1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the NumericLiteralParser, CharLiteralParser, and
11 // StringLiteralParser interfaces.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Lex/LiteralSupport.h"
16 #include "clang/Basic/CharInfo.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Lex/LexDiagnostic.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/Support/ConvertUTF.h"
22 #include "llvm/Support/ErrorHandling.h"
23
24 using namespace clang;
25
getCharWidth(tok::TokenKind kind,const TargetInfo & Target)26 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
27 switch (kind) {
28 default: llvm_unreachable("Unknown token type!");
29 case tok::char_constant:
30 case tok::string_literal:
31 case tok::utf8_char_constant:
32 case tok::utf8_string_literal:
33 return Target.getCharWidth();
34 case tok::wide_char_constant:
35 case tok::wide_string_literal:
36 return Target.getWCharWidth();
37 case tok::utf16_char_constant:
38 case tok::utf16_string_literal:
39 return Target.getChar16Width();
40 case tok::utf32_char_constant:
41 case tok::utf32_string_literal:
42 return Target.getChar32Width();
43 }
44 }
45
MakeCharSourceRange(const LangOptions & Features,FullSourceLoc TokLoc,const char * TokBegin,const char * TokRangeBegin,const char * TokRangeEnd)46 static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
47 FullSourceLoc TokLoc,
48 const char *TokBegin,
49 const char *TokRangeBegin,
50 const char *TokRangeEnd) {
51 SourceLocation Begin =
52 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
53 TokLoc.getManager(), Features);
54 SourceLocation End =
55 Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
56 TokLoc.getManager(), Features);
57 return CharSourceRange::getCharRange(Begin, End);
58 }
59
60 /// \brief Produce a diagnostic highlighting some portion of a literal.
61 ///
62 /// Emits the diagnostic \p DiagID, highlighting the range of characters from
63 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
64 /// a substring of a spelling buffer for the token beginning at \p TokBegin.
Diag(DiagnosticsEngine * Diags,const LangOptions & Features,FullSourceLoc TokLoc,const char * TokBegin,const char * TokRangeBegin,const char * TokRangeEnd,unsigned DiagID)65 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
66 const LangOptions &Features, FullSourceLoc TokLoc,
67 const char *TokBegin, const char *TokRangeBegin,
68 const char *TokRangeEnd, unsigned DiagID) {
69 SourceLocation Begin =
70 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
71 TokLoc.getManager(), Features);
72 return Diags->Report(Begin, DiagID) <<
73 MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
74 }
75
76 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
77 /// either a character or a string literal.
ProcessCharEscape(const char * ThisTokBegin,const char * & ThisTokBuf,const char * ThisTokEnd,bool & HadError,FullSourceLoc Loc,unsigned CharWidth,DiagnosticsEngine * Diags,const LangOptions & Features)78 static unsigned ProcessCharEscape(const char *ThisTokBegin,
79 const char *&ThisTokBuf,
80 const char *ThisTokEnd, bool &HadError,
81 FullSourceLoc Loc, unsigned CharWidth,
82 DiagnosticsEngine *Diags,
83 const LangOptions &Features) {
84 const char *EscapeBegin = ThisTokBuf;
85
86 // Skip the '\' char.
87 ++ThisTokBuf;
88
89 // We know that this character can't be off the end of the buffer, because
90 // that would have been \", which would not have been the end of string.
91 unsigned ResultChar = *ThisTokBuf++;
92 switch (ResultChar) {
93 // These map to themselves.
94 case '\\': case '\'': case '"': case '?': break;
95
96 // These have fixed mappings.
97 case 'a':
98 // TODO: K&R: the meaning of '\\a' is different in traditional C
99 ResultChar = 7;
100 break;
101 case 'b':
102 ResultChar = 8;
103 break;
104 case 'e':
105 if (Diags)
106 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
107 diag::ext_nonstandard_escape) << "e";
108 ResultChar = 27;
109 break;
110 case 'E':
111 if (Diags)
112 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
113 diag::ext_nonstandard_escape) << "E";
114 ResultChar = 27;
115 break;
116 case 'f':
117 ResultChar = 12;
118 break;
119 case 'n':
120 ResultChar = 10;
121 break;
122 case 'r':
123 ResultChar = 13;
124 break;
125 case 't':
126 ResultChar = 9;
127 break;
128 case 'v':
129 ResultChar = 11;
130 break;
131 case 'x': { // Hex escape.
132 ResultChar = 0;
133 if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
134 if (Diags)
135 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
136 diag::err_hex_escape_no_digits) << "x";
137 HadError = 1;
138 break;
139 }
140
141 // Hex escapes are a maximal series of hex digits.
142 bool Overflow = false;
143 for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
144 int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
145 if (CharVal == -1) break;
146 // About to shift out a digit?
147 if (ResultChar & 0xF0000000)
148 Overflow = true;
149 ResultChar <<= 4;
150 ResultChar |= CharVal;
151 }
152
153 // See if any bits will be truncated when evaluated as a character.
154 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
155 Overflow = true;
156 ResultChar &= ~0U >> (32-CharWidth);
157 }
158
159 // Check for overflow.
160 if (Overflow && Diags) // Too many digits to fit in
161 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
162 diag::err_hex_escape_too_large);
163 break;
164 }
165 case '0': case '1': case '2': case '3':
166 case '4': case '5': case '6': case '7': {
167 // Octal escapes.
168 --ThisTokBuf;
169 ResultChar = 0;
170
171 // Octal escapes are a series of octal digits with maximum length 3.
172 // "\0123" is a two digit sequence equal to "\012" "3".
173 unsigned NumDigits = 0;
174 do {
175 ResultChar <<= 3;
176 ResultChar |= *ThisTokBuf++ - '0';
177 ++NumDigits;
178 } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
179 ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
180
181 // Check for overflow. Reject '\777', but not L'\777'.
182 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
183 if (Diags)
184 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
185 diag::err_octal_escape_too_large);
186 ResultChar &= ~0U >> (32-CharWidth);
187 }
188 break;
189 }
190
191 // Otherwise, these are not valid escapes.
192 case '(': case '{': case '[': case '%':
193 // GCC accepts these as extensions. We warn about them as such though.
194 if (Diags)
195 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
196 diag::ext_nonstandard_escape)
197 << std::string(1, ResultChar);
198 break;
199 default:
200 if (!Diags)
201 break;
202
203 if (isPrintable(ResultChar))
204 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
205 diag::ext_unknown_escape)
206 << std::string(1, ResultChar);
207 else
208 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
209 diag::ext_unknown_escape)
210 << "x" + llvm::utohexstr(ResultChar);
211 break;
212 }
213
214 return ResultChar;
215 }
216
appendCodePoint(unsigned Codepoint,llvm::SmallVectorImpl<char> & Str)217 static void appendCodePoint(unsigned Codepoint,
218 llvm::SmallVectorImpl<char> &Str) {
219 char ResultBuf[4];
220 char *ResultPtr = ResultBuf;
221 bool Res = llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr);
222 (void)Res;
223 assert(Res && "Unexpected conversion failure");
224 Str.append(ResultBuf, ResultPtr);
225 }
226
expandUCNs(SmallVectorImpl<char> & Buf,StringRef Input)227 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
228 for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
229 if (*I != '\\') {
230 Buf.push_back(*I);
231 continue;
232 }
233
234 ++I;
235 assert(*I == 'u' || *I == 'U');
236
237 unsigned NumHexDigits;
238 if (*I == 'u')
239 NumHexDigits = 4;
240 else
241 NumHexDigits = 8;
242
243 assert(I + NumHexDigits <= E);
244
245 uint32_t CodePoint = 0;
246 for (++I; NumHexDigits != 0; ++I, --NumHexDigits) {
247 unsigned Value = llvm::hexDigitValue(*I);
248 assert(Value != -1U);
249
250 CodePoint <<= 4;
251 CodePoint += Value;
252 }
253
254 appendCodePoint(CodePoint, Buf);
255 --I;
256 }
257 }
258
259 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
260 /// return the UTF32.
ProcessUCNEscape(const char * ThisTokBegin,const char * & ThisTokBuf,const char * ThisTokEnd,uint32_t & UcnVal,unsigned short & UcnLen,FullSourceLoc Loc,DiagnosticsEngine * Diags,const LangOptions & Features,bool in_char_string_literal=false)261 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
262 const char *ThisTokEnd,
263 uint32_t &UcnVal, unsigned short &UcnLen,
264 FullSourceLoc Loc, DiagnosticsEngine *Diags,
265 const LangOptions &Features,
266 bool in_char_string_literal = false) {
267 const char *UcnBegin = ThisTokBuf;
268
269 // Skip the '\u' char's.
270 ThisTokBuf += 2;
271
272 if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
273 if (Diags)
274 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
275 diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
276 return false;
277 }
278 UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
279 unsigned short UcnLenSave = UcnLen;
280 for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
281 int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
282 if (CharVal == -1) break;
283 UcnVal <<= 4;
284 UcnVal |= CharVal;
285 }
286 // If we didn't consume the proper number of digits, there is a problem.
287 if (UcnLenSave) {
288 if (Diags)
289 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
290 diag::err_ucn_escape_incomplete);
291 return false;
292 }
293
294 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
295 if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
296 UcnVal > 0x10FFFF) { // maximum legal UTF32 value
297 if (Diags)
298 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
299 diag::err_ucn_escape_invalid);
300 return false;
301 }
302
303 // C++11 allows UCNs that refer to control characters and basic source
304 // characters inside character and string literals
305 if (UcnVal < 0xa0 &&
306 (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { // $, @, `
307 bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
308 if (Diags) {
309 char BasicSCSChar = UcnVal;
310 if (UcnVal >= 0x20 && UcnVal < 0x7f)
311 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
312 IsError ? diag::err_ucn_escape_basic_scs :
313 diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
314 << StringRef(&BasicSCSChar, 1);
315 else
316 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
317 IsError ? diag::err_ucn_control_character :
318 diag::warn_cxx98_compat_literal_ucn_control_character);
319 }
320 if (IsError)
321 return false;
322 }
323
324 if (!Features.CPlusPlus && !Features.C99 && Diags)
325 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
326 diag::warn_ucn_not_valid_in_c89_literal);
327
328 return true;
329 }
330
331 /// MeasureUCNEscape - Determine the number of bytes within the resulting string
332 /// which this UCN will occupy.
MeasureUCNEscape(const char * ThisTokBegin,const char * & ThisTokBuf,const char * ThisTokEnd,unsigned CharByteWidth,const LangOptions & Features,bool & HadError)333 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
334 const char *ThisTokEnd, unsigned CharByteWidth,
335 const LangOptions &Features, bool &HadError) {
336 // UTF-32: 4 bytes per escape.
337 if (CharByteWidth == 4)
338 return 4;
339
340 uint32_t UcnVal = 0;
341 unsigned short UcnLen = 0;
342 FullSourceLoc Loc;
343
344 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
345 UcnLen, Loc, nullptr, Features, true)) {
346 HadError = true;
347 return 0;
348 }
349
350 // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
351 if (CharByteWidth == 2)
352 return UcnVal <= 0xFFFF ? 2 : 4;
353
354 // UTF-8.
355 if (UcnVal < 0x80)
356 return 1;
357 if (UcnVal < 0x800)
358 return 2;
359 if (UcnVal < 0x10000)
360 return 3;
361 return 4;
362 }
363
364 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
365 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
366 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
367 /// we will likely rework our support for UCN's.
EncodeUCNEscape(const char * ThisTokBegin,const char * & ThisTokBuf,const char * ThisTokEnd,char * & ResultBuf,bool & HadError,FullSourceLoc Loc,unsigned CharByteWidth,DiagnosticsEngine * Diags,const LangOptions & Features)368 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
369 const char *ThisTokEnd,
370 char *&ResultBuf, bool &HadError,
371 FullSourceLoc Loc, unsigned CharByteWidth,
372 DiagnosticsEngine *Diags,
373 const LangOptions &Features) {
374 typedef uint32_t UTF32;
375 UTF32 UcnVal = 0;
376 unsigned short UcnLen = 0;
377 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
378 Loc, Diags, Features, true)) {
379 HadError = true;
380 return;
381 }
382
383 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
384 "only character widths of 1, 2, or 4 bytes supported");
385
386 (void)UcnLen;
387 assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
388
389 if (CharByteWidth == 4) {
390 // FIXME: Make the type of the result buffer correct instead of
391 // using reinterpret_cast.
392 UTF32 *ResultPtr = reinterpret_cast<UTF32*>(ResultBuf);
393 *ResultPtr = UcnVal;
394 ResultBuf += 4;
395 return;
396 }
397
398 if (CharByteWidth == 2) {
399 // FIXME: Make the type of the result buffer correct instead of
400 // using reinterpret_cast.
401 UTF16 *ResultPtr = reinterpret_cast<UTF16*>(ResultBuf);
402
403 if (UcnVal <= (UTF32)0xFFFF) {
404 *ResultPtr = UcnVal;
405 ResultBuf += 2;
406 return;
407 }
408
409 // Convert to UTF16.
410 UcnVal -= 0x10000;
411 *ResultPtr = 0xD800 + (UcnVal >> 10);
412 *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
413 ResultBuf += 4;
414 return;
415 }
416
417 assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
418
419 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
420 // The conversion below was inspired by:
421 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
422 // First, we determine how many bytes the result will require.
423 typedef uint8_t UTF8;
424
425 unsigned short bytesToWrite = 0;
426 if (UcnVal < (UTF32)0x80)
427 bytesToWrite = 1;
428 else if (UcnVal < (UTF32)0x800)
429 bytesToWrite = 2;
430 else if (UcnVal < (UTF32)0x10000)
431 bytesToWrite = 3;
432 else
433 bytesToWrite = 4;
434
435 const unsigned byteMask = 0xBF;
436 const unsigned byteMark = 0x80;
437
438 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
439 // into the first byte, depending on how many bytes follow.
440 static const UTF8 firstByteMark[5] = {
441 0x00, 0x00, 0xC0, 0xE0, 0xF0
442 };
443 // Finally, we write the bytes into ResultBuf.
444 ResultBuf += bytesToWrite;
445 switch (bytesToWrite) { // note: everything falls through.
446 case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
447 case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
448 case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
449 case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
450 }
451 // Update the buffer.
452 ResultBuf += bytesToWrite;
453 }
454
455
456 /// integer-constant: [C99 6.4.4.1]
457 /// decimal-constant integer-suffix
458 /// octal-constant integer-suffix
459 /// hexadecimal-constant integer-suffix
460 /// binary-literal integer-suffix [GNU, C++1y]
461 /// user-defined-integer-literal: [C++11 lex.ext]
462 /// decimal-literal ud-suffix
463 /// octal-literal ud-suffix
464 /// hexadecimal-literal ud-suffix
465 /// binary-literal ud-suffix [GNU, C++1y]
466 /// decimal-constant:
467 /// nonzero-digit
468 /// decimal-constant digit
469 /// octal-constant:
470 /// 0
471 /// octal-constant octal-digit
472 /// hexadecimal-constant:
473 /// hexadecimal-prefix hexadecimal-digit
474 /// hexadecimal-constant hexadecimal-digit
475 /// hexadecimal-prefix: one of
476 /// 0x 0X
477 /// binary-literal:
478 /// 0b binary-digit
479 /// 0B binary-digit
480 /// binary-literal binary-digit
481 /// integer-suffix:
482 /// unsigned-suffix [long-suffix]
483 /// unsigned-suffix [long-long-suffix]
484 /// long-suffix [unsigned-suffix]
485 /// long-long-suffix [unsigned-sufix]
486 /// nonzero-digit:
487 /// 1 2 3 4 5 6 7 8 9
488 /// octal-digit:
489 /// 0 1 2 3 4 5 6 7
490 /// hexadecimal-digit:
491 /// 0 1 2 3 4 5 6 7 8 9
492 /// a b c d e f
493 /// A B C D E F
494 /// binary-digit:
495 /// 0
496 /// 1
497 /// unsigned-suffix: one of
498 /// u U
499 /// long-suffix: one of
500 /// l L
501 /// long-long-suffix: one of
502 /// ll LL
503 ///
504 /// floating-constant: [C99 6.4.4.2]
505 /// TODO: add rules...
506 ///
NumericLiteralParser(StringRef TokSpelling,SourceLocation TokLoc,Preprocessor & PP)507 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
508 SourceLocation TokLoc,
509 Preprocessor &PP)
510 : PP(PP), ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
511
512 // This routine assumes that the range begin/end matches the regex for integer
513 // and FP constants (specifically, the 'pp-number' regex), and assumes that
514 // the byte at "*end" is both valid and not part of the regex. Because of
515 // this, it doesn't have to check for 'overscan' in various places.
516 assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?");
517
518 s = DigitsBegin = ThisTokBegin;
519 saw_exponent = false;
520 saw_period = false;
521 saw_ud_suffix = false;
522 isLong = false;
523 isUnsigned = false;
524 isLongLong = false;
525 isFloat = false;
526 isImaginary = false;
527 MicrosoftInteger = 0;
528 hadError = false;
529
530 if (*s == '0') { // parse radix
531 ParseNumberStartingWithZero(TokLoc);
532 if (hadError)
533 return;
534 } else { // the first digit is non-zero
535 radix = 10;
536 s = SkipDigits(s);
537 if (s == ThisTokEnd) {
538 // Done.
539 } else if (isHexDigit(*s) && !(*s == 'e' || *s == 'E')) {
540 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
541 diag::err_invalid_decimal_digit) << StringRef(s, 1);
542 hadError = true;
543 return;
544 } else if (*s == '.') {
545 checkSeparator(TokLoc, s, CSK_AfterDigits);
546 s++;
547 saw_period = true;
548 checkSeparator(TokLoc, s, CSK_BeforeDigits);
549 s = SkipDigits(s);
550 }
551 if ((*s == 'e' || *s == 'E')) { // exponent
552 checkSeparator(TokLoc, s, CSK_AfterDigits);
553 const char *Exponent = s;
554 s++;
555 saw_exponent = true;
556 if (*s == '+' || *s == '-') s++; // sign
557 checkSeparator(TokLoc, s, CSK_BeforeDigits);
558 const char *first_non_digit = SkipDigits(s);
559 if (first_non_digit != s) {
560 s = first_non_digit;
561 } else {
562 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent - ThisTokBegin),
563 diag::err_exponent_has_no_digits);
564 hadError = true;
565 return;
566 }
567 }
568 }
569
570 SuffixBegin = s;
571 checkSeparator(TokLoc, s, CSK_AfterDigits);
572
573 // Parse the suffix. At this point we can classify whether we have an FP or
574 // integer constant.
575 bool isFPConstant = isFloatingLiteral();
576 const char *ImaginarySuffixLoc = nullptr;
577
578 // Loop over all of the characters of the suffix. If we see something bad,
579 // we break out of the loop.
580 for (; s != ThisTokEnd; ++s) {
581 switch (*s) {
582 case 'f': // FP Suffix for "float"
583 case 'F':
584 if (!isFPConstant) break; // Error for integer constant.
585 if (isFloat || isLong) break; // FF, LF invalid.
586 isFloat = true;
587 continue; // Success.
588 case 'u':
589 case 'U':
590 if (isFPConstant) break; // Error for floating constant.
591 if (isUnsigned) break; // Cannot be repeated.
592 isUnsigned = true;
593 continue; // Success.
594 case 'l':
595 case 'L':
596 if (isLong || isLongLong) break; // Cannot be repeated.
597 if (isFloat) break; // LF invalid.
598
599 // Check for long long. The L's need to be adjacent and the same case.
600 if (s[1] == s[0]) {
601 assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
602 if (isFPConstant) break; // long long invalid for floats.
603 isLongLong = true;
604 ++s; // Eat both of them.
605 } else {
606 isLong = true;
607 }
608 continue; // Success.
609 case 'i':
610 case 'I':
611 if (PP.getLangOpts().MicrosoftExt) {
612 if (isLong || isLongLong || MicrosoftInteger)
613 break;
614
615 if (!isFPConstant) {
616 // Allow i8, i16, i32, i64, and i128.
617 switch (s[1]) {
618 case '8':
619 s += 2; // i8 suffix
620 MicrosoftInteger = 8;
621 break;
622 case '1':
623 if (s[2] == '6') {
624 s += 3; // i16 suffix
625 MicrosoftInteger = 16;
626 } else if (s[2] == '2' && s[3] == '8') {
627 s += 4; // i128 suffix
628 MicrosoftInteger = 128;
629 }
630 break;
631 case '3':
632 if (s[2] == '2') {
633 s += 3; // i32 suffix
634 MicrosoftInteger = 32;
635 }
636 break;
637 case '6':
638 if (s[2] == '4') {
639 s += 3; // i64 suffix
640 MicrosoftInteger = 64;
641 }
642 break;
643 default:
644 break;
645 }
646 }
647 if (MicrosoftInteger) {
648 assert(s <= ThisTokEnd && "didn't maximally munch?");
649 break;
650 }
651 }
652 // "i", "if", and "il" are user-defined suffixes in C++1y.
653 if (*s == 'i' && PP.getLangOpts().CPlusPlus14)
654 break;
655 // fall through.
656 case 'j':
657 case 'J':
658 if (isImaginary) break; // Cannot be repeated.
659 isImaginary = true;
660 ImaginarySuffixLoc = s;
661 continue; // Success.
662 }
663 // If we reached here, there was an error or a ud-suffix.
664 break;
665 }
666
667 if (s != ThisTokEnd) {
668 // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
669 expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
670 if (isValidUDSuffix(PP.getLangOpts(), UDSuffixBuf)) {
671 // Any suffix pieces we might have parsed are actually part of the
672 // ud-suffix.
673 isLong = false;
674 isUnsigned = false;
675 isLongLong = false;
676 isFloat = false;
677 isImaginary = false;
678 MicrosoftInteger = 0;
679
680 saw_ud_suffix = true;
681 return;
682 }
683
684 // Report an error if there are any.
685 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin - ThisTokBegin),
686 isFPConstant ? diag::err_invalid_suffix_float_constant :
687 diag::err_invalid_suffix_integer_constant)
688 << StringRef(SuffixBegin, ThisTokEnd-SuffixBegin);
689 hadError = true;
690 return;
691 }
692
693 if (isImaginary) {
694 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc,
695 ImaginarySuffixLoc - ThisTokBegin),
696 diag::ext_imaginary_constant);
697 }
698 }
699
700 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
701 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
702 /// treat it as an invalid suffix.
isValidUDSuffix(const LangOptions & LangOpts,StringRef Suffix)703 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
704 StringRef Suffix) {
705 if (!LangOpts.CPlusPlus11 || Suffix.empty())
706 return false;
707
708 // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
709 if (Suffix[0] == '_')
710 return true;
711
712 // In C++11, there are no library suffixes.
713 if (!LangOpts.CPlusPlus14)
714 return false;
715
716 // In C++1y, "s", "h", "min", "ms", "us", and "ns" are used in the library.
717 // Per tweaked N3660, "il", "i", and "if" are also used in the library.
718 return llvm::StringSwitch<bool>(Suffix)
719 .Cases("h", "min", "s", true)
720 .Cases("ms", "us", "ns", true)
721 .Cases("il", "i", "if", true)
722 .Default(false);
723 }
724
checkSeparator(SourceLocation TokLoc,const char * Pos,CheckSeparatorKind IsAfterDigits)725 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
726 const char *Pos,
727 CheckSeparatorKind IsAfterDigits) {
728 if (IsAfterDigits == CSK_AfterDigits) {
729 if (Pos == ThisTokBegin)
730 return;
731 --Pos;
732 } else if (Pos == ThisTokEnd)
733 return;
734
735 if (isDigitSeparator(*Pos))
736 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin),
737 diag::err_digit_separator_not_between_digits)
738 << IsAfterDigits;
739 }
740
741 /// ParseNumberStartingWithZero - This method is called when the first character
742 /// of the number is found to be a zero. This means it is either an octal
743 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
744 /// a floating point number (01239.123e4). Eat the prefix, determining the
745 /// radix etc.
ParseNumberStartingWithZero(SourceLocation TokLoc)746 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
747 assert(s[0] == '0' && "Invalid method call");
748 s++;
749
750 int c1 = s[0];
751
752 // Handle a hex number like 0x1234.
753 if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
754 s++;
755 assert(s < ThisTokEnd && "didn't maximally munch?");
756 radix = 16;
757 DigitsBegin = s;
758 s = SkipHexDigits(s);
759 bool noSignificand = (s == DigitsBegin);
760 if (s == ThisTokEnd) {
761 // Done.
762 } else if (*s == '.') {
763 s++;
764 saw_period = true;
765 const char *floatDigitsBegin = s;
766 checkSeparator(TokLoc, s, CSK_BeforeDigits);
767 s = SkipHexDigits(s);
768 noSignificand &= (floatDigitsBegin == s);
769 }
770
771 if (noSignificand) {
772 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
773 diag::err_hexconstant_requires_digits);
774 hadError = true;
775 return;
776 }
777
778 // A binary exponent can appear with or with a '.'. If dotted, the
779 // binary exponent is required.
780 if (*s == 'p' || *s == 'P') {
781 checkSeparator(TokLoc, s, CSK_AfterDigits);
782 const char *Exponent = s;
783 s++;
784 saw_exponent = true;
785 if (*s == '+' || *s == '-') s++; // sign
786 const char *first_non_digit = SkipDigits(s);
787 if (first_non_digit == s) {
788 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
789 diag::err_exponent_has_no_digits);
790 hadError = true;
791 return;
792 }
793 checkSeparator(TokLoc, s, CSK_BeforeDigits);
794 s = first_non_digit;
795
796 if (!PP.getLangOpts().HexFloats)
797 PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
798 } else if (saw_period) {
799 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
800 diag::err_hexconstant_requires_exponent);
801 hadError = true;
802 }
803 return;
804 }
805
806 // Handle simple binary numbers 0b01010
807 if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
808 // 0b101010 is a C++1y / GCC extension.
809 PP.Diag(TokLoc,
810 PP.getLangOpts().CPlusPlus14
811 ? diag::warn_cxx11_compat_binary_literal
812 : PP.getLangOpts().CPlusPlus
813 ? diag::ext_binary_literal_cxx14
814 : diag::ext_binary_literal);
815 ++s;
816 assert(s < ThisTokEnd && "didn't maximally munch?");
817 radix = 2;
818 DigitsBegin = s;
819 s = SkipBinaryDigits(s);
820 if (s == ThisTokEnd) {
821 // Done.
822 } else if (isHexDigit(*s)) {
823 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
824 diag::err_invalid_binary_digit) << StringRef(s, 1);
825 hadError = true;
826 }
827 // Other suffixes will be diagnosed by the caller.
828 return;
829 }
830
831 // For now, the radix is set to 8. If we discover that we have a
832 // floating point constant, the radix will change to 10. Octal floating
833 // point constants are not permitted (only decimal and hexadecimal).
834 radix = 8;
835 DigitsBegin = s;
836 s = SkipOctalDigits(s);
837 if (s == ThisTokEnd)
838 return; // Done, simple octal number like 01234
839
840 // If we have some other non-octal digit that *is* a decimal digit, see if
841 // this is part of a floating point number like 094.123 or 09e1.
842 if (isDigit(*s)) {
843 const char *EndDecimal = SkipDigits(s);
844 if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
845 s = EndDecimal;
846 radix = 10;
847 }
848 }
849
850 // If we have a hex digit other than 'e' (which denotes a FP exponent) then
851 // the code is using an incorrect base.
852 if (isHexDigit(*s) && *s != 'e' && *s != 'E') {
853 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
854 diag::err_invalid_octal_digit) << StringRef(s, 1);
855 hadError = true;
856 return;
857 }
858
859 if (*s == '.') {
860 s++;
861 radix = 10;
862 saw_period = true;
863 checkSeparator(TokLoc, s, CSK_BeforeDigits);
864 s = SkipDigits(s); // Skip suffix.
865 }
866 if (*s == 'e' || *s == 'E') { // exponent
867 checkSeparator(TokLoc, s, CSK_AfterDigits);
868 const char *Exponent = s;
869 s++;
870 radix = 10;
871 saw_exponent = true;
872 if (*s == '+' || *s == '-') s++; // sign
873 const char *first_non_digit = SkipDigits(s);
874 if (first_non_digit != s) {
875 checkSeparator(TokLoc, s, CSK_BeforeDigits);
876 s = first_non_digit;
877 } else {
878 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
879 diag::err_exponent_has_no_digits);
880 hadError = true;
881 return;
882 }
883 }
884 }
885
alwaysFitsInto64Bits(unsigned Radix,unsigned NumDigits)886 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
887 switch (Radix) {
888 case 2:
889 return NumDigits <= 64;
890 case 8:
891 return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
892 case 10:
893 return NumDigits <= 19; // floor(log10(2^64))
894 case 16:
895 return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
896 default:
897 llvm_unreachable("impossible Radix");
898 }
899 }
900
901 /// GetIntegerValue - Convert this numeric literal value to an APInt that
902 /// matches Val's input width. If there is an overflow, set Val to the low bits
903 /// of the result and return true. Otherwise, return false.
GetIntegerValue(llvm::APInt & Val)904 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
905 // Fast path: Compute a conservative bound on the maximum number of
906 // bits per digit in this radix. If we can't possibly overflow a
907 // uint64 based on that bound then do the simple conversion to
908 // integer. This avoids the expensive overflow checking below, and
909 // handles the common cases that matter (small decimal integers and
910 // hex/octal values which don't overflow).
911 const unsigned NumDigits = SuffixBegin - DigitsBegin;
912 if (alwaysFitsInto64Bits(radix, NumDigits)) {
913 uint64_t N = 0;
914 for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
915 if (!isDigitSeparator(*Ptr))
916 N = N * radix + llvm::hexDigitValue(*Ptr);
917
918 // This will truncate the value to Val's input width. Simply check
919 // for overflow by comparing.
920 Val = N;
921 return Val.getZExtValue() != N;
922 }
923
924 Val = 0;
925 const char *Ptr = DigitsBegin;
926
927 llvm::APInt RadixVal(Val.getBitWidth(), radix);
928 llvm::APInt CharVal(Val.getBitWidth(), 0);
929 llvm::APInt OldVal = Val;
930
931 bool OverflowOccurred = false;
932 while (Ptr < SuffixBegin) {
933 if (isDigitSeparator(*Ptr)) {
934 ++Ptr;
935 continue;
936 }
937
938 unsigned C = llvm::hexDigitValue(*Ptr++);
939
940 // If this letter is out of bound for this radix, reject it.
941 assert(C < radix && "NumericLiteralParser ctor should have rejected this");
942
943 CharVal = C;
944
945 // Add the digit to the value in the appropriate radix. If adding in digits
946 // made the value smaller, then this overflowed.
947 OldVal = Val;
948
949 // Multiply by radix, did overflow occur on the multiply?
950 Val *= RadixVal;
951 OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
952
953 // Add value, did overflow occur on the value?
954 // (a + b) ult b <=> overflow
955 Val += CharVal;
956 OverflowOccurred |= Val.ult(CharVal);
957 }
958 return OverflowOccurred;
959 }
960
961 llvm::APFloat::opStatus
GetFloatValue(llvm::APFloat & Result)962 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
963 using llvm::APFloat;
964
965 unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
966
967 llvm::SmallString<16> Buffer;
968 StringRef Str(ThisTokBegin, n);
969 if (Str.find('\'') != StringRef::npos) {
970 Buffer.reserve(n);
971 std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
972 &isDigitSeparator);
973 Str = Buffer;
974 }
975
976 return Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
977 }
978
979
980 /// \verbatim
981 /// user-defined-character-literal: [C++11 lex.ext]
982 /// character-literal ud-suffix
983 /// ud-suffix:
984 /// identifier
985 /// character-literal: [C++11 lex.ccon]
986 /// ' c-char-sequence '
987 /// u' c-char-sequence '
988 /// U' c-char-sequence '
989 /// L' c-char-sequence '
990 /// c-char-sequence:
991 /// c-char
992 /// c-char-sequence c-char
993 /// c-char:
994 /// any member of the source character set except the single-quote ',
995 /// backslash \, or new-line character
996 /// escape-sequence
997 /// universal-character-name
998 /// escape-sequence:
999 /// simple-escape-sequence
1000 /// octal-escape-sequence
1001 /// hexadecimal-escape-sequence
1002 /// simple-escape-sequence:
1003 /// one of \' \" \? \\ \a \b \f \n \r \t \v
1004 /// octal-escape-sequence:
1005 /// \ octal-digit
1006 /// \ octal-digit octal-digit
1007 /// \ octal-digit octal-digit octal-digit
1008 /// hexadecimal-escape-sequence:
1009 /// \x hexadecimal-digit
1010 /// hexadecimal-escape-sequence hexadecimal-digit
1011 /// universal-character-name: [C++11 lex.charset]
1012 /// \u hex-quad
1013 /// \U hex-quad hex-quad
1014 /// hex-quad:
1015 /// hex-digit hex-digit hex-digit hex-digit
1016 /// \endverbatim
1017 ///
CharLiteralParser(const char * begin,const char * end,SourceLocation Loc,Preprocessor & PP,tok::TokenKind kind)1018 CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
1019 SourceLocation Loc, Preprocessor &PP,
1020 tok::TokenKind kind) {
1021 // At this point we know that the character matches the regex "(L|u|U)?'.*'".
1022 HadError = false;
1023
1024 Kind = kind;
1025
1026 const char *TokBegin = begin;
1027
1028 // Skip over wide character determinant.
1029 if (Kind != tok::char_constant)
1030 ++begin;
1031 if (Kind == tok::utf8_char_constant)
1032 ++begin;
1033
1034 // Skip over the entry quote.
1035 assert(begin[0] == '\'' && "Invalid token lexed");
1036 ++begin;
1037
1038 // Remove an optional ud-suffix.
1039 if (end[-1] != '\'') {
1040 const char *UDSuffixEnd = end;
1041 do {
1042 --end;
1043 } while (end[-1] != '\'');
1044 // FIXME: Don't bother with this if !tok.hasUCN().
1045 expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
1046 UDSuffixOffset = end - TokBegin;
1047 }
1048
1049 // Trim the ending quote.
1050 assert(end != begin && "Invalid token lexed");
1051 --end;
1052
1053 // FIXME: The "Value" is an uint64_t so we can handle char literals of
1054 // up to 64-bits.
1055 // FIXME: This extensively assumes that 'char' is 8-bits.
1056 assert(PP.getTargetInfo().getCharWidth() == 8 &&
1057 "Assumes char is 8 bits");
1058 assert(PP.getTargetInfo().getIntWidth() <= 64 &&
1059 (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
1060 "Assumes sizeof(int) on target is <= 64 and a multiple of char");
1061 assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
1062 "Assumes sizeof(wchar) on target is <= 64");
1063
1064 SmallVector<uint32_t, 4> codepoint_buffer;
1065 codepoint_buffer.resize(end - begin);
1066 uint32_t *buffer_begin = &codepoint_buffer.front();
1067 uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
1068
1069 // Unicode escapes representing characters that cannot be correctly
1070 // represented in a single code unit are disallowed in character literals
1071 // by this implementation.
1072 uint32_t largest_character_for_kind;
1073 if (tok::wide_char_constant == Kind) {
1074 largest_character_for_kind =
1075 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
1076 } else if (tok::utf8_char_constant == Kind) {
1077 largest_character_for_kind = 0x7F;
1078 } else if (tok::utf16_char_constant == Kind) {
1079 largest_character_for_kind = 0xFFFF;
1080 } else if (tok::utf32_char_constant == Kind) {
1081 largest_character_for_kind = 0x10FFFF;
1082 } else {
1083 largest_character_for_kind = 0x7Fu;
1084 }
1085
1086 while (begin != end) {
1087 // Is this a span of non-escape characters?
1088 if (begin[0] != '\\') {
1089 char const *start = begin;
1090 do {
1091 ++begin;
1092 } while (begin != end && *begin != '\\');
1093
1094 char const *tmp_in_start = start;
1095 uint32_t *tmp_out_start = buffer_begin;
1096 ConversionResult res =
1097 ConvertUTF8toUTF32(reinterpret_cast<UTF8 const **>(&start),
1098 reinterpret_cast<UTF8 const *>(begin),
1099 &buffer_begin, buffer_end, strictConversion);
1100 if (res != conversionOK) {
1101 // If we see bad encoding for unprefixed character literals, warn and
1102 // simply copy the byte values, for compatibility with gcc and
1103 // older versions of clang.
1104 bool NoErrorOnBadEncoding = isAscii();
1105 unsigned Msg = diag::err_bad_character_encoding;
1106 if (NoErrorOnBadEncoding)
1107 Msg = diag::warn_bad_character_encoding;
1108 PP.Diag(Loc, Msg);
1109 if (NoErrorOnBadEncoding) {
1110 start = tmp_in_start;
1111 buffer_begin = tmp_out_start;
1112 for (; start != begin; ++start, ++buffer_begin)
1113 *buffer_begin = static_cast<uint8_t>(*start);
1114 } else {
1115 HadError = true;
1116 }
1117 } else {
1118 for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
1119 if (*tmp_out_start > largest_character_for_kind) {
1120 HadError = true;
1121 PP.Diag(Loc, diag::err_character_too_large);
1122 }
1123 }
1124 }
1125
1126 continue;
1127 }
1128 // Is this a Universal Character Name escape?
1129 if (begin[1] == 'u' || begin[1] == 'U') {
1130 unsigned short UcnLen = 0;
1131 if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
1132 FullSourceLoc(Loc, PP.getSourceManager()),
1133 &PP.getDiagnostics(), PP.getLangOpts(), true)) {
1134 HadError = true;
1135 } else if (*buffer_begin > largest_character_for_kind) {
1136 HadError = true;
1137 PP.Diag(Loc, diag::err_character_too_large);
1138 }
1139
1140 ++buffer_begin;
1141 continue;
1142 }
1143 unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
1144 uint64_t result =
1145 ProcessCharEscape(TokBegin, begin, end, HadError,
1146 FullSourceLoc(Loc,PP.getSourceManager()),
1147 CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
1148 *buffer_begin++ = result;
1149 }
1150
1151 unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
1152
1153 if (NumCharsSoFar > 1) {
1154 if (isWide())
1155 PP.Diag(Loc, diag::warn_extraneous_char_constant);
1156 else if (isAscii() && NumCharsSoFar == 4)
1157 PP.Diag(Loc, diag::ext_four_char_character_literal);
1158 else if (isAscii())
1159 PP.Diag(Loc, diag::ext_multichar_character_literal);
1160 else
1161 PP.Diag(Loc, diag::err_multichar_utf_character_literal);
1162 IsMultiChar = true;
1163 } else {
1164 IsMultiChar = false;
1165 }
1166
1167 llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
1168
1169 // Narrow character literals act as though their value is concatenated
1170 // in this implementation, but warn on overflow.
1171 bool multi_char_too_long = false;
1172 if (isAscii() && isMultiChar()) {
1173 LitVal = 0;
1174 for (size_t i = 0; i < NumCharsSoFar; ++i) {
1175 // check for enough leading zeros to shift into
1176 multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
1177 LitVal <<= 8;
1178 LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
1179 }
1180 } else if (NumCharsSoFar > 0) {
1181 // otherwise just take the last character
1182 LitVal = buffer_begin[-1];
1183 }
1184
1185 if (!HadError && multi_char_too_long) {
1186 PP.Diag(Loc, diag::warn_char_constant_too_large);
1187 }
1188
1189 // Transfer the value from APInt to uint64_t
1190 Value = LitVal.getZExtValue();
1191
1192 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1193 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
1194 // character constants are not sign extended in the this implementation:
1195 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1196 if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
1197 PP.getLangOpts().CharIsSigned)
1198 Value = (signed char)Value;
1199 }
1200
1201 /// \verbatim
1202 /// string-literal: [C++0x lex.string]
1203 /// encoding-prefix " [s-char-sequence] "
1204 /// encoding-prefix R raw-string
1205 /// encoding-prefix:
1206 /// u8
1207 /// u
1208 /// U
1209 /// L
1210 /// s-char-sequence:
1211 /// s-char
1212 /// s-char-sequence s-char
1213 /// s-char:
1214 /// any member of the source character set except the double-quote ",
1215 /// backslash \, or new-line character
1216 /// escape-sequence
1217 /// universal-character-name
1218 /// raw-string:
1219 /// " d-char-sequence ( r-char-sequence ) d-char-sequence "
1220 /// r-char-sequence:
1221 /// r-char
1222 /// r-char-sequence r-char
1223 /// r-char:
1224 /// any member of the source character set, except a right parenthesis )
1225 /// followed by the initial d-char-sequence (which may be empty)
1226 /// followed by a double quote ".
1227 /// d-char-sequence:
1228 /// d-char
1229 /// d-char-sequence d-char
1230 /// d-char:
1231 /// any member of the basic source character set except:
1232 /// space, the left parenthesis (, the right parenthesis ),
1233 /// the backslash \, and the control characters representing horizontal
1234 /// tab, vertical tab, form feed, and newline.
1235 /// escape-sequence: [C++0x lex.ccon]
1236 /// simple-escape-sequence
1237 /// octal-escape-sequence
1238 /// hexadecimal-escape-sequence
1239 /// simple-escape-sequence:
1240 /// one of \' \" \? \\ \a \b \f \n \r \t \v
1241 /// octal-escape-sequence:
1242 /// \ octal-digit
1243 /// \ octal-digit octal-digit
1244 /// \ octal-digit octal-digit octal-digit
1245 /// hexadecimal-escape-sequence:
1246 /// \x hexadecimal-digit
1247 /// hexadecimal-escape-sequence hexadecimal-digit
1248 /// universal-character-name:
1249 /// \u hex-quad
1250 /// \U hex-quad hex-quad
1251 /// hex-quad:
1252 /// hex-digit hex-digit hex-digit hex-digit
1253 /// \endverbatim
1254 ///
1255 StringLiteralParser::
StringLiteralParser(ArrayRef<Token> StringToks,Preprocessor & PP,bool Complain)1256 StringLiteralParser(ArrayRef<Token> StringToks,
1257 Preprocessor &PP, bool Complain)
1258 : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1259 Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() :nullptr),
1260 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1261 ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
1262 init(StringToks);
1263 }
1264
init(ArrayRef<Token> StringToks)1265 void StringLiteralParser::init(ArrayRef<Token> StringToks){
1266 // The literal token may have come from an invalid source location (e.g. due
1267 // to a PCH error), in which case the token length will be 0.
1268 if (StringToks.empty() || StringToks[0].getLength() < 2)
1269 return DiagnoseLexingError(SourceLocation());
1270
1271 // Scan all of the string portions, remember the max individual token length,
1272 // computing a bound on the concatenated string length, and see whether any
1273 // piece is a wide-string. If any of the string portions is a wide-string
1274 // literal, the result is a wide-string literal [C99 6.4.5p4].
1275 assert(!StringToks.empty() && "expected at least one token");
1276 MaxTokenLength = StringToks[0].getLength();
1277 assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
1278 SizeBound = StringToks[0].getLength()-2; // -2 for "".
1279 Kind = StringToks[0].getKind();
1280
1281 hadError = false;
1282
1283 // Implement Translation Phase #6: concatenation of string literals
1284 /// (C99 5.1.1.2p1). The common case is only one string fragment.
1285 for (unsigned i = 1; i != StringToks.size(); ++i) {
1286 if (StringToks[i].getLength() < 2)
1287 return DiagnoseLexingError(StringToks[i].getLocation());
1288
1289 // The string could be shorter than this if it needs cleaning, but this is a
1290 // reasonable bound, which is all we need.
1291 assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
1292 SizeBound += StringToks[i].getLength()-2; // -2 for "".
1293
1294 // Remember maximum string piece length.
1295 if (StringToks[i].getLength() > MaxTokenLength)
1296 MaxTokenLength = StringToks[i].getLength();
1297
1298 // Remember if we see any wide or utf-8/16/32 strings.
1299 // Also check for illegal concatenations.
1300 if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
1301 if (isAscii()) {
1302 Kind = StringToks[i].getKind();
1303 } else {
1304 if (Diags)
1305 Diags->Report(StringToks[i].getLocation(),
1306 diag::err_unsupported_string_concat);
1307 hadError = true;
1308 }
1309 }
1310 }
1311
1312 // Include space for the null terminator.
1313 ++SizeBound;
1314
1315 // TODO: K&R warning: "traditional C rejects string constant concatenation"
1316
1317 // Get the width in bytes of char/wchar_t/char16_t/char32_t
1318 CharByteWidth = getCharWidth(Kind, Target);
1319 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1320 CharByteWidth /= 8;
1321
1322 // The output buffer size needs to be large enough to hold wide characters.
1323 // This is a worst-case assumption which basically corresponds to L"" "long".
1324 SizeBound *= CharByteWidth;
1325
1326 // Size the temporary buffer to hold the result string data.
1327 ResultBuf.resize(SizeBound);
1328
1329 // Likewise, but for each string piece.
1330 SmallString<512> TokenBuf;
1331 TokenBuf.resize(MaxTokenLength);
1332
1333 // Loop over all the strings, getting their spelling, and expanding them to
1334 // wide strings as appropriate.
1335 ResultPtr = &ResultBuf[0]; // Next byte to fill in.
1336
1337 Pascal = false;
1338
1339 SourceLocation UDSuffixTokLoc;
1340
1341 for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
1342 const char *ThisTokBuf = &TokenBuf[0];
1343 // Get the spelling of the token, which eliminates trigraphs, etc. We know
1344 // that ThisTokBuf points to a buffer that is big enough for the whole token
1345 // and 'spelled' tokens can only shrink.
1346 bool StringInvalid = false;
1347 unsigned ThisTokLen =
1348 Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
1349 &StringInvalid);
1350 if (StringInvalid)
1351 return DiagnoseLexingError(StringToks[i].getLocation());
1352
1353 const char *ThisTokBegin = ThisTokBuf;
1354 const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
1355
1356 // Remove an optional ud-suffix.
1357 if (ThisTokEnd[-1] != '"') {
1358 const char *UDSuffixEnd = ThisTokEnd;
1359 do {
1360 --ThisTokEnd;
1361 } while (ThisTokEnd[-1] != '"');
1362
1363 StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
1364
1365 if (UDSuffixBuf.empty()) {
1366 if (StringToks[i].hasUCN())
1367 expandUCNs(UDSuffixBuf, UDSuffix);
1368 else
1369 UDSuffixBuf.assign(UDSuffix);
1370 UDSuffixToken = i;
1371 UDSuffixOffset = ThisTokEnd - ThisTokBuf;
1372 UDSuffixTokLoc = StringToks[i].getLocation();
1373 } else {
1374 SmallString<32> ExpandedUDSuffix;
1375 if (StringToks[i].hasUCN()) {
1376 expandUCNs(ExpandedUDSuffix, UDSuffix);
1377 UDSuffix = ExpandedUDSuffix;
1378 }
1379
1380 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
1381 // result of a concatenation involving at least one user-defined-string-
1382 // literal, all the participating user-defined-string-literals shall
1383 // have the same ud-suffix.
1384 if (UDSuffixBuf != UDSuffix) {
1385 if (Diags) {
1386 SourceLocation TokLoc = StringToks[i].getLocation();
1387 Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
1388 << UDSuffixBuf << UDSuffix
1389 << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
1390 << SourceRange(TokLoc, TokLoc);
1391 }
1392 hadError = true;
1393 }
1394 }
1395 }
1396
1397 // Strip the end quote.
1398 --ThisTokEnd;
1399
1400 // TODO: Input character set mapping support.
1401
1402 // Skip marker for wide or unicode strings.
1403 if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
1404 ++ThisTokBuf;
1405 // Skip 8 of u8 marker for utf8 strings.
1406 if (ThisTokBuf[0] == '8')
1407 ++ThisTokBuf;
1408 }
1409
1410 // Check for raw string
1411 if (ThisTokBuf[0] == 'R') {
1412 ThisTokBuf += 2; // skip R"
1413
1414 const char *Prefix = ThisTokBuf;
1415 while (ThisTokBuf[0] != '(')
1416 ++ThisTokBuf;
1417 ++ThisTokBuf; // skip '('
1418
1419 // Remove same number of characters from the end
1420 ThisTokEnd -= ThisTokBuf - Prefix;
1421 assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal");
1422
1423 // Copy the string over
1424 if (CopyStringFragment(StringToks[i], ThisTokBegin,
1425 StringRef(ThisTokBuf, ThisTokEnd - ThisTokBuf)))
1426 hadError = true;
1427 } else {
1428 if (ThisTokBuf[0] != '"') {
1429 // The file may have come from PCH and then changed after loading the
1430 // PCH; Fail gracefully.
1431 return DiagnoseLexingError(StringToks[i].getLocation());
1432 }
1433 ++ThisTokBuf; // skip "
1434
1435 // Check if this is a pascal string
1436 if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
1437 ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
1438
1439 // If the \p sequence is found in the first token, we have a pascal string
1440 // Otherwise, if we already have a pascal string, ignore the first \p
1441 if (i == 0) {
1442 ++ThisTokBuf;
1443 Pascal = true;
1444 } else if (Pascal)
1445 ThisTokBuf += 2;
1446 }
1447
1448 while (ThisTokBuf != ThisTokEnd) {
1449 // Is this a span of non-escape characters?
1450 if (ThisTokBuf[0] != '\\') {
1451 const char *InStart = ThisTokBuf;
1452 do {
1453 ++ThisTokBuf;
1454 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
1455
1456 // Copy the character span over.
1457 if (CopyStringFragment(StringToks[i], ThisTokBegin,
1458 StringRef(InStart, ThisTokBuf - InStart)))
1459 hadError = true;
1460 continue;
1461 }
1462 // Is this a Universal Character Name escape?
1463 if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
1464 EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
1465 ResultPtr, hadError,
1466 FullSourceLoc(StringToks[i].getLocation(), SM),
1467 CharByteWidth, Diags, Features);
1468 continue;
1469 }
1470 // Otherwise, this is a non-UCN escape character. Process it.
1471 unsigned ResultChar =
1472 ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
1473 FullSourceLoc(StringToks[i].getLocation(), SM),
1474 CharByteWidth*8, Diags, Features);
1475
1476 if (CharByteWidth == 4) {
1477 // FIXME: Make the type of the result buffer correct instead of
1478 // using reinterpret_cast.
1479 UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultPtr);
1480 *ResultWidePtr = ResultChar;
1481 ResultPtr += 4;
1482 } else if (CharByteWidth == 2) {
1483 // FIXME: Make the type of the result buffer correct instead of
1484 // using reinterpret_cast.
1485 UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultPtr);
1486 *ResultWidePtr = ResultChar & 0xFFFF;
1487 ResultPtr += 2;
1488 } else {
1489 assert(CharByteWidth == 1 && "Unexpected char width");
1490 *ResultPtr++ = ResultChar & 0xFF;
1491 }
1492 }
1493 }
1494 }
1495
1496 if (Pascal) {
1497 if (CharByteWidth == 4) {
1498 // FIXME: Make the type of the result buffer correct instead of
1499 // using reinterpret_cast.
1500 UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultBuf.data());
1501 ResultWidePtr[0] = GetNumStringChars() - 1;
1502 } else if (CharByteWidth == 2) {
1503 // FIXME: Make the type of the result buffer correct instead of
1504 // using reinterpret_cast.
1505 UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultBuf.data());
1506 ResultWidePtr[0] = GetNumStringChars() - 1;
1507 } else {
1508 assert(CharByteWidth == 1 && "Unexpected char width");
1509 ResultBuf[0] = GetNumStringChars() - 1;
1510 }
1511
1512 // Verify that pascal strings aren't too large.
1513 if (GetStringLength() > 256) {
1514 if (Diags)
1515 Diags->Report(StringToks.front().getLocation(),
1516 diag::err_pascal_string_too_long)
1517 << SourceRange(StringToks.front().getLocation(),
1518 StringToks.back().getLocation());
1519 hadError = true;
1520 return;
1521 }
1522 } else if (Diags) {
1523 // Complain if this string literal has too many characters.
1524 unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
1525
1526 if (GetNumStringChars() > MaxChars)
1527 Diags->Report(StringToks.front().getLocation(),
1528 diag::ext_string_too_long)
1529 << GetNumStringChars() << MaxChars
1530 << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
1531 << SourceRange(StringToks.front().getLocation(),
1532 StringToks.back().getLocation());
1533 }
1534 }
1535
resyncUTF8(const char * Err,const char * End)1536 static const char *resyncUTF8(const char *Err, const char *End) {
1537 if (Err == End)
1538 return End;
1539 End = Err + std::min<unsigned>(getNumBytesForUTF8(*Err), End-Err);
1540 while (++Err != End && (*Err & 0xC0) == 0x80)
1541 ;
1542 return Err;
1543 }
1544
1545 /// \brief This function copies from Fragment, which is a sequence of bytes
1546 /// within Tok's contents (which begin at TokBegin) into ResultPtr.
1547 /// Performs widening for multi-byte characters.
CopyStringFragment(const Token & Tok,const char * TokBegin,StringRef Fragment)1548 bool StringLiteralParser::CopyStringFragment(const Token &Tok,
1549 const char *TokBegin,
1550 StringRef Fragment) {
1551 const UTF8 *ErrorPtrTmp;
1552 if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
1553 return false;
1554
1555 // If we see bad encoding for unprefixed string literals, warn and
1556 // simply copy the byte values, for compatibility with gcc and older
1557 // versions of clang.
1558 bool NoErrorOnBadEncoding = isAscii();
1559 if (NoErrorOnBadEncoding) {
1560 memcpy(ResultPtr, Fragment.data(), Fragment.size());
1561 ResultPtr += Fragment.size();
1562 }
1563
1564 if (Diags) {
1565 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
1566
1567 FullSourceLoc SourceLoc(Tok.getLocation(), SM);
1568 const DiagnosticBuilder &Builder =
1569 Diag(Diags, Features, SourceLoc, TokBegin,
1570 ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
1571 NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
1572 : diag::err_bad_string_encoding);
1573
1574 const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
1575 StringRef NextFragment(NextStart, Fragment.end()-NextStart);
1576
1577 // Decode into a dummy buffer.
1578 SmallString<512> Dummy;
1579 Dummy.reserve(Fragment.size() * CharByteWidth);
1580 char *Ptr = Dummy.data();
1581
1582 while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
1583 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
1584 NextStart = resyncUTF8(ErrorPtr, Fragment.end());
1585 Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
1586 ErrorPtr, NextStart);
1587 NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
1588 }
1589 }
1590 return !NoErrorOnBadEncoding;
1591 }
1592
DiagnoseLexingError(SourceLocation Loc)1593 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
1594 hadError = true;
1595 if (Diags)
1596 Diags->Report(Loc, diag::err_lexing_string);
1597 }
1598
1599 /// getOffsetOfStringByte - This function returns the offset of the
1600 /// specified byte of the string data represented by Token. This handles
1601 /// advancing over escape sequences in the string.
getOffsetOfStringByte(const Token & Tok,unsigned ByteNo) const1602 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
1603 unsigned ByteNo) const {
1604 // Get the spelling of the token.
1605 SmallString<32> SpellingBuffer;
1606 SpellingBuffer.resize(Tok.getLength());
1607
1608 bool StringInvalid = false;
1609 const char *SpellingPtr = &SpellingBuffer[0];
1610 unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
1611 &StringInvalid);
1612 if (StringInvalid)
1613 return 0;
1614
1615 const char *SpellingStart = SpellingPtr;
1616 const char *SpellingEnd = SpellingPtr+TokLen;
1617
1618 // Handle UTF-8 strings just like narrow strings.
1619 if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
1620 SpellingPtr += 2;
1621
1622 assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
1623 SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
1624
1625 // For raw string literals, this is easy.
1626 if (SpellingPtr[0] == 'R') {
1627 assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
1628 // Skip 'R"'.
1629 SpellingPtr += 2;
1630 while (*SpellingPtr != '(') {
1631 ++SpellingPtr;
1632 assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
1633 }
1634 // Skip '('.
1635 ++SpellingPtr;
1636 return SpellingPtr - SpellingStart + ByteNo;
1637 }
1638
1639 // Skip over the leading quote
1640 assert(SpellingPtr[0] == '"' && "Should be a string literal!");
1641 ++SpellingPtr;
1642
1643 // Skip over bytes until we find the offset we're looking for.
1644 while (ByteNo) {
1645 assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
1646
1647 // Step over non-escapes simply.
1648 if (*SpellingPtr != '\\') {
1649 ++SpellingPtr;
1650 --ByteNo;
1651 continue;
1652 }
1653
1654 // Otherwise, this is an escape character. Advance over it.
1655 bool HadError = false;
1656 if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
1657 const char *EscapePtr = SpellingPtr;
1658 unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
1659 1, Features, HadError);
1660 if (Len > ByteNo) {
1661 // ByteNo is somewhere within the escape sequence.
1662 SpellingPtr = EscapePtr;
1663 break;
1664 }
1665 ByteNo -= Len;
1666 } else {
1667 ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
1668 FullSourceLoc(Tok.getLocation(), SM),
1669 CharByteWidth*8, Diags, Features);
1670 --ByteNo;
1671 }
1672 assert(!HadError && "This method isn't valid on erroneous strings");
1673 }
1674
1675 return SpellingPtr-SpellingStart;
1676 }
1677