1 /* 2 * Copyright 2012 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef SkRRect_DEFINED 9 #define SkRRect_DEFINED 10 11 #include "SkRect.h" 12 #include "SkPoint.h" 13 14 class SkPath; 15 class SkMatrix; 16 17 // Path forward: 18 // core work 19 // add validate method (all radii positive, all radii sums < rect size, etc.) 20 // add contains(SkRect&) - for clip stack 21 // add contains(SkRRect&) - for clip stack 22 // add heart rect computation (max rect inside RR) 23 // add 9patch rect computation 24 // add growToInclude(SkPath&) 25 // analysis 26 // use growToInclude to fit skp round rects & generate stats (RRs vs. real paths) 27 // check on # of rectorus's the RRs could handle 28 // rendering work 29 // update SkPath.addRRect() to only use quads 30 // add GM and bench 31 // further out 32 // detect and triangulate RRectorii rather than falling back to SW in Ganesh 33 // 34 35 /** \class SkRRect 36 37 The SkRRect class represents a rounded rect with a potentially different 38 radii for each corner. It does not have a constructor so must be 39 initialized with one of the initialization functions (e.g., setEmpty, 40 setRectRadii, etc.) 41 42 This class is intended to roughly match CSS' border-*-*-radius capabilities. 43 This means: 44 If either of a corner's radii are 0 the corner will be square. 45 Negative radii are not allowed (they are clamped to zero). 46 If the corner curves overlap they will be proportionally reduced to fit. 47 */ 48 class SK_API SkRRect { 49 public: 50 /** 51 * Enum to capture the various possible subtypes of RR. Accessed 52 * by type(). The subtypes become progressively less restrictive. 53 */ 54 enum Type { 55 // !< The RR is empty 56 kEmpty_Type, 57 58 //!< The RR is actually a (non-empty) rect (i.e., at least one radius 59 //!< at each corner is zero) 60 kRect_Type, 61 62 //!< The RR is actually a (non-empty) oval (i.e., all x radii are equal 63 //!< and >= width/2 and all the y radii are equal and >= height/2 64 kOval_Type, 65 66 //!< The RR is non-empty and all the x radii are equal & all y radii 67 //!< are equal but it is not an oval (i.e., there are lines between 68 //!< the curves) nor a rect (i.e., both radii are non-zero) 69 kSimple_Type, 70 71 //!< The RR is non-empty and the two left x radii are equal, the two top 72 //!< y radii are equal, and the same for the right and bottom but it is 73 //!< neither an rect, oval, nor a simple RR. It is called "nine patch" 74 //!< because the centers of the corner ellipses form an axis aligned 75 //!< rect with edges that divide the RR into an 9 rectangular patches: 76 //!< an interior patch, four edge patches, and four corner patches. 77 kNinePatch_Type, 78 79 //!< A fully general (non-empty) RR. Some of the x and/or y radii are 80 //!< different from the others and there must be one corner where 81 //!< both radii are non-zero. 82 kComplex_Type, 83 }; 84 85 /** 86 * Returns the RR's sub type. 87 */ getType()88 Type getType() const { 89 SkDEBUGCODE(this->validate();) 90 return static_cast<Type>(fType); 91 } 92 type()93 Type type() const { return this->getType(); } 94 isEmpty()95 inline bool isEmpty() const { return kEmpty_Type == this->getType(); } isRect()96 inline bool isRect() const { return kRect_Type == this->getType(); } isOval()97 inline bool isOval() const { return kOval_Type == this->getType(); } isSimple()98 inline bool isSimple() const { return kSimple_Type == this->getType(); } isSimpleCircular()99 inline bool isSimpleCircular() const { 100 return this->isSimple() && fRadii[0].fX == fRadii[0].fY; 101 } isNinePatch()102 inline bool isNinePatch() const { return kNinePatch_Type == this->getType(); } isComplex()103 inline bool isComplex() const { return kComplex_Type == this->getType(); } 104 105 bool allCornersCircular() const; 106 width()107 SkScalar width() const { return fRect.width(); } height()108 SkScalar height() const { return fRect.height(); } 109 110 /** 111 * Set this RR to the empty rectangle (0,0,0,0) with 0 x & y radii. 112 */ setEmpty()113 void setEmpty() { 114 fRect.setEmpty(); 115 memset(fRadii, 0, sizeof(fRadii)); 116 fType = kEmpty_Type; 117 118 SkDEBUGCODE(this->validate();) 119 } 120 121 /** 122 * Set this RR to match the supplied rect. All radii will be 0. 123 */ setRect(const SkRect & rect)124 void setRect(const SkRect& rect) { 125 if (rect.isEmpty()) { 126 this->setEmpty(); 127 return; 128 } 129 130 fRect = rect; 131 memset(fRadii, 0, sizeof(fRadii)); 132 fType = kRect_Type; 133 134 SkDEBUGCODE(this->validate();) 135 } 136 137 /** 138 * Set this RR to match the supplied oval. All x radii will equal half the 139 * width and all y radii will equal half the height. 140 */ setOval(const SkRect & oval)141 void setOval(const SkRect& oval) { 142 if (oval.isEmpty()) { 143 this->setEmpty(); 144 return; 145 } 146 147 SkScalar xRad = SkScalarHalf(oval.width()); 148 SkScalar yRad = SkScalarHalf(oval.height()); 149 150 fRect = oval; 151 for (int i = 0; i < 4; ++i) { 152 fRadii[i].set(xRad, yRad); 153 } 154 fType = kOval_Type; 155 156 SkDEBUGCODE(this->validate();) 157 } 158 159 /** 160 * Initialize the RR with the same radii for all four corners. 161 */ 162 void setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad); 163 164 /** 165 * Initialize the rr with one radius per-side. 166 */ 167 void setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad, 168 SkScalar rightRad, SkScalar bottomRad); 169 170 /** 171 * Initialize the RR with potentially different radii for all four corners. 172 */ 173 void setRectRadii(const SkRect& rect, const SkVector radii[4]); 174 175 // The radii are stored in UL, UR, LR, LL order. 176 enum Corner { 177 kUpperLeft_Corner, 178 kUpperRight_Corner, 179 kLowerRight_Corner, 180 kLowerLeft_Corner 181 }; 182 rect()183 const SkRect& rect() const { return fRect; } radii(Corner corner)184 const SkVector& radii(Corner corner) const { return fRadii[corner]; } getBounds()185 const SkRect& getBounds() const { return fRect; } 186 187 /** 188 * When a rrect is simple, all of its radii are equal. This returns one 189 * of those radii. This call requires the rrect to be non-complex. 190 */ getSimpleRadii()191 const SkVector& getSimpleRadii() const { 192 SkASSERT(!this->isComplex()); 193 return fRadii[0]; 194 } 195 196 friend bool operator==(const SkRRect& a, const SkRRect& b) { 197 return a.fRect == b.fRect && 198 SkScalarsEqual(a.fRadii[0].asScalars(), 199 b.fRadii[0].asScalars(), 8); 200 } 201 202 friend bool operator!=(const SkRRect& a, const SkRRect& b) { 203 return a.fRect != b.fRect || 204 !SkScalarsEqual(a.fRadii[0].asScalars(), 205 b.fRadii[0].asScalars(), 8); 206 } 207 208 /** 209 * Call inset on the bounds, and adjust the radii to reflect what happens 210 * in stroking: If the corner is sharp (no curvature), leave it alone, 211 * otherwise we grow/shrink the radii by the amount of the inset. If a 212 * given radius becomes negative, it is pinned to 0. 213 * 214 * It is valid for dst == this. 215 */ 216 void inset(SkScalar dx, SkScalar dy, SkRRect* dst) const; 217 inset(SkScalar dx,SkScalar dy)218 void inset(SkScalar dx, SkScalar dy) { 219 this->inset(dx, dy, this); 220 } 221 222 /** 223 * Call outset on the bounds, and adjust the radii to reflect what happens 224 * in stroking: If the corner is sharp (no curvature), leave it alone, 225 * otherwise we grow/shrink the radii by the amount of the inset. If a 226 * given radius becomes negative, it is pinned to 0. 227 * 228 * It is valid for dst == this. 229 */ outset(SkScalar dx,SkScalar dy,SkRRect * dst)230 void outset(SkScalar dx, SkScalar dy, SkRRect* dst) const { 231 this->inset(-dx, -dy, dst); 232 } outset(SkScalar dx,SkScalar dy)233 void outset(SkScalar dx, SkScalar dy) { 234 this->inset(-dx, -dy, this); 235 } 236 237 /** 238 * Translate the rrect by (dx, dy). 239 */ offset(SkScalar dx,SkScalar dy)240 void offset(SkScalar dx, SkScalar dy) { 241 fRect.offset(dx, dy); 242 } 243 244 /** 245 * Returns true if 'rect' is wholy inside the RR, and both 246 * are not empty. 247 */ 248 bool contains(const SkRect& rect) const; 249 250 SkDEBUGCODE(void validate() const;) 251 252 enum { 253 kSizeInMemory = 12 * sizeof(SkScalar) 254 }; 255 256 /** 257 * Write the rrect into the specified buffer. This is guaranteed to always 258 * write kSizeInMemory bytes, and that value is guaranteed to always be 259 * a multiple of 4. Return kSizeInMemory. 260 */ 261 size_t writeToMemory(void* buffer) const; 262 263 /** 264 * Reads the rrect from the specified buffer 265 * 266 * If the specified buffer is large enough, this will read kSizeInMemory bytes, 267 * and that value is guaranteed to always be a multiple of 4. 268 * 269 * @param buffer Memory to read from 270 * @param length Amount of memory available in the buffer 271 * @return number of bytes read (must be a multiple of 4) or 272 * 0 if there was not enough memory available 273 */ 274 size_t readFromMemory(const void* buffer, size_t length); 275 276 /** 277 * Transform by the specified matrix, and put the result in dst. 278 * 279 * @param matrix SkMatrix specifying the transform. Must only contain 280 * scale and/or translate, or this call will fail. 281 * @param dst SkRRect to store the result. It is an error to use this, 282 * which would make this function no longer const. 283 * @return true on success, false on failure. If false, dst is unmodified. 284 */ 285 bool transform(const SkMatrix& matrix, SkRRect* dst) const; 286 287 void dump(bool asHex) const; dump()288 void dump() const { this->dump(false); } dumpHex()289 void dumpHex() const { this->dump(true); } 290 291 private: 292 SkRect fRect; 293 // Radii order is UL, UR, LR, LL. Use Corner enum to index into fRadii[] 294 SkVector fRadii[4]; 295 // use an explicitly sized type so we're sure the class is dense (no uninitialized bytes) 296 int32_t fType; 297 // TODO: add padding so we can use memcpy for flattening and not copy 298 // uninitialized data 299 300 void computeType(); 301 bool checkCornerContainment(SkScalar x, SkScalar y) const; 302 303 // to access fRadii directly 304 friend class SkPath; 305 }; 306 307 #endif 308