1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the TypeBasedAliasAnalysis pass, which implements
11 // metadata-based TBAA.
12 //
13 // In LLVM IR, memory does not have types, so LLVM's own type system is not
14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
15 // a type system of a higher level language. This can be used to implement
16 // typical C/C++ TBAA, but it can also be used to implement custom alias
17 // analysis behavior for other languages.
18 //
19 // We now support two types of metadata format: scalar TBAA and struct-path
20 // aware TBAA. After all testing cases are upgraded to use struct-path aware
21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
22 // can be dropped.
23 //
24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
25 // three fields, e.g.:
26 // !0 = metadata !{ metadata !"an example type tree" }
27 // !1 = metadata !{ metadata !"int", metadata !0 }
28 // !2 = metadata !{ metadata !"float", metadata !0 }
29 // !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
30 //
31 // The first field is an identity field. It can be any value, usually
32 // an MDString, which uniquely identifies the type. The most important
33 // name in the tree is the name of the root node. Two trees with
34 // different root node names are entirely disjoint, even if they
35 // have leaves with common names.
36 //
37 // The second field identifies the type's parent node in the tree, or
38 // is null or omitted for a root node. A type is considered to alias
39 // all of its descendants and all of its ancestors in the tree. Also,
40 // a type is considered to alias all types in other trees, so that
41 // bitcode produced from multiple front-ends is handled conservatively.
42 //
43 // If the third field is present, it's an integer which if equal to 1
44 // indicates that the type is "constant" (meaning pointsToConstantMemory
45 // should return true; see
46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
47 //
48 // With struct-path aware TBAA, the MDNodes attached to an instruction using
49 // "!tbaa" are called path tag nodes.
50 //
51 // The path tag node has 4 fields with the last field being optional.
52 //
53 // The first field is the base type node, it can be a struct type node
54 // or a scalar type node. The second field is the access type node, it
55 // must be a scalar type node. The third field is the offset into the base type.
56 // The last field has the same meaning as the last field of our scalar TBAA:
57 // it's an integer which if equal to 1 indicates that the access is "constant".
58 //
59 // The struct type node has a name and a list of pairs, one pair for each member
60 // of the struct. The first element of each pair is a type node (a struct type
61 // node or a sclar type node), specifying the type of the member, the second
62 // element of each pair is the offset of the member.
63 //
64 // Given an example
65 // typedef struct {
66 // short s;
67 // } A;
68 // typedef struct {
69 // uint16_t s;
70 // A a;
71 // } B;
72 //
73 // For an acess to B.a.s, we attach !5 (a path tag node) to the load/store
74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
75 // type short) and the offset is 4.
76 //
77 // !0 = metadata !{metadata !"Simple C/C++ TBAA"}
78 // !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node
79 // !2 = metadata !{metadata !"short", metadata !1} // Scalar type node
80 // !3 = metadata !{metadata !"A", metadata !2, i64 0} // Struct type node
81 // !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4}
82 // // Struct type node
83 // !5 = metadata !{metadata !4, metadata !2, i64 4} // Path tag node
84 //
85 // The struct type nodes and the scalar type nodes form a type DAG.
86 // Root (!0)
87 // char (!1) -- edge to Root
88 // short (!2) -- edge to char
89 // A (!3) -- edge with offset 0 to short
90 // B (!4) -- edge with offset 0 to short and edge with offset 4 to A
91 //
92 // To check if two tags (tagX and tagY) can alias, we start from the base type
93 // of tagX, follow the edge with the correct offset in the type DAG and adjust
94 // the offset until we reach the base type of tagY or until we reach the Root
95 // node.
96 // If we reach the base type of tagY, compare the adjusted offset with
97 // offset of tagY, return Alias if the offsets are the same, return NoAlias
98 // otherwise.
99 // If we reach the Root node, perform the above starting from base type of tagY
100 // to see if we reach base type of tagX.
101 //
102 // If they have different roots, they're part of different potentially
103 // unrelated type systems, so we return Alias to be conservative.
104 // If neither node is an ancestor of the other and they have the same root,
105 // then we say NoAlias.
106 //
107 // TODO: The current metadata format doesn't support struct
108 // fields. For example:
109 // struct X {
110 // double d;
111 // int i;
112 // };
113 // void foo(struct X *x, struct X *y, double *p) {
114 // *x = *y;
115 // *p = 0.0;
116 // }
117 // Struct X has a double member, so the store to *x can alias the store to *p.
118 // Currently it's not possible to precisely describe all the things struct X
119 // aliases, so struct assignments must use conservative TBAA nodes. There's
120 // no scheme for attaching metadata to @llvm.memcpy yet either.
121 //
122 //===----------------------------------------------------------------------===//
123
124 #include "llvm/Analysis/Passes.h"
125 #include "llvm/Analysis/AliasAnalysis.h"
126 #include "llvm/IR/Constants.h"
127 #include "llvm/IR/LLVMContext.h"
128 #include "llvm/IR/Metadata.h"
129 #include "llvm/IR/Module.h"
130 #include "llvm/Pass.h"
131 #include "llvm/Support/CommandLine.h"
132 #include "llvm/ADT/SetVector.h"
133 using namespace llvm;
134
135 // A handy option for disabling TBAA functionality. The same effect can also be
136 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
137 // more convenient.
138 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
139
140 namespace {
141 /// TBAANode - This is a simple wrapper around an MDNode which provides a
142 /// higher-level interface by hiding the details of how alias analysis
143 /// information is encoded in its operands.
144 class TBAANode {
145 const MDNode *Node;
146
147 public:
TBAANode()148 TBAANode() : Node(nullptr) {}
TBAANode(const MDNode * N)149 explicit TBAANode(const MDNode *N) : Node(N) {}
150
151 /// getNode - Get the MDNode for this TBAANode.
getNode() const152 const MDNode *getNode() const { return Node; }
153
154 /// getParent - Get this TBAANode's Alias tree parent.
getParent() const155 TBAANode getParent() const {
156 if (Node->getNumOperands() < 2)
157 return TBAANode();
158 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
159 if (!P)
160 return TBAANode();
161 // Ok, this node has a valid parent. Return it.
162 return TBAANode(P);
163 }
164
165 /// TypeIsImmutable - Test if this TBAANode represents a type for objects
166 /// which are not modified (by any means) in the context where this
167 /// AliasAnalysis is relevant.
TypeIsImmutable() const168 bool TypeIsImmutable() const {
169 if (Node->getNumOperands() < 3)
170 return false;
171 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
172 if (!CI)
173 return false;
174 return CI->getValue()[0];
175 }
176 };
177
178 /// This is a simple wrapper around an MDNode which provides a
179 /// higher-level interface by hiding the details of how alias analysis
180 /// information is encoded in its operands.
181 class TBAAStructTagNode {
182 /// This node should be created with createTBAAStructTagNode.
183 const MDNode *Node;
184
185 public:
TBAAStructTagNode(const MDNode * N)186 explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
187
188 /// Get the MDNode for this TBAAStructTagNode.
getNode() const189 const MDNode *getNode() const { return Node; }
190
getBaseType() const191 const MDNode *getBaseType() const {
192 return dyn_cast_or_null<MDNode>(Node->getOperand(0));
193 }
getAccessType() const194 const MDNode *getAccessType() const {
195 return dyn_cast_or_null<MDNode>(Node->getOperand(1));
196 }
getOffset() const197 uint64_t getOffset() const {
198 return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
199 }
200 /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
201 /// objects which are not modified (by any means) in the context where this
202 /// AliasAnalysis is relevant.
TypeIsImmutable() const203 bool TypeIsImmutable() const {
204 if (Node->getNumOperands() < 4)
205 return false;
206 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(3));
207 if (!CI)
208 return false;
209 return CI->getValue()[0];
210 }
211 };
212
213 /// This is a simple wrapper around an MDNode which provides a
214 /// higher-level interface by hiding the details of how alias analysis
215 /// information is encoded in its operands.
216 class TBAAStructTypeNode {
217 /// This node should be created with createTBAAStructTypeNode.
218 const MDNode *Node;
219
220 public:
TBAAStructTypeNode()221 TBAAStructTypeNode() : Node(nullptr) {}
TBAAStructTypeNode(const MDNode * N)222 explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
223
224 /// Get the MDNode for this TBAAStructTypeNode.
getNode() const225 const MDNode *getNode() const { return Node; }
226
227 /// Get this TBAAStructTypeNode's field in the type DAG with
228 /// given offset. Update the offset to be relative to the field type.
getParent(uint64_t & Offset) const229 TBAAStructTypeNode getParent(uint64_t &Offset) const {
230 // Parent can be omitted for the root node.
231 if (Node->getNumOperands() < 2)
232 return TBAAStructTypeNode();
233
234 // Fast path for a scalar type node and a struct type node with a single
235 // field.
236 if (Node->getNumOperands() <= 3) {
237 uint64_t Cur = Node->getNumOperands() == 2
238 ? 0
239 : mdconst::extract<ConstantInt>(Node->getOperand(2))
240 ->getZExtValue();
241 Offset -= Cur;
242 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
243 if (!P)
244 return TBAAStructTypeNode();
245 return TBAAStructTypeNode(P);
246 }
247
248 // Assume the offsets are in order. We return the previous field if
249 // the current offset is bigger than the given offset.
250 unsigned TheIdx = 0;
251 for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
252 uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
253 ->getZExtValue();
254 if (Cur > Offset) {
255 assert(Idx >= 3 &&
256 "TBAAStructTypeNode::getParent should have an offset match!");
257 TheIdx = Idx - 2;
258 break;
259 }
260 }
261 // Move along the last field.
262 if (TheIdx == 0)
263 TheIdx = Node->getNumOperands() - 2;
264 uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
265 ->getZExtValue();
266 Offset -= Cur;
267 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
268 if (!P)
269 return TBAAStructTypeNode();
270 return TBAAStructTypeNode(P);
271 }
272 };
273 }
274
275 namespace {
276 /// TypeBasedAliasAnalysis - This is a simple alias analysis
277 /// implementation that uses TypeBased to answer queries.
278 class TypeBasedAliasAnalysis : public ImmutablePass,
279 public AliasAnalysis {
280 public:
281 static char ID; // Class identification, replacement for typeinfo
TypeBasedAliasAnalysis()282 TypeBasedAliasAnalysis() : ImmutablePass(ID) {
283 initializeTypeBasedAliasAnalysisPass(*PassRegistry::getPassRegistry());
284 }
285
286 bool doInitialization(Module &M) override;
287
288 /// getAdjustedAnalysisPointer - This method is used when a pass implements
289 /// an analysis interface through multiple inheritance. If needed, it
290 /// should override this to adjust the this pointer as needed for the
291 /// specified pass info.
getAdjustedAnalysisPointer(const void * PI)292 void *getAdjustedAnalysisPointer(const void *PI) override {
293 if (PI == &AliasAnalysis::ID)
294 return (AliasAnalysis*)this;
295 return this;
296 }
297
298 bool Aliases(const MDNode *A, const MDNode *B) const;
299 bool PathAliases(const MDNode *A, const MDNode *B) const;
300
301 private:
302 void getAnalysisUsage(AnalysisUsage &AU) const override;
303 AliasResult alias(const Location &LocA, const Location &LocB) override;
304 bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
305 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
306 ModRefBehavior getModRefBehavior(const Function *F) override;
307 ModRefResult getModRefInfo(ImmutableCallSite CS,
308 const Location &Loc) override;
309 ModRefResult getModRefInfo(ImmutableCallSite CS1,
310 ImmutableCallSite CS2) override;
311 };
312 } // End of anonymous namespace
313
314 // Register this pass...
315 char TypeBasedAliasAnalysis::ID = 0;
316 INITIALIZE_AG_PASS(TypeBasedAliasAnalysis, AliasAnalysis, "tbaa",
317 "Type-Based Alias Analysis", false, true, false)
318
createTypeBasedAliasAnalysisPass()319 ImmutablePass *llvm::createTypeBasedAliasAnalysisPass() {
320 return new TypeBasedAliasAnalysis();
321 }
322
doInitialization(Module & M)323 bool TypeBasedAliasAnalysis::doInitialization(Module &M) {
324 InitializeAliasAnalysis(this, &M.getDataLayout());
325 return true;
326 }
327
328 void
getAnalysisUsage(AnalysisUsage & AU) const329 TypeBasedAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
330 AU.setPreservesAll();
331 AliasAnalysis::getAnalysisUsage(AU);
332 }
333
334 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
335 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
336 /// format.
isStructPathTBAA(const MDNode * MD)337 static bool isStructPathTBAA(const MDNode *MD) {
338 // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
339 // a TBAA tag.
340 return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
341 }
342
343 /// Aliases - Test whether the type represented by A may alias the
344 /// type represented by B.
345 bool
Aliases(const MDNode * A,const MDNode * B) const346 TypeBasedAliasAnalysis::Aliases(const MDNode *A,
347 const MDNode *B) const {
348 // Make sure that both MDNodes are struct-path aware.
349 if (isStructPathTBAA(A) && isStructPathTBAA(B))
350 return PathAliases(A, B);
351
352 // Keep track of the root node for A and B.
353 TBAANode RootA, RootB;
354
355 // Climb the tree from A to see if we reach B.
356 for (TBAANode T(A); ; ) {
357 if (T.getNode() == B)
358 // B is an ancestor of A.
359 return true;
360
361 RootA = T;
362 T = T.getParent();
363 if (!T.getNode())
364 break;
365 }
366
367 // Climb the tree from B to see if we reach A.
368 for (TBAANode T(B); ; ) {
369 if (T.getNode() == A)
370 // A is an ancestor of B.
371 return true;
372
373 RootB = T;
374 T = T.getParent();
375 if (!T.getNode())
376 break;
377 }
378
379 // Neither node is an ancestor of the other.
380
381 // If they have different roots, they're part of different potentially
382 // unrelated type systems, so we must be conservative.
383 if (RootA.getNode() != RootB.getNode())
384 return true;
385
386 // If they have the same root, then we've proved there's no alias.
387 return false;
388 }
389
390 /// Test whether the struct-path tag represented by A may alias the
391 /// struct-path tag represented by B.
392 bool
PathAliases(const MDNode * A,const MDNode * B) const393 TypeBasedAliasAnalysis::PathAliases(const MDNode *A,
394 const MDNode *B) const {
395 // Verify that both input nodes are struct-path aware.
396 assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware.");
397 assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware.");
398
399 // Keep track of the root node for A and B.
400 TBAAStructTypeNode RootA, RootB;
401 TBAAStructTagNode TagA(A), TagB(B);
402
403 // TODO: We need to check if AccessType of TagA encloses AccessType of
404 // TagB to support aggregate AccessType. If yes, return true.
405
406 // Start from the base type of A, follow the edge with the correct offset in
407 // the type DAG and adjust the offset until we reach the base type of B or
408 // until we reach the Root node.
409 // Compare the adjusted offset once we have the same base.
410
411 // Climb the type DAG from base type of A to see if we reach base type of B.
412 const MDNode *BaseA = TagA.getBaseType();
413 const MDNode *BaseB = TagB.getBaseType();
414 uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
415 for (TBAAStructTypeNode T(BaseA); ; ) {
416 if (T.getNode() == BaseB)
417 // Base type of A encloses base type of B, check if the offsets match.
418 return OffsetA == OffsetB;
419
420 RootA = T;
421 // Follow the edge with the correct offset, OffsetA will be adjusted to
422 // be relative to the field type.
423 T = T.getParent(OffsetA);
424 if (!T.getNode())
425 break;
426 }
427
428 // Reset OffsetA and climb the type DAG from base type of B to see if we reach
429 // base type of A.
430 OffsetA = TagA.getOffset();
431 for (TBAAStructTypeNode T(BaseB); ; ) {
432 if (T.getNode() == BaseA)
433 // Base type of B encloses base type of A, check if the offsets match.
434 return OffsetA == OffsetB;
435
436 RootB = T;
437 // Follow the edge with the correct offset, OffsetB will be adjusted to
438 // be relative to the field type.
439 T = T.getParent(OffsetB);
440 if (!T.getNode())
441 break;
442 }
443
444 // Neither node is an ancestor of the other.
445
446 // If they have different roots, they're part of different potentially
447 // unrelated type systems, so we must be conservative.
448 if (RootA.getNode() != RootB.getNode())
449 return true;
450
451 // If they have the same root, then we've proved there's no alias.
452 return false;
453 }
454
455 AliasAnalysis::AliasResult
alias(const Location & LocA,const Location & LocB)456 TypeBasedAliasAnalysis::alias(const Location &LocA,
457 const Location &LocB) {
458 if (!EnableTBAA)
459 return AliasAnalysis::alias(LocA, LocB);
460
461 // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
462 // be conservative.
463 const MDNode *AM = LocA.AATags.TBAA;
464 if (!AM) return AliasAnalysis::alias(LocA, LocB);
465 const MDNode *BM = LocB.AATags.TBAA;
466 if (!BM) return AliasAnalysis::alias(LocA, LocB);
467
468 // If they may alias, chain to the next AliasAnalysis.
469 if (Aliases(AM, BM))
470 return AliasAnalysis::alias(LocA, LocB);
471
472 // Otherwise return a definitive result.
473 return NoAlias;
474 }
475
pointsToConstantMemory(const Location & Loc,bool OrLocal)476 bool TypeBasedAliasAnalysis::pointsToConstantMemory(const Location &Loc,
477 bool OrLocal) {
478 if (!EnableTBAA)
479 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
480
481 const MDNode *M = Loc.AATags.TBAA;
482 if (!M) return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
483
484 // If this is an "immutable" type, we can assume the pointer is pointing
485 // to constant memory.
486 if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
487 (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
488 return true;
489
490 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
491 }
492
493 AliasAnalysis::ModRefBehavior
getModRefBehavior(ImmutableCallSite CS)494 TypeBasedAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
495 if (!EnableTBAA)
496 return AliasAnalysis::getModRefBehavior(CS);
497
498 ModRefBehavior Min = UnknownModRefBehavior;
499
500 // If this is an "immutable" type, we can assume the call doesn't write
501 // to memory.
502 if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
503 if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
504 (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
505 Min = OnlyReadsMemory;
506
507 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
508 }
509
510 AliasAnalysis::ModRefBehavior
getModRefBehavior(const Function * F)511 TypeBasedAliasAnalysis::getModRefBehavior(const Function *F) {
512 // Functions don't have metadata. Just chain to the next implementation.
513 return AliasAnalysis::getModRefBehavior(F);
514 }
515
516 AliasAnalysis::ModRefResult
getModRefInfo(ImmutableCallSite CS,const Location & Loc)517 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
518 const Location &Loc) {
519 if (!EnableTBAA)
520 return AliasAnalysis::getModRefInfo(CS, Loc);
521
522 if (const MDNode *L = Loc.AATags.TBAA)
523 if (const MDNode *M =
524 CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
525 if (!Aliases(L, M))
526 return NoModRef;
527
528 return AliasAnalysis::getModRefInfo(CS, Loc);
529 }
530
531 AliasAnalysis::ModRefResult
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)532 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
533 ImmutableCallSite CS2) {
534 if (!EnableTBAA)
535 return AliasAnalysis::getModRefInfo(CS1, CS2);
536
537 if (const MDNode *M1 =
538 CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
539 if (const MDNode *M2 =
540 CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
541 if (!Aliases(M1, M2))
542 return NoModRef;
543
544 return AliasAnalysis::getModRefInfo(CS1, CS2);
545 }
546
isTBAAVtableAccess() const547 bool MDNode::isTBAAVtableAccess() const {
548 if (!isStructPathTBAA(this)) {
549 if (getNumOperands() < 1) return false;
550 if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
551 if (Tag1->getString() == "vtable pointer") return true;
552 }
553 return false;
554 }
555
556 // For struct-path aware TBAA, we use the access type of the tag.
557 if (getNumOperands() < 2) return false;
558 MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
559 if (!Tag) return false;
560 if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
561 if (Tag1->getString() == "vtable pointer") return true;
562 }
563 return false;
564 }
565
getMostGenericTBAA(MDNode * A,MDNode * B)566 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
567 if (!A || !B)
568 return nullptr;
569
570 if (A == B)
571 return A;
572
573 // For struct-path aware TBAA, we use the access type of the tag.
574 bool StructPath = isStructPathTBAA(A) && isStructPathTBAA(B);
575 if (StructPath) {
576 A = cast_or_null<MDNode>(A->getOperand(1));
577 if (!A) return nullptr;
578 B = cast_or_null<MDNode>(B->getOperand(1));
579 if (!B) return nullptr;
580 }
581
582 SmallSetVector<MDNode *, 4> PathA;
583 MDNode *T = A;
584 while (T) {
585 if (PathA.count(T))
586 report_fatal_error("Cycle found in TBAA metadata.");
587 PathA.insert(T);
588 T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
589 : nullptr;
590 }
591
592 SmallSetVector<MDNode *, 4> PathB;
593 T = B;
594 while (T) {
595 if (PathB.count(T))
596 report_fatal_error("Cycle found in TBAA metadata.");
597 PathB.insert(T);
598 T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
599 : nullptr;
600 }
601
602 int IA = PathA.size() - 1;
603 int IB = PathB.size() - 1;
604
605 MDNode *Ret = nullptr;
606 while (IA >= 0 && IB >=0) {
607 if (PathA[IA] == PathB[IB])
608 Ret = PathA[IA];
609 else
610 break;
611 --IA;
612 --IB;
613 }
614 if (!StructPath)
615 return Ret;
616
617 if (!Ret)
618 return nullptr;
619 // We need to convert from a type node to a tag node.
620 Type *Int64 = IntegerType::get(A->getContext(), 64);
621 Metadata *Ops[3] = {Ret, Ret,
622 ConstantAsMetadata::get(ConstantInt::get(Int64, 0))};
623 return MDNode::get(A->getContext(), Ops);
624 }
625
getAAMetadata(AAMDNodes & N,bool Merge) const626 void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
627 if (Merge)
628 N.TBAA =
629 MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
630 else
631 N.TBAA = getMetadata(LLVMContext::MD_tbaa);
632
633 if (Merge)
634 N.Scope = MDNode::getMostGenericAliasScope(
635 N.Scope, getMetadata(LLVMContext::MD_alias_scope));
636 else
637 N.Scope = getMetadata(LLVMContext::MD_alias_scope);
638
639 if (Merge)
640 N.NoAlias =
641 MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
642 else
643 N.NoAlias = getMetadata(LLVMContext::MD_noalias);
644 }
645
646