1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
6 #define V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
7 
8 #include <vector>
9 
10 #include "src/bailout-reason.h"
11 #include "src/globals.h"
12 
13 #include "src/arm64/assembler-arm64-inl.h"
14 #include "src/base/bits.h"
15 
16 // Simulator specific helpers.
17 #if USE_SIMULATOR
18   // TODO(all): If possible automatically prepend an indicator like
19   // UNIMPLEMENTED or LOCATION.
20   #define ASM_UNIMPLEMENTED(message)                                         \
21   __ Debug(message, __LINE__, NO_PARAM)
22   #define ASM_UNIMPLEMENTED_BREAK(message)                                   \
23   __ Debug(message, __LINE__,                                                \
24            FLAG_ignore_asm_unimplemented_break ? NO_PARAM : BREAK)
25   #define ASM_LOCATION(message)                                              \
26   __ Debug("LOCATION: " message, __LINE__, NO_PARAM)
27 #else
28   #define ASM_UNIMPLEMENTED(message)
29   #define ASM_UNIMPLEMENTED_BREAK(message)
30   #define ASM_LOCATION(message)
31 #endif
32 
33 
34 namespace v8 {
35 namespace internal {
36 
37 #define LS_MACRO_LIST(V)                                      \
38   V(Ldrb, Register&, rt, LDRB_w)                              \
39   V(Strb, Register&, rt, STRB_w)                              \
40   V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w)  \
41   V(Ldrh, Register&, rt, LDRH_w)                              \
42   V(Strh, Register&, rt, STRH_w)                              \
43   V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w)  \
44   V(Ldr, CPURegister&, rt, LoadOpFor(rt))                     \
45   V(Str, CPURegister&, rt, StoreOpFor(rt))                    \
46   V(Ldrsw, Register&, rt, LDRSW_x)
47 
48 #define LSPAIR_MACRO_LIST(V)                             \
49   V(Ldp, CPURegister&, rt, rt2, LoadPairOpFor(rt, rt2))  \
50   V(Stp, CPURegister&, rt, rt2, StorePairOpFor(rt, rt2)) \
51   V(Ldpsw, CPURegister&, rt, rt2, LDPSW_x)
52 
53 
54 // ----------------------------------------------------------------------------
55 // Static helper functions
56 
57 // Generate a MemOperand for loading a field from an object.
58 inline MemOperand FieldMemOperand(Register object, int offset);
59 inline MemOperand UntagSmiFieldMemOperand(Register object, int offset);
60 
61 // Generate a MemOperand for loading a SMI from memory.
62 inline MemOperand UntagSmiMemOperand(Register object, int offset);
63 
64 
65 // ----------------------------------------------------------------------------
66 // MacroAssembler
67 
68 enum BranchType {
69   // Copies of architectural conditions.
70   // The associated conditions can be used in place of those, the code will
71   // take care of reinterpreting them with the correct type.
72   integer_eq = eq,
73   integer_ne = ne,
74   integer_hs = hs,
75   integer_lo = lo,
76   integer_mi = mi,
77   integer_pl = pl,
78   integer_vs = vs,
79   integer_vc = vc,
80   integer_hi = hi,
81   integer_ls = ls,
82   integer_ge = ge,
83   integer_lt = lt,
84   integer_gt = gt,
85   integer_le = le,
86   integer_al = al,
87   integer_nv = nv,
88 
89   // These two are *different* from the architectural codes al and nv.
90   // 'always' is used to generate unconditional branches.
91   // 'never' is used to not generate a branch (generally as the inverse
92   // branch type of 'always).
93   always, never,
94   // cbz and cbnz
95   reg_zero, reg_not_zero,
96   // tbz and tbnz
97   reg_bit_clear, reg_bit_set,
98 
99   // Aliases.
100   kBranchTypeFirstCondition = eq,
101   kBranchTypeLastCondition = nv,
102   kBranchTypeFirstUsingReg = reg_zero,
103   kBranchTypeFirstUsingBit = reg_bit_clear
104 };
105 
InvertBranchType(BranchType type)106 inline BranchType InvertBranchType(BranchType type) {
107   if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
108     return static_cast<BranchType>(
109         NegateCondition(static_cast<Condition>(type)));
110   } else {
111     return static_cast<BranchType>(type ^ 1);
112   }
113 }
114 
115 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
116 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
117 enum PointersToHereCheck {
118   kPointersToHereMaybeInteresting,
119   kPointersToHereAreAlwaysInteresting
120 };
121 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
122 enum TargetAddressStorageMode {
123   CAN_INLINE_TARGET_ADDRESS,
124   NEVER_INLINE_TARGET_ADDRESS
125 };
126 enum UntagMode { kNotSpeculativeUntag, kSpeculativeUntag };
127 enum ArrayHasHoles { kArrayCantHaveHoles, kArrayCanHaveHoles };
128 enum CopyHint { kCopyUnknown, kCopyShort, kCopyLong };
129 enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg };
130 enum SeqStringSetCharCheckIndexType { kIndexIsSmi, kIndexIsInteger32 };
131 
132 class MacroAssembler : public Assembler {
133  public:
134   MacroAssembler(Isolate* isolate, byte * buffer, unsigned buffer_size);
135 
136   inline Handle<Object> CodeObject();
137 
138   // Instruction set functions ------------------------------------------------
139   // Logical macros.
140   inline void And(const Register& rd,
141                   const Register& rn,
142                   const Operand& operand);
143   inline void Ands(const Register& rd,
144                    const Register& rn,
145                    const Operand& operand);
146   inline void Bic(const Register& rd,
147                   const Register& rn,
148                   const Operand& operand);
149   inline void Bics(const Register& rd,
150                    const Register& rn,
151                    const Operand& operand);
152   inline void Orr(const Register& rd,
153                   const Register& rn,
154                   const Operand& operand);
155   inline void Orn(const Register& rd,
156                   const Register& rn,
157                   const Operand& operand);
158   inline void Eor(const Register& rd,
159                   const Register& rn,
160                   const Operand& operand);
161   inline void Eon(const Register& rd,
162                   const Register& rn,
163                   const Operand& operand);
164   inline void Tst(const Register& rn, const Operand& operand);
165   void LogicalMacro(const Register& rd,
166                     const Register& rn,
167                     const Operand& operand,
168                     LogicalOp op);
169 
170   // Add and sub macros.
171   inline void Add(const Register& rd,
172                   const Register& rn,
173                   const Operand& operand);
174   inline void Adds(const Register& rd,
175                    const Register& rn,
176                    const Operand& operand);
177   inline void Sub(const Register& rd,
178                   const Register& rn,
179                   const Operand& operand);
180   inline void Subs(const Register& rd,
181                    const Register& rn,
182                    const Operand& operand);
183   inline void Cmn(const Register& rn, const Operand& operand);
184   inline void Cmp(const Register& rn, const Operand& operand);
185   inline void Neg(const Register& rd,
186                   const Operand& operand);
187   inline void Negs(const Register& rd,
188                    const Operand& operand);
189 
190   void AddSubMacro(const Register& rd,
191                    const Register& rn,
192                    const Operand& operand,
193                    FlagsUpdate S,
194                    AddSubOp op);
195 
196   // Add/sub with carry macros.
197   inline void Adc(const Register& rd,
198                   const Register& rn,
199                   const Operand& operand);
200   inline void Adcs(const Register& rd,
201                    const Register& rn,
202                    const Operand& operand);
203   inline void Sbc(const Register& rd,
204                   const Register& rn,
205                   const Operand& operand);
206   inline void Sbcs(const Register& rd,
207                    const Register& rn,
208                    const Operand& operand);
209   inline void Ngc(const Register& rd,
210                   const Operand& operand);
211   inline void Ngcs(const Register& rd,
212                    const Operand& operand);
213   void AddSubWithCarryMacro(const Register& rd,
214                             const Register& rn,
215                             const Operand& operand,
216                             FlagsUpdate S,
217                             AddSubWithCarryOp op);
218 
219   // Move macros.
220   void Mov(const Register& rd,
221            const Operand& operand,
222            DiscardMoveMode discard_mode = kDontDiscardForSameWReg);
223   void Mov(const Register& rd, uint64_t imm);
224   inline void Mvn(const Register& rd, uint64_t imm);
225   void Mvn(const Register& rd, const Operand& operand);
226   static bool IsImmMovn(uint64_t imm, unsigned reg_size);
227   static bool IsImmMovz(uint64_t imm, unsigned reg_size);
228   static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
229 
230   // Try to move an immediate into the destination register in a single
231   // instruction. Returns true for success, and updates the contents of dst.
232   // Returns false, otherwise.
233   bool TryOneInstrMoveImmediate(const Register& dst, int64_t imm);
234 
235   // Move an immediate into register dst, and return an Operand object for use
236   // with a subsequent instruction that accepts a shift. The value moved into
237   // dst is not necessarily equal to imm; it may have had a shifting operation
238   // applied to it that will be subsequently undone by the shift applied in the
239   // Operand.
240   Operand MoveImmediateForShiftedOp(const Register& dst, int64_t imm);
241 
242   // Conditional macros.
243   inline void Ccmp(const Register& rn,
244                    const Operand& operand,
245                    StatusFlags nzcv,
246                    Condition cond);
247   inline void Ccmn(const Register& rn,
248                    const Operand& operand,
249                    StatusFlags nzcv,
250                    Condition cond);
251   void ConditionalCompareMacro(const Register& rn,
252                                const Operand& operand,
253                                StatusFlags nzcv,
254                                Condition cond,
255                                ConditionalCompareOp op);
256   void Csel(const Register& rd,
257             const Register& rn,
258             const Operand& operand,
259             Condition cond);
260 
261   // Load/store macros.
262 #define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \
263   inline void FN(const REGTYPE REG, const MemOperand& addr);
264   LS_MACRO_LIST(DECLARE_FUNCTION)
265 #undef DECLARE_FUNCTION
266 
267   void LoadStoreMacro(const CPURegister& rt,
268                       const MemOperand& addr,
269                       LoadStoreOp op);
270 
271 #define DECLARE_FUNCTION(FN, REGTYPE, REG, REG2, OP) \
272   inline void FN(const REGTYPE REG, const REGTYPE REG2, const MemOperand& addr);
273   LSPAIR_MACRO_LIST(DECLARE_FUNCTION)
274 #undef DECLARE_FUNCTION
275 
276   void LoadStorePairMacro(const CPURegister& rt, const CPURegister& rt2,
277                           const MemOperand& addr, LoadStorePairOp op);
278 
279   // V8-specific load/store helpers.
280   void Load(const Register& rt, const MemOperand& addr, Representation r);
281   void Store(const Register& rt, const MemOperand& addr, Representation r);
282 
283   enum AdrHint {
284     // The target must be within the immediate range of adr.
285     kAdrNear,
286     // The target may be outside of the immediate range of adr. Additional
287     // instructions may be emitted.
288     kAdrFar
289   };
290   void Adr(const Register& rd, Label* label, AdrHint = kAdrNear);
291 
292   // Remaining instructions are simple pass-through calls to the assembler.
293   inline void Asr(const Register& rd, const Register& rn, unsigned shift);
294   inline void Asr(const Register& rd, const Register& rn, const Register& rm);
295 
296   // Branch type inversion relies on these relations.
297   STATIC_ASSERT((reg_zero      == (reg_not_zero ^ 1)) &&
298                 (reg_bit_clear == (reg_bit_set ^ 1)) &&
299                 (always        == (never ^ 1)));
300 
301   void B(Label* label, BranchType type, Register reg = NoReg, int bit = -1);
302 
303   inline void B(Label* label);
304   inline void B(Condition cond, Label* label);
305   void B(Label* label, Condition cond);
306   inline void Bfi(const Register& rd,
307                   const Register& rn,
308                   unsigned lsb,
309                   unsigned width);
310   inline void Bfxil(const Register& rd,
311                     const Register& rn,
312                     unsigned lsb,
313                     unsigned width);
314   inline void Bind(Label* label);
315   inline void Bl(Label* label);
316   inline void Blr(const Register& xn);
317   inline void Br(const Register& xn);
318   inline void Brk(int code);
319   void Cbnz(const Register& rt, Label* label);
320   void Cbz(const Register& rt, Label* label);
321   inline void Cinc(const Register& rd, const Register& rn, Condition cond);
322   inline void Cinv(const Register& rd, const Register& rn, Condition cond);
323   inline void Cls(const Register& rd, const Register& rn);
324   inline void Clz(const Register& rd, const Register& rn);
325   inline void Cneg(const Register& rd, const Register& rn, Condition cond);
326   inline void CzeroX(const Register& rd, Condition cond);
327   inline void CmovX(const Register& rd, const Register& rn, Condition cond);
328   inline void Cset(const Register& rd, Condition cond);
329   inline void Csetm(const Register& rd, Condition cond);
330   inline void Csinc(const Register& rd,
331                     const Register& rn,
332                     const Register& rm,
333                     Condition cond);
334   inline void Csinv(const Register& rd,
335                     const Register& rn,
336                     const Register& rm,
337                     Condition cond);
338   inline void Csneg(const Register& rd,
339                     const Register& rn,
340                     const Register& rm,
341                     Condition cond);
342   inline void Dmb(BarrierDomain domain, BarrierType type);
343   inline void Dsb(BarrierDomain domain, BarrierType type);
344   inline void Debug(const char* message, uint32_t code, Instr params = BREAK);
345   inline void Extr(const Register& rd,
346                    const Register& rn,
347                    const Register& rm,
348                    unsigned lsb);
349   inline void Fabs(const FPRegister& fd, const FPRegister& fn);
350   inline void Fadd(const FPRegister& fd,
351                    const FPRegister& fn,
352                    const FPRegister& fm);
353   inline void Fccmp(const FPRegister& fn,
354                     const FPRegister& fm,
355                     StatusFlags nzcv,
356                     Condition cond);
357   inline void Fcmp(const FPRegister& fn, const FPRegister& fm);
358   inline void Fcmp(const FPRegister& fn, double value);
359   inline void Fcsel(const FPRegister& fd,
360                     const FPRegister& fn,
361                     const FPRegister& fm,
362                     Condition cond);
363   inline void Fcvt(const FPRegister& fd, const FPRegister& fn);
364   inline void Fcvtas(const Register& rd, const FPRegister& fn);
365   inline void Fcvtau(const Register& rd, const FPRegister& fn);
366   inline void Fcvtms(const Register& rd, const FPRegister& fn);
367   inline void Fcvtmu(const Register& rd, const FPRegister& fn);
368   inline void Fcvtns(const Register& rd, const FPRegister& fn);
369   inline void Fcvtnu(const Register& rd, const FPRegister& fn);
370   inline void Fcvtzs(const Register& rd, const FPRegister& fn);
371   inline void Fcvtzu(const Register& rd, const FPRegister& fn);
372   inline void Fdiv(const FPRegister& fd,
373                    const FPRegister& fn,
374                    const FPRegister& fm);
375   inline void Fmadd(const FPRegister& fd,
376                     const FPRegister& fn,
377                     const FPRegister& fm,
378                     const FPRegister& fa);
379   inline void Fmax(const FPRegister& fd,
380                    const FPRegister& fn,
381                    const FPRegister& fm);
382   inline void Fmaxnm(const FPRegister& fd,
383                      const FPRegister& fn,
384                      const FPRegister& fm);
385   inline void Fmin(const FPRegister& fd,
386                    const FPRegister& fn,
387                    const FPRegister& fm);
388   inline void Fminnm(const FPRegister& fd,
389                      const FPRegister& fn,
390                      const FPRegister& fm);
391   inline void Fmov(FPRegister fd, FPRegister fn);
392   inline void Fmov(FPRegister fd, Register rn);
393   // Provide explicit double and float interfaces for FP immediate moves, rather
394   // than relying on implicit C++ casts. This allows signalling NaNs to be
395   // preserved when the immediate matches the format of fd. Most systems convert
396   // signalling NaNs to quiet NaNs when converting between float and double.
397   inline void Fmov(FPRegister fd, double imm);
398   inline void Fmov(FPRegister fd, float imm);
399   // Provide a template to allow other types to be converted automatically.
400   template<typename T>
Fmov(FPRegister fd,T imm)401   void Fmov(FPRegister fd, T imm) {
402     DCHECK(allow_macro_instructions_);
403     Fmov(fd, static_cast<double>(imm));
404   }
405   inline void Fmov(Register rd, FPRegister fn);
406   inline void Fmsub(const FPRegister& fd,
407                     const FPRegister& fn,
408                     const FPRegister& fm,
409                     const FPRegister& fa);
410   inline void Fmul(const FPRegister& fd,
411                    const FPRegister& fn,
412                    const FPRegister& fm);
413   inline void Fneg(const FPRegister& fd, const FPRegister& fn);
414   inline void Fnmadd(const FPRegister& fd,
415                      const FPRegister& fn,
416                      const FPRegister& fm,
417                      const FPRegister& fa);
418   inline void Fnmsub(const FPRegister& fd,
419                      const FPRegister& fn,
420                      const FPRegister& fm,
421                      const FPRegister& fa);
422   inline void Frinta(const FPRegister& fd, const FPRegister& fn);
423   inline void Frintm(const FPRegister& fd, const FPRegister& fn);
424   inline void Frintn(const FPRegister& fd, const FPRegister& fn);
425   inline void Frintz(const FPRegister& fd, const FPRegister& fn);
426   inline void Fsqrt(const FPRegister& fd, const FPRegister& fn);
427   inline void Fsub(const FPRegister& fd,
428                    const FPRegister& fn,
429                    const FPRegister& fm);
430   inline void Hint(SystemHint code);
431   inline void Hlt(int code);
432   inline void Isb();
433   inline void Ldnp(const CPURegister& rt,
434                    const CPURegister& rt2,
435                    const MemOperand& src);
436   // Load a literal from the inline constant pool.
437   inline void Ldr(const CPURegister& rt, const Immediate& imm);
438   // Helper function for double immediate.
439   inline void Ldr(const CPURegister& rt, double imm);
440   inline void Lsl(const Register& rd, const Register& rn, unsigned shift);
441   inline void Lsl(const Register& rd, const Register& rn, const Register& rm);
442   inline void Lsr(const Register& rd, const Register& rn, unsigned shift);
443   inline void Lsr(const Register& rd, const Register& rn, const Register& rm);
444   inline void Madd(const Register& rd,
445                    const Register& rn,
446                    const Register& rm,
447                    const Register& ra);
448   inline void Mneg(const Register& rd, const Register& rn, const Register& rm);
449   inline void Mov(const Register& rd, const Register& rm);
450   inline void Movk(const Register& rd, uint64_t imm, int shift = -1);
451   inline void Mrs(const Register& rt, SystemRegister sysreg);
452   inline void Msr(SystemRegister sysreg, const Register& rt);
453   inline void Msub(const Register& rd,
454                    const Register& rn,
455                    const Register& rm,
456                    const Register& ra);
457   inline void Mul(const Register& rd, const Register& rn, const Register& rm);
Nop()458   inline void Nop() { nop(); }
459   inline void Rbit(const Register& rd, const Register& rn);
460   inline void Ret(const Register& xn = lr);
461   inline void Rev(const Register& rd, const Register& rn);
462   inline void Rev16(const Register& rd, const Register& rn);
463   inline void Rev32(const Register& rd, const Register& rn);
464   inline void Ror(const Register& rd, const Register& rs, unsigned shift);
465   inline void Ror(const Register& rd, const Register& rn, const Register& rm);
466   inline void Sbfiz(const Register& rd,
467                     const Register& rn,
468                     unsigned lsb,
469                     unsigned width);
470   inline void Sbfx(const Register& rd,
471                    const Register& rn,
472                    unsigned lsb,
473                    unsigned width);
474   inline void Scvtf(const FPRegister& fd,
475                     const Register& rn,
476                     unsigned fbits = 0);
477   inline void Sdiv(const Register& rd, const Register& rn, const Register& rm);
478   inline void Smaddl(const Register& rd,
479                      const Register& rn,
480                      const Register& rm,
481                      const Register& ra);
482   inline void Smsubl(const Register& rd,
483                      const Register& rn,
484                      const Register& rm,
485                      const Register& ra);
486   inline void Smull(const Register& rd,
487                     const Register& rn,
488                     const Register& rm);
489   inline void Smulh(const Register& rd,
490                     const Register& rn,
491                     const Register& rm);
492   inline void Stnp(const CPURegister& rt,
493                    const CPURegister& rt2,
494                    const MemOperand& dst);
495   inline void Sxtb(const Register& rd, const Register& rn);
496   inline void Sxth(const Register& rd, const Register& rn);
497   inline void Sxtw(const Register& rd, const Register& rn);
498   void Tbnz(const Register& rt, unsigned bit_pos, Label* label);
499   void Tbz(const Register& rt, unsigned bit_pos, Label* label);
500   inline void Ubfiz(const Register& rd,
501                     const Register& rn,
502                     unsigned lsb,
503                     unsigned width);
504   inline void Ubfx(const Register& rd,
505                    const Register& rn,
506                    unsigned lsb,
507                    unsigned width);
508   inline void Ucvtf(const FPRegister& fd,
509                     const Register& rn,
510                     unsigned fbits = 0);
511   inline void Udiv(const Register& rd, const Register& rn, const Register& rm);
512   inline void Umaddl(const Register& rd,
513                      const Register& rn,
514                      const Register& rm,
515                      const Register& ra);
516   inline void Umsubl(const Register& rd,
517                      const Register& rn,
518                      const Register& rm,
519                      const Register& ra);
520   inline void Uxtb(const Register& rd, const Register& rn);
521   inline void Uxth(const Register& rd, const Register& rn);
522   inline void Uxtw(const Register& rd, const Register& rn);
523 
524   // Pseudo-instructions ------------------------------------------------------
525 
526   // Compute rd = abs(rm).
527   // This function clobbers the condition flags. On output the overflow flag is
528   // set iff the negation overflowed.
529   //
530   // If rm is the minimum representable value, the result is not representable.
531   // Handlers for each case can be specified using the relevant labels.
532   void Abs(const Register& rd, const Register& rm,
533            Label * is_not_representable = NULL,
534            Label * is_representable = NULL);
535 
536   // Push or pop up to 4 registers of the same width to or from the stack,
537   // using the current stack pointer as set by SetStackPointer.
538   //
539   // If an argument register is 'NoReg', all further arguments are also assumed
540   // to be 'NoReg', and are thus not pushed or popped.
541   //
542   // Arguments are ordered such that "Push(a, b);" is functionally equivalent
543   // to "Push(a); Push(b);".
544   //
545   // It is valid to push the same register more than once, and there is no
546   // restriction on the order in which registers are specified.
547   //
548   // It is not valid to pop into the same register more than once in one
549   // operation, not even into the zero register.
550   //
551   // If the current stack pointer (as set by SetStackPointer) is csp, then it
552   // must be aligned to 16 bytes on entry and the total size of the specified
553   // registers must also be a multiple of 16 bytes.
554   //
555   // Even if the current stack pointer is not the system stack pointer (csp),
556   // Push (and derived methods) will still modify the system stack pointer in
557   // order to comply with ABI rules about accessing memory below the system
558   // stack pointer.
559   //
560   // Other than the registers passed into Pop, the stack pointer and (possibly)
561   // the system stack pointer, these methods do not modify any other registers.
562   void Push(const CPURegister& src0, const CPURegister& src1 = NoReg,
563             const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg);
564   void Push(const CPURegister& src0, const CPURegister& src1,
565             const CPURegister& src2, const CPURegister& src3,
566             const CPURegister& src4, const CPURegister& src5 = NoReg,
567             const CPURegister& src6 = NoReg, const CPURegister& src7 = NoReg);
568   void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg,
569            const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg);
570   void Push(const Register& src0, const FPRegister& src1);
571 
572   // Alternative forms of Push and Pop, taking a RegList or CPURegList that
573   // specifies the registers that are to be pushed or popped. Higher-numbered
574   // registers are associated with higher memory addresses (as in the A32 push
575   // and pop instructions).
576   //
577   // (Push|Pop)SizeRegList allow you to specify the register size as a
578   // parameter. Only kXRegSizeInBits, kWRegSizeInBits, kDRegSizeInBits and
579   // kSRegSizeInBits are supported.
580   //
581   // Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred.
582   void PushCPURegList(CPURegList registers);
583   void PopCPURegList(CPURegList registers);
584 
585   inline void PushSizeRegList(RegList registers, unsigned reg_size,
586       CPURegister::RegisterType type = CPURegister::kRegister) {
587     PushCPURegList(CPURegList(type, reg_size, registers));
588   }
589   inline void PopSizeRegList(RegList registers, unsigned reg_size,
590       CPURegister::RegisterType type = CPURegister::kRegister) {
591     PopCPURegList(CPURegList(type, reg_size, registers));
592   }
PushXRegList(RegList regs)593   inline void PushXRegList(RegList regs) {
594     PushSizeRegList(regs, kXRegSizeInBits);
595   }
PopXRegList(RegList regs)596   inline void PopXRegList(RegList regs) {
597     PopSizeRegList(regs, kXRegSizeInBits);
598   }
PushWRegList(RegList regs)599   inline void PushWRegList(RegList regs) {
600     PushSizeRegList(regs, kWRegSizeInBits);
601   }
PopWRegList(RegList regs)602   inline void PopWRegList(RegList regs) {
603     PopSizeRegList(regs, kWRegSizeInBits);
604   }
PushDRegList(RegList regs)605   inline void PushDRegList(RegList regs) {
606     PushSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
607   }
PopDRegList(RegList regs)608   inline void PopDRegList(RegList regs) {
609     PopSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
610   }
PushSRegList(RegList regs)611   inline void PushSRegList(RegList regs) {
612     PushSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
613   }
PopSRegList(RegList regs)614   inline void PopSRegList(RegList regs) {
615     PopSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
616   }
617 
618   // Push the specified register 'count' times.
619   void PushMultipleTimes(CPURegister src, Register count);
620   void PushMultipleTimes(CPURegister src, int count);
621 
622   // This is a convenience method for pushing a single Handle<Object>.
623   inline void Push(Handle<Object> handle);
Push(Smi * smi)624   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
625 
626   // Aliases of Push and Pop, required for V8 compatibility.
push(Register src)627   inline void push(Register src) {
628     Push(src);
629   }
pop(Register dst)630   inline void pop(Register dst) {
631     Pop(dst);
632   }
633 
634   // Sometimes callers need to push or pop multiple registers in a way that is
635   // difficult to structure efficiently for fixed Push or Pop calls. This scope
636   // allows push requests to be queued up, then flushed at once. The
637   // MacroAssembler will try to generate the most efficient sequence required.
638   //
639   // Unlike the other Push and Pop macros, PushPopQueue can handle mixed sets of
640   // register sizes and types.
641   class PushPopQueue {
642    public:
PushPopQueue(MacroAssembler * masm)643     explicit PushPopQueue(MacroAssembler* masm) : masm_(masm), size_(0) { }
644 
~PushPopQueue()645     ~PushPopQueue() {
646       DCHECK(queued_.empty());
647     }
648 
Queue(const CPURegister & rt)649     void Queue(const CPURegister& rt) {
650       size_ += rt.SizeInBytes();
651       queued_.push_back(rt);
652     }
653 
654     enum PreambleDirective {
655       WITH_PREAMBLE,
656       SKIP_PREAMBLE
657     };
658     void PushQueued(PreambleDirective preamble_directive = WITH_PREAMBLE);
659     void PopQueued();
660 
661    private:
662     MacroAssembler* masm_;
663     int size_;
664     std::vector<CPURegister> queued_;
665   };
666 
667   // Poke 'src' onto the stack. The offset is in bytes.
668   //
669   // If the current stack pointer (according to StackPointer()) is csp, then
670   // csp must be aligned to 16 bytes.
671   void Poke(const CPURegister& src, const Operand& offset);
672 
673   // Peek at a value on the stack, and put it in 'dst'. The offset is in bytes.
674   //
675   // If the current stack pointer (according to StackPointer()) is csp, then
676   // csp must be aligned to 16 bytes.
677   void Peek(const CPURegister& dst, const Operand& offset);
678 
679   // Poke 'src1' and 'src2' onto the stack. The values written will be adjacent
680   // with 'src2' at a higher address than 'src1'. The offset is in bytes.
681   //
682   // If the current stack pointer (according to StackPointer()) is csp, then
683   // csp must be aligned to 16 bytes.
684   void PokePair(const CPURegister& src1, const CPURegister& src2, int offset);
685 
686   // Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The
687   // values peeked will be adjacent, with the value in 'dst2' being from a
688   // higher address than 'dst1'. The offset is in bytes.
689   //
690   // If the current stack pointer (according to StackPointer()) is csp, then
691   // csp must be aligned to 16 bytes.
692   void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset);
693 
694   // Claim or drop stack space without actually accessing memory.
695   //
696   // In debug mode, both of these will write invalid data into the claimed or
697   // dropped space.
698   //
699   // If the current stack pointer (according to StackPointer()) is csp, then it
700   // must be aligned to 16 bytes and the size claimed or dropped must be a
701   // multiple of 16 bytes.
702   //
703   // Note that unit_size must be specified in bytes. For variants which take a
704   // Register count, the unit size must be a power of two.
705   inline void Claim(uint64_t count, uint64_t unit_size = kXRegSize);
706   inline void Claim(const Register& count,
707                     uint64_t unit_size = kXRegSize);
708   inline void Drop(uint64_t count, uint64_t unit_size = kXRegSize);
709   inline void Drop(const Register& count,
710                    uint64_t unit_size = kXRegSize);
711 
712   // Variants of Claim and Drop, where the 'count' parameter is a SMI held in a
713   // register.
714   inline void ClaimBySMI(const Register& count_smi,
715                          uint64_t unit_size = kXRegSize);
716   inline void DropBySMI(const Register& count_smi,
717                         uint64_t unit_size = kXRegSize);
718 
719   // Compare a register with an operand, and branch to label depending on the
720   // condition. May corrupt the status flags.
721   inline void CompareAndBranch(const Register& lhs,
722                                const Operand& rhs,
723                                Condition cond,
724                                Label* label);
725 
726   // Test the bits of register defined by bit_pattern, and branch if ANY of
727   // those bits are set. May corrupt the status flags.
728   inline void TestAndBranchIfAnySet(const Register& reg,
729                                     const uint64_t bit_pattern,
730                                     Label* label);
731 
732   // Test the bits of register defined by bit_pattern, and branch if ALL of
733   // those bits are clear (ie. not set.) May corrupt the status flags.
734   inline void TestAndBranchIfAllClear(const Register& reg,
735                                       const uint64_t bit_pattern,
736                                       Label* label);
737 
738   // Insert one or more instructions into the instruction stream that encode
739   // some caller-defined data. The instructions used will be executable with no
740   // side effects.
741   inline void InlineData(uint64_t data);
742 
743   // Insert an instrumentation enable marker into the instruction stream.
744   inline void EnableInstrumentation();
745 
746   // Insert an instrumentation disable marker into the instruction stream.
747   inline void DisableInstrumentation();
748 
749   // Insert an instrumentation event marker into the instruction stream. These
750   // will be picked up by the instrumentation system to annotate an instruction
751   // profile. The argument marker_name must be a printable two character string;
752   // it will be encoded in the event marker.
753   inline void AnnotateInstrumentation(const char* marker_name);
754 
755   // If emit_debug_code() is true, emit a run-time check to ensure that
756   // StackPointer() does not point below the system stack pointer.
757   //
758   // Whilst it is architecturally legal for StackPointer() to point below csp,
759   // it can be evidence of a potential bug because the ABI forbids accesses
760   // below csp.
761   //
762   // If StackPointer() is the system stack pointer (csp) or ALWAYS_ALIGN_CSP is
763   // enabled, then csp will be dereferenced to  cause the processor
764   // (or simulator) to abort if it is not properly aligned.
765   //
766   // If emit_debug_code() is false, this emits no code.
767   void AssertStackConsistency();
768 
769   // Preserve the callee-saved registers (as defined by AAPCS64).
770   //
771   // Higher-numbered registers are pushed before lower-numbered registers, and
772   // thus get higher addresses.
773   // Floating-point registers are pushed before general-purpose registers, and
774   // thus get higher addresses.
775   //
776   // Note that registers are not checked for invalid values. Use this method
777   // only if you know that the GC won't try to examine the values on the stack.
778   //
779   // This method must not be called unless the current stack pointer (as set by
780   // SetStackPointer) is the system stack pointer (csp), and is aligned to
781   // ActivationFrameAlignment().
782   void PushCalleeSavedRegisters();
783 
784   // Restore the callee-saved registers (as defined by AAPCS64).
785   //
786   // Higher-numbered registers are popped after lower-numbered registers, and
787   // thus come from higher addresses.
788   // Floating-point registers are popped after general-purpose registers, and
789   // thus come from higher addresses.
790   //
791   // This method must not be called unless the current stack pointer (as set by
792   // SetStackPointer) is the system stack pointer (csp), and is aligned to
793   // ActivationFrameAlignment().
794   void PopCalleeSavedRegisters();
795 
796   // Set the current stack pointer, but don't generate any code.
SetStackPointer(const Register & stack_pointer)797   inline void SetStackPointer(const Register& stack_pointer) {
798     DCHECK(!TmpList()->IncludesAliasOf(stack_pointer));
799     sp_ = stack_pointer;
800   }
801 
802   // Return the current stack pointer, as set by SetStackPointer.
StackPointer()803   inline const Register& StackPointer() const {
804     return sp_;
805   }
806 
807   // Align csp for a frame, as per ActivationFrameAlignment, and make it the
808   // current stack pointer.
AlignAndSetCSPForFrame()809   inline void AlignAndSetCSPForFrame() {
810     int sp_alignment = ActivationFrameAlignment();
811     // AAPCS64 mandates at least 16-byte alignment.
812     DCHECK(sp_alignment >= 16);
813     DCHECK(base::bits::IsPowerOfTwo32(sp_alignment));
814     Bic(csp, StackPointer(), sp_alignment - 1);
815     SetStackPointer(csp);
816   }
817 
818   // Push the system stack pointer (csp) down to allow the same to be done to
819   // the current stack pointer (according to StackPointer()). This must be
820   // called _before_ accessing the memory.
821   //
822   // This is necessary when pushing or otherwise adding things to the stack, to
823   // satisfy the AAPCS64 constraint that the memory below the system stack
824   // pointer is not accessed.  The amount pushed will be increased as necessary
825   // to ensure csp remains aligned to 16 bytes.
826   //
827   // This method asserts that StackPointer() is not csp, since the call does
828   // not make sense in that context.
829   inline void BumpSystemStackPointer(const Operand& space);
830 
831   // Re-synchronizes the system stack pointer (csp) with the current stack
832   // pointer (according to StackPointer()).  This function will ensure the
833   // new value of the system stack pointer is remains aligned to 16 bytes, and
834   // is lower than or equal to the value of the current stack pointer.
835   //
836   // This method asserts that StackPointer() is not csp, since the call does
837   // not make sense in that context.
838   inline void SyncSystemStackPointer();
839 
840   // Helpers ------------------------------------------------------------------
841   // Root register.
842   inline void InitializeRootRegister();
843 
844   void AssertFPCRState(Register fpcr = NoReg);
845   void ConfigureFPCR();
846   void CanonicalizeNaN(const FPRegister& dst, const FPRegister& src);
CanonicalizeNaN(const FPRegister & reg)847   void CanonicalizeNaN(const FPRegister& reg) {
848     CanonicalizeNaN(reg, reg);
849   }
850 
851   // Load an object from the root table.
852   void LoadRoot(CPURegister destination,
853                 Heap::RootListIndex index);
854   // Store an object to the root table.
855   void StoreRoot(Register source,
856                  Heap::RootListIndex index);
857 
858   // Load both TrueValue and FalseValue roots.
859   void LoadTrueFalseRoots(Register true_root, Register false_root);
860 
861   void LoadHeapObject(Register dst, Handle<HeapObject> object);
862 
LoadObject(Register result,Handle<Object> object)863   void LoadObject(Register result, Handle<Object> object) {
864     AllowDeferredHandleDereference heap_object_check;
865     if (object->IsHeapObject()) {
866       LoadHeapObject(result, Handle<HeapObject>::cast(object));
867     } else {
868       DCHECK(object->IsSmi());
869       Mov(result, Operand(object));
870     }
871   }
872 
873   static int SafepointRegisterStackIndex(int reg_code);
874 
875   // This is required for compatibility with architecture independant code.
876   // Remove if not needed.
Move(Register dst,Register src)877   inline void Move(Register dst, Register src) { Mov(dst, src); }
878 
879   void LoadInstanceDescriptors(Register map,
880                                Register descriptors);
881   void EnumLengthUntagged(Register dst, Register map);
882   void EnumLengthSmi(Register dst, Register map);
883   void NumberOfOwnDescriptors(Register dst, Register map);
884 
885   template<typename Field>
DecodeField(Register dst,Register src)886   void DecodeField(Register dst, Register src) {
887     static const uint64_t shift = Field::kShift;
888     static const uint64_t setbits = CountSetBits(Field::kMask, 32);
889     Ubfx(dst, src, shift, setbits);
890   }
891 
892   template<typename Field>
DecodeField(Register reg)893   void DecodeField(Register reg) {
894     DecodeField<Field>(reg, reg);
895   }
896 
897   // ---- SMI and Number Utilities ----
898 
899   inline void SmiTag(Register dst, Register src);
900   inline void SmiTag(Register smi);
901   inline void SmiUntag(Register dst, Register src);
902   inline void SmiUntag(Register smi);
903   inline void SmiUntagToDouble(FPRegister dst,
904                                Register src,
905                                UntagMode mode = kNotSpeculativeUntag);
906   inline void SmiUntagToFloat(FPRegister dst,
907                               Register src,
908                               UntagMode mode = kNotSpeculativeUntag);
909 
910   // Tag and push in one step.
911   inline void SmiTagAndPush(Register src);
912   inline void SmiTagAndPush(Register src1, Register src2);
913 
914   inline void JumpIfSmi(Register value,
915                         Label* smi_label,
916                         Label* not_smi_label = NULL);
917   inline void JumpIfNotSmi(Register value, Label* not_smi_label);
918   inline void JumpIfBothSmi(Register value1,
919                             Register value2,
920                             Label* both_smi_label,
921                             Label* not_smi_label = NULL);
922   inline void JumpIfEitherSmi(Register value1,
923                               Register value2,
924                               Label* either_smi_label,
925                               Label* not_smi_label = NULL);
926   inline void JumpIfEitherNotSmi(Register value1,
927                                  Register value2,
928                                  Label* not_smi_label);
929   inline void JumpIfBothNotSmi(Register value1,
930                                Register value2,
931                                Label* not_smi_label);
932 
933   // Abort execution if argument is a smi, enabled via --debug-code.
934   void AssertNotSmi(Register object, BailoutReason reason = kOperandIsASmi);
935   void AssertSmi(Register object, BailoutReason reason = kOperandIsNotASmi);
936 
937   inline void ObjectTag(Register tagged_obj, Register obj);
938   inline void ObjectUntag(Register untagged_obj, Register obj);
939 
940   // Abort execution if argument is not a name, enabled via --debug-code.
941   void AssertName(Register object);
942 
943   // Abort execution if argument is not undefined or an AllocationSite, enabled
944   // via --debug-code.
945   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
946 
947   // Abort execution if argument is not a string, enabled via --debug-code.
948   void AssertString(Register object);
949 
950   void JumpIfHeapNumber(Register object, Label* on_heap_number,
951                         SmiCheckType smi_check_type = DONT_DO_SMI_CHECK);
952   void JumpIfNotHeapNumber(Register object, Label* on_not_heap_number,
953                            SmiCheckType smi_check_type = DONT_DO_SMI_CHECK);
954 
955   // Sets the vs flag if the input is -0.0.
956   void TestForMinusZero(DoubleRegister input);
957 
958   // Jump to label if the input double register contains -0.0.
959   void JumpIfMinusZero(DoubleRegister input, Label* on_negative_zero);
960 
961   // Jump to label if the input integer register contains the double precision
962   // floating point representation of -0.0.
963   void JumpIfMinusZero(Register input, Label* on_negative_zero);
964 
965   // Generate code to do a lookup in the number string cache. If the number in
966   // the register object is found in the cache the generated code falls through
967   // with the result in the result register. The object and the result register
968   // can be the same. If the number is not found in the cache the code jumps to
969   // the label not_found with only the content of register object unchanged.
970   void LookupNumberStringCache(Register object,
971                                Register result,
972                                Register scratch1,
973                                Register scratch2,
974                                Register scratch3,
975                                Label* not_found);
976 
977   // Saturate a signed 32-bit integer in input to an unsigned 8-bit integer in
978   // output.
979   void ClampInt32ToUint8(Register in_out);
980   void ClampInt32ToUint8(Register output, Register input);
981 
982   // Saturate a double in input to an unsigned 8-bit integer in output.
983   void ClampDoubleToUint8(Register output,
984                           DoubleRegister input,
985                           DoubleRegister dbl_scratch);
986 
987   // Try to represent a double as a signed 32-bit int.
988   // This succeeds if the result compares equal to the input, so inputs of -0.0
989   // are represented as 0 and handled as a success.
990   //
991   // On output the Z flag is set if the operation was successful.
992   void TryRepresentDoubleAsInt32(Register as_int,
993                                  FPRegister value,
994                                  FPRegister scratch_d,
995                                  Label* on_successful_conversion = NULL,
996                                  Label* on_failed_conversion = NULL) {
997     DCHECK(as_int.Is32Bits());
998     TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion,
999                             on_failed_conversion);
1000   }
1001 
1002   // Try to represent a double as a signed 64-bit int.
1003   // This succeeds if the result compares equal to the input, so inputs of -0.0
1004   // are represented as 0 and handled as a success.
1005   //
1006   // On output the Z flag is set if the operation was successful.
1007   void TryRepresentDoubleAsInt64(Register as_int,
1008                                  FPRegister value,
1009                                  FPRegister scratch_d,
1010                                  Label* on_successful_conversion = NULL,
1011                                  Label* on_failed_conversion = NULL) {
1012     DCHECK(as_int.Is64Bits());
1013     TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion,
1014                             on_failed_conversion);
1015   }
1016 
1017   // ---- Object Utilities ----
1018 
1019   // Copy fields from 'src' to 'dst', where both are tagged objects.
1020   // The 'temps' list is a list of X registers which can be used for scratch
1021   // values. The temps list must include at least one register.
1022   //
1023   // Currently, CopyFields cannot make use of more than three registers from
1024   // the 'temps' list.
1025   //
1026   // CopyFields expects to be able to take at least two registers from
1027   // MacroAssembler::TmpList().
1028   void CopyFields(Register dst, Register src, CPURegList temps, unsigned count);
1029 
1030   // Starting at address in dst, initialize field_count 64-bit fields with
1031   // 64-bit value in register filler. Register dst is corrupted.
1032   void FillFields(Register dst,
1033                   Register field_count,
1034                   Register filler);
1035 
1036   // Copies a number of bytes from src to dst. All passed registers are
1037   // clobbered. On exit src and dst will point to the place just after where the
1038   // last byte was read or written and length will be zero. Hint may be used to
1039   // determine which is the most efficient algorithm to use for copying.
1040   void CopyBytes(Register dst,
1041                  Register src,
1042                  Register length,
1043                  Register scratch,
1044                  CopyHint hint = kCopyUnknown);
1045 
1046   // ---- String Utilities ----
1047 
1048 
1049   // Jump to label if either object is not a sequential one-byte string.
1050   // Optionally perform a smi check on the objects first.
1051   void JumpIfEitherIsNotSequentialOneByteStrings(
1052       Register first, Register second, Register scratch1, Register scratch2,
1053       Label* failure, SmiCheckType smi_check = DO_SMI_CHECK);
1054 
1055   // Check if instance type is sequential one-byte string and jump to label if
1056   // it is not.
1057   void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1058                                                 Label* failure);
1059 
1060   // Checks if both instance types are sequential one-byte strings and jumps to
1061   // label if either is not.
1062   void JumpIfEitherInstanceTypeIsNotSequentialOneByte(
1063       Register first_object_instance_type, Register second_object_instance_type,
1064       Register scratch1, Register scratch2, Label* failure);
1065 
1066   // Checks if both instance types are sequential one-byte strings and jumps to
1067   // label if either is not.
1068   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1069       Register first_object_instance_type, Register second_object_instance_type,
1070       Register scratch1, Register scratch2, Label* failure);
1071 
1072   void JumpIfNotUniqueNameInstanceType(Register type, Label* not_unique_name);
1073 
1074   // ---- Calling / Jumping helpers ----
1075 
1076   // This is required for compatibility in architecture indepenedant code.
jmp(Label * L)1077   inline void jmp(Label* L) { B(L); }
1078 
1079   // Passes thrown value to the handler of top of the try handler chain.
1080   // Register value must be x0.
1081   void Throw(Register value,
1082              Register scratch1,
1083              Register scratch2,
1084              Register scratch3,
1085              Register scratch4);
1086 
1087   // Propagates an uncatchable exception to the top of the current JS stack's
1088   // handler chain. Register value must be x0.
1089   void ThrowUncatchable(Register value,
1090                         Register scratch1,
1091                         Register scratch2,
1092                         Register scratch3,
1093                         Register scratch4);
1094 
1095   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
1096   void TailCallStub(CodeStub* stub);
1097 
1098   void CallRuntime(const Runtime::Function* f,
1099                    int num_arguments,
1100                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1101 
1102   void CallRuntime(Runtime::FunctionId id,
1103                    int num_arguments,
1104                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1105     CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
1106   }
1107 
CallRuntimeSaveDoubles(Runtime::FunctionId id)1108   void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1109     const Runtime::Function* function = Runtime::FunctionForId(id);
1110     CallRuntime(function, function->nargs, kSaveFPRegs);
1111   }
1112 
1113   void TailCallRuntime(Runtime::FunctionId fid,
1114                        int num_arguments,
1115                        int result_size);
1116 
1117   int ActivationFrameAlignment();
1118 
1119   // Calls a C function.
1120   // The called function is not allowed to trigger a
1121   // garbage collection, since that might move the code and invalidate the
1122   // return address (unless this is somehow accounted for by the called
1123   // function).
1124   void CallCFunction(ExternalReference function,
1125                      int num_reg_arguments);
1126   void CallCFunction(ExternalReference function,
1127                      int num_reg_arguments,
1128                      int num_double_arguments);
1129   void CallCFunction(Register function,
1130                      int num_reg_arguments,
1131                      int num_double_arguments);
1132 
1133   // Calls an API function. Allocates HandleScope, extracts returned value
1134   // from handle and propagates exceptions.
1135   // 'stack_space' is the space to be unwound on exit (includes the call JS
1136   // arguments space and the additional space allocated for the fast call).
1137   // 'spill_offset' is the offset from the stack pointer where
1138   // CallApiFunctionAndReturn can spill registers.
1139   void CallApiFunctionAndReturn(Register function_address,
1140                                 ExternalReference thunk_ref,
1141                                 int stack_space,
1142                                 int spill_offset,
1143                                 MemOperand return_value_operand,
1144                                 MemOperand* context_restore_operand);
1145 
1146   // The number of register that CallApiFunctionAndReturn will need to save on
1147   // the stack. The space for these registers need to be allocated in the
1148   // ExitFrame before calling CallApiFunctionAndReturn.
1149   static const int kCallApiFunctionSpillSpace = 4;
1150 
1151   // Jump to a runtime routine.
1152   void JumpToExternalReference(const ExternalReference& builtin);
1153   // Tail call of a runtime routine (jump).
1154   // Like JumpToExternalReference, but also takes care of passing the number
1155   // of parameters.
1156   void TailCallExternalReference(const ExternalReference& ext,
1157                                  int num_arguments,
1158                                  int result_size);
1159   void CallExternalReference(const ExternalReference& ext,
1160                              int num_arguments);
1161 
1162 
1163   // Invoke specified builtin JavaScript function. Adds an entry to
1164   // the unresolved list if the name does not resolve.
1165   void InvokeBuiltin(Builtins::JavaScript id,
1166                      InvokeFlag flag,
1167                      const CallWrapper& call_wrapper = NullCallWrapper());
1168 
1169   // Store the code object for the given builtin in the target register and
1170   // setup the function in the function register.
1171   void GetBuiltinEntry(Register target,
1172                        Register function,
1173                        Builtins::JavaScript id);
1174 
1175   // Store the function for the given builtin in the target register.
1176   void GetBuiltinFunction(Register target, Builtins::JavaScript id);
1177 
1178   void Jump(Register target);
1179   void Jump(Address target, RelocInfo::Mode rmode);
1180   void Jump(Handle<Code> code, RelocInfo::Mode rmode);
1181   void Jump(intptr_t target, RelocInfo::Mode rmode);
1182 
1183   void Call(Register target);
1184   void Call(Label* target);
1185   void Call(Address target, RelocInfo::Mode rmode);
1186   void Call(Handle<Code> code,
1187             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
1188             TypeFeedbackId ast_id = TypeFeedbackId::None());
1189 
1190   // For every Call variant, there is a matching CallSize function that returns
1191   // the size (in bytes) of the call sequence.
1192   static int CallSize(Register target);
1193   static int CallSize(Label* target);
1194   static int CallSize(Address target, RelocInfo::Mode rmode);
1195   static int CallSize(Handle<Code> code,
1196                       RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
1197                       TypeFeedbackId ast_id = TypeFeedbackId::None());
1198 
1199   // Registers used through the invocation chain are hard-coded.
1200   // We force passing the parameters to ensure the contracts are correctly
1201   // honoured by the caller.
1202   // 'function' must be x1.
1203   // 'actual' must use an immediate or x0.
1204   // 'expected' must use an immediate or x2.
1205   // 'call_kind' must be x5.
1206   void InvokePrologue(const ParameterCount& expected,
1207                       const ParameterCount& actual,
1208                       Handle<Code> code_constant,
1209                       Register code_reg,
1210                       Label* done,
1211                       InvokeFlag flag,
1212                       bool* definitely_mismatches,
1213                       const CallWrapper& call_wrapper);
1214   void InvokeCode(Register code,
1215                   const ParameterCount& expected,
1216                   const ParameterCount& actual,
1217                   InvokeFlag flag,
1218                   const CallWrapper& call_wrapper);
1219   // Invoke the JavaScript function in the given register.
1220   // Changes the current context to the context in the function before invoking.
1221   void InvokeFunction(Register function,
1222                       const ParameterCount& actual,
1223                       InvokeFlag flag,
1224                       const CallWrapper& call_wrapper);
1225   void InvokeFunction(Register function,
1226                       const ParameterCount& expected,
1227                       const ParameterCount& actual,
1228                       InvokeFlag flag,
1229                       const CallWrapper& call_wrapper);
1230   void InvokeFunction(Handle<JSFunction> function,
1231                       const ParameterCount& expected,
1232                       const ParameterCount& actual,
1233                       InvokeFlag flag,
1234                       const CallWrapper& call_wrapper);
1235 
1236 
1237   // ---- Floating point helpers ----
1238 
1239   // Perform a conversion from a double to a signed int64. If the input fits in
1240   // range of the 64-bit result, execution branches to done. Otherwise,
1241   // execution falls through, and the sign of the result can be used to
1242   // determine if overflow was towards positive or negative infinity.
1243   //
1244   // On successful conversion, the least significant 32 bits of the result are
1245   // equivalent to the ECMA-262 operation "ToInt32".
1246   //
1247   // Only public for the test code in test-code-stubs-arm64.cc.
1248   void TryConvertDoubleToInt64(Register result,
1249                                DoubleRegister input,
1250                                Label* done);
1251 
1252   // Performs a truncating conversion of a floating point number as used by
1253   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
1254   // Exits with 'result' holding the answer.
1255   void TruncateDoubleToI(Register result, DoubleRegister double_input);
1256 
1257   // Performs a truncating conversion of a heap number as used by
1258   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1259   // must be different registers.  Exits with 'result' holding the answer.
1260   void TruncateHeapNumberToI(Register result, Register object);
1261 
1262   // Converts the smi or heap number in object to an int32 using the rules
1263   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1264   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1265   // different registers.
1266   void TruncateNumberToI(Register object,
1267                          Register result,
1268                          Register heap_number_map,
1269                          Label* not_int32);
1270 
1271   // ---- Code generation helpers ----
1272 
set_generating_stub(bool value)1273   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1274   bool generating_stub() const { return generating_stub_; }
1275 #if DEBUG
set_allow_macro_instructions(bool value)1276   void set_allow_macro_instructions(bool value) {
1277     allow_macro_instructions_ = value;
1278   }
allow_macro_instructions()1279   bool allow_macro_instructions() const { return allow_macro_instructions_; }
1280 #endif
use_real_aborts()1281   bool use_real_aborts() const { return use_real_aborts_; }
set_has_frame(bool value)1282   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1283   bool has_frame() const { return has_frame_; }
1284   bool AllowThisStubCall(CodeStub* stub);
1285 
1286   class NoUseRealAbortsScope {
1287    public:
NoUseRealAbortsScope(MacroAssembler * masm)1288     explicit NoUseRealAbortsScope(MacroAssembler* masm) :
1289         saved_(masm->use_real_aborts_), masm_(masm) {
1290       masm_->use_real_aborts_ = false;
1291     }
~NoUseRealAbortsScope()1292     ~NoUseRealAbortsScope() {
1293       masm_->use_real_aborts_ = saved_;
1294     }
1295    private:
1296     bool saved_;
1297     MacroAssembler* masm_;
1298   };
1299 
1300   // ---------------------------------------------------------------------------
1301   // Debugger Support
1302 
1303   void DebugBreak();
1304 
1305   // ---------------------------------------------------------------------------
1306   // Exception handling
1307 
1308   // Push a new try handler and link into try handler chain.
1309   void PushTryHandler(StackHandler::Kind kind, int handler_index);
1310 
1311   // Unlink the stack handler on top of the stack from the try handler chain.
1312   // Must preserve the result register.
1313   void PopTryHandler();
1314 
1315 
1316   // ---------------------------------------------------------------------------
1317   // Allocation support
1318 
1319   // Allocate an object in new space or old pointer space. The object_size is
1320   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
1321   // is passed. The allocated object is returned in result.
1322   //
1323   // If the new space is exhausted control continues at the gc_required label.
1324   // In this case, the result and scratch registers may still be clobbered.
1325   // If flags includes TAG_OBJECT, the result is tagged as as a heap object.
1326   void Allocate(Register object_size,
1327                 Register result,
1328                 Register scratch1,
1329                 Register scratch2,
1330                 Label* gc_required,
1331                 AllocationFlags flags);
1332 
1333   void Allocate(int object_size,
1334                 Register result,
1335                 Register scratch1,
1336                 Register scratch2,
1337                 Label* gc_required,
1338                 AllocationFlags flags);
1339 
1340   // Undo allocation in new space. The object passed and objects allocated after
1341   // it will no longer be allocated. The caller must make sure that no pointers
1342   // are left to the object(s) no longer allocated as they would be invalid when
1343   // allocation is undone.
1344   void UndoAllocationInNewSpace(Register object, Register scratch);
1345 
1346   void AllocateTwoByteString(Register result,
1347                              Register length,
1348                              Register scratch1,
1349                              Register scratch2,
1350                              Register scratch3,
1351                              Label* gc_required);
1352   void AllocateOneByteString(Register result, Register length,
1353                              Register scratch1, Register scratch2,
1354                              Register scratch3, Label* gc_required);
1355   void AllocateTwoByteConsString(Register result,
1356                                  Register length,
1357                                  Register scratch1,
1358                                  Register scratch2,
1359                                  Label* gc_required);
1360   void AllocateOneByteConsString(Register result, Register length,
1361                                  Register scratch1, Register scratch2,
1362                                  Label* gc_required);
1363   void AllocateTwoByteSlicedString(Register result,
1364                                    Register length,
1365                                    Register scratch1,
1366                                    Register scratch2,
1367                                    Label* gc_required);
1368   void AllocateOneByteSlicedString(Register result, Register length,
1369                                    Register scratch1, Register scratch2,
1370                                    Label* gc_required);
1371 
1372   // Allocates a heap number or jumps to the gc_required label if the young
1373   // space is full and a scavenge is needed.
1374   // All registers are clobbered.
1375   // If no heap_number_map register is provided, the function will take care of
1376   // loading it.
1377   void AllocateHeapNumber(Register result,
1378                           Label* gc_required,
1379                           Register scratch1,
1380                           Register scratch2,
1381                           CPURegister value = NoFPReg,
1382                           CPURegister heap_number_map = NoReg,
1383                           MutableMode mode = IMMUTABLE);
1384 
1385   // ---------------------------------------------------------------------------
1386   // Support functions.
1387 
1388   // Try to get function prototype of a function and puts the value in the
1389   // result register. Checks that the function really is a function and jumps
1390   // to the miss label if the fast checks fail. The function register will be
1391   // untouched; the other registers may be clobbered.
1392   enum BoundFunctionAction {
1393     kMissOnBoundFunction,
1394     kDontMissOnBoundFunction
1395   };
1396 
1397   void TryGetFunctionPrototype(Register function,
1398                                Register result,
1399                                Register scratch,
1400                                Label* miss,
1401                                BoundFunctionAction action =
1402                                  kDontMissOnBoundFunction);
1403 
1404   // Compare object type for heap object.  heap_object contains a non-Smi
1405   // whose object type should be compared with the given type.  This both
1406   // sets the flags and leaves the object type in the type_reg register.
1407   // It leaves the map in the map register (unless the type_reg and map register
1408   // are the same register).  It leaves the heap object in the heap_object
1409   // register unless the heap_object register is the same register as one of the
1410   // other registers.
1411   void CompareObjectType(Register heap_object,
1412                          Register map,
1413                          Register type_reg,
1414                          InstanceType type);
1415 
1416 
1417   // Compare object type for heap object, and branch if equal (or not.)
1418   // heap_object contains a non-Smi whose object type should be compared with
1419   // the given type.  This both sets the flags and leaves the object type in
1420   // the type_reg register. It leaves the map in the map register (unless the
1421   // type_reg and map register are the same register).  It leaves the heap
1422   // object in the heap_object register unless the heap_object register is the
1423   // same register as one of the other registers.
1424   void JumpIfObjectType(Register object,
1425                         Register map,
1426                         Register type_reg,
1427                         InstanceType type,
1428                         Label* if_cond_pass,
1429                         Condition cond = eq);
1430 
1431   void JumpIfNotObjectType(Register object,
1432                            Register map,
1433                            Register type_reg,
1434                            InstanceType type,
1435                            Label* if_not_object);
1436 
1437   // Compare instance type in a map.  map contains a valid map object whose
1438   // object type should be compared with the given type.  This both
1439   // sets the flags and leaves the object type in the type_reg register.
1440   void CompareInstanceType(Register map,
1441                            Register type_reg,
1442                            InstanceType type);
1443 
1444   // Compare an object's map with the specified map. Condition flags are set
1445   // with result of map compare.
1446   void CompareObjectMap(Register obj, Heap::RootListIndex index);
1447 
1448   // Compare an object's map with the specified map. Condition flags are set
1449   // with result of map compare.
1450   void CompareObjectMap(Register obj, Register scratch, Handle<Map> map);
1451 
1452   // As above, but the map of the object is already loaded into the register
1453   // which is preserved by the code generated.
1454   void CompareMap(Register obj_map,
1455                   Handle<Map> map);
1456 
1457   // Check if the map of an object is equal to a specified map and branch to
1458   // label if not. Skip the smi check if not required (object is known to be a
1459   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1460   // against maps that are ElementsKind transition maps of the specified map.
1461   void CheckMap(Register obj,
1462                 Register scratch,
1463                 Handle<Map> map,
1464                 Label* fail,
1465                 SmiCheckType smi_check_type);
1466 
1467 
1468   void CheckMap(Register obj,
1469                 Register scratch,
1470                 Heap::RootListIndex index,
1471                 Label* fail,
1472                 SmiCheckType smi_check_type);
1473 
1474   // As above, but the map of the object is already loaded into obj_map, and is
1475   // preserved.
1476   void CheckMap(Register obj_map,
1477                 Handle<Map> map,
1478                 Label* fail,
1479                 SmiCheckType smi_check_type);
1480 
1481   // Check if the map of an object is equal to a specified map and branch to a
1482   // specified target if equal. Skip the smi check if not required (object is
1483   // known to be a heap object)
1484   void DispatchMap(Register obj,
1485                    Register scratch,
1486                    Handle<Map> map,
1487                    Handle<Code> success,
1488                    SmiCheckType smi_check_type);
1489 
1490   // Test the bitfield of the heap object map with mask and set the condition
1491   // flags. The object register is preserved.
1492   void TestMapBitfield(Register object, uint64_t mask);
1493 
1494   // Load the elements kind field from a map, and return it in the result
1495   // register.
1496   void LoadElementsKindFromMap(Register result, Register map);
1497 
1498   // Compare the object in a register to a value from the root list.
1499   void CompareRoot(const Register& obj, Heap::RootListIndex index);
1500 
1501   // Compare the object in a register to a value and jump if they are equal.
1502   void JumpIfRoot(const Register& obj,
1503                   Heap::RootListIndex index,
1504                   Label* if_equal);
1505 
1506   // Compare the object in a register to a value and jump if they are not equal.
1507   void JumpIfNotRoot(const Register& obj,
1508                      Heap::RootListIndex index,
1509                      Label* if_not_equal);
1510 
1511   // Load and check the instance type of an object for being a unique name.
1512   // Loads the type into the second argument register.
1513   // The object and type arguments can be the same register; in that case it
1514   // will be overwritten with the type.
1515   // Fall-through if the object was a string and jump on fail otherwise.
1516   inline void IsObjectNameType(Register object, Register type, Label* fail);
1517 
1518   inline void IsObjectJSObjectType(Register heap_object,
1519                                    Register map,
1520                                    Register scratch,
1521                                    Label* fail);
1522 
1523   // Check the instance type in the given map to see if it corresponds to a
1524   // JS object type. Jump to the fail label if this is not the case and fall
1525   // through otherwise. However if fail label is NULL, no branch will be
1526   // performed and the flag will be updated. You can test the flag for "le"
1527   // condition to test if it is a valid JS object type.
1528   inline void IsInstanceJSObjectType(Register map,
1529                                      Register scratch,
1530                                      Label* fail);
1531 
1532   // Load and check the instance type of an object for being a string.
1533   // Loads the type into the second argument register.
1534   // The object and type arguments can be the same register; in that case it
1535   // will be overwritten with the type.
1536   // Jumps to not_string or string appropriate. If the appropriate label is
1537   // NULL, fall through.
1538   inline void IsObjectJSStringType(Register object, Register type,
1539                                    Label* not_string, Label* string = NULL);
1540 
1541   // Compare the contents of a register with an operand, and branch to true,
1542   // false or fall through, depending on condition.
1543   void CompareAndSplit(const Register& lhs,
1544                        const Operand& rhs,
1545                        Condition cond,
1546                        Label* if_true,
1547                        Label* if_false,
1548                        Label* fall_through);
1549 
1550   // Test the bits of register defined by bit_pattern, and branch to
1551   // if_any_set, if_all_clear or fall_through accordingly.
1552   void TestAndSplit(const Register& reg,
1553                     uint64_t bit_pattern,
1554                     Label* if_all_clear,
1555                     Label* if_any_set,
1556                     Label* fall_through);
1557 
1558   // Check if a map for a JSObject indicates that the object has fast elements.
1559   // Jump to the specified label if it does not.
1560   void CheckFastElements(Register map, Register scratch, Label* fail);
1561 
1562   // Check if a map for a JSObject indicates that the object can have both smi
1563   // and HeapObject elements.  Jump to the specified label if it does not.
1564   void CheckFastObjectElements(Register map, Register scratch, Label* fail);
1565 
1566   // Check to see if number can be stored as a double in FastDoubleElements.
1567   // If it can, store it at the index specified by key_reg in the array,
1568   // otherwise jump to fail.
1569   void StoreNumberToDoubleElements(Register value_reg,
1570                                    Register key_reg,
1571                                    Register elements_reg,
1572                                    Register scratch1,
1573                                    FPRegister fpscratch1,
1574                                    Label* fail,
1575                                    int elements_offset = 0);
1576 
1577   // Picks out an array index from the hash field.
1578   // Register use:
1579   //   hash - holds the index's hash. Clobbered.
1580   //   index - holds the overwritten index on exit.
1581   void IndexFromHash(Register hash, Register index);
1582 
1583   // ---------------------------------------------------------------------------
1584   // Inline caching support.
1585 
1586   void EmitSeqStringSetCharCheck(Register string,
1587                                  Register index,
1588                                  SeqStringSetCharCheckIndexType index_type,
1589                                  Register scratch,
1590                                  uint32_t encoding_mask);
1591 
1592   // Generate code for checking access rights - used for security checks
1593   // on access to global objects across environments. The holder register
1594   // is left untouched, whereas both scratch registers are clobbered.
1595   void CheckAccessGlobalProxy(Register holder_reg,
1596                               Register scratch1,
1597                               Register scratch2,
1598                               Label* miss);
1599 
1600   // Hash the interger value in 'key' register.
1601   // It uses the same algorithm as ComputeIntegerHash in utils.h.
1602   void GetNumberHash(Register key, Register scratch);
1603 
1604   // Load value from the dictionary.
1605   //
1606   // elements - holds the slow-case elements of the receiver on entry.
1607   //            Unchanged unless 'result' is the same register.
1608   //
1609   // key      - holds the smi key on entry.
1610   //            Unchanged unless 'result' is the same register.
1611   //
1612   // result   - holds the result on exit if the load succeeded.
1613   //            Allowed to be the same as 'key' or 'result'.
1614   //            Unchanged on bailout so 'key' or 'result' can be used
1615   //            in further computation.
1616   void LoadFromNumberDictionary(Label* miss,
1617                                 Register elements,
1618                                 Register key,
1619                                 Register result,
1620                                 Register scratch0,
1621                                 Register scratch1,
1622                                 Register scratch2,
1623                                 Register scratch3);
1624 
1625   // ---------------------------------------------------------------------------
1626   // Frames.
1627 
1628   // Activation support.
1629   void EnterFrame(StackFrame::Type type);
1630   void LeaveFrame(StackFrame::Type type);
1631 
1632   // Returns map with validated enum cache in object register.
1633   void CheckEnumCache(Register object,
1634                       Register null_value,
1635                       Register scratch0,
1636                       Register scratch1,
1637                       Register scratch2,
1638                       Register scratch3,
1639                       Label* call_runtime);
1640 
1641   // AllocationMemento support. Arrays may have an associated
1642   // AllocationMemento object that can be checked for in order to pretransition
1643   // to another type.
1644   // On entry, receiver should point to the array object.
1645   // If allocation info is present, the Z flag is set (so that the eq
1646   // condition will pass).
1647   void TestJSArrayForAllocationMemento(Register receiver,
1648                                        Register scratch1,
1649                                        Register scratch2,
1650                                        Label* no_memento_found);
1651 
JumpIfJSArrayHasAllocationMemento(Register receiver,Register scratch1,Register scratch2,Label * memento_found)1652   void JumpIfJSArrayHasAllocationMemento(Register receiver,
1653                                          Register scratch1,
1654                                          Register scratch2,
1655                                          Label* memento_found) {
1656     Label no_memento_found;
1657     TestJSArrayForAllocationMemento(receiver, scratch1, scratch2,
1658                                     &no_memento_found);
1659     B(eq, memento_found);
1660     Bind(&no_memento_found);
1661   }
1662 
1663   // The stack pointer has to switch between csp and jssp when setting up and
1664   // destroying the exit frame. Hence preserving/restoring the registers is
1665   // slightly more complicated than simple push/pop operations.
1666   void ExitFramePreserveFPRegs();
1667   void ExitFrameRestoreFPRegs();
1668 
1669   // Generates function and stub prologue code.
1670   void StubPrologue();
1671   void Prologue(bool code_pre_aging);
1672 
1673   // Enter exit frame. Exit frames are used when calling C code from generated
1674   // (JavaScript) code.
1675   //
1676   // The stack pointer must be jssp on entry, and will be set to csp by this
1677   // function. The frame pointer is also configured, but the only other
1678   // registers modified by this function are the provided scratch register, and
1679   // jssp.
1680   //
1681   // The 'extra_space' argument can be used to allocate some space in the exit
1682   // frame that will be ignored by the GC. This space will be reserved in the
1683   // bottom of the frame immediately above the return address slot.
1684   //
1685   // Set up a stack frame and registers as follows:
1686   //         fp[8]: CallerPC (lr)
1687   //   fp -> fp[0]: CallerFP (old fp)
1688   //         fp[-8]: SPOffset (new csp)
1689   //         fp[-16]: CodeObject()
1690   //         fp[-16 - fp-size]: Saved doubles, if saved_doubles is true.
1691   //         csp[8]: Memory reserved for the caller if extra_space != 0.
1692   //                 Alignment padding, if necessary.
1693   //  csp -> csp[0]: Space reserved for the return address.
1694   //
1695   // This function also stores the new frame information in the top frame, so
1696   // that the new frame becomes the current frame.
1697   void EnterExitFrame(bool save_doubles,
1698                       const Register& scratch,
1699                       int extra_space = 0);
1700 
1701   // Leave the current exit frame, after a C function has returned to generated
1702   // (JavaScript) code.
1703   //
1704   // This effectively unwinds the operation of EnterExitFrame:
1705   //  * Preserved doubles are restored (if restore_doubles is true).
1706   //  * The frame information is removed from the top frame.
1707   //  * The exit frame is dropped.
1708   //  * The stack pointer is reset to jssp.
1709   //
1710   // The stack pointer must be csp on entry.
1711   void LeaveExitFrame(bool save_doubles,
1712                       const Register& scratch,
1713                       bool restore_context);
1714 
1715   void LoadContext(Register dst, int context_chain_length);
1716 
1717   // Emit code for a truncating division by a constant. The dividend register is
1718   // unchanged. Dividend and result must be different.
1719   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1720 
1721   // ---------------------------------------------------------------------------
1722   // StatsCounter support
1723 
1724   void SetCounter(StatsCounter* counter, int value, Register scratch1,
1725                   Register scratch2);
1726   void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
1727                         Register scratch2);
1728   void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
1729                         Register scratch2);
1730 
1731   // ---------------------------------------------------------------------------
1732   // Garbage collector support (GC).
1733 
1734   enum RememberedSetFinalAction {
1735     kReturnAtEnd,
1736     kFallThroughAtEnd
1737   };
1738 
1739   // Record in the remembered set the fact that we have a pointer to new space
1740   // at the address pointed to by the addr register. Only works if addr is not
1741   // in new space.
1742   void RememberedSetHelper(Register object,  // Used for debug code.
1743                            Register addr,
1744                            Register scratch1,
1745                            SaveFPRegsMode save_fp,
1746                            RememberedSetFinalAction and_then);
1747 
1748   // Push and pop the registers that can hold pointers, as defined by the
1749   // RegList constant kSafepointSavedRegisters.
1750   void PushSafepointRegisters();
1751   void PopSafepointRegisters();
1752 
1753   void PushSafepointRegistersAndDoubles();
1754   void PopSafepointRegistersAndDoubles();
1755 
1756   // Store value in register src in the safepoint stack slot for register dst.
StoreToSafepointRegisterSlot(Register src,Register dst)1757   void StoreToSafepointRegisterSlot(Register src, Register dst) {
1758     Poke(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
1759   }
1760 
1761   // Load the value of the src register from its safepoint stack slot
1762   // into register dst.
LoadFromSafepointRegisterSlot(Register dst,Register src)1763   void LoadFromSafepointRegisterSlot(Register dst, Register src) {
1764     Peek(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
1765   }
1766 
1767   void CheckPageFlagSet(const Register& object,
1768                         const Register& scratch,
1769                         int mask,
1770                         Label* if_any_set);
1771 
1772   void CheckPageFlagClear(const Register& object,
1773                           const Register& scratch,
1774                           int mask,
1775                           Label* if_all_clear);
1776 
1777   void CheckMapDeprecated(Handle<Map> map,
1778                           Register scratch,
1779                           Label* if_deprecated);
1780 
1781   // Check if object is in new space and jump accordingly.
1782   // Register 'object' is preserved.
JumpIfNotInNewSpace(Register object,Label * branch)1783   void JumpIfNotInNewSpace(Register object,
1784                            Label* branch) {
1785     InNewSpace(object, ne, branch);
1786   }
1787 
JumpIfInNewSpace(Register object,Label * branch)1788   void JumpIfInNewSpace(Register object,
1789                         Label* branch) {
1790     InNewSpace(object, eq, branch);
1791   }
1792 
1793   // Notify the garbage collector that we wrote a pointer into an object.
1794   // |object| is the object being stored into, |value| is the object being
1795   // stored.  value and scratch registers are clobbered by the operation.
1796   // The offset is the offset from the start of the object, not the offset from
1797   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
1798   void RecordWriteField(
1799       Register object,
1800       int offset,
1801       Register value,
1802       Register scratch,
1803       LinkRegisterStatus lr_status,
1804       SaveFPRegsMode save_fp,
1805       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1806       SmiCheck smi_check = INLINE_SMI_CHECK,
1807       PointersToHereCheck pointers_to_here_check_for_value =
1808           kPointersToHereMaybeInteresting);
1809 
1810   // As above, but the offset has the tag presubtracted. For use with
1811   // MemOperand(reg, off).
1812   inline void RecordWriteContextSlot(
1813       Register context,
1814       int offset,
1815       Register value,
1816       Register scratch,
1817       LinkRegisterStatus lr_status,
1818       SaveFPRegsMode save_fp,
1819       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1820       SmiCheck smi_check = INLINE_SMI_CHECK,
1821       PointersToHereCheck pointers_to_here_check_for_value =
1822           kPointersToHereMaybeInteresting) {
1823     RecordWriteField(context,
1824                      offset + kHeapObjectTag,
1825                      value,
1826                      scratch,
1827                      lr_status,
1828                      save_fp,
1829                      remembered_set_action,
1830                      smi_check,
1831                      pointers_to_here_check_for_value);
1832   }
1833 
1834   void RecordWriteForMap(
1835       Register object,
1836       Register map,
1837       Register dst,
1838       LinkRegisterStatus lr_status,
1839       SaveFPRegsMode save_fp);
1840 
1841   // For a given |object| notify the garbage collector that the slot |address|
1842   // has been written.  |value| is the object being stored. The value and
1843   // address registers are clobbered by the operation.
1844   void RecordWrite(
1845       Register object,
1846       Register address,
1847       Register value,
1848       LinkRegisterStatus lr_status,
1849       SaveFPRegsMode save_fp,
1850       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1851       SmiCheck smi_check = INLINE_SMI_CHECK,
1852       PointersToHereCheck pointers_to_here_check_for_value =
1853           kPointersToHereMaybeInteresting);
1854 
1855   // Checks the color of an object. If the object is already grey or black
1856   // then we just fall through, since it is already live. If it is white and
1857   // we can determine that it doesn't need to be scanned, then we just mark it
1858   // black and fall through. For the rest we jump to the label so the
1859   // incremental marker can fix its assumptions.
1860   void EnsureNotWhite(Register object,
1861                       Register scratch1,
1862                       Register scratch2,
1863                       Register scratch3,
1864                       Register scratch4,
1865                       Label* object_is_white_and_not_data);
1866 
1867   // Detects conservatively whether an object is data-only, i.e. it does need to
1868   // be scanned by the garbage collector.
1869   void JumpIfDataObject(Register value,
1870                         Register scratch,
1871                         Label* not_data_object);
1872 
1873   // Helper for finding the mark bits for an address.
1874   // Note that the behaviour slightly differs from other architectures.
1875   // On exit:
1876   //  - addr_reg is unchanged.
1877   //  - The bitmap register points at the word with the mark bits.
1878   //  - The shift register contains the index of the first color bit for this
1879   //    object in the bitmap.
1880   inline void GetMarkBits(Register addr_reg,
1881                           Register bitmap_reg,
1882                           Register shift_reg);
1883 
1884   // Check if an object has a given incremental marking color.
1885   void HasColor(Register object,
1886                 Register scratch0,
1887                 Register scratch1,
1888                 Label* has_color,
1889                 int first_bit,
1890                 int second_bit);
1891 
1892   void JumpIfBlack(Register object,
1893                    Register scratch0,
1894                    Register scratch1,
1895                    Label* on_black);
1896 
1897 
1898   // Get the location of a relocated constant (its address in the constant pool)
1899   // from its load site.
1900   void GetRelocatedValueLocation(Register ldr_location,
1901                                  Register result);
1902 
1903 
1904   // ---------------------------------------------------------------------------
1905   // Debugging.
1906 
1907   // Calls Abort(msg) if the condition cond is not satisfied.
1908   // Use --debug_code to enable.
1909   void Assert(Condition cond, BailoutReason reason);
1910   void AssertRegisterIsClear(Register reg, BailoutReason reason);
1911   void AssertRegisterIsRoot(
1912       Register reg,
1913       Heap::RootListIndex index,
1914       BailoutReason reason = kRegisterDidNotMatchExpectedRoot);
1915   void AssertFastElements(Register elements);
1916 
1917   // Abort if the specified register contains the invalid color bit pattern.
1918   // The pattern must be in bits [1:0] of 'reg' register.
1919   //
1920   // If emit_debug_code() is false, this emits no code.
1921   void AssertHasValidColor(const Register& reg);
1922 
1923   // Abort if 'object' register doesn't point to a string object.
1924   //
1925   // If emit_debug_code() is false, this emits no code.
1926   void AssertIsString(const Register& object);
1927 
1928   // Like Assert(), but always enabled.
1929   void Check(Condition cond, BailoutReason reason);
1930   void CheckRegisterIsClear(Register reg, BailoutReason reason);
1931 
1932   // Print a message to stderr and abort execution.
1933   void Abort(BailoutReason reason);
1934 
1935   // Conditionally load the cached Array transitioned map of type
1936   // transitioned_kind from the native context if the map in register
1937   // map_in_out is the cached Array map in the native context of
1938   // expected_kind.
1939   void LoadTransitionedArrayMapConditional(
1940       ElementsKind expected_kind,
1941       ElementsKind transitioned_kind,
1942       Register map_in_out,
1943       Register scratch1,
1944       Register scratch2,
1945       Label* no_map_match);
1946 
1947   void LoadGlobalFunction(int index, Register function);
1948 
1949   // Load the initial map from the global function. The registers function and
1950   // map can be the same, function is then overwritten.
1951   void LoadGlobalFunctionInitialMap(Register function,
1952                                     Register map,
1953                                     Register scratch);
1954 
TmpList()1955   CPURegList* TmpList() { return &tmp_list_; }
FPTmpList()1956   CPURegList* FPTmpList() { return &fptmp_list_; }
1957 
1958   static CPURegList DefaultTmpList();
1959   static CPURegList DefaultFPTmpList();
1960 
1961   // Like printf, but print at run-time from generated code.
1962   //
1963   // The caller must ensure that arguments for floating-point placeholders
1964   // (such as %e, %f or %g) are FPRegisters, and that arguments for integer
1965   // placeholders are Registers.
1966   //
1967   // At the moment it is only possible to print the value of csp if it is the
1968   // current stack pointer. Otherwise, the MacroAssembler will automatically
1969   // update csp on every push (using BumpSystemStackPointer), so determining its
1970   // value is difficult.
1971   //
1972   // Format placeholders that refer to more than one argument, or to a specific
1973   // argument, are not supported. This includes formats like "%1$d" or "%.*d".
1974   //
1975   // This function automatically preserves caller-saved registers so that
1976   // calling code can use Printf at any point without having to worry about
1977   // corruption. The preservation mechanism generates a lot of code. If this is
1978   // a problem, preserve the important registers manually and then call
1979   // PrintfNoPreserve. Callee-saved registers are not used by Printf, and are
1980   // implicitly preserved.
1981   void Printf(const char * format,
1982               CPURegister arg0 = NoCPUReg,
1983               CPURegister arg1 = NoCPUReg,
1984               CPURegister arg2 = NoCPUReg,
1985               CPURegister arg3 = NoCPUReg);
1986 
1987   // Like Printf, but don't preserve any caller-saved registers, not even 'lr'.
1988   //
1989   // The return code from the system printf call will be returned in x0.
1990   void PrintfNoPreserve(const char * format,
1991                         const CPURegister& arg0 = NoCPUReg,
1992                         const CPURegister& arg1 = NoCPUReg,
1993                         const CPURegister& arg2 = NoCPUReg,
1994                         const CPURegister& arg3 = NoCPUReg);
1995 
1996   // Code ageing support functions.
1997 
1998   // Code ageing on ARM64 works similarly to on ARM. When V8 wants to mark a
1999   // function as old, it replaces some of the function prologue (generated by
2000   // FullCodeGenerator::Generate) with a call to a special stub (ultimately
2001   // generated by GenerateMakeCodeYoungAgainCommon). The stub restores the
2002   // function prologue to its initial young state (indicating that it has been
2003   // recently run) and continues. A young function is therefore one which has a
2004   // normal frame setup sequence, and an old function has a code age sequence
2005   // which calls a code ageing stub.
2006 
2007   // Set up a basic stack frame for young code (or code exempt from ageing) with
2008   // type FUNCTION. It may be patched later for code ageing support. This is
2009   // done by to Code::PatchPlatformCodeAge and EmitCodeAgeSequence.
2010   //
2011   // This function takes an Assembler so it can be called from either a
2012   // MacroAssembler or a PatchingAssembler context.
2013   static void EmitFrameSetupForCodeAgePatching(Assembler* assm);
2014 
2015   // Call EmitFrameSetupForCodeAgePatching from a MacroAssembler context.
2016   void EmitFrameSetupForCodeAgePatching();
2017 
2018   // Emit a code age sequence that calls the relevant code age stub. The code
2019   // generated by this sequence is expected to replace the code generated by
2020   // EmitFrameSetupForCodeAgePatching, and represents an old function.
2021   //
2022   // If stub is NULL, this function generates the code age sequence but omits
2023   // the stub address that is normally embedded in the instruction stream. This
2024   // can be used by debug code to verify code age sequences.
2025   static void EmitCodeAgeSequence(Assembler* assm, Code* stub);
2026 
2027   // Call EmitCodeAgeSequence from a MacroAssembler context.
2028   void EmitCodeAgeSequence(Code* stub);
2029 
2030   // Return true if the sequence is a young sequence geneated by
2031   // EmitFrameSetupForCodeAgePatching. Otherwise, this method asserts that the
2032   // sequence is a code age sequence (emitted by EmitCodeAgeSequence).
2033   static bool IsYoungSequence(Isolate* isolate, byte* sequence);
2034 
2035   // Jumps to found label if a prototype map has dictionary elements.
2036   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
2037                                         Register scratch1, Label* found);
2038 
2039   // Perform necessary maintenance operations before a push or after a pop.
2040   //
2041   // Note that size is specified in bytes.
2042   void PushPreamble(Operand total_size);
2043   void PopPostamble(Operand total_size);
2044 
PushPreamble(int count,int size)2045   void PushPreamble(int count, int size) { PushPreamble(count * size); }
PopPostamble(int count,int size)2046   void PopPostamble(int count, int size) { PopPostamble(count * size); }
2047 
2048  private:
2049   // Helpers for CopyFields.
2050   // These each implement CopyFields in a different way.
2051   void CopyFieldsLoopPairsHelper(Register dst, Register src, unsigned count,
2052                                  Register scratch1, Register scratch2,
2053                                  Register scratch3, Register scratch4,
2054                                  Register scratch5);
2055   void CopyFieldsUnrolledPairsHelper(Register dst, Register src, unsigned count,
2056                                      Register scratch1, Register scratch2,
2057                                      Register scratch3, Register scratch4);
2058   void CopyFieldsUnrolledHelper(Register dst, Register src, unsigned count,
2059                                 Register scratch1, Register scratch2,
2060                                 Register scratch3);
2061 
2062   // The actual Push and Pop implementations. These don't generate any code
2063   // other than that required for the push or pop. This allows
2064   // (Push|Pop)CPURegList to bundle together run-time assertions for a large
2065   // block of registers.
2066   //
2067   // Note that size is per register, and is specified in bytes.
2068   void PushHelper(int count, int size,
2069                   const CPURegister& src0, const CPURegister& src1,
2070                   const CPURegister& src2, const CPURegister& src3);
2071   void PopHelper(int count, int size,
2072                  const CPURegister& dst0, const CPURegister& dst1,
2073                  const CPURegister& dst2, const CPURegister& dst3);
2074 
2075   // Call Printf. On a native build, a simple call will be generated, but if the
2076   // simulator is being used then a suitable pseudo-instruction is used. The
2077   // arguments and stack (csp) must be prepared by the caller as for a normal
2078   // AAPCS64 call to 'printf'.
2079   //
2080   // The 'args' argument should point to an array of variable arguments in their
2081   // proper PCS registers (and in calling order). The argument registers can
2082   // have mixed types. The format string (x0) should not be included.
2083   void CallPrintf(int arg_count = 0, const CPURegister * args = NULL);
2084 
2085   // Helper for throwing exceptions.  Compute a handler address and jump to
2086   // it.  See the implementation for register usage.
2087   void JumpToHandlerEntry(Register exception,
2088                           Register object,
2089                           Register state,
2090                           Register scratch1,
2091                           Register scratch2);
2092 
2093   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
2094   void InNewSpace(Register object,
2095                   Condition cond,  // eq for new space, ne otherwise.
2096                   Label* branch);
2097 
2098   // Try to represent a double as an int so that integer fast-paths may be
2099   // used. Not every valid integer value is guaranteed to be caught.
2100   // It supports both 32-bit and 64-bit integers depending whether 'as_int'
2101   // is a W or X register.
2102   //
2103   // This does not distinguish between +0 and -0, so if this distinction is
2104   // important it must be checked separately.
2105   //
2106   // On output the Z flag is set if the operation was successful.
2107   void TryRepresentDoubleAsInt(Register as_int,
2108                                FPRegister value,
2109                                FPRegister scratch_d,
2110                                Label* on_successful_conversion = NULL,
2111                                Label* on_failed_conversion = NULL);
2112 
2113   bool generating_stub_;
2114 #if DEBUG
2115   // Tell whether any of the macro instruction can be used. When false the
2116   // MacroAssembler will assert if a method which can emit a variable number
2117   // of instructions is called.
2118   bool allow_macro_instructions_;
2119 #endif
2120   bool has_frame_;
2121 
2122   // The Abort method should call a V8 runtime function, but the CallRuntime
2123   // mechanism depends on CEntryStub. If use_real_aborts is false, Abort will
2124   // use a simpler abort mechanism that doesn't depend on CEntryStub.
2125   //
2126   // The purpose of this is to allow Aborts to be compiled whilst CEntryStub is
2127   // being generated.
2128   bool use_real_aborts_;
2129 
2130   // This handle will be patched with the code object on installation.
2131   Handle<Object> code_object_;
2132 
2133   // The register to use as a stack pointer for stack operations.
2134   Register sp_;
2135 
2136   // Scratch registers available for use by the MacroAssembler.
2137   CPURegList tmp_list_;
2138   CPURegList fptmp_list_;
2139 
2140   void InitializeNewString(Register string,
2141                            Register length,
2142                            Heap::RootListIndex map_index,
2143                            Register scratch1,
2144                            Register scratch2);
2145 
2146  public:
2147   // Far branches resolving.
2148   //
2149   // The various classes of branch instructions with immediate offsets have
2150   // different ranges. While the Assembler will fail to assemble a branch
2151   // exceeding its range, the MacroAssembler offers a mechanism to resolve
2152   // branches to too distant targets, either by tweaking the generated code to
2153   // use branch instructions with wider ranges or generating veneers.
2154   //
2155   // Currently branches to distant targets are resolved using unconditional
2156   // branch isntructions with a range of +-128MB. If that becomes too little
2157   // (!), the mechanism can be extended to generate special veneers for really
2158   // far targets.
2159 
2160   // Helps resolve branching to labels potentially out of range.
2161   // If the label is not bound, it registers the information necessary to later
2162   // be able to emit a veneer for this branch if necessary.
2163   // If the label is bound, it returns true if the label (or the previous link
2164   // in the label chain) is out of range. In that case the caller is responsible
2165   // for generating appropriate code.
2166   // Otherwise it returns false.
2167   // This function also checks wether veneers need to be emitted.
2168   bool NeedExtraInstructionsOrRegisterBranch(Label *label,
2169                                              ImmBranchType branch_type);
2170 };
2171 
2172 
2173 // Use this scope when you need a one-to-one mapping bewteen methods and
2174 // instructions. This scope prevents the MacroAssembler from being called and
2175 // literal pools from being emitted. It also asserts the number of instructions
2176 // emitted is what you specified when creating the scope.
2177 class InstructionAccurateScope BASE_EMBEDDED {
2178  public:
2179   explicit InstructionAccurateScope(MacroAssembler* masm, size_t count = 0)
masm_(masm)2180       : masm_(masm)
2181 #ifdef DEBUG
2182         ,
2183         size_(count * kInstructionSize)
2184 #endif
2185   {
2186     // Before blocking the const pool, see if it needs to be emitted.
2187     masm_->CheckConstPool(false, true);
2188     masm_->CheckVeneerPool(false, true);
2189 
2190     masm_->StartBlockPools();
2191 #ifdef DEBUG
2192     if (count != 0) {
2193       masm_->bind(&start_);
2194     }
2195     previous_allow_macro_instructions_ = masm_->allow_macro_instructions();
2196     masm_->set_allow_macro_instructions(false);
2197 #endif
2198   }
2199 
~InstructionAccurateScope()2200   ~InstructionAccurateScope() {
2201     masm_->EndBlockPools();
2202 #ifdef DEBUG
2203     if (start_.is_bound()) {
2204       DCHECK(masm_->SizeOfCodeGeneratedSince(&start_) == size_);
2205     }
2206     masm_->set_allow_macro_instructions(previous_allow_macro_instructions_);
2207 #endif
2208   }
2209 
2210  private:
2211   MacroAssembler* masm_;
2212 #ifdef DEBUG
2213   size_t size_;
2214   Label start_;
2215   bool previous_allow_macro_instructions_;
2216 #endif
2217 };
2218 
2219 
2220 // This scope utility allows scratch registers to be managed safely. The
2221 // MacroAssembler's TmpList() (and FPTmpList()) is used as a pool of scratch
2222 // registers. These registers can be allocated on demand, and will be returned
2223 // at the end of the scope.
2224 //
2225 // When the scope ends, the MacroAssembler's lists will be restored to their
2226 // original state, even if the lists were modified by some other means.
2227 class UseScratchRegisterScope {
2228  public:
UseScratchRegisterScope(MacroAssembler * masm)2229   explicit UseScratchRegisterScope(MacroAssembler* masm)
2230       : available_(masm->TmpList()),
2231         availablefp_(masm->FPTmpList()),
2232         old_available_(available_->list()),
2233         old_availablefp_(availablefp_->list()) {
2234     DCHECK(available_->type() == CPURegister::kRegister);
2235     DCHECK(availablefp_->type() == CPURegister::kFPRegister);
2236   }
2237 
2238   ~UseScratchRegisterScope();
2239 
2240   // Take a register from the appropriate temps list. It will be returned
2241   // automatically when the scope ends.
AcquireW()2242   Register AcquireW() { return AcquireNextAvailable(available_).W(); }
AcquireX()2243   Register AcquireX() { return AcquireNextAvailable(available_).X(); }
AcquireS()2244   FPRegister AcquireS() { return AcquireNextAvailable(availablefp_).S(); }
AcquireD()2245   FPRegister AcquireD() { return AcquireNextAvailable(availablefp_).D(); }
2246 
UnsafeAcquire(const Register & reg)2247   Register UnsafeAcquire(const Register& reg) {
2248     return Register(UnsafeAcquire(available_, reg));
2249   }
2250 
2251   Register AcquireSameSizeAs(const Register& reg);
2252   FPRegister AcquireSameSizeAs(const FPRegister& reg);
2253 
2254  private:
2255   static CPURegister AcquireNextAvailable(CPURegList* available);
2256   static CPURegister UnsafeAcquire(CPURegList* available,
2257                                    const CPURegister& reg);
2258 
2259   // Available scratch registers.
2260   CPURegList* available_;     // kRegister
2261   CPURegList* availablefp_;   // kFPRegister
2262 
2263   // The state of the available lists at the start of this scope.
2264   RegList old_available_;     // kRegister
2265   RegList old_availablefp_;   // kFPRegister
2266 };
2267 
2268 
ContextMemOperand(Register context,int index)2269 inline MemOperand ContextMemOperand(Register context, int index) {
2270   return MemOperand(context, Context::SlotOffset(index));
2271 }
2272 
GlobalObjectMemOperand()2273 inline MemOperand GlobalObjectMemOperand() {
2274   return ContextMemOperand(cp, Context::GLOBAL_OBJECT_INDEX);
2275 }
2276 
2277 
2278 // Encode and decode information about patchable inline SMI checks.
2279 class InlineSmiCheckInfo {
2280  public:
2281   explicit InlineSmiCheckInfo(Address info);
2282 
HasSmiCheck()2283   bool HasSmiCheck() const {
2284     return smi_check_ != NULL;
2285   }
2286 
SmiRegister()2287   const Register& SmiRegister() const {
2288     return reg_;
2289   }
2290 
SmiCheck()2291   Instruction* SmiCheck() const {
2292     return smi_check_;
2293   }
2294 
2295   // Use MacroAssembler::InlineData to emit information about patchable inline
2296   // SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to
2297   // indicate that there is no inline SMI check. Note that 'reg' cannot be csp.
2298   //
2299   // The generated patch information can be read using the InlineSMICheckInfo
2300   // class.
2301   static void Emit(MacroAssembler* masm, const Register& reg,
2302                    const Label* smi_check);
2303 
2304   // Emit information to indicate that there is no inline SMI check.
EmitNotInlined(MacroAssembler * masm)2305   static void EmitNotInlined(MacroAssembler* masm) {
2306     Label unbound;
2307     Emit(masm, NoReg, &unbound);
2308   }
2309 
2310  private:
2311   Register reg_;
2312   Instruction* smi_check_;
2313 
2314   // Fields in the data encoded by InlineData.
2315 
2316   // A width of 5 (Rd_width) for the SMI register preclues the use of csp,
2317   // since kSPRegInternalCode is 63. However, csp should never hold a SMI or be
2318   // used in a patchable check. The Emit() method checks this.
2319   //
2320   // Note that the total size of the fields is restricted by the underlying
2321   // storage size handled by the BitField class, which is a uint32_t.
2322   class RegisterBits : public BitField<unsigned, 0, 5> {};
2323   class DeltaBits : public BitField<uint32_t, 5, 32-5> {};
2324 };
2325 
2326 } }  // namespace v8::internal
2327 
2328 #ifdef GENERATED_CODE_COVERAGE
2329 #error "Unsupported option"
2330 #define CODE_COVERAGE_STRINGIFY(x) #x
2331 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
2332 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
2333 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
2334 #else
2335 #define ACCESS_MASM(masm) masm->
2336 #endif
2337 
2338 #endif  // V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
2339