1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the TypeBasedAliasAnalysis pass, which implements
11 // metadata-based TBAA.
12 //
13 // In LLVM IR, memory does not have types, so LLVM's own type system is not
14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
15 // a type system of a higher level language. This can be used to implement
16 // typical C/C++ TBAA, but it can also be used to implement custom alias
17 // analysis behavior for other languages.
18 //
19 // We now support two types of metadata format: scalar TBAA and struct-path
20 // aware TBAA. After all testing cases are upgraded to use struct-path aware
21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
22 // can be dropped.
23 //
24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
25 // three fields, e.g.:
26 //   !0 = metadata !{ metadata !"an example type tree" }
27 //   !1 = metadata !{ metadata !"int", metadata !0 }
28 //   !2 = metadata !{ metadata !"float", metadata !0 }
29 //   !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
30 //
31 // The first field is an identity field. It can be any value, usually
32 // an MDString, which uniquely identifies the type. The most important
33 // name in the tree is the name of the root node. Two trees with
34 // different root node names are entirely disjoint, even if they
35 // have leaves with common names.
36 //
37 // The second field identifies the type's parent node in the tree, or
38 // is null or omitted for a root node. A type is considered to alias
39 // all of its descendants and all of its ancestors in the tree. Also,
40 // a type is considered to alias all types in other trees, so that
41 // bitcode produced from multiple front-ends is handled conservatively.
42 //
43 // If the third field is present, it's an integer which if equal to 1
44 // indicates that the type is "constant" (meaning pointsToConstantMemory
45 // should return true; see
46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
47 //
48 // With struct-path aware TBAA, the MDNodes attached to an instruction using
49 // "!tbaa" are called path tag nodes.
50 //
51 // The path tag node has 4 fields with the last field being optional.
52 //
53 // The first field is the base type node, it can be a struct type node
54 // or a scalar type node. The second field is the access type node, it
55 // must be a scalar type node. The third field is the offset into the base type.
56 // The last field has the same meaning as the last field of our scalar TBAA:
57 // it's an integer which if equal to 1 indicates that the access is "constant".
58 //
59 // The struct type node has a name and a list of pairs, one pair for each member
60 // of the struct. The first element of each pair is a type node (a struct type
61 // node or a sclar type node), specifying the type of the member, the second
62 // element of each pair is the offset of the member.
63 //
64 // Given an example
65 // typedef struct {
66 //   short s;
67 // } A;
68 // typedef struct {
69 //   uint16_t s;
70 //   A a;
71 // } B;
72 //
73 // For an acess to B.a.s, we attach !5 (a path tag node) to the load/store
74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
75 // type short) and the offset is 4.
76 //
77 // !0 = metadata !{metadata !"Simple C/C++ TBAA"}
78 // !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node
79 // !2 = metadata !{metadata !"short", metadata !1}           // Scalar type node
80 // !3 = metadata !{metadata !"A", metadata !2, i64 0}        // Struct type node
81 // !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4}
82 //                                                           // Struct type node
83 // !5 = metadata !{metadata !4, metadata !2, i64 4}          // Path tag node
84 //
85 // The struct type nodes and the scalar type nodes form a type DAG.
86 //         Root (!0)
87 //         char (!1)  -- edge to Root
88 //         short (!2) -- edge to char
89 //         A (!3) -- edge with offset 0 to short
90 //         B (!4) -- edge with offset 0 to short and edge with offset 4 to A
91 //
92 // To check if two tags (tagX and tagY) can alias, we start from the base type
93 // of tagX, follow the edge with the correct offset in the type DAG and adjust
94 // the offset until we reach the base type of tagY or until we reach the Root
95 // node.
96 // If we reach the base type of tagY, compare the adjusted offset with
97 // offset of tagY, return Alias if the offsets are the same, return NoAlias
98 // otherwise.
99 // If we reach the Root node, perform the above starting from base type of tagY
100 // to see if we reach base type of tagX.
101 //
102 // If they have different roots, they're part of different potentially
103 // unrelated type systems, so we return Alias to be conservative.
104 // If neither node is an ancestor of the other and they have the same root,
105 // then we say NoAlias.
106 //
107 // TODO: The current metadata format doesn't support struct
108 // fields. For example:
109 //   struct X {
110 //     double d;
111 //     int i;
112 //   };
113 //   void foo(struct X *x, struct X *y, double *p) {
114 //     *x = *y;
115 //     *p = 0.0;
116 //   }
117 // Struct X has a double member, so the store to *x can alias the store to *p.
118 // Currently it's not possible to precisely describe all the things struct X
119 // aliases, so struct assignments must use conservative TBAA nodes. There's
120 // no scheme for attaching metadata to @llvm.memcpy yet either.
121 //
122 //===----------------------------------------------------------------------===//
123 
124 #include "llvm/Analysis/Passes.h"
125 #include "llvm/Analysis/AliasAnalysis.h"
126 #include "llvm/IR/Constants.h"
127 #include "llvm/IR/LLVMContext.h"
128 #include "llvm/IR/Metadata.h"
129 #include "llvm/IR/Module.h"
130 #include "llvm/Pass.h"
131 #include "llvm/Support/CommandLine.h"
132 #include "llvm/ADT/SetVector.h"
133 using namespace llvm;
134 
135 // A handy option for disabling TBAA functionality. The same effect can also be
136 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
137 // more convenient.
138 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
139 
140 namespace {
141   /// TBAANode - This is a simple wrapper around an MDNode which provides a
142   /// higher-level interface by hiding the details of how alias analysis
143   /// information is encoded in its operands.
144   class TBAANode {
145     const MDNode *Node;
146 
147   public:
TBAANode()148     TBAANode() : Node(nullptr) {}
TBAANode(const MDNode * N)149     explicit TBAANode(const MDNode *N) : Node(N) {}
150 
151     /// getNode - Get the MDNode for this TBAANode.
getNode() const152     const MDNode *getNode() const { return Node; }
153 
154     /// getParent - Get this TBAANode's Alias tree parent.
getParent() const155     TBAANode getParent() const {
156       if (Node->getNumOperands() < 2)
157         return TBAANode();
158       MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
159       if (!P)
160         return TBAANode();
161       // Ok, this node has a valid parent. Return it.
162       return TBAANode(P);
163     }
164 
165     /// TypeIsImmutable - Test if this TBAANode represents a type for objects
166     /// which are not modified (by any means) in the context where this
167     /// AliasAnalysis is relevant.
TypeIsImmutable() const168     bool TypeIsImmutable() const {
169       if (Node->getNumOperands() < 3)
170         return false;
171       ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
172       if (!CI)
173         return false;
174       return CI->getValue()[0];
175     }
176   };
177 
178   /// This is a simple wrapper around an MDNode which provides a
179   /// higher-level interface by hiding the details of how alias analysis
180   /// information is encoded in its operands.
181   class TBAAStructTagNode {
182     /// This node should be created with createTBAAStructTagNode.
183     const MDNode *Node;
184 
185   public:
TBAAStructTagNode(const MDNode * N)186     explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
187 
188     /// Get the MDNode for this TBAAStructTagNode.
getNode() const189     const MDNode *getNode() const { return Node; }
190 
getBaseType() const191     const MDNode *getBaseType() const {
192       return dyn_cast_or_null<MDNode>(Node->getOperand(0));
193     }
getAccessType() const194     const MDNode *getAccessType() const {
195       return dyn_cast_or_null<MDNode>(Node->getOperand(1));
196     }
getOffset() const197     uint64_t getOffset() const {
198       return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
199     }
200     /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
201     /// objects which are not modified (by any means) in the context where this
202     /// AliasAnalysis is relevant.
TypeIsImmutable() const203     bool TypeIsImmutable() const {
204       if (Node->getNumOperands() < 4)
205         return false;
206       ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(3));
207       if (!CI)
208         return false;
209       return CI->getValue()[0];
210     }
211   };
212 
213   /// This is a simple wrapper around an MDNode which provides a
214   /// higher-level interface by hiding the details of how alias analysis
215   /// information is encoded in its operands.
216   class TBAAStructTypeNode {
217     /// This node should be created with createTBAAStructTypeNode.
218     const MDNode *Node;
219 
220   public:
TBAAStructTypeNode()221     TBAAStructTypeNode() : Node(nullptr) {}
TBAAStructTypeNode(const MDNode * N)222     explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
223 
224     /// Get the MDNode for this TBAAStructTypeNode.
getNode() const225     const MDNode *getNode() const { return Node; }
226 
227     /// Get this TBAAStructTypeNode's field in the type DAG with
228     /// given offset. Update the offset to be relative to the field type.
getParent(uint64_t & Offset) const229     TBAAStructTypeNode getParent(uint64_t &Offset) const {
230       // Parent can be omitted for the root node.
231       if (Node->getNumOperands() < 2)
232         return TBAAStructTypeNode();
233 
234       // Fast path for a scalar type node and a struct type node with a single
235       // field.
236       if (Node->getNumOperands() <= 3) {
237         uint64_t Cur = Node->getNumOperands() == 2
238                            ? 0
239                            : mdconst::extract<ConstantInt>(Node->getOperand(2))
240                                  ->getZExtValue();
241         Offset -= Cur;
242         MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
243         if (!P)
244           return TBAAStructTypeNode();
245         return TBAAStructTypeNode(P);
246       }
247 
248       // Assume the offsets are in order. We return the previous field if
249       // the current offset is bigger than the given offset.
250       unsigned TheIdx = 0;
251       for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
252         uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
253                            ->getZExtValue();
254         if (Cur > Offset) {
255           assert(Idx >= 3 &&
256                  "TBAAStructTypeNode::getParent should have an offset match!");
257           TheIdx = Idx - 2;
258           break;
259         }
260       }
261       // Move along the last field.
262       if (TheIdx == 0)
263         TheIdx = Node->getNumOperands() - 2;
264       uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
265                          ->getZExtValue();
266       Offset -= Cur;
267       MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
268       if (!P)
269         return TBAAStructTypeNode();
270       return TBAAStructTypeNode(P);
271     }
272   };
273 }
274 
275 namespace {
276   /// TypeBasedAliasAnalysis - This is a simple alias analysis
277   /// implementation that uses TypeBased to answer queries.
278   class TypeBasedAliasAnalysis : public ImmutablePass,
279                                  public AliasAnalysis {
280   public:
281     static char ID; // Class identification, replacement for typeinfo
TypeBasedAliasAnalysis()282     TypeBasedAliasAnalysis() : ImmutablePass(ID) {
283       initializeTypeBasedAliasAnalysisPass(*PassRegistry::getPassRegistry());
284     }
285 
286     bool doInitialization(Module &M) override;
287 
288     /// getAdjustedAnalysisPointer - This method is used when a pass implements
289     /// an analysis interface through multiple inheritance.  If needed, it
290     /// should override this to adjust the this pointer as needed for the
291     /// specified pass info.
getAdjustedAnalysisPointer(const void * PI)292     void *getAdjustedAnalysisPointer(const void *PI) override {
293       if (PI == &AliasAnalysis::ID)
294         return (AliasAnalysis*)this;
295       return this;
296     }
297 
298     bool Aliases(const MDNode *A, const MDNode *B) const;
299     bool PathAliases(const MDNode *A, const MDNode *B) const;
300 
301   private:
302     void getAnalysisUsage(AnalysisUsage &AU) const override;
303     AliasResult alias(const Location &LocA, const Location &LocB) override;
304     bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
305     ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
306     ModRefBehavior getModRefBehavior(const Function *F) override;
307     ModRefResult getModRefInfo(ImmutableCallSite CS,
308                                const Location &Loc) override;
309     ModRefResult getModRefInfo(ImmutableCallSite CS1,
310                                ImmutableCallSite CS2) override;
311   };
312 }  // End of anonymous namespace
313 
314 // Register this pass...
315 char TypeBasedAliasAnalysis::ID = 0;
316 INITIALIZE_AG_PASS(TypeBasedAliasAnalysis, AliasAnalysis, "tbaa",
317                    "Type-Based Alias Analysis", false, true, false)
318 
createTypeBasedAliasAnalysisPass()319 ImmutablePass *llvm::createTypeBasedAliasAnalysisPass() {
320   return new TypeBasedAliasAnalysis();
321 }
322 
doInitialization(Module & M)323 bool TypeBasedAliasAnalysis::doInitialization(Module &M) {
324   InitializeAliasAnalysis(this, &M.getDataLayout());
325   return true;
326 }
327 
328 void
getAnalysisUsage(AnalysisUsage & AU) const329 TypeBasedAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
330   AU.setPreservesAll();
331   AliasAnalysis::getAnalysisUsage(AU);
332 }
333 
334 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
335 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
336 /// format.
isStructPathTBAA(const MDNode * MD)337 static bool isStructPathTBAA(const MDNode *MD) {
338   // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
339   // a TBAA tag.
340   return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
341 }
342 
343 /// Aliases - Test whether the type represented by A may alias the
344 /// type represented by B.
345 bool
Aliases(const MDNode * A,const MDNode * B) const346 TypeBasedAliasAnalysis::Aliases(const MDNode *A,
347                                 const MDNode *B) const {
348   // Make sure that both MDNodes are struct-path aware.
349   if (isStructPathTBAA(A) && isStructPathTBAA(B))
350     return PathAliases(A, B);
351 
352   // Keep track of the root node for A and B.
353   TBAANode RootA, RootB;
354 
355   // Climb the tree from A to see if we reach B.
356   for (TBAANode T(A); ; ) {
357     if (T.getNode() == B)
358       // B is an ancestor of A.
359       return true;
360 
361     RootA = T;
362     T = T.getParent();
363     if (!T.getNode())
364       break;
365   }
366 
367   // Climb the tree from B to see if we reach A.
368   for (TBAANode T(B); ; ) {
369     if (T.getNode() == A)
370       // A is an ancestor of B.
371       return true;
372 
373     RootB = T;
374     T = T.getParent();
375     if (!T.getNode())
376       break;
377   }
378 
379   // Neither node is an ancestor of the other.
380 
381   // If they have different roots, they're part of different potentially
382   // unrelated type systems, so we must be conservative.
383   if (RootA.getNode() != RootB.getNode())
384     return true;
385 
386   // If they have the same root, then we've proved there's no alias.
387   return false;
388 }
389 
390 /// Test whether the struct-path tag represented by A may alias the
391 /// struct-path tag represented by B.
392 bool
PathAliases(const MDNode * A,const MDNode * B) const393 TypeBasedAliasAnalysis::PathAliases(const MDNode *A,
394                                     const MDNode *B) const {
395   // Verify that both input nodes are struct-path aware.
396   assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware.");
397   assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware.");
398 
399   // Keep track of the root node for A and B.
400   TBAAStructTypeNode RootA, RootB;
401   TBAAStructTagNode TagA(A), TagB(B);
402 
403   // TODO: We need to check if AccessType of TagA encloses AccessType of
404   // TagB to support aggregate AccessType. If yes, return true.
405 
406   // Start from the base type of A, follow the edge with the correct offset in
407   // the type DAG and adjust the offset until we reach the base type of B or
408   // until we reach the Root node.
409   // Compare the adjusted offset once we have the same base.
410 
411   // Climb the type DAG from base type of A to see if we reach base type of B.
412   const MDNode *BaseA = TagA.getBaseType();
413   const MDNode *BaseB = TagB.getBaseType();
414   uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
415   for (TBAAStructTypeNode T(BaseA); ; ) {
416     if (T.getNode() == BaseB)
417       // Base type of A encloses base type of B, check if the offsets match.
418       return OffsetA == OffsetB;
419 
420     RootA = T;
421     // Follow the edge with the correct offset, OffsetA will be adjusted to
422     // be relative to the field type.
423     T = T.getParent(OffsetA);
424     if (!T.getNode())
425       break;
426   }
427 
428   // Reset OffsetA and climb the type DAG from base type of B to see if we reach
429   // base type of A.
430   OffsetA = TagA.getOffset();
431   for (TBAAStructTypeNode T(BaseB); ; ) {
432     if (T.getNode() == BaseA)
433       // Base type of B encloses base type of A, check if the offsets match.
434       return OffsetA == OffsetB;
435 
436     RootB = T;
437     // Follow the edge with the correct offset, OffsetB will be adjusted to
438     // be relative to the field type.
439     T = T.getParent(OffsetB);
440     if (!T.getNode())
441       break;
442   }
443 
444   // Neither node is an ancestor of the other.
445 
446   // If they have different roots, they're part of different potentially
447   // unrelated type systems, so we must be conservative.
448   if (RootA.getNode() != RootB.getNode())
449     return true;
450 
451   // If they have the same root, then we've proved there's no alias.
452   return false;
453 }
454 
455 AliasAnalysis::AliasResult
alias(const Location & LocA,const Location & LocB)456 TypeBasedAliasAnalysis::alias(const Location &LocA,
457                               const Location &LocB) {
458   if (!EnableTBAA)
459     return AliasAnalysis::alias(LocA, LocB);
460 
461   // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
462   // be conservative.
463   const MDNode *AM = LocA.AATags.TBAA;
464   if (!AM) return AliasAnalysis::alias(LocA, LocB);
465   const MDNode *BM = LocB.AATags.TBAA;
466   if (!BM) return AliasAnalysis::alias(LocA, LocB);
467 
468   // If they may alias, chain to the next AliasAnalysis.
469   if (Aliases(AM, BM))
470     return AliasAnalysis::alias(LocA, LocB);
471 
472   // Otherwise return a definitive result.
473   return NoAlias;
474 }
475 
pointsToConstantMemory(const Location & Loc,bool OrLocal)476 bool TypeBasedAliasAnalysis::pointsToConstantMemory(const Location &Loc,
477                                                     bool OrLocal) {
478   if (!EnableTBAA)
479     return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
480 
481   const MDNode *M = Loc.AATags.TBAA;
482   if (!M) return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
483 
484   // If this is an "immutable" type, we can assume the pointer is pointing
485   // to constant memory.
486   if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
487       (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
488     return true;
489 
490   return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
491 }
492 
493 AliasAnalysis::ModRefBehavior
getModRefBehavior(ImmutableCallSite CS)494 TypeBasedAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
495   if (!EnableTBAA)
496     return AliasAnalysis::getModRefBehavior(CS);
497 
498   ModRefBehavior Min = UnknownModRefBehavior;
499 
500   // If this is an "immutable" type, we can assume the call doesn't write
501   // to memory.
502   if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
503     if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
504         (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
505       Min = OnlyReadsMemory;
506 
507   return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
508 }
509 
510 AliasAnalysis::ModRefBehavior
getModRefBehavior(const Function * F)511 TypeBasedAliasAnalysis::getModRefBehavior(const Function *F) {
512   // Functions don't have metadata. Just chain to the next implementation.
513   return AliasAnalysis::getModRefBehavior(F);
514 }
515 
516 AliasAnalysis::ModRefResult
getModRefInfo(ImmutableCallSite CS,const Location & Loc)517 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
518                                       const Location &Loc) {
519   if (!EnableTBAA)
520     return AliasAnalysis::getModRefInfo(CS, Loc);
521 
522   if (const MDNode *L = Loc.AATags.TBAA)
523     if (const MDNode *M =
524             CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
525       if (!Aliases(L, M))
526         return NoModRef;
527 
528   return AliasAnalysis::getModRefInfo(CS, Loc);
529 }
530 
531 AliasAnalysis::ModRefResult
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)532 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
533                                       ImmutableCallSite CS2) {
534   if (!EnableTBAA)
535     return AliasAnalysis::getModRefInfo(CS1, CS2);
536 
537   if (const MDNode *M1 =
538           CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
539     if (const MDNode *M2 =
540             CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
541       if (!Aliases(M1, M2))
542         return NoModRef;
543 
544   return AliasAnalysis::getModRefInfo(CS1, CS2);
545 }
546 
isTBAAVtableAccess() const547 bool MDNode::isTBAAVtableAccess() const {
548   if (!isStructPathTBAA(this)) {
549     if (getNumOperands() < 1) return false;
550     if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
551       if (Tag1->getString() == "vtable pointer") return true;
552     }
553     return false;
554   }
555 
556   // For struct-path aware TBAA, we use the access type of the tag.
557   if (getNumOperands() < 2) return false;
558   MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
559   if (!Tag) return false;
560   if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
561     if (Tag1->getString() == "vtable pointer") return true;
562   }
563   return false;
564 }
565 
getMostGenericTBAA(MDNode * A,MDNode * B)566 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
567   if (!A || !B)
568     return nullptr;
569 
570   if (A == B)
571     return A;
572 
573   // For struct-path aware TBAA, we use the access type of the tag.
574   bool StructPath = isStructPathTBAA(A) && isStructPathTBAA(B);
575   if (StructPath) {
576     A = cast_or_null<MDNode>(A->getOperand(1));
577     if (!A) return nullptr;
578     B = cast_or_null<MDNode>(B->getOperand(1));
579     if (!B) return nullptr;
580   }
581 
582   SmallSetVector<MDNode *, 4> PathA;
583   MDNode *T = A;
584   while (T) {
585     if (PathA.count(T))
586       report_fatal_error("Cycle found in TBAA metadata.");
587     PathA.insert(T);
588     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
589                                  : nullptr;
590   }
591 
592   SmallSetVector<MDNode *, 4> PathB;
593   T = B;
594   while (T) {
595     if (PathB.count(T))
596       report_fatal_error("Cycle found in TBAA metadata.");
597     PathB.insert(T);
598     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
599                                  : nullptr;
600   }
601 
602   int IA = PathA.size() - 1;
603   int IB = PathB.size() - 1;
604 
605   MDNode *Ret = nullptr;
606   while (IA >= 0 && IB >=0) {
607     if (PathA[IA] == PathB[IB])
608       Ret = PathA[IA];
609     else
610       break;
611     --IA;
612     --IB;
613   }
614   if (!StructPath)
615     return Ret;
616 
617   if (!Ret)
618     return nullptr;
619   // We need to convert from a type node to a tag node.
620   Type *Int64 = IntegerType::get(A->getContext(), 64);
621   Metadata *Ops[3] = {Ret, Ret,
622                       ConstantAsMetadata::get(ConstantInt::get(Int64, 0))};
623   return MDNode::get(A->getContext(), Ops);
624 }
625 
getAAMetadata(AAMDNodes & N,bool Merge) const626 void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
627   if (Merge)
628     N.TBAA =
629         MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
630   else
631     N.TBAA = getMetadata(LLVMContext::MD_tbaa);
632 
633   if (Merge)
634     N.Scope = MDNode::getMostGenericAliasScope(
635         N.Scope, getMetadata(LLVMContext::MD_alias_scope));
636   else
637     N.Scope = getMetadata(LLVMContext::MD_alias_scope);
638 
639   if (Merge)
640     N.NoAlias =
641         MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
642   else
643     N.NoAlias = getMetadata(LLVMContext::MD_noalias);
644 }
645 
646