1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Value.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/IR/CallSite.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/Statepoint.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/ManagedStatic.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 using namespace llvm;
38
39 //===----------------------------------------------------------------------===//
40 // Value Class
41 //===----------------------------------------------------------------------===//
42
checkType(Type * Ty)43 static inline Type *checkType(Type *Ty) {
44 assert(Ty && "Value defined with a null type: Error!");
45 return Ty;
46 }
47
Value(Type * ty,unsigned scid)48 Value::Value(Type *ty, unsigned scid)
49 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0),
50 SubclassOptionalData(0), SubclassData(0), NumOperands(0) {
51 // FIXME: Why isn't this in the subclass gunk??
52 // Note, we cannot call isa<CallInst> before the CallInst has been
53 // constructed.
54 if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
55 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
56 "invalid CallInst type!");
57 else if (SubclassID != BasicBlockVal &&
58 (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal))
59 assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
60 "Cannot create non-first-class values except for constants!");
61 }
62
~Value()63 Value::~Value() {
64 // Notify all ValueHandles (if present) that this value is going away.
65 if (HasValueHandle)
66 ValueHandleBase::ValueIsDeleted(this);
67 if (isUsedByMetadata())
68 ValueAsMetadata::handleDeletion(this);
69
70 #ifndef NDEBUG // Only in -g mode...
71 // Check to make sure that there are no uses of this value that are still
72 // around when the value is destroyed. If there are, then we have a dangling
73 // reference and something is wrong. This code is here to print out where
74 // the value is still being referenced.
75 //
76 if (!use_empty()) {
77 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
78 for (auto *U : users())
79 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
80 }
81 #endif
82 assert(use_empty() && "Uses remain when a value is destroyed!");
83
84 // If this value is named, destroy the name. This should not be in a symtab
85 // at this point.
86 destroyValueName();
87 }
88
destroyValueName()89 void Value::destroyValueName() {
90 ValueName *Name = getValueName();
91 if (Name)
92 Name->Destroy();
93 setValueName(nullptr);
94 }
95
hasNUses(unsigned N) const96 bool Value::hasNUses(unsigned N) const {
97 const_use_iterator UI = use_begin(), E = use_end();
98
99 for (; N; --N, ++UI)
100 if (UI == E) return false; // Too few.
101 return UI == E;
102 }
103
hasNUsesOrMore(unsigned N) const104 bool Value::hasNUsesOrMore(unsigned N) const {
105 const_use_iterator UI = use_begin(), E = use_end();
106
107 for (; N; --N, ++UI)
108 if (UI == E) return false; // Too few.
109
110 return true;
111 }
112
isUsedInBasicBlock(const BasicBlock * BB) const113 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
114 // This can be computed either by scanning the instructions in BB, or by
115 // scanning the use list of this Value. Both lists can be very long, but
116 // usually one is quite short.
117 //
118 // Scan both lists simultaneously until one is exhausted. This limits the
119 // search to the shorter list.
120 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
121 const_user_iterator UI = user_begin(), UE = user_end();
122 for (; BI != BE && UI != UE; ++BI, ++UI) {
123 // Scan basic block: Check if this Value is used by the instruction at BI.
124 if (std::find(BI->op_begin(), BI->op_end(), this) != BI->op_end())
125 return true;
126 // Scan use list: Check if the use at UI is in BB.
127 const Instruction *User = dyn_cast<Instruction>(*UI);
128 if (User && User->getParent() == BB)
129 return true;
130 }
131 return false;
132 }
133
getNumUses() const134 unsigned Value::getNumUses() const {
135 return (unsigned)std::distance(use_begin(), use_end());
136 }
137
getSymTab(Value * V,ValueSymbolTable * & ST)138 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
139 ST = nullptr;
140 if (Instruction *I = dyn_cast<Instruction>(V)) {
141 if (BasicBlock *P = I->getParent())
142 if (Function *PP = P->getParent())
143 ST = &PP->getValueSymbolTable();
144 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
145 if (Function *P = BB->getParent())
146 ST = &P->getValueSymbolTable();
147 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
148 if (Module *P = GV->getParent())
149 ST = &P->getValueSymbolTable();
150 } else if (Argument *A = dyn_cast<Argument>(V)) {
151 if (Function *P = A->getParent())
152 ST = &P->getValueSymbolTable();
153 } else {
154 assert(isa<Constant>(V) && "Unknown value type!");
155 return true; // no name is setable for this.
156 }
157 return false;
158 }
159
getName() const160 StringRef Value::getName() const {
161 // Make sure the empty string is still a C string. For historical reasons,
162 // some clients want to call .data() on the result and expect it to be null
163 // terminated.
164 if (!getValueName())
165 return StringRef("", 0);
166 return getValueName()->getKey();
167 }
168
setName(const Twine & NewName)169 void Value::setName(const Twine &NewName) {
170 // Fast path for common IRBuilder case of setName("") when there is no name.
171 if (NewName.isTriviallyEmpty() && !hasName())
172 return;
173
174 SmallString<256> NameData;
175 StringRef NameRef = NewName.toStringRef(NameData);
176 assert(NameRef.find_first_of(0) == StringRef::npos &&
177 "Null bytes are not allowed in names");
178
179 // Name isn't changing?
180 if (getName() == NameRef)
181 return;
182
183 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
184
185 // Get the symbol table to update for this object.
186 ValueSymbolTable *ST;
187 if (getSymTab(this, ST))
188 return; // Cannot set a name on this value (e.g. constant).
189
190 if (Function *F = dyn_cast<Function>(this))
191 getContext().pImpl->IntrinsicIDCache.erase(F);
192
193 if (!ST) { // No symbol table to update? Just do the change.
194 if (NameRef.empty()) {
195 // Free the name for this value.
196 destroyValueName();
197 return;
198 }
199
200 // NOTE: Could optimize for the case the name is shrinking to not deallocate
201 // then reallocated.
202 destroyValueName();
203
204 // Create the new name.
205 setValueName(ValueName::Create(NameRef));
206 getValueName()->setValue(this);
207 return;
208 }
209
210 // NOTE: Could optimize for the case the name is shrinking to not deallocate
211 // then reallocated.
212 if (hasName()) {
213 // Remove old name.
214 ST->removeValueName(getValueName());
215 destroyValueName();
216
217 if (NameRef.empty())
218 return;
219 }
220
221 // Name is changing to something new.
222 setValueName(ST->createValueName(NameRef, this));
223 }
224
takeName(Value * V)225 void Value::takeName(Value *V) {
226 ValueSymbolTable *ST = nullptr;
227 // If this value has a name, drop it.
228 if (hasName()) {
229 // Get the symtab this is in.
230 if (getSymTab(this, ST)) {
231 // We can't set a name on this value, but we need to clear V's name if
232 // it has one.
233 if (V->hasName()) V->setName("");
234 return; // Cannot set a name on this value (e.g. constant).
235 }
236
237 // Remove old name.
238 if (ST)
239 ST->removeValueName(getValueName());
240 destroyValueName();
241 }
242
243 // Now we know that this has no name.
244
245 // If V has no name either, we're done.
246 if (!V->hasName()) return;
247
248 // Get this's symtab if we didn't before.
249 if (!ST) {
250 if (getSymTab(this, ST)) {
251 // Clear V's name.
252 V->setName("");
253 return; // Cannot set a name on this value (e.g. constant).
254 }
255 }
256
257 // Get V's ST, this should always succed, because V has a name.
258 ValueSymbolTable *VST;
259 bool Failure = getSymTab(V, VST);
260 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
261
262 // If these values are both in the same symtab, we can do this very fast.
263 // This works even if both values have no symtab yet.
264 if (ST == VST) {
265 // Take the name!
266 setValueName(V->getValueName());
267 V->setValueName(nullptr);
268 getValueName()->setValue(this);
269 return;
270 }
271
272 // Otherwise, things are slightly more complex. Remove V's name from VST and
273 // then reinsert it into ST.
274
275 if (VST)
276 VST->removeValueName(V->getValueName());
277 setValueName(V->getValueName());
278 V->setValueName(nullptr);
279 getValueName()->setValue(this);
280
281 if (ST)
282 ST->reinsertValue(this);
283 }
284
285 #ifndef NDEBUG
contains(SmallPtrSetImpl<ConstantExpr * > & Cache,ConstantExpr * Expr,Constant * C)286 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
287 Constant *C) {
288 if (!Cache.insert(Expr).second)
289 return false;
290
291 for (auto &O : Expr->operands()) {
292 if (O == C)
293 return true;
294 auto *CE = dyn_cast<ConstantExpr>(O);
295 if (!CE)
296 continue;
297 if (contains(Cache, CE, C))
298 return true;
299 }
300 return false;
301 }
302
contains(Value * Expr,Value * V)303 static bool contains(Value *Expr, Value *V) {
304 if (Expr == V)
305 return true;
306
307 auto *C = dyn_cast<Constant>(V);
308 if (!C)
309 return false;
310
311 auto *CE = dyn_cast<ConstantExpr>(Expr);
312 if (!CE)
313 return false;
314
315 SmallPtrSet<ConstantExpr *, 4> Cache;
316 return contains(Cache, CE, C);
317 }
318 #endif
319
replaceAllUsesWith(Value * New)320 void Value::replaceAllUsesWith(Value *New) {
321 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
322 assert(!contains(New, this) &&
323 "this->replaceAllUsesWith(expr(this)) is NOT valid!");
324 assert(New->getType() == getType() &&
325 "replaceAllUses of value with new value of different type!");
326
327 // Notify all ValueHandles (if present) that this value is going away.
328 if (HasValueHandle)
329 ValueHandleBase::ValueIsRAUWd(this, New);
330 if (isUsedByMetadata())
331 ValueAsMetadata::handleRAUW(this, New);
332
333 while (!use_empty()) {
334 Use &U = *UseList;
335 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
336 // constant because they are uniqued.
337 if (auto *C = dyn_cast<Constant>(U.getUser())) {
338 if (!isa<GlobalValue>(C)) {
339 C->replaceUsesOfWithOnConstant(this, New, &U);
340 continue;
341 }
342 }
343
344 U.set(New);
345 }
346
347 if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
348 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
349 }
350
351 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
352 // This routine leaves uses within BB.
replaceUsesOutsideBlock(Value * New,BasicBlock * BB)353 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
354 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
355 assert(!contains(New, this) &&
356 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
357 assert(New->getType() == getType() &&
358 "replaceUses of value with new value of different type!");
359 assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
360
361 use_iterator UI = use_begin(), E = use_end();
362 for (; UI != E;) {
363 Use &U = *UI;
364 ++UI;
365 auto *Usr = dyn_cast<Instruction>(U.getUser());
366 if (Usr && Usr->getParent() == BB)
367 continue;
368 U.set(New);
369 }
370 return;
371 }
372
373 namespace {
374 // Various metrics for how much to strip off of pointers.
375 enum PointerStripKind {
376 PSK_ZeroIndices,
377 PSK_ZeroIndicesAndAliases,
378 PSK_InBoundsConstantIndices,
379 PSK_InBounds
380 };
381
382 template <PointerStripKind StripKind>
stripPointerCastsAndOffsets(Value * V)383 static Value *stripPointerCastsAndOffsets(Value *V) {
384 if (!V->getType()->isPointerTy())
385 return V;
386
387 // Even though we don't look through PHI nodes, we could be called on an
388 // instruction in an unreachable block, which may be on a cycle.
389 SmallPtrSet<Value *, 4> Visited;
390
391 Visited.insert(V);
392 do {
393 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
394 switch (StripKind) {
395 case PSK_ZeroIndicesAndAliases:
396 case PSK_ZeroIndices:
397 if (!GEP->hasAllZeroIndices())
398 return V;
399 break;
400 case PSK_InBoundsConstantIndices:
401 if (!GEP->hasAllConstantIndices())
402 return V;
403 // fallthrough
404 case PSK_InBounds:
405 if (!GEP->isInBounds())
406 return V;
407 break;
408 }
409 V = GEP->getPointerOperand();
410 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
411 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
412 V = cast<Operator>(V)->getOperand(0);
413 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
414 if (StripKind == PSK_ZeroIndices || GA->mayBeOverridden())
415 return V;
416 V = GA->getAliasee();
417 } else {
418 return V;
419 }
420 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
421 } while (Visited.insert(V).second);
422
423 return V;
424 }
425 } // namespace
426
stripPointerCasts()427 Value *Value::stripPointerCasts() {
428 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
429 }
430
stripPointerCastsNoFollowAliases()431 Value *Value::stripPointerCastsNoFollowAliases() {
432 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
433 }
434
stripInBoundsConstantOffsets()435 Value *Value::stripInBoundsConstantOffsets() {
436 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
437 }
438
stripAndAccumulateInBoundsConstantOffsets(const DataLayout & DL,APInt & Offset)439 Value *Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
440 APInt &Offset) {
441 if (!getType()->isPointerTy())
442 return this;
443
444 assert(Offset.getBitWidth() == DL.getPointerSizeInBits(cast<PointerType>(
445 getType())->getAddressSpace()) &&
446 "The offset must have exactly as many bits as our pointer.");
447
448 // Even though we don't look through PHI nodes, we could be called on an
449 // instruction in an unreachable block, which may be on a cycle.
450 SmallPtrSet<Value *, 4> Visited;
451 Visited.insert(this);
452 Value *V = this;
453 do {
454 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
455 if (!GEP->isInBounds())
456 return V;
457 APInt GEPOffset(Offset);
458 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
459 return V;
460 Offset = GEPOffset;
461 V = GEP->getPointerOperand();
462 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
463 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
464 V = cast<Operator>(V)->getOperand(0);
465 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
466 V = GA->getAliasee();
467 } else {
468 return V;
469 }
470 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
471 } while (Visited.insert(V).second);
472
473 return V;
474 }
475
stripInBoundsOffsets()476 Value *Value::stripInBoundsOffsets() {
477 return stripPointerCastsAndOffsets<PSK_InBounds>(this);
478 }
479
480 /// \brief Check if Value is always a dereferenceable pointer.
481 ///
482 /// Test if V is always a pointer to allocated and suitably aligned memory for
483 /// a simple load or store.
isDereferenceablePointer(const Value * V,const DataLayout & DL,SmallPtrSetImpl<const Value * > & Visited)484 static bool isDereferenceablePointer(const Value *V, const DataLayout &DL,
485 SmallPtrSetImpl<const Value *> &Visited) {
486 // Note that it is not safe to speculate into a malloc'd region because
487 // malloc may return null.
488
489 // These are obviously ok.
490 if (isa<AllocaInst>(V)) return true;
491
492 // It's not always safe to follow a bitcast, for example:
493 // bitcast i8* (alloca i8) to i32*
494 // would result in a 4-byte load from a 1-byte alloca. However,
495 // if we're casting from a pointer from a type of larger size
496 // to a type of smaller size (or the same size), and the alignment
497 // is at least as large as for the resulting pointer type, then
498 // we can look through the bitcast.
499 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
500 Type *STy = BC->getSrcTy()->getPointerElementType(),
501 *DTy = BC->getDestTy()->getPointerElementType();
502 if (STy->isSized() && DTy->isSized() &&
503 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
504 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
505 return isDereferenceablePointer(BC->getOperand(0), DL, Visited);
506 }
507
508 // Global variables which can't collapse to null are ok.
509 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
510 return !GV->hasExternalWeakLinkage();
511
512 // byval arguments are okay. Arguments specifically marked as
513 // dereferenceable are okay too.
514 if (const Argument *A = dyn_cast<Argument>(V)) {
515 if (A->hasByValAttr())
516 return true;
517 else if (uint64_t Bytes = A->getDereferenceableBytes()) {
518 Type *Ty = V->getType()->getPointerElementType();
519 if (Ty->isSized() && DL.getTypeStoreSize(Ty) <= Bytes)
520 return true;
521 }
522
523 return false;
524 }
525
526 // Return values from call sites specifically marked as dereferenceable are
527 // also okay.
528 if (auto CS = ImmutableCallSite(V)) {
529 if (uint64_t Bytes = CS.getDereferenceableBytes(0)) {
530 Type *Ty = V->getType()->getPointerElementType();
531 if (Ty->isSized() && DL.getTypeStoreSize(Ty) <= Bytes)
532 return true;
533 }
534 }
535
536 // For GEPs, determine if the indexing lands within the allocated object.
537 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
538 // Conservatively require that the base pointer be fully dereferenceable.
539 if (!Visited.insert(GEP->getOperand(0)).second)
540 return false;
541 if (!isDereferenceablePointer(GEP->getOperand(0), DL, Visited))
542 return false;
543 // Check the indices.
544 gep_type_iterator GTI = gep_type_begin(GEP);
545 for (User::const_op_iterator I = GEP->op_begin()+1,
546 E = GEP->op_end(); I != E; ++I) {
547 Value *Index = *I;
548 Type *Ty = *GTI++;
549 // Struct indices can't be out of bounds.
550 if (isa<StructType>(Ty))
551 continue;
552 ConstantInt *CI = dyn_cast<ConstantInt>(Index);
553 if (!CI)
554 return false;
555 // Zero is always ok.
556 if (CI->isZero())
557 continue;
558 // Check to see that it's within the bounds of an array.
559 ArrayType *ATy = dyn_cast<ArrayType>(Ty);
560 if (!ATy)
561 return false;
562 if (CI->getValue().getActiveBits() > 64)
563 return false;
564 if (CI->getZExtValue() >= ATy->getNumElements())
565 return false;
566 }
567 // Indices check out; this is dereferenceable.
568 return true;
569 }
570
571 // For gc.relocate, look through relocations
572 if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V))
573 if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) {
574 GCRelocateOperands RelocateInst(I);
575 return isDereferenceablePointer(RelocateInst.derivedPtr(), DL, Visited);
576 }
577
578 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
579 return isDereferenceablePointer(ASC->getOperand(0), DL, Visited);
580
581 // If we don't know, assume the worst.
582 return false;
583 }
584
isDereferenceablePointer(const DataLayout & DL) const585 bool Value::isDereferenceablePointer(const DataLayout &DL) const {
586 // When dereferenceability information is provided by a dereferenceable
587 // attribute, we know exactly how many bytes are dereferenceable. If we can
588 // determine the exact offset to the attributed variable, we can use that
589 // information here.
590 Type *Ty = getType()->getPointerElementType();
591 if (Ty->isSized()) {
592 APInt Offset(DL.getTypeStoreSizeInBits(getType()), 0);
593 const Value *BV = stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
594
595 APInt DerefBytes(Offset.getBitWidth(), 0);
596 if (const Argument *A = dyn_cast<Argument>(BV))
597 DerefBytes = A->getDereferenceableBytes();
598 else if (auto CS = ImmutableCallSite(BV))
599 DerefBytes = CS.getDereferenceableBytes(0);
600
601 if (DerefBytes.getBoolValue() && Offset.isNonNegative()) {
602 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
603 return true;
604 }
605 }
606
607 SmallPtrSet<const Value *, 32> Visited;
608 return ::isDereferenceablePointer(this, DL, Visited);
609 }
610
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)611 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
612 const BasicBlock *PredBB) {
613 PHINode *PN = dyn_cast<PHINode>(this);
614 if (PN && PN->getParent() == CurBB)
615 return PN->getIncomingValueForBlock(PredBB);
616 return this;
617 }
618
getContext() const619 LLVMContext &Value::getContext() const { return VTy->getContext(); }
620
reverseUseList()621 void Value::reverseUseList() {
622 if (!UseList || !UseList->Next)
623 // No need to reverse 0 or 1 uses.
624 return;
625
626 Use *Head = UseList;
627 Use *Current = UseList->Next;
628 Head->Next = nullptr;
629 while (Current) {
630 Use *Next = Current->Next;
631 Current->Next = Head;
632 Head->setPrev(&Current->Next);
633 Head = Current;
634 Current = Next;
635 }
636 UseList = Head;
637 Head->setPrev(&UseList);
638 }
639
640 //===----------------------------------------------------------------------===//
641 // ValueHandleBase Class
642 //===----------------------------------------------------------------------===//
643
AddToExistingUseList(ValueHandleBase ** List)644 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
645 assert(List && "Handle list is null?");
646
647 // Splice ourselves into the list.
648 Next = *List;
649 *List = this;
650 setPrevPtr(List);
651 if (Next) {
652 Next->setPrevPtr(&Next);
653 assert(V == Next->V && "Added to wrong list?");
654 }
655 }
656
AddToExistingUseListAfter(ValueHandleBase * List)657 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
658 assert(List && "Must insert after existing node");
659
660 Next = List->Next;
661 setPrevPtr(&List->Next);
662 List->Next = this;
663 if (Next)
664 Next->setPrevPtr(&Next);
665 }
666
AddToUseList()667 void ValueHandleBase::AddToUseList() {
668 assert(V && "Null pointer doesn't have a use list!");
669
670 LLVMContextImpl *pImpl = V->getContext().pImpl;
671
672 if (V->HasValueHandle) {
673 // If this value already has a ValueHandle, then it must be in the
674 // ValueHandles map already.
675 ValueHandleBase *&Entry = pImpl->ValueHandles[V];
676 assert(Entry && "Value doesn't have any handles?");
677 AddToExistingUseList(&Entry);
678 return;
679 }
680
681 // Ok, it doesn't have any handles yet, so we must insert it into the
682 // DenseMap. However, doing this insertion could cause the DenseMap to
683 // reallocate itself, which would invalidate all of the PrevP pointers that
684 // point into the old table. Handle this by checking for reallocation and
685 // updating the stale pointers only if needed.
686 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
687 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
688
689 ValueHandleBase *&Entry = Handles[V];
690 assert(!Entry && "Value really did already have handles?");
691 AddToExistingUseList(&Entry);
692 V->HasValueHandle = true;
693
694 // If reallocation didn't happen or if this was the first insertion, don't
695 // walk the table.
696 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
697 Handles.size() == 1) {
698 return;
699 }
700
701 // Okay, reallocation did happen. Fix the Prev Pointers.
702 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
703 E = Handles.end(); I != E; ++I) {
704 assert(I->second && I->first == I->second->V &&
705 "List invariant broken!");
706 I->second->setPrevPtr(&I->second);
707 }
708 }
709
RemoveFromUseList()710 void ValueHandleBase::RemoveFromUseList() {
711 assert(V && V->HasValueHandle &&
712 "Pointer doesn't have a use list!");
713
714 // Unlink this from its use list.
715 ValueHandleBase **PrevPtr = getPrevPtr();
716 assert(*PrevPtr == this && "List invariant broken");
717
718 *PrevPtr = Next;
719 if (Next) {
720 assert(Next->getPrevPtr() == &Next && "List invariant broken");
721 Next->setPrevPtr(PrevPtr);
722 return;
723 }
724
725 // If the Next pointer was null, then it is possible that this was the last
726 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
727 // map.
728 LLVMContextImpl *pImpl = V->getContext().pImpl;
729 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
730 if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
731 Handles.erase(V);
732 V->HasValueHandle = false;
733 }
734 }
735
736
ValueIsDeleted(Value * V)737 void ValueHandleBase::ValueIsDeleted(Value *V) {
738 assert(V->HasValueHandle && "Should only be called if ValueHandles present");
739
740 // Get the linked list base, which is guaranteed to exist since the
741 // HasValueHandle flag is set.
742 LLVMContextImpl *pImpl = V->getContext().pImpl;
743 ValueHandleBase *Entry = pImpl->ValueHandles[V];
744 assert(Entry && "Value bit set but no entries exist");
745
746 // We use a local ValueHandleBase as an iterator so that ValueHandles can add
747 // and remove themselves from the list without breaking our iteration. This
748 // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
749 // Note that we deliberately do not the support the case when dropping a value
750 // handle results in a new value handle being permanently added to the list
751 // (as might occur in theory for CallbackVH's): the new value handle will not
752 // be processed and the checking code will mete out righteous punishment if
753 // the handle is still present once we have finished processing all the other
754 // value handles (it is fine to momentarily add then remove a value handle).
755 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
756 Iterator.RemoveFromUseList();
757 Iterator.AddToExistingUseListAfter(Entry);
758 assert(Entry->Next == &Iterator && "Loop invariant broken.");
759
760 switch (Entry->getKind()) {
761 case Assert:
762 break;
763 case Tracking:
764 // Mark that this value has been deleted by setting it to an invalid Value
765 // pointer.
766 Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
767 break;
768 case Weak:
769 // Weak just goes to null, which will unlink it from the list.
770 Entry->operator=(nullptr);
771 break;
772 case Callback:
773 // Forward to the subclass's implementation.
774 static_cast<CallbackVH*>(Entry)->deleted();
775 break;
776 }
777 }
778
779 // All callbacks, weak references, and assertingVHs should be dropped by now.
780 if (V->HasValueHandle) {
781 #ifndef NDEBUG // Only in +Asserts mode...
782 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
783 << "\n";
784 if (pImpl->ValueHandles[V]->getKind() == Assert)
785 llvm_unreachable("An asserting value handle still pointed to this"
786 " value!");
787
788 #endif
789 llvm_unreachable("All references to V were not removed?");
790 }
791 }
792
793
ValueIsRAUWd(Value * Old,Value * New)794 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
795 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
796 assert(Old != New && "Changing value into itself!");
797 assert(Old->getType() == New->getType() &&
798 "replaceAllUses of value with new value of different type!");
799
800 // Get the linked list base, which is guaranteed to exist since the
801 // HasValueHandle flag is set.
802 LLVMContextImpl *pImpl = Old->getContext().pImpl;
803 ValueHandleBase *Entry = pImpl->ValueHandles[Old];
804
805 assert(Entry && "Value bit set but no entries exist");
806
807 // We use a local ValueHandleBase as an iterator so that
808 // ValueHandles can add and remove themselves from the list without
809 // breaking our iteration. This is not really an AssertingVH; we
810 // just have to give ValueHandleBase some kind.
811 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
812 Iterator.RemoveFromUseList();
813 Iterator.AddToExistingUseListAfter(Entry);
814 assert(Entry->Next == &Iterator && "Loop invariant broken.");
815
816 switch (Entry->getKind()) {
817 case Assert:
818 // Asserting handle does not follow RAUW implicitly.
819 break;
820 case Tracking:
821 // Tracking goes to new value like a WeakVH. Note that this may make it
822 // something incompatible with its templated type. We don't want to have a
823 // virtual (or inline) interface to handle this though, so instead we make
824 // the TrackingVH accessors guarantee that a client never sees this value.
825
826 // FALLTHROUGH
827 case Weak:
828 // Weak goes to the new value, which will unlink it from Old's list.
829 Entry->operator=(New);
830 break;
831 case Callback:
832 // Forward to the subclass's implementation.
833 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
834 break;
835 }
836 }
837
838 #ifndef NDEBUG
839 // If any new tracking or weak value handles were added while processing the
840 // list, then complain about it now.
841 if (Old->HasValueHandle)
842 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
843 switch (Entry->getKind()) {
844 case Tracking:
845 case Weak:
846 dbgs() << "After RAUW from " << *Old->getType() << " %"
847 << Old->getName() << " to " << *New->getType() << " %"
848 << New->getName() << "\n";
849 llvm_unreachable("A tracking or weak value handle still pointed to the"
850 " old value!\n");
851 default:
852 break;
853 }
854 #endif
855 }
856
857 // Pin the vtable to this file.
anchor()858 void CallbackVH::anchor() {}
859