1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenTypes.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Module.h"
29 using namespace clang;
30 using namespace CodeGen;
31
CodeGenTypes(CodeGenModule & cgm)32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
33 : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
34 TheDataLayout(cgm.getDataLayout()),
35 Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
36 TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
37 SkippedLayout = false;
38 }
39
~CodeGenTypes()40 CodeGenTypes::~CodeGenTypes() {
41 llvm::DeleteContainerSeconds(CGRecordLayouts);
42
43 for (llvm::FoldingSet<CGFunctionInfo>::iterator
44 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
45 delete &*I++;
46 }
47
addRecordTypeName(const RecordDecl * RD,llvm::StructType * Ty,StringRef suffix)48 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
49 llvm::StructType *Ty,
50 StringRef suffix) {
51 SmallString<256> TypeName;
52 llvm::raw_svector_ostream OS(TypeName);
53 OS << RD->getKindName() << '.';
54
55 // Name the codegen type after the typedef name
56 // if there is no tag type name available
57 if (RD->getIdentifier()) {
58 // FIXME: We should not have to check for a null decl context here.
59 // Right now we do it because the implicit Obj-C decls don't have one.
60 if (RD->getDeclContext())
61 RD->printQualifiedName(OS);
62 else
63 RD->printName(OS);
64 } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
65 // FIXME: We should not have to check for a null decl context here.
66 // Right now we do it because the implicit Obj-C decls don't have one.
67 if (TDD->getDeclContext())
68 TDD->printQualifiedName(OS);
69 else
70 TDD->printName(OS);
71 } else
72 OS << "anon";
73
74 if (!suffix.empty())
75 OS << suffix;
76
77 Ty->setName(OS.str());
78 }
79
80 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
81 /// ConvertType in that it is used to convert to the memory representation for
82 /// a type. For example, the scalar representation for _Bool is i1, but the
83 /// memory representation is usually i8 or i32, depending on the target.
ConvertTypeForMem(QualType T)84 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
85 llvm::Type *R = ConvertType(T);
86
87 // If this is a non-bool type, don't map it.
88 if (!R->isIntegerTy(1))
89 return R;
90
91 // Otherwise, return an integer of the target-specified size.
92 return llvm::IntegerType::get(getLLVMContext(),
93 (unsigned)Context.getTypeSize(T));
94 }
95
96
97 /// isRecordLayoutComplete - Return true if the specified type is already
98 /// completely laid out.
isRecordLayoutComplete(const Type * Ty) const99 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
100 llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
101 RecordDeclTypes.find(Ty);
102 return I != RecordDeclTypes.end() && !I->second->isOpaque();
103 }
104
105 static bool
106 isSafeToConvert(QualType T, CodeGenTypes &CGT,
107 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
108
109
110 /// isSafeToConvert - Return true if it is safe to convert the specified record
111 /// decl to IR and lay it out, false if doing so would cause us to get into a
112 /// recursive compilation mess.
113 static bool
isSafeToConvert(const RecordDecl * RD,CodeGenTypes & CGT,llvm::SmallPtrSet<const RecordDecl *,16> & AlreadyChecked)114 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
115 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
116 // If we have already checked this type (maybe the same type is used by-value
117 // multiple times in multiple structure fields, don't check again.
118 if (!AlreadyChecked.insert(RD).second)
119 return true;
120
121 const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
122
123 // If this type is already laid out, converting it is a noop.
124 if (CGT.isRecordLayoutComplete(Key)) return true;
125
126 // If this type is currently being laid out, we can't recursively compile it.
127 if (CGT.isRecordBeingLaidOut(Key))
128 return false;
129
130 // If this type would require laying out bases that are currently being laid
131 // out, don't do it. This includes virtual base classes which get laid out
132 // when a class is translated, even though they aren't embedded by-value into
133 // the class.
134 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
135 for (const auto &I : CRD->bases())
136 if (!isSafeToConvert(I.getType()->getAs<RecordType>()->getDecl(),
137 CGT, AlreadyChecked))
138 return false;
139 }
140
141 // If this type would require laying out members that are currently being laid
142 // out, don't do it.
143 for (const auto *I : RD->fields())
144 if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
145 return false;
146
147 // If there are no problems, lets do it.
148 return true;
149 }
150
151 /// isSafeToConvert - Return true if it is safe to convert this field type,
152 /// which requires the structure elements contained by-value to all be
153 /// recursively safe to convert.
154 static bool
isSafeToConvert(QualType T,CodeGenTypes & CGT,llvm::SmallPtrSet<const RecordDecl *,16> & AlreadyChecked)155 isSafeToConvert(QualType T, CodeGenTypes &CGT,
156 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
157 T = T.getCanonicalType();
158
159 // If this is a record, check it.
160 if (const RecordType *RT = dyn_cast<RecordType>(T))
161 return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
162
163 // If this is an array, check the elements, which are embedded inline.
164 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
165 return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
166
167 // Otherwise, there is no concern about transforming this. We only care about
168 // things that are contained by-value in a structure that can have another
169 // structure as a member.
170 return true;
171 }
172
173
174 /// isSafeToConvert - Return true if it is safe to convert the specified record
175 /// decl to IR and lay it out, false if doing so would cause us to get into a
176 /// recursive compilation mess.
isSafeToConvert(const RecordDecl * RD,CodeGenTypes & CGT)177 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
178 // If no structs are being laid out, we can certainly do this one.
179 if (CGT.noRecordsBeingLaidOut()) return true;
180
181 llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
182 return isSafeToConvert(RD, CGT, AlreadyChecked);
183 }
184
185 /// isFuncParamTypeConvertible - Return true if the specified type in a
186 /// function parameter or result position can be converted to an IR type at this
187 /// point. This boils down to being whether it is complete, as well as whether
188 /// we've temporarily deferred expanding the type because we're in a recursive
189 /// context.
isFuncParamTypeConvertible(QualType Ty)190 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
191 // Some ABIs cannot have their member pointers represented in IR unless
192 // certain circumstances have been reached.
193 if (const auto *MPT = Ty->getAs<MemberPointerType>())
194 return getCXXABI().isMemberPointerConvertible(MPT);
195
196 // If this isn't a tagged type, we can convert it!
197 const TagType *TT = Ty->getAs<TagType>();
198 if (!TT) return true;
199
200 // Incomplete types cannot be converted.
201 if (TT->isIncompleteType())
202 return false;
203
204 // If this is an enum, then it is always safe to convert.
205 const RecordType *RT = dyn_cast<RecordType>(TT);
206 if (!RT) return true;
207
208 // Otherwise, we have to be careful. If it is a struct that we're in the
209 // process of expanding, then we can't convert the function type. That's ok
210 // though because we must be in a pointer context under the struct, so we can
211 // just convert it to a dummy type.
212 //
213 // We decide this by checking whether ConvertRecordDeclType returns us an
214 // opaque type for a struct that we know is defined.
215 return isSafeToConvert(RT->getDecl(), *this);
216 }
217
218
219 /// Code to verify a given function type is complete, i.e. the return type
220 /// and all of the parameter types are complete. Also check to see if we are in
221 /// a RS_StructPointer context, and if so whether any struct types have been
222 /// pended. If so, we don't want to ask the ABI lowering code to handle a type
223 /// that cannot be converted to an IR type.
isFuncTypeConvertible(const FunctionType * FT)224 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
225 if (!isFuncParamTypeConvertible(FT->getReturnType()))
226 return false;
227
228 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
229 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
230 if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
231 return false;
232
233 return true;
234 }
235
236 /// UpdateCompletedType - When we find the full definition for a TagDecl,
237 /// replace the 'opaque' type we previously made for it if applicable.
UpdateCompletedType(const TagDecl * TD)238 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
239 // If this is an enum being completed, then we flush all non-struct types from
240 // the cache. This allows function types and other things that may be derived
241 // from the enum to be recomputed.
242 if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
243 // Only flush the cache if we've actually already converted this type.
244 if (TypeCache.count(ED->getTypeForDecl())) {
245 // Okay, we formed some types based on this. We speculated that the enum
246 // would be lowered to i32, so we only need to flush the cache if this
247 // didn't happen.
248 if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
249 TypeCache.clear();
250 }
251 // If necessary, provide the full definition of a type only used with a
252 // declaration so far.
253 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
254 DI->completeType(ED);
255 return;
256 }
257
258 // If we completed a RecordDecl that we previously used and converted to an
259 // anonymous type, then go ahead and complete it now.
260 const RecordDecl *RD = cast<RecordDecl>(TD);
261 if (RD->isDependentType()) return;
262
263 // Only complete it if we converted it already. If we haven't converted it
264 // yet, we'll just do it lazily.
265 if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
266 ConvertRecordDeclType(RD);
267
268 // If necessary, provide the full definition of a type only used with a
269 // declaration so far.
270 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
271 DI->completeType(RD);
272 }
273
getTypeForFormat(llvm::LLVMContext & VMContext,const llvm::fltSemantics & format,bool UseNativeHalf=false)274 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
275 const llvm::fltSemantics &format,
276 bool UseNativeHalf = false) {
277 if (&format == &llvm::APFloat::IEEEhalf) {
278 if (UseNativeHalf)
279 return llvm::Type::getHalfTy(VMContext);
280 else
281 return llvm::Type::getInt16Ty(VMContext);
282 }
283 if (&format == &llvm::APFloat::IEEEsingle)
284 return llvm::Type::getFloatTy(VMContext);
285 if (&format == &llvm::APFloat::IEEEdouble)
286 return llvm::Type::getDoubleTy(VMContext);
287 if (&format == &llvm::APFloat::IEEEquad)
288 return llvm::Type::getFP128Ty(VMContext);
289 if (&format == &llvm::APFloat::PPCDoubleDouble)
290 return llvm::Type::getPPC_FP128Ty(VMContext);
291 if (&format == &llvm::APFloat::x87DoubleExtended)
292 return llvm::Type::getX86_FP80Ty(VMContext);
293 llvm_unreachable("Unknown float format!");
294 }
295
296 /// ConvertType - Convert the specified type to its LLVM form.
ConvertType(QualType T)297 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
298 T = Context.getCanonicalType(T);
299
300 const Type *Ty = T.getTypePtr();
301
302 // RecordTypes are cached and processed specially.
303 if (const RecordType *RT = dyn_cast<RecordType>(Ty))
304 return ConvertRecordDeclType(RT->getDecl());
305
306 // See if type is already cached.
307 llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
308 // If type is found in map then use it. Otherwise, convert type T.
309 if (TCI != TypeCache.end())
310 return TCI->second;
311
312 // If we don't have it in the cache, convert it now.
313 llvm::Type *ResultType = nullptr;
314 switch (Ty->getTypeClass()) {
315 case Type::Record: // Handled above.
316 #define TYPE(Class, Base)
317 #define ABSTRACT_TYPE(Class, Base)
318 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
319 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
320 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
321 #include "clang/AST/TypeNodes.def"
322 llvm_unreachable("Non-canonical or dependent types aren't possible.");
323
324 case Type::Builtin: {
325 switch (cast<BuiltinType>(Ty)->getKind()) {
326 case BuiltinType::Void:
327 case BuiltinType::ObjCId:
328 case BuiltinType::ObjCClass:
329 case BuiltinType::ObjCSel:
330 // LLVM void type can only be used as the result of a function call. Just
331 // map to the same as char.
332 ResultType = llvm::Type::getInt8Ty(getLLVMContext());
333 break;
334
335 case BuiltinType::Bool:
336 // Note that we always return bool as i1 for use as a scalar type.
337 ResultType = llvm::Type::getInt1Ty(getLLVMContext());
338 break;
339
340 case BuiltinType::Char_S:
341 case BuiltinType::Char_U:
342 case BuiltinType::SChar:
343 case BuiltinType::UChar:
344 case BuiltinType::Short:
345 case BuiltinType::UShort:
346 case BuiltinType::Int:
347 case BuiltinType::UInt:
348 case BuiltinType::Long:
349 case BuiltinType::ULong:
350 case BuiltinType::LongLong:
351 case BuiltinType::ULongLong:
352 case BuiltinType::WChar_S:
353 case BuiltinType::WChar_U:
354 case BuiltinType::Char16:
355 case BuiltinType::Char32:
356 ResultType = llvm::IntegerType::get(getLLVMContext(),
357 static_cast<unsigned>(Context.getTypeSize(T)));
358 break;
359
360 case BuiltinType::Half:
361 // Half FP can either be storage-only (lowered to i16) or native.
362 ResultType =
363 getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
364 Context.getLangOpts().NativeHalfType ||
365 Context.getLangOpts().HalfArgsAndReturns);
366 break;
367 case BuiltinType::Float:
368 case BuiltinType::Double:
369 case BuiltinType::LongDouble:
370 ResultType = getTypeForFormat(getLLVMContext(),
371 Context.getFloatTypeSemantics(T),
372 /* UseNativeHalf = */ false);
373 break;
374
375 case BuiltinType::NullPtr:
376 // Model std::nullptr_t as i8*
377 ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
378 break;
379
380 case BuiltinType::UInt128:
381 case BuiltinType::Int128:
382 ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
383 break;
384
385 case BuiltinType::OCLImage1d:
386 case BuiltinType::OCLImage1dArray:
387 case BuiltinType::OCLImage1dBuffer:
388 case BuiltinType::OCLImage2d:
389 case BuiltinType::OCLImage2dArray:
390 case BuiltinType::OCLImage3d:
391 case BuiltinType::OCLSampler:
392 case BuiltinType::OCLEvent:
393 ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
394 break;
395
396 case BuiltinType::Dependent:
397 #define BUILTIN_TYPE(Id, SingletonId)
398 #define PLACEHOLDER_TYPE(Id, SingletonId) \
399 case BuiltinType::Id:
400 #include "clang/AST/BuiltinTypes.def"
401 llvm_unreachable("Unexpected placeholder builtin type!");
402 }
403 break;
404 }
405 case Type::Auto:
406 llvm_unreachable("Unexpected undeduced auto type!");
407 case Type::Complex: {
408 llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
409 ResultType = llvm::StructType::get(EltTy, EltTy, nullptr);
410 break;
411 }
412 case Type::LValueReference:
413 case Type::RValueReference: {
414 const ReferenceType *RTy = cast<ReferenceType>(Ty);
415 QualType ETy = RTy->getPointeeType();
416 llvm::Type *PointeeType = ConvertTypeForMem(ETy);
417 unsigned AS = Context.getTargetAddressSpace(ETy);
418 ResultType = llvm::PointerType::get(PointeeType, AS);
419 break;
420 }
421 case Type::Pointer: {
422 const PointerType *PTy = cast<PointerType>(Ty);
423 QualType ETy = PTy->getPointeeType();
424 llvm::Type *PointeeType = ConvertTypeForMem(ETy);
425 if (PointeeType->isVoidTy())
426 PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
427 unsigned AS = Context.getTargetAddressSpace(ETy);
428 ResultType = llvm::PointerType::get(PointeeType, AS);
429 break;
430 }
431
432 case Type::VariableArray: {
433 const VariableArrayType *A = cast<VariableArrayType>(Ty);
434 assert(A->getIndexTypeCVRQualifiers() == 0 &&
435 "FIXME: We only handle trivial array types so far!");
436 // VLAs resolve to the innermost element type; this matches
437 // the return of alloca, and there isn't any obviously better choice.
438 ResultType = ConvertTypeForMem(A->getElementType());
439 break;
440 }
441 case Type::IncompleteArray: {
442 const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
443 assert(A->getIndexTypeCVRQualifiers() == 0 &&
444 "FIXME: We only handle trivial array types so far!");
445 // int X[] -> [0 x int], unless the element type is not sized. If it is
446 // unsized (e.g. an incomplete struct) just use [0 x i8].
447 ResultType = ConvertTypeForMem(A->getElementType());
448 if (!ResultType->isSized()) {
449 SkippedLayout = true;
450 ResultType = llvm::Type::getInt8Ty(getLLVMContext());
451 }
452 ResultType = llvm::ArrayType::get(ResultType, 0);
453 break;
454 }
455 case Type::ConstantArray: {
456 const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
457 llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
458
459 // Lower arrays of undefined struct type to arrays of i8 just to have a
460 // concrete type.
461 if (!EltTy->isSized()) {
462 SkippedLayout = true;
463 EltTy = llvm::Type::getInt8Ty(getLLVMContext());
464 }
465
466 ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
467 break;
468 }
469 case Type::ExtVector:
470 case Type::Vector: {
471 const VectorType *VT = cast<VectorType>(Ty);
472 ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
473 VT->getNumElements());
474 break;
475 }
476 case Type::FunctionNoProto:
477 case Type::FunctionProto: {
478 const FunctionType *FT = cast<FunctionType>(Ty);
479 // First, check whether we can build the full function type. If the
480 // function type depends on an incomplete type (e.g. a struct or enum), we
481 // cannot lower the function type.
482 if (!isFuncTypeConvertible(FT)) {
483 // This function's type depends on an incomplete tag type.
484
485 // Force conversion of all the relevant record types, to make sure
486 // we re-convert the FunctionType when appropriate.
487 if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
488 ConvertRecordDeclType(RT->getDecl());
489 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
490 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
491 if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
492 ConvertRecordDeclType(RT->getDecl());
493
494 // Return a placeholder type.
495 ResultType = llvm::StructType::get(getLLVMContext());
496
497 SkippedLayout = true;
498 break;
499 }
500
501 // While we're converting the parameter types for a function, we don't want
502 // to recursively convert any pointed-to structs. Converting directly-used
503 // structs is ok though.
504 if (!RecordsBeingLaidOut.insert(Ty).second) {
505 ResultType = llvm::StructType::get(getLLVMContext());
506
507 SkippedLayout = true;
508 break;
509 }
510
511 // The function type can be built; call the appropriate routines to
512 // build it.
513 const CGFunctionInfo *FI;
514 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
515 FI = &arrangeFreeFunctionType(
516 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
517 } else {
518 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
519 FI = &arrangeFreeFunctionType(
520 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
521 }
522
523 // If there is something higher level prodding our CGFunctionInfo, then
524 // don't recurse into it again.
525 if (FunctionsBeingProcessed.count(FI)) {
526
527 ResultType = llvm::StructType::get(getLLVMContext());
528 SkippedLayout = true;
529 } else {
530
531 // Otherwise, we're good to go, go ahead and convert it.
532 ResultType = GetFunctionType(*FI);
533 }
534
535 RecordsBeingLaidOut.erase(Ty);
536
537 if (SkippedLayout)
538 TypeCache.clear();
539
540 if (RecordsBeingLaidOut.empty())
541 while (!DeferredRecords.empty())
542 ConvertRecordDeclType(DeferredRecords.pop_back_val());
543 break;
544 }
545
546 case Type::ObjCObject:
547 ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
548 break;
549
550 case Type::ObjCInterface: {
551 // Objective-C interfaces are always opaque (outside of the
552 // runtime, which can do whatever it likes); we never refine
553 // these.
554 llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
555 if (!T)
556 T = llvm::StructType::create(getLLVMContext());
557 ResultType = T;
558 break;
559 }
560
561 case Type::ObjCObjectPointer: {
562 // Protocol qualifications do not influence the LLVM type, we just return a
563 // pointer to the underlying interface type. We don't need to worry about
564 // recursive conversion.
565 llvm::Type *T =
566 ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
567 ResultType = T->getPointerTo();
568 break;
569 }
570
571 case Type::Enum: {
572 const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
573 if (ED->isCompleteDefinition() || ED->isFixed())
574 return ConvertType(ED->getIntegerType());
575 // Return a placeholder 'i32' type. This can be changed later when the
576 // type is defined (see UpdateCompletedType), but is likely to be the
577 // "right" answer.
578 ResultType = llvm::Type::getInt32Ty(getLLVMContext());
579 break;
580 }
581
582 case Type::BlockPointer: {
583 const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
584 llvm::Type *PointeeType = ConvertTypeForMem(FTy);
585 unsigned AS = Context.getTargetAddressSpace(FTy);
586 ResultType = llvm::PointerType::get(PointeeType, AS);
587 break;
588 }
589
590 case Type::MemberPointer: {
591 if (!getCXXABI().isMemberPointerConvertible(cast<MemberPointerType>(Ty)))
592 return llvm::StructType::create(getLLVMContext());
593 ResultType =
594 getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
595 break;
596 }
597
598 case Type::Atomic: {
599 QualType valueType = cast<AtomicType>(Ty)->getValueType();
600 ResultType = ConvertTypeForMem(valueType);
601
602 // Pad out to the inflated size if necessary.
603 uint64_t valueSize = Context.getTypeSize(valueType);
604 uint64_t atomicSize = Context.getTypeSize(Ty);
605 if (valueSize != atomicSize) {
606 assert(valueSize < atomicSize);
607 llvm::Type *elts[] = {
608 ResultType,
609 llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
610 };
611 ResultType = llvm::StructType::get(getLLVMContext(),
612 llvm::makeArrayRef(elts));
613 }
614 break;
615 }
616 }
617
618 assert(ResultType && "Didn't convert a type?");
619
620 TypeCache[Ty] = ResultType;
621 return ResultType;
622 }
623
isPaddedAtomicType(QualType type)624 bool CodeGenModule::isPaddedAtomicType(QualType type) {
625 return isPaddedAtomicType(type->castAs<AtomicType>());
626 }
627
isPaddedAtomicType(const AtomicType * type)628 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
629 return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
630 }
631
632 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
ConvertRecordDeclType(const RecordDecl * RD)633 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
634 // TagDecl's are not necessarily unique, instead use the (clang)
635 // type connected to the decl.
636 const Type *Key = Context.getTagDeclType(RD).getTypePtr();
637
638 llvm::StructType *&Entry = RecordDeclTypes[Key];
639
640 // If we don't have a StructType at all yet, create the forward declaration.
641 if (!Entry) {
642 Entry = llvm::StructType::create(getLLVMContext());
643 addRecordTypeName(RD, Entry, "");
644 }
645 llvm::StructType *Ty = Entry;
646
647 // If this is still a forward declaration, or the LLVM type is already
648 // complete, there's nothing more to do.
649 RD = RD->getDefinition();
650 if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
651 return Ty;
652
653 // If converting this type would cause us to infinitely loop, don't do it!
654 if (!isSafeToConvert(RD, *this)) {
655 DeferredRecords.push_back(RD);
656 return Ty;
657 }
658
659 // Okay, this is a definition of a type. Compile the implementation now.
660 bool InsertResult = RecordsBeingLaidOut.insert(Key).second;
661 (void)InsertResult;
662 assert(InsertResult && "Recursively compiling a struct?");
663
664 // Force conversion of non-virtual base classes recursively.
665 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
666 for (const auto &I : CRD->bases()) {
667 if (I.isVirtual()) continue;
668
669 ConvertRecordDeclType(I.getType()->getAs<RecordType>()->getDecl());
670 }
671 }
672
673 // Layout fields.
674 CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
675 CGRecordLayouts[Key] = Layout;
676
677 // We're done laying out this struct.
678 bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
679 assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
680
681 // If this struct blocked a FunctionType conversion, then recompute whatever
682 // was derived from that.
683 // FIXME: This is hugely overconservative.
684 if (SkippedLayout)
685 TypeCache.clear();
686
687 // If we're done converting the outer-most record, then convert any deferred
688 // structs as well.
689 if (RecordsBeingLaidOut.empty())
690 while (!DeferredRecords.empty())
691 ConvertRecordDeclType(DeferredRecords.pop_back_val());
692
693 return Ty;
694 }
695
696 /// getCGRecordLayout - Return record layout info for the given record decl.
697 const CGRecordLayout &
getCGRecordLayout(const RecordDecl * RD)698 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
699 const Type *Key = Context.getTagDeclType(RD).getTypePtr();
700
701 const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
702 if (!Layout) {
703 // Compute the type information.
704 ConvertRecordDeclType(RD);
705
706 // Now try again.
707 Layout = CGRecordLayouts.lookup(Key);
708 }
709
710 assert(Layout && "Unable to find record layout information for type");
711 return *Layout;
712 }
713
isZeroInitializable(QualType T)714 bool CodeGenTypes::isZeroInitializable(QualType T) {
715 // No need to check for member pointers when not compiling C++.
716 if (!Context.getLangOpts().CPlusPlus)
717 return true;
718
719 T = Context.getBaseElementType(T);
720
721 // Records are non-zero-initializable if they contain any
722 // non-zero-initializable subobjects.
723 if (const RecordType *RT = T->getAs<RecordType>()) {
724 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
725 return isZeroInitializable(RD);
726 }
727
728 // We have to ask the ABI about member pointers.
729 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
730 return getCXXABI().isZeroInitializable(MPT);
731
732 // Everything else is okay.
733 return true;
734 }
735
isZeroInitializable(const CXXRecordDecl * RD)736 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
737 return getCGRecordLayout(RD).isZeroInitializable();
738 }
739