9nothrow_t) // delete[](void*, nothrow)
324 ExpectedNumParams = 2;
325 else
326 return nullptr;
327
328 // Check free prototype.
329 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
330 // attribute will exist.
331 FunctionType *FTy = Callee->getFunctionType();
332 if (!FTy->getReturnType()->isVoidTy())
333 return nullptr;
334 if (FTy->getNumParams() != ExpectedNumParams)
335 return nullptr;
336 if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext()))
337 return nullptr;
338
339 return CI;
340 }
341
342
343
344 //===----------------------------------------------------------------------===//
345 // Utility functions to compute size of objects.
346 //
347
348
349 /// \brief Compute the size of the object pointed by Ptr. Returns true and the
350 /// object size in Size if successful, and false otherwise.
351 /// If RoundToAlign is true, then Size is rounded up to the aligment of allocas,
352 /// byval arguments, and global variables.
getObjectSize(const Value * Ptr,uint64_t & Size,const DataLayout & DL,const TargetLibraryInfo * TLI,bool RoundToAlign)353 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
354 const TargetLibraryInfo *TLI, bool RoundToAlign) {
355 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), RoundToAlign);
356 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
357 if (!Visitor.bothKnown(Data))
358 return false;
359
360 APInt ObjSize = Data.first, Offset = Data.second;
361 // check for overflow
362 if (Offset.slt(0) || ObjSize.ult(Offset))
363 Size = 0;
364 else
365 Size = (ObjSize - Offset).getZExtValue();
366 return true;
367 }
368
369
370 STATISTIC(ObjectVisitorArgument,
371 "Number of arguments with unsolved size and offset");
372 STATISTIC(ObjectVisitorLoad,
373 "Number of load instructions with unsolved size and offset");
374
375
align(APInt Size,uint64_t Align)376 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
377 if (RoundToAlign && Align)
378 return APInt(IntTyBits, RoundUpToAlignment(Size.getZExtValue(), Align));
379 return Size;
380 }
381
ObjectSizeOffsetVisitor(const DataLayout & DL,const TargetLibraryInfo * TLI,LLVMContext & Context,bool RoundToAlign)382 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
383 const TargetLibraryInfo *TLI,
384 LLVMContext &Context,
385 bool RoundToAlign)
386 : DL(DL), TLI(TLI), RoundToAlign(RoundToAlign) {
387 // Pointer size must be rechecked for each object visited since it could have
388 // a different address space.
389 }
390
compute(Value * V)391 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
392 IntTyBits = DL.getPointerTypeSizeInBits(V->getType());
393 Zero = APInt::getNullValue(IntTyBits);
394
395 V = V->stripPointerCasts();
396 if (Instruction *I = dyn_cast<Instruction>(V)) {
397 // If we have already seen this instruction, bail out. Cycles can happen in
398 // unreachable code after constant propagation.
399 if (!SeenInsts.insert(I).second)
400 return unknown();
401
402 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
403 return visitGEPOperator(*GEP);
404 return visit(*I);
405 }
406 if (Argument *A = dyn_cast<Argument>(V))
407 return visitArgument(*A);
408 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
409 return visitConstantPointerNull(*P);
410 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
411 return visitGlobalAlias(*GA);
412 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
413 return visitGlobalVariable(*GV);
414 if (UndefValue *UV = dyn_cast<UndefValue>(V))
415 return visitUndefValue(*UV);
416 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
417 if (CE->getOpcode() == Instruction::IntToPtr)
418 return unknown(); // clueless
419 if (CE->getOpcode() == Instruction::GetElementPtr)
420 return visitGEPOperator(cast<GEPOperator>(*CE));
421 }
422
423 DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V
424 << '\n');
425 return unknown();
426 }
427
visitAllocaInst(AllocaInst & I)428 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
429 if (!I.getAllocatedType()->isSized())
430 return unknown();
431
432 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
433 if (!I.isArrayAllocation())
434 return std::make_pair(align(Size, I.getAlignment()), Zero);
435
436 Value *ArraySize = I.getArraySize();
437 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
438 Size *= C->getValue().zextOrSelf(IntTyBits);
439 return std::make_pair(align(Size, I.getAlignment()), Zero);
440 }
441 return unknown();
442 }
443
visitArgument(Argument & A)444 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
445 // no interprocedural analysis is done at the moment
446 if (!A.hasByValOrInAllocaAttr()) {
447 ++ObjectVisitorArgument;
448 return unknown();
449 }
450 PointerType *PT = cast<PointerType>(A.getType());
451 APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType()));
452 return std::make_pair(align(Size, A.getParamAlignment()), Zero);
453 }
454
visitCallSite(CallSite CS)455 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
456 const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc,
457 TLI);
458 if (!FnData)
459 return unknown();
460
461 // handle strdup-like functions separately
462 if (FnData->AllocTy == StrDupLike) {
463 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
464 if (!Size)
465 return unknown();
466
467 // strndup limits strlen
468 if (FnData->FstParam > 0) {
469 ConstantInt *Arg= dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
470 if (!Arg)
471 return unknown();
472
473 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
474 if (Size.ugt(MaxSize))
475 Size = MaxSize + 1;
476 }
477 return std::make_pair(Size, Zero);
478 }
479
480 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
481 if (!Arg)
482 return unknown();
483
484 APInt Size = Arg->getValue().zextOrSelf(IntTyBits);
485 // size determined by just 1 parameter
486 if (FnData->SndParam < 0)
487 return std::make_pair(Size, Zero);
488
489 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
490 if (!Arg)
491 return unknown();
492
493 Size *= Arg->getValue().zextOrSelf(IntTyBits);
494 return std::make_pair(Size, Zero);
495
496 // TODO: handle more standard functions (+ wchar cousins):
497 // - strdup / strndup
498 // - strcpy / strncpy
499 // - strcat / strncat
500 // - memcpy / memmove
501 // - strcat / strncat
502 // - memset
503 }
504
505 SizeOffsetType
visitConstantPointerNull(ConstantPointerNull &)506 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull&) {
507 return std::make_pair(Zero, Zero);
508 }
509
510 SizeOffsetType
visitExtractElementInst(ExtractElementInst &)511 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
512 return unknown();
513 }
514
515 SizeOffsetType
visitExtractValueInst(ExtractValueInst &)516 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
517 // Easy cases were already folded by previous passes.
518 return unknown();
519 }
520
visitGEPOperator(GEPOperator & GEP)521 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
522 SizeOffsetType PtrData = compute(GEP.getPointerOperand());
523 APInt Offset(IntTyBits, 0);
524 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
525 return unknown();
526
527 return std::make_pair(PtrData.first, PtrData.second + Offset);
528 }
529
visitGlobalAlias(GlobalAlias & GA)530 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
531 if (GA.mayBeOverridden())
532 return unknown();
533 return compute(GA.getAliasee());
534 }
535
visitGlobalVariable(GlobalVariable & GV)536 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
537 if (!GV.hasDefinitiveInitializer())
538 return unknown();
539
540 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType()));
541 return std::make_pair(align(Size, GV.getAlignment()), Zero);
542 }
543
visitIntToPtrInst(IntToPtrInst &)544 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
545 // clueless
546 return unknown();
547 }
548
visitLoadInst(LoadInst &)549 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
550 ++ObjectVisitorLoad;
551 return unknown();
552 }
553
visitPHINode(PHINode &)554 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
555 // too complex to analyze statically.
556 return unknown();
557 }
558
visitSelectInst(SelectInst & I)559 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
560 SizeOffsetType TrueSide = compute(I.getTrueValue());
561 SizeOffsetType FalseSide = compute(I.getFalseValue());
562 if (bothKnown(TrueSide) && bothKnown(FalseSide) && TrueSide == FalseSide)
563 return TrueSide;
564 return unknown();
565 }
566
visitUndefValue(UndefValue &)567 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
568 return std::make_pair(Zero, Zero);
569 }
570
visitInstruction(Instruction & I)571 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
572 DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n');
573 return unknown();
574 }
575
ObjectSizeOffsetEvaluator(const DataLayout & DL,const TargetLibraryInfo * TLI,LLVMContext & Context,bool RoundToAlign)576 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
577 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
578 bool RoundToAlign)
579 : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)),
580 RoundToAlign(RoundToAlign) {
581 // IntTy and Zero must be set for each compute() since the address space may
582 // be different for later objects.
583 }
584
compute(Value * V)585 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
586 // XXX - Are vectors of pointers possible here?
587 IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
588 Zero = ConstantInt::get(IntTy, 0);
589
590 SizeOffsetEvalType Result = compute_(V);
591
592 if (!bothKnown(Result)) {
593 // erase everything that was computed in this iteration from the cache, so
594 // that no dangling references are left behind. We could be a bit smarter if
595 // we kept a dependency graph. It's probably not worth the complexity.
596 for (PtrSetTy::iterator I=SeenVals.begin(), E=SeenVals.end(); I != E; ++I) {
597 CacheMapTy::iterator CacheIt = CacheMap.find(*I);
598 // non-computable results can be safely cached
599 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
600 CacheMap.erase(CacheIt);
601 }
602 }
603
604 SeenVals.clear();
605 return Result;
606 }
607
compute_(Value * V)608 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
609 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, RoundToAlign);
610 SizeOffsetType Const = Visitor.compute(V);
611 if (Visitor.bothKnown(Const))
612 return std::make_pair(ConstantInt::get(Context, Const.first),
613 ConstantInt::get(Context, Const.second));
614
615 V = V->stripPointerCasts();
616
617 // check cache
618 CacheMapTy::iterator CacheIt = CacheMap.find(V);
619 if (CacheIt != CacheMap.end())
620 return CacheIt->second;
621
622 // always generate code immediately before the instruction being
623 // processed, so that the generated code dominates the same BBs
624 Instruction *PrevInsertPoint = Builder.GetInsertPoint();
625 if (Instruction *I = dyn_cast<Instruction>(V))
626 Builder.SetInsertPoint(I);
627
628 // now compute the size and offset
629 SizeOffsetEvalType Result;
630
631 // Record the pointers that were handled in this run, so that they can be
632 // cleaned later if something fails. We also use this set to break cycles that
633 // can occur in dead code.
634 if (!SeenVals.insert(V).second) {
635 Result = unknown();
636 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
637 Result = visitGEPOperator(*GEP);
638 } else if (Instruction *I = dyn_cast<Instruction>(V)) {
639 Result = visit(*I);
640 } else if (isa<Argument>(V) ||
641 (isa<ConstantExpr>(V) &&
642 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
643 isa<GlobalAlias>(V) ||
644 isa<GlobalVariable>(V)) {
645 // ignore values where we cannot do more than what ObjectSizeVisitor can
646 Result = unknown();
647 } else {
648 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: "
649 << *V << '\n');
650 Result = unknown();
651 }
652
653 if (PrevInsertPoint)
654 Builder.SetInsertPoint(PrevInsertPoint);
655
656 // Don't reuse CacheIt since it may be invalid at this point.
657 CacheMap[V] = Result;
658 return Result;
659 }
660
visitAllocaInst(AllocaInst & I)661 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
662 if (!I.getAllocatedType()->isSized())
663 return unknown();
664
665 // must be a VLA
666 assert(I.isArrayAllocation());
667 Value *ArraySize = I.getArraySize();
668 Value *Size = ConstantInt::get(ArraySize->getType(),
669 DL.getTypeAllocSize(I.getAllocatedType()));
670 Size = Builder.CreateMul(Size, ArraySize);
671 return std::make_pair(Size, Zero);
672 }
673
visitCallSite(CallSite CS)674 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
675 const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc,
676 TLI);
677 if (!FnData)
678 return unknown();
679
680 // handle strdup-like functions separately
681 if (FnData->AllocTy == StrDupLike) {
682 // TODO
683 return unknown();
684 }
685
686 Value *FirstArg = CS.getArgument(FnData->FstParam);
687 FirstArg = Builder.CreateZExt(FirstArg, IntTy);
688 if (FnData->SndParam < 0)
689 return std::make_pair(FirstArg, Zero);
690
691 Value *SecondArg = CS.getArgument(FnData->SndParam);
692 SecondArg = Builder.CreateZExt(SecondArg, IntTy);
693 Value *Size = Builder.CreateMul(FirstArg, SecondArg);
694 return std::make_pair(Size, Zero);
695
696 // TODO: handle more standard functions (+ wchar cousins):
697 // - strdup / strndup
698 // - strcpy / strncpy
699 // - strcat / strncat
700 // - memcpy / memmove
701 // - strcat / strncat
702 // - memset
703 }
704
705 SizeOffsetEvalType
visitExtractElementInst(ExtractElementInst &)706 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
707 return unknown();
708 }
709
710 SizeOffsetEvalType
visitExtractValueInst(ExtractValueInst &)711 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
712 return unknown();
713 }
714
715 SizeOffsetEvalType
visitGEPOperator(GEPOperator & GEP)716 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
717 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
718 if (!bothKnown(PtrData))
719 return unknown();
720
721 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
722 Offset = Builder.CreateAdd(PtrData.second, Offset);
723 return std::make_pair(PtrData.first, Offset);
724 }
725
visitIntToPtrInst(IntToPtrInst &)726 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
727 // clueless
728 return unknown();
729 }
730
visitLoadInst(LoadInst &)731 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
732 return unknown();
733 }
734
visitPHINode(PHINode & PHI)735 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
736 // create 2 PHIs: one for size and another for offset
737 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
738 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
739
740 // insert right away in the cache to handle recursive PHIs
741 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
742
743 // compute offset/size for each PHI incoming pointer
744 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
745 Builder.SetInsertPoint(PHI.getIncomingBlock(i)->getFirstInsertionPt());
746 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
747
748 if (!bothKnown(EdgeData)) {
749 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
750 OffsetPHI->eraseFromParent();
751 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
752 SizePHI->eraseFromParent();
753 return unknown();
754 }
755 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
756 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
757 }
758
759 Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp;
760 if ((Tmp = SizePHI->hasConstantValue())) {
761 Size = Tmp;
762 SizePHI->replaceAllUsesWith(Size);
763 SizePHI->eraseFromParent();
764 }
765 if ((Tmp = OffsetPHI->hasConstantValue())) {
766 Offset = Tmp;
767 OffsetPHI->replaceAllUsesWith(Offset);
768 OffsetPHI->eraseFromParent();
769 }
770 return std::make_pair(Size, Offset);
771 }
772
visitSelectInst(SelectInst & I)773 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
774 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue());
775 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
776
777 if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
778 return unknown();
779 if (TrueSide == FalseSide)
780 return TrueSide;
781
782 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
783 FalseSide.first);
784 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
785 FalseSide.second);
786 return std::make_pair(Size, Offset);
787 }
788
visitInstruction(Instruction & I)789 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
790 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n');
791 return unknown();
792 }
793