1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkOpAngle.h"
8 #include "SkOpSegment.h"
9 #include "SkPathOpsCurve.h"
10 #include "SkTSort.h"
11 
12 /* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest
13    positive y. The largest angle has a positive x and a zero y. */
14 
15 #if DEBUG_ANGLE
CompareResult(const char * func,SkString * bugOut,SkString * bugPart,int append,bool compare)16     static bool CompareResult(const char* func, SkString* bugOut, SkString* bugPart, int append,
17              bool compare) {
18         SkDebugf("%s %c %d\n", bugOut->c_str(), compare ? 'T' : 'F', append);
19         SkDebugf("%sPart %s\n", func, bugPart[0].c_str());
20         SkDebugf("%sPart %s\n", func, bugPart[1].c_str());
21         SkDebugf("%sPart %s\n", func, bugPart[2].c_str());
22         return compare;
23     }
24 
25     #define COMPARE_RESULT(append, compare) CompareResult(__FUNCTION__, &bugOut, bugPart, append, \
26             compare)
27 #else
28     #define COMPARE_RESULT(append, compare) compare
29 #endif
30 
31 /*             quarter angle values for sector
32 
33 31   x > 0, y == 0              horizontal line (to the right)
34 0    x > 0, y == epsilon        quad/cubic horizontal tangent eventually going +y
35 1    x > 0, y > 0, x > y        nearer horizontal angle
36 2                  x + e == y   quad/cubic 45 going horiz
37 3    x > 0, y > 0, x == y       45 angle
38 4                  x == y + e   quad/cubic 45 going vert
39 5    x > 0, y > 0, x < y        nearer vertical angle
40 6    x == epsilon, y > 0        quad/cubic vertical tangent eventually going +x
41 7    x == 0, y > 0              vertical line (to the top)
42 
43                                       8  7  6
44                                  9       |       5
45                               10         |          4
46                             11           |            3
47                           12  \          |           / 2
48                          13              |              1
49                         14               |               0
50                         15 --------------+------------- 31
51                         16               |              30
52                          17              |             29
53                           18  /          |          \ 28
54                             19           |           27
55                               20         |         26
56                                  21      |      25
57                                      22 23 24
58 */
59 
60 // return true if lh < this < rh
after(SkOpAngle * test)61 bool SkOpAngle::after(SkOpAngle* test) {
62     SkOpAngle* lh = test;
63     SkOpAngle* rh = lh->fNext;
64     SkASSERT(lh != rh);
65 #if DEBUG_ANGLE
66     SkString bugOut;
67     bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
68                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
69                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
70             lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
71             lh->fStart->t(), lh->fEnd->t(),
72             segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
73             rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
74             rh->fStart->t(), rh->fEnd->t());
75     SkString bugPart[3] = { lh->debugPart(), this->debugPart(), rh->debugPart() };
76 #endif
77     if (lh->fComputeSector && !lh->computeSector()) {
78         return COMPARE_RESULT(1, true);
79     }
80     if (fComputeSector && !this->computeSector()) {
81         return COMPARE_RESULT(2, true);
82     }
83     if (rh->fComputeSector && !rh->computeSector()) {
84         return COMPARE_RESULT(3, true);
85     }
86 #if DEBUG_ANGLE  // reset bugOut with computed sectors
87     bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
88                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
89                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
90             lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
91             lh->fStart->t(), lh->fEnd->t(),
92             segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
93             rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
94             rh->fStart->t(), rh->fEnd->t());
95 #endif
96     bool ltrOverlap = (lh->fSectorMask | rh->fSectorMask) & fSectorMask;
97     bool lrOverlap = lh->fSectorMask & rh->fSectorMask;
98     int lrOrder;  // set to -1 if either order works
99     if (!lrOverlap) {  // no lh/rh sector overlap
100         if (!ltrOverlap) {  // no lh/this/rh sector overlap
101             return COMPARE_RESULT(4,  (lh->fSectorEnd > rh->fSectorStart)
102                     ^ (fSectorStart > lh->fSectorEnd) ^ (fSectorStart > rh->fSectorStart));
103         }
104         int lrGap = (rh->fSectorStart - lh->fSectorStart + 32) & 0x1f;
105         /* A tiny change can move the start +/- 4. The order can only be determined if
106            lr gap is not 12 to 20 or -12 to -20.
107                -31 ..-21      1
108                -20 ..-12     -1
109                -11 .. -1      0
110                  0          shouldn't get here
111                 11 ..  1      1
112                 12 .. 20     -1
113                 21 .. 31      0
114          */
115         lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1;
116     } else {
117         lrOrder = (int) lh->orderable(rh);
118         if (!ltrOverlap) {
119             return COMPARE_RESULT(5, !lrOrder);
120         }
121     }
122     int ltOrder;
123     SkASSERT((lh->fSectorMask & fSectorMask) || (rh->fSectorMask & fSectorMask));
124     if (lh->fSectorMask & fSectorMask) {
125         ltOrder = (int) lh->orderable(this);
126     } else {
127         int ltGap = (fSectorStart - lh->fSectorStart + 32) & 0x1f;
128         ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1;
129     }
130     int trOrder;
131     if (rh->fSectorMask & fSectorMask) {
132         trOrder = (int) orderable(rh);
133     } else {
134         int trGap = (rh->fSectorStart - fSectorStart + 32) & 0x1f;
135         trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1;
136     }
137     if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) {
138         return COMPARE_RESULT(7, lrOrder ? (ltOrder & trOrder) : (ltOrder | trOrder));
139     }
140     SkASSERT(lrOrder >= 0 || ltOrder >= 0 || trOrder >= 0);
141 // There's not enough information to sort. Get the pairs of angles in opposite planes.
142 // If an order is < 0, the pair is already in an opposite plane. Check the remaining pairs.
143     // FIXME : once all variants are understood, rewrite this more simply
144     if (ltOrder == 0 && lrOrder == 0) {
145         SkASSERT(trOrder < 0);
146         // FIXME : once this is verified to work, remove one opposite angle call
147         SkDEBUGCODE(bool lrOpposite = lh->oppositePlanes(rh));
148         bool ltOpposite = lh->oppositePlanes(this);
149         SkASSERT(lrOpposite != ltOpposite);
150         return COMPARE_RESULT(8, ltOpposite);
151     } else if (ltOrder == 1 && trOrder == 0) {
152         SkASSERT(lrOrder < 0);
153         SkDEBUGCODE(bool ltOpposite = lh->oppositePlanes(this));
154         bool trOpposite = oppositePlanes(rh);
155         SkASSERT(ltOpposite != trOpposite);
156         return COMPARE_RESULT(9, trOpposite);
157     } else if (lrOrder == 1 && trOrder == 1) {
158         SkASSERT(ltOrder < 0);
159         SkDEBUGCODE(bool trOpposite = oppositePlanes(rh));
160         bool lrOpposite = lh->oppositePlanes(rh);
161         SkASSERT(lrOpposite != trOpposite);
162         return COMPARE_RESULT(10, lrOpposite);
163     }
164     if (lrOrder < 0) {
165         if (ltOrder < 0) {
166             return COMPARE_RESULT(11, trOrder);
167         }
168         return COMPARE_RESULT(12, ltOrder);
169     }
170     return COMPARE_RESULT(13, !lrOrder);
171 }
172 
173 // given a line, see if the opposite curve's convex hull is all on one side
174 // returns -1=not on one side    0=this CW of test   1=this CCW of test
allOnOneSide(const SkOpAngle * test)175 int SkOpAngle::allOnOneSide(const SkOpAngle* test) {
176     SkASSERT(!fIsCurve);
177     SkASSERT(test->fIsCurve);
178     const SkDPoint& origin = test->fCurvePart[0];
179     SkVector line;
180     if (segment()->verb() == SkPath::kLine_Verb) {
181         const SkPoint* linePts = segment()->pts();
182         int lineStart = fStart->t() < fEnd->t() ? 0 : 1;
183         line = linePts[lineStart ^ 1] - linePts[lineStart];
184     } else {
185         SkPoint shortPts[2] = { fCurvePart[0].asSkPoint(), fCurvePart[1].asSkPoint() };
186         line = shortPts[1] - shortPts[0];
187     }
188     float crosses[3];
189     SkPath::Verb testVerb = test->segment()->verb();
190     int iMax = SkPathOpsVerbToPoints(testVerb);
191 //    SkASSERT(origin == test.fCurveHalf[0]);
192     const SkDCurve& testCurve = test->fCurvePart;
193     for (int index = 1; index <= iMax; ++index) {
194         float xy1 = (float) (line.fX * (testCurve[index].fY - origin.fY));
195         float xy2 = (float) (line.fY * (testCurve[index].fX - origin.fX));
196         crosses[index - 1] = AlmostEqualUlps(xy1, xy2) ? 0 : xy1 - xy2;
197     }
198     if (crosses[0] * crosses[1] < 0) {
199         return -1;
200     }
201     if (SkPath::kCubic_Verb == testVerb) {
202         if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) {
203             return -1;
204         }
205     }
206     if (crosses[0]) {
207         return crosses[0] < 0;
208     }
209     if (crosses[1]) {
210         return crosses[1] < 0;
211     }
212     if (SkPath::kCubic_Verb == testVerb && crosses[2]) {
213         return crosses[2] < 0;
214     }
215     fUnorderable = true;
216     return -1;
217 }
218 
checkCrossesZero() const219 bool SkOpAngle::checkCrossesZero() const {
220     int start = SkTMin(fSectorStart, fSectorEnd);
221     int end = SkTMax(fSectorStart, fSectorEnd);
222     bool crossesZero = end - start > 16;
223     return crossesZero;
224 }
225 
226 // loop looking for a pair of angle parts that are too close to be sorted
227 /* This is called after other more simple intersection and angle sorting tests have been exhausted.
228    This should be rarely called -- the test below is thorough and time consuming.
229    This checks the distance between start points; the distance between
230 */
checkNearCoincidence()231 void SkOpAngle::checkNearCoincidence() {
232     SkOpAngle* test = this;
233     do {
234         SkOpSegment* testSegment = test->segment();
235         double testStartT = test->start()->t();
236         SkDPoint testStartPt = testSegment->dPtAtT(testStartT);
237         double testEndT = test->end()->t();
238         SkDPoint testEndPt = testSegment->dPtAtT(testEndT);
239         double testLenSq = testStartPt.distanceSquared(testEndPt);
240         if (0) {
241             SkDebugf("%s testLenSq=%1.9g id=%d\n", __FUNCTION__, testLenSq, testSegment->debugID());
242         }
243         double testMidT = (testStartT + testEndT) / 2;
244         SkOpAngle* next = test;
245         while ((next = next->fNext) != this) {
246             SkOpSegment* nextSegment = next->segment();
247             double testMidDistSq = testSegment->distSq(testMidT, next);
248             double testEndDistSq = testSegment->distSq(testEndT, next);
249             double nextStartT = next->start()->t();
250             SkDPoint nextStartPt = nextSegment->dPtAtT(nextStartT);
251             double distSq = testStartPt.distanceSquared(nextStartPt);
252             double nextEndT = next->end()->t();
253             double nextMidT = (nextStartT + nextEndT) / 2;
254             double nextMidDistSq = nextSegment->distSq(nextMidT, test);
255             double nextEndDistSq = nextSegment->distSq(nextEndT, test);
256             if (0) {
257                 SkDebugf("%s distSq=%1.9g testId=%d nextId=%d\n", __FUNCTION__, distSq,
258                         testSegment->debugID(), nextSegment->debugID());
259                 SkDebugf("%s testMidDistSq=%1.9g\n", __FUNCTION__, testMidDistSq);
260                 SkDebugf("%s testEndDistSq=%1.9g\n", __FUNCTION__, testEndDistSq);
261                 SkDebugf("%s nextMidDistSq=%1.9g\n", __FUNCTION__, nextMidDistSq);
262                 SkDebugf("%s nextEndDistSq=%1.9g\n", __FUNCTION__, nextEndDistSq);
263                 SkDPoint nextEndPt = nextSegment->dPtAtT(nextEndT);
264                 double nextLenSq = nextStartPt.distanceSquared(nextEndPt);
265                 SkDebugf("%s nextLenSq=%1.9g\n", __FUNCTION__, nextLenSq);
266                 SkDebugf("\n");
267             }
268         }
269         test = test->fNext;
270     } while (test->fNext != this);
271 }
272 
checkParallel(SkOpAngle * rh)273 bool SkOpAngle::checkParallel(SkOpAngle* rh) {
274     SkDVector scratch[2];
275     const SkDVector* sweep, * tweep;
276     if (!this->fUnorderedSweep) {
277         sweep = this->fSweep;
278     } else {
279         scratch[0] = this->fCurvePart[1] - this->fCurvePart[0];
280         sweep = &scratch[0];
281     }
282     if (!rh->fUnorderedSweep) {
283         tweep = rh->fSweep;
284     } else {
285         scratch[1] = rh->fCurvePart[1] - rh->fCurvePart[0];
286         tweep = &scratch[1];
287     }
288     double s0xt0 = sweep->crossCheck(*tweep);
289     if (tangentsDiverge(rh, s0xt0)) {
290         return s0xt0 < 0;
291     }
292     // compute the perpendicular to the endpoints and see where it intersects the opposite curve
293     // if the intersections within the t range, do a cross check on those
294     bool inside;
295     if (!fCurvePart[SkPathOpsVerbToPoints(this->segment()->verb())].approximatelyEqual(
296             rh->fCurvePart[SkPathOpsVerbToPoints(rh->segment()->verb())])) {
297         if (this->endToSide(rh, &inside)) {
298             return inside;
299         }
300         if (rh->endToSide(this, &inside)) {
301             return !inside;
302         }
303     }
304     if (this->midToSide(rh, &inside)) {
305         return inside;
306     }
307     if (rh->midToSide(this, &inside)) {
308         return !inside;
309     }
310     // compute the cross check from the mid T values (last resort)
311     SkDVector m0 = segment()->dPtAtT(this->midT()) - this->fCurvePart[0];
312     SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fCurvePart[0];
313     double m0xm1 = m0.crossCheck(m1);
314     if (m0xm1 == 0) {
315         this->fUnorderable = true;
316         rh->fUnorderable = true;
317         return true;
318     }
319     return m0xm1 < 0;
320 }
321 
322 // the original angle is too short to get meaningful sector information
323 // lengthen it until it is long enough to be meaningful or leave it unset if lengthening it
324 // would cause it to intersect one of the adjacent angles
computeSector()325 bool SkOpAngle::computeSector() {
326     if (fComputedSector) {
327         return !fUnorderable;
328     }
329     fComputedSector = true;
330     bool stepUp = fStart->t() < fEnd->t();
331     const SkOpSpanBase* checkEnd = fEnd;
332     if (checkEnd->final() && stepUp) {
333         fUnorderable = true;
334         return false;
335     }
336     do {
337 // advance end
338         const SkOpSegment* other = checkEnd->segment();
339         const SkOpSpanBase* oSpan = other->head();
340         do {
341             if (oSpan->segment() != segment()) {
342                 continue;
343             }
344             if (oSpan == checkEnd) {
345                 continue;
346             }
347             if (!approximately_equal(oSpan->t(), checkEnd->t())) {
348                 continue;
349             }
350             goto recomputeSector;
351         } while (!oSpan->final() && (oSpan = oSpan->upCast()->next()));
352         checkEnd = stepUp ? !checkEnd->final()
353                 ? checkEnd->upCast()->next() : NULL
354                 : checkEnd->prev();
355     } while (checkEnd);
356 recomputeSector:
357     SkOpSpanBase* computedEnd = stepUp ? checkEnd ? checkEnd->prev() : fEnd->segment()->head()
358             : checkEnd ? checkEnd->upCast()->next() : fEnd->segment()->tail();
359     if (checkEnd == fEnd || computedEnd == fEnd || computedEnd == fStart) {
360         fUnorderable = true;
361         return false;
362     }
363     if (stepUp != (fStart->t() < computedEnd->t())) {
364         fUnorderable = true;
365         return false;
366     }
367     SkOpSpanBase* saveEnd = fEnd;
368     fComputedEnd = fEnd = computedEnd;
369     setSpans();
370     setSector();
371     fEnd = saveEnd;
372     return !fUnorderable;
373 }
374 
convexHullOverlaps(const SkOpAngle * rh) const375 int SkOpAngle::convexHullOverlaps(const SkOpAngle* rh) const {
376     const SkDVector* sweep = this->fSweep;
377     const SkDVector* tweep = rh->fSweep;
378     double s0xs1 = sweep[0].crossCheck(sweep[1]);
379     double s0xt0 = sweep[0].crossCheck(tweep[0]);
380     double s1xt0 = sweep[1].crossCheck(tweep[0]);
381     bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0;
382     double s0xt1 = sweep[0].crossCheck(tweep[1]);
383     double s1xt1 = sweep[1].crossCheck(tweep[1]);
384     tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0;
385     double t0xt1 = tweep[0].crossCheck(tweep[1]);
386     if (tBetweenS) {
387         return -1;
388     }
389     if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) {  // s0 to s1 equals t0 to t1
390         return -1;
391     }
392     bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0;
393     sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0;
394     if (sBetweenT) {
395         return -1;
396     }
397     // if all of the sweeps are in the same half plane, then the order of any pair is enough
398     if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) {
399         return 0;
400     }
401     if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) {
402         return 1;
403     }
404     // if the outside sweeps are greater than 180 degress:
405         // first assume the inital tangents are the ordering
406         // if the midpoint direction matches the inital order, that is enough
407     SkDVector m0 = this->segment()->dPtAtT(this->midT()) - this->fCurvePart[0];
408     SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fCurvePart[0];
409     double m0xm1 = m0.crossCheck(m1);
410     if (s0xt0 > 0 && m0xm1 > 0) {
411         return 0;
412     }
413     if (s0xt0 < 0 && m0xm1 < 0) {
414         return 1;
415     }
416     if (tangentsDiverge(rh, s0xt0)) {
417         return s0xt0 < 0;
418     }
419     return m0xm1 < 0;
420 }
421 
422 // OPTIMIZATION: longest can all be either lazily computed here or precomputed in setup
distEndRatio(double dist) const423 double SkOpAngle::distEndRatio(double dist) const {
424     double longest = 0;
425     const SkOpSegment& segment = *this->segment();
426     int ptCount = SkPathOpsVerbToPoints(segment.verb());
427     const SkPoint* pts = segment.pts();
428     for (int idx1 = 0; idx1 <= ptCount - 1; ++idx1) {
429         for (int idx2 = idx1 + 1; idx2 <= ptCount; ++idx2) {
430             if (idx1 == idx2) {
431                 continue;
432             }
433             SkDVector v;
434             v.set(pts[idx2] - pts[idx1]);
435             double lenSq = v.lengthSquared();
436             longest = SkTMax(longest, lenSq);
437         }
438     }
439     return sqrt(longest) / dist;
440 }
441 
endsIntersect(SkOpAngle * rh)442 bool SkOpAngle::endsIntersect(SkOpAngle* rh) {
443     SkPath::Verb lVerb = this->segment()->verb();
444     SkPath::Verb rVerb = rh->segment()->verb();
445     int lPts = SkPathOpsVerbToPoints(lVerb);
446     int rPts = SkPathOpsVerbToPoints(rVerb);
447     SkDLine rays[] = {{{this->fCurvePart[0], rh->fCurvePart[rPts]}},
448             {{this->fCurvePart[0], this->fCurvePart[lPts]}}};
449     if (rays[0][1] == rays[1][1]) {
450         return checkParallel(rh);
451     }
452     double smallTs[2] = {-1, -1};
453     bool limited[2] = {false, false};
454     for (int index = 0; index < 2; ++index) {
455         SkPath::Verb cVerb = index ? rVerb : lVerb;
456         // if the curve is a line, then the line and the ray intersect only at their crossing
457         if (cVerb == SkPath::kLine_Verb) {
458             continue;
459         }
460         const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
461         SkIntersections i;
462         (*CurveIntersectRay[cVerb])(segment.pts(), segment.weight(), rays[index], &i);
463         double tStart = index ? rh->fStart->t() : this->fStart->t();
464         double tEnd = index ? rh->fComputedEnd->t() : this->fComputedEnd->t();
465         bool testAscends = tStart < (index ? rh->fComputedEnd->t() : this->fComputedEnd->t());
466         double t = testAscends ? 0 : 1;
467         for (int idx2 = 0; idx2 < i.used(); ++idx2) {
468             double testT = i[0][idx2];
469             if (!approximately_between_orderable(tStart, testT, tEnd)) {
470                 continue;
471             }
472             if (approximately_equal_orderable(tStart, testT)) {
473                 continue;
474             }
475             smallTs[index] = t = testAscends ? SkTMax(t, testT) : SkTMin(t, testT);
476             limited[index] = approximately_equal_orderable(t, tEnd);
477         }
478     }
479     bool sRayLonger = false;
480     SkDVector sCept = {0, 0};
481     double sCeptT = -1;
482     int sIndex = -1;
483     bool useIntersect = false;
484     for (int index = 0; index < 2; ++index) {
485         if (smallTs[index] < 0) {
486             continue;
487         }
488         const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
489         const SkDPoint& dPt = segment.dPtAtT(smallTs[index]);
490         SkDVector cept = dPt - rays[index][0];
491         // If this point is on the curve, it should have been detected earlier by ordinary
492         // curve intersection. This may be hard to determine in general, but for lines,
493         // the point could be close to or equal to its end, but shouldn't be near the start.
494         if ((index ? lPts : rPts) == 1) {
495             SkDVector total = rays[index][1] - rays[index][0];
496             if (cept.lengthSquared() * 2 < total.lengthSquared()) {
497                 continue;
498             }
499         }
500         SkDVector end = rays[index][1] - rays[index][0];
501         if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) {
502             continue;
503         }
504         double rayDist = cept.length();
505         double endDist = end.length();
506         bool rayLonger = rayDist > endDist;
507         if (limited[0] && limited[1] && rayLonger) {
508             useIntersect = true;
509             sRayLonger = rayLonger;
510             sCept = cept;
511             sCeptT = smallTs[index];
512             sIndex = index;
513             break;
514         }
515         double delta = fabs(rayDist - endDist);
516         double minX, minY, maxX, maxY;
517         minX = minY = SK_ScalarInfinity;
518         maxX = maxY = -SK_ScalarInfinity;
519         const SkDCurve& curve = index ? rh->fCurvePart : this->fCurvePart;
520         int ptCount = index ? rPts : lPts;
521         for (int idx2 = 0; idx2 <= ptCount; ++idx2) {
522             minX = SkTMin(minX, curve[idx2].fX);
523             minY = SkTMin(minY, curve[idx2].fY);
524             maxX = SkTMax(maxX, curve[idx2].fX);
525             maxY = SkTMax(maxY, curve[idx2].fY);
526         }
527         double maxWidth = SkTMax(maxX - minX, maxY - minY);
528         delta /= maxWidth;
529         if (delta > 1e-3 && (useIntersect ^= true)) {  // FIXME: move this magic number
530             sRayLonger = rayLonger;
531             sCept = cept;
532             sCeptT = smallTs[index];
533             sIndex = index;
534         }
535     }
536     if (useIntersect) {
537         const SkDCurve& curve = sIndex ? rh->fCurvePart : this->fCurvePart;
538         const SkOpSegment& segment = sIndex ? *rh->segment() : *this->segment();
539         double tStart = sIndex ? rh->fStart->t() : fStart->t();
540         SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0];
541         double septDir = mid.crossCheck(sCept);
542         if (!septDir) {
543             return checkParallel(rh);
544         }
545         return sRayLonger ^ (sIndex == 0) ^ (septDir < 0);
546     } else {
547         return checkParallel(rh);
548     }
549 }
550 
endToSide(const SkOpAngle * rh,bool * inside) const551 bool SkOpAngle::endToSide(const SkOpAngle* rh, bool* inside) const {
552     const SkOpSegment* segment = this->segment();
553     SkPath::Verb verb = segment->verb();
554     SkDLine rayEnd;
555     rayEnd[0].set(this->fEnd->pt());
556     rayEnd[1] = rayEnd[0];
557     SkDVector slopeAtEnd = (*CurveDSlopeAtT[verb])(segment->pts(), segment->weight(),
558             this->fEnd->t());
559     rayEnd[1].fX += slopeAtEnd.fY;
560     rayEnd[1].fY -= slopeAtEnd.fX;
561     SkIntersections iEnd;
562     const SkOpSegment* oppSegment = rh->segment();
563     SkPath::Verb oppVerb = oppSegment->verb();
564     (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayEnd, &iEnd);
565     double endDist;
566     int closestEnd = iEnd.closestTo(rh->fStart->t(), rh->fEnd->t(), rayEnd[0], &endDist);
567     if (closestEnd < 0) {
568         return false;
569     }
570     if (!endDist) {
571         return false;
572     }
573     SkDPoint start;
574     start.set(this->fStart->pt());
575     // OPTIMIZATION: multiple times in the code we find the max scalar
576     double minX, minY, maxX, maxY;
577     minX = minY = SK_ScalarInfinity;
578     maxX = maxY = -SK_ScalarInfinity;
579     const SkDCurve& curve = rh->fCurvePart;
580     int oppPts = SkPathOpsVerbToPoints(oppVerb);
581     for (int idx2 = 0; idx2 <= oppPts; ++idx2) {
582         minX = SkTMin(minX, curve[idx2].fX);
583         minY = SkTMin(minY, curve[idx2].fY);
584         maxX = SkTMax(maxX, curve[idx2].fX);
585         maxY = SkTMax(maxY, curve[idx2].fY);
586     }
587     double maxWidth = SkTMax(maxX - minX, maxY - minY);
588     endDist /= maxWidth;
589     if (endDist < 5e-11) {  // empirically found
590         return false;
591     }
592     const SkDPoint* endPt = &rayEnd[0];
593     SkDPoint oppPt = iEnd.pt(closestEnd);
594     SkDVector vLeft = *endPt - start;
595     SkDVector vRight = oppPt - start;
596     double dir = vLeft.crossCheck(vRight);
597     if (!dir) {
598         return false;
599     }
600     *inside = dir < 0;
601     return true;
602 }
603 
604 /*      y<0 y==0 y>0  x<0 x==0 x>0 xy<0 xy==0 xy>0
605     0    x                      x               x
606     1    x                      x          x
607     2    x                      x    x
608     3    x                  x        x
609     4    x             x             x
610     5    x             x                   x
611     6    x             x                        x
612     7         x        x                        x
613     8             x    x                        x
614     9             x    x                   x
615     10            x    x             x
616     11            x         x        x
617     12            x             x    x
618     13            x             x          x
619     14            x             x               x
620     15        x                 x               x
621 */
findSector(SkPath::Verb verb,double x,double y) const622 int SkOpAngle::findSector(SkPath::Verb verb, double x, double y) const {
623     double absX = fabs(x);
624     double absY = fabs(y);
625     double xy = SkPath::kLine_Verb == verb || !AlmostEqualUlps(absX, absY) ? absX - absY : 0;
626     // If there are four quadrants and eight octants, and since the Latin for sixteen is sedecim,
627     // one could coin the term sedecimant for a space divided into 16 sections.
628    // http://english.stackexchange.com/questions/133688/word-for-something-partitioned-into-16-parts
629     static const int sedecimant[3][3][3] = {
630     //       y<0           y==0           y>0
631     //   x<0 x==0 x>0  x<0 x==0 x>0  x<0 x==0 x>0
632         {{ 4,  3,  2}, { 7, -1, 15}, {10, 11, 12}},  // abs(x) <  abs(y)
633         {{ 5, -1,  1}, {-1, -1, -1}, { 9, -1, 13}},  // abs(x) == abs(y)
634         {{ 6,  3,  0}, { 7, -1, 15}, { 8, 11, 14}},  // abs(x) >  abs(y)
635     };
636     int sector = sedecimant[(xy >= 0) + (xy > 0)][(y >= 0) + (y > 0)][(x >= 0) + (x > 0)] * 2 + 1;
637 //    SkASSERT(SkPath::kLine_Verb == verb || sector >= 0);
638     return sector;
639 }
640 
globalState() const641 SkOpGlobalState* SkOpAngle::globalState() const {
642     return this->segment()->globalState();
643 }
644 
645 
646 // OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side
647 // OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side
insert(SkOpAngle * angle)648 void SkOpAngle::insert(SkOpAngle* angle) {
649     if (angle->fNext) {
650         if (loopCount() >= angle->loopCount()) {
651             if (!merge(angle)) {
652                 return;
653             }
654         } else if (fNext) {
655             if (!angle->merge(this)) {
656                 return;
657             }
658         } else {
659             angle->insert(this);
660         }
661         return;
662     }
663     bool singleton = NULL == fNext;
664     if (singleton) {
665         fNext = this;
666     }
667     SkOpAngle* next = fNext;
668     if (next->fNext == this) {
669         if (singleton || angle->after(this)) {
670             this->fNext = angle;
671             angle->fNext = next;
672         } else {
673             next->fNext = angle;
674             angle->fNext = this;
675         }
676         debugValidateNext();
677         return;
678     }
679     SkOpAngle* last = this;
680     do {
681         SkASSERT(last->fNext == next);
682         if (angle->after(last)) {
683             last->fNext = angle;
684             angle->fNext = next;
685             debugValidateNext();
686             return;
687         }
688         last = next;
689         next = next->fNext;
690         if (last == this) {
691             if (next->fUnorderable) {
692                 fUnorderable = true;
693             } else {
694                 globalState()->setAngleCoincidence();
695                 this->fNext = angle;
696                 angle->fNext = next;
697                 angle->fCheckCoincidence = true;
698             }
699             return;
700         }
701     } while (true);
702 }
703 
lastMarked() const704 SkOpSpanBase* SkOpAngle::lastMarked() const {
705     if (fLastMarked) {
706         if (fLastMarked->chased()) {
707             return NULL;
708         }
709         fLastMarked->setChased(true);
710     }
711     return fLastMarked;
712 }
713 
loopContains(const SkOpAngle * angle) const714 bool SkOpAngle::loopContains(const SkOpAngle* angle) const {
715     if (!fNext) {
716         return false;
717     }
718     const SkOpAngle* first = this;
719     const SkOpAngle* loop = this;
720     const SkOpSegment* tSegment = angle->fStart->segment();
721     double tStart = angle->fStart->t();
722     double tEnd = angle->fEnd->t();
723     do {
724         const SkOpSegment* lSegment = loop->fStart->segment();
725         if (lSegment != tSegment) {
726             continue;
727         }
728         double lStart = loop->fStart->t();
729         if (lStart != tEnd) {
730             continue;
731         }
732         double lEnd = loop->fEnd->t();
733         if (lEnd == tStart) {
734             return true;
735         }
736     } while ((loop = loop->fNext) != first);
737     return false;
738 }
739 
loopCount() const740 int SkOpAngle::loopCount() const {
741     int count = 0;
742     const SkOpAngle* first = this;
743     const SkOpAngle* next = this;
744     do {
745         next = next->fNext;
746         ++count;
747     } while (next && next != first);
748     return count;
749 }
750 
merge(SkOpAngle * angle)751 bool SkOpAngle::merge(SkOpAngle* angle) {
752     SkASSERT(fNext);
753     SkASSERT(angle->fNext);
754     SkOpAngle* working = angle;
755     do {
756         if (this == working) {
757             return false;
758         }
759         working = working->fNext;
760     } while (working != angle);
761     do {
762         SkOpAngle* next = working->fNext;
763         working->fNext = NULL;
764         insert(working);
765         working = next;
766     } while (working != angle);
767     // it's likely that a pair of the angles are unorderable
768     debugValidateNext();
769     return true;
770 }
771 
midT() const772 double SkOpAngle::midT() const {
773     return (fStart->t() + fEnd->t()) / 2;
774 }
775 
midToSide(const SkOpAngle * rh,bool * inside) const776 bool SkOpAngle::midToSide(const SkOpAngle* rh, bool* inside) const {
777     const SkOpSegment* segment = this->segment();
778     SkPath::Verb verb = segment->verb();
779     const SkPoint& startPt = this->fStart->pt();
780     const SkPoint& endPt = this->fEnd->pt();
781     SkDPoint dStartPt;
782     dStartPt.set(startPt);
783     SkDLine rayMid;
784     rayMid[0].fX = (startPt.fX + endPt.fX) / 2;
785     rayMid[0].fY = (startPt.fY + endPt.fY) / 2;
786     rayMid[1].fX = rayMid[0].fX + (endPt.fY - startPt.fY);
787     rayMid[1].fY = rayMid[0].fY - (endPt.fX - startPt.fX);
788     SkIntersections iMid;
789     (*CurveIntersectRay[verb])(segment->pts(), segment->weight(), rayMid, &iMid);
790     int iOutside = iMid.mostOutside(this->fStart->t(), this->fEnd->t(), dStartPt);
791     if (iOutside < 0) {
792         return false;
793     }
794     const SkOpSegment* oppSegment = rh->segment();
795     SkPath::Verb oppVerb = oppSegment->verb();
796     SkIntersections oppMid;
797     (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayMid, &oppMid);
798     int oppOutside = oppMid.mostOutside(rh->fStart->t(), rh->fEnd->t(), dStartPt);
799     if (oppOutside < 0) {
800         return false;
801     }
802     SkDVector iSide = iMid.pt(iOutside) - dStartPt;
803     SkDVector oppSide = oppMid.pt(oppOutside) - dStartPt;
804     double dir = iSide.crossCheck(oppSide);
805     if (!dir) {
806         return false;
807     }
808     *inside = dir < 0;
809     return true;
810 }
811 
oppositePlanes(const SkOpAngle * rh) const812 bool SkOpAngle::oppositePlanes(const SkOpAngle* rh) const {
813     int startSpan = abs(rh->fSectorStart - fSectorStart);
814     return startSpan >= 8;
815 }
816 
orderable(SkOpAngle * rh)817 bool SkOpAngle::orderable(SkOpAngle* rh) {
818     int result;
819     if (!fIsCurve) {
820         if (!rh->fIsCurve) {
821             double leftX = fTangentHalf.dx();
822             double leftY = fTangentHalf.dy();
823             double rightX = rh->fTangentHalf.dx();
824             double rightY = rh->fTangentHalf.dy();
825             double x_ry = leftX * rightY;
826             double rx_y = rightX * leftY;
827             if (x_ry == rx_y) {
828                 if (leftX * rightX < 0 || leftY * rightY < 0) {
829                     return true;  // exactly 180 degrees apart
830                 }
831                 goto unorderable;
832             }
833             SkASSERT(x_ry != rx_y); // indicates an undetected coincidence -- worth finding earlier
834             return x_ry < rx_y;
835         }
836         if ((result = allOnOneSide(rh)) >= 0) {
837             return result;
838         }
839         if (fUnorderable || approximately_zero(rh->fSide)) {
840             goto unorderable;
841         }
842     } else if (!rh->fIsCurve) {
843         if ((result = rh->allOnOneSide(this)) >= 0) {
844             return !result;
845         }
846         if (rh->fUnorderable || approximately_zero(fSide)) {
847             goto unorderable;
848         }
849     }
850     if ((result = convexHullOverlaps(rh)) >= 0) {
851         return result;
852     }
853     return endsIntersect(rh);
854 unorderable:
855     fUnorderable = true;
856     rh->fUnorderable = true;
857     return true;
858 }
859 
860 // OPTIMIZE: if this shows up in a profile, add a previous pointer
861 // as is, this should be rarely called
previous() const862 SkOpAngle* SkOpAngle::previous() const {
863     SkOpAngle* last = fNext;
864     do {
865         SkOpAngle* next = last->fNext;
866         if (next == this) {
867             return last;
868         }
869         last = next;
870     } while (true);
871 }
872 
segment() const873 SkOpSegment* SkOpAngle::segment() const {
874     return fStart->segment();
875 }
876 
set(SkOpSpanBase * start,SkOpSpanBase * end)877 void SkOpAngle::set(SkOpSpanBase* start, SkOpSpanBase* end) {
878     fStart = start;
879     fComputedEnd = fEnd = end;
880     SkASSERT(start != end);
881     fNext = NULL;
882     fComputeSector = fComputedSector = fCheckCoincidence = false;
883     setSpans();
884     setSector();
885     SkDEBUGCODE(fID = start ? start->globalState()->nextAngleID() : -1);
886 }
887 
setCurveHullSweep()888 void SkOpAngle::setCurveHullSweep() {
889     fUnorderedSweep = false;
890     fSweep[0] = fCurvePart[1] - fCurvePart[0];
891     const SkOpSegment* segment = fStart->segment();
892     if (SkPath::kLine_Verb == segment->verb()) {
893         fSweep[1] = fSweep[0];
894         return;
895     }
896     fSweep[1] = fCurvePart[2] - fCurvePart[0];
897     if (SkPath::kCubic_Verb != segment->verb()) {
898         if (!fSweep[0].fX && !fSweep[0].fY) {
899             fSweep[0] = fSweep[1];
900         }
901         return;
902     }
903     SkDVector thirdSweep = fCurvePart[3] - fCurvePart[0];
904     if (fSweep[0].fX == 0 && fSweep[0].fY == 0) {
905         fSweep[0] = fSweep[1];
906         fSweep[1] = thirdSweep;
907         if (fSweep[0].fX == 0 && fSweep[0].fY == 0) {
908             fSweep[0] = fSweep[1];
909             fCurvePart[1] = fCurvePart[3];
910             fIsCurve = false;
911         }
912         return;
913     }
914     double s1x3 = fSweep[0].crossCheck(thirdSweep);
915     double s3x2 = thirdSweep.crossCheck(fSweep[1]);
916     if (s1x3 * s3x2 >= 0) {  // if third vector is on or between first two vectors
917         return;
918     }
919     double s2x1 = fSweep[1].crossCheck(fSweep[0]);
920     // FIXME: If the sweep of the cubic is greater than 180 degrees, we're in trouble
921     // probably such wide sweeps should be artificially subdivided earlier so that never happens
922     SkASSERT(s1x3 * s2x1 < 0 || s1x3 * s3x2 < 0);
923     if (s3x2 * s2x1 < 0) {
924         SkASSERT(s2x1 * s1x3 > 0);
925         fSweep[0] = fSweep[1];
926         fUnorderedSweep = true;
927     }
928     fSweep[1] = thirdSweep;
929 }
930 
setSpans()931 void SkOpAngle::setSpans() {
932     fUnorderable = false;
933     fLastMarked = NULL;
934     if (!fStart) {
935         fUnorderable = true;
936         return;
937     }
938     const SkOpSegment* segment = fStart->segment();
939     const SkPoint* pts = segment->pts();
940     SkDEBUGCODE(fCurvePart.fVerb = SkPath::kCubic_Verb);
941     SkDEBUGCODE(fCurvePart[2].fX = fCurvePart[2].fY = fCurvePart[3].fX = fCurvePart[3].fY
942             = SK_ScalarNaN);
943     SkDEBUGCODE(fCurvePart.fVerb = segment->verb());
944     segment->subDivide(fStart, fEnd, &fCurvePart);
945     setCurveHullSweep();
946     const SkPath::Verb verb = segment->verb();
947     if (verb != SkPath::kLine_Verb
948             && !(fIsCurve = fSweep[0].crossCheck(fSweep[1]) != 0)) {
949         SkDLine lineHalf;
950         lineHalf[0].set(fCurvePart[0].asSkPoint());
951         lineHalf[1].set(fCurvePart[SkPathOpsVerbToPoints(verb)].asSkPoint());
952         fTangentHalf.lineEndPoints(lineHalf);
953         fSide = 0;
954     }
955     switch (verb) {
956     case SkPath::kLine_Verb: {
957         SkASSERT(fStart != fEnd);
958         const SkPoint& cP1 = pts[fStart->t() < fEnd->t()];
959         SkDLine lineHalf;
960         lineHalf[0].set(fStart->pt());
961         lineHalf[1].set(cP1);
962         fTangentHalf.lineEndPoints(lineHalf);
963         fSide = 0;
964         fIsCurve = false;
965         } return;
966     case SkPath::kQuad_Verb:
967     case SkPath::kConic_Verb: {
968         SkLineParameters tangentPart;
969         (void) tangentPart.quadEndPoints(fCurvePart.fQuad);
970         fSide = -tangentPart.pointDistance(fCurvePart[2]);  // not normalized -- compare sign only
971         } break;
972     case SkPath::kCubic_Verb: {
973         SkLineParameters tangentPart;
974         (void) tangentPart.cubicPart(fCurvePart.fCubic);
975         fSide = -tangentPart.pointDistance(fCurvePart[3]);
976         double testTs[4];
977         // OPTIMIZATION: keep inflections precomputed with cubic segment?
978         int testCount = SkDCubic::FindInflections(pts, testTs);
979         double startT = fStart->t();
980         double endT = fEnd->t();
981         double limitT = endT;
982         int index;
983         for (index = 0; index < testCount; ++index) {
984             if (!::between(startT, testTs[index], limitT)) {
985                 testTs[index] = -1;
986             }
987         }
988         testTs[testCount++] = startT;
989         testTs[testCount++] = endT;
990         SkTQSort<double>(testTs, &testTs[testCount - 1]);
991         double bestSide = 0;
992         int testCases = (testCount << 1) - 1;
993         index = 0;
994         while (testTs[index] < 0) {
995             ++index;
996         }
997         index <<= 1;
998         for (; index < testCases; ++index) {
999             int testIndex = index >> 1;
1000             double testT = testTs[testIndex];
1001             if (index & 1) {
1002                 testT = (testT + testTs[testIndex + 1]) / 2;
1003             }
1004             // OPTIMIZE: could avoid call for t == startT, endT
1005             SkDPoint pt = dcubic_xy_at_t(pts, segment->weight(), testT);
1006             SkLineParameters tangentPart;
1007             tangentPart.cubicEndPoints(fCurvePart.fCubic);
1008             double testSide = tangentPart.pointDistance(pt);
1009             if (fabs(bestSide) < fabs(testSide)) {
1010                 bestSide = testSide;
1011             }
1012         }
1013         fSide = -bestSide;  // compare sign only
1014         } break;
1015     default:
1016         SkASSERT(0);
1017     }
1018 }
1019 
setSector()1020 void SkOpAngle::setSector() {
1021     if (!fStart) {
1022         fUnorderable = true;
1023         return;
1024     }
1025     const SkOpSegment* segment = fStart->segment();
1026     SkPath::Verb verb = segment->verb();
1027     fSectorStart = this->findSector(verb, fSweep[0].fX, fSweep[0].fY);
1028     if (fSectorStart < 0) {
1029         goto deferTilLater;
1030     }
1031     if (!fIsCurve) {  // if it's a line or line-like, note that both sectors are the same
1032         SkASSERT(fSectorStart >= 0);
1033         fSectorEnd = fSectorStart;
1034         fSectorMask = 1 << fSectorStart;
1035         return;
1036     }
1037     SkASSERT(SkPath::kLine_Verb != verb);
1038     fSectorEnd = this->findSector(verb, fSweep[1].fX, fSweep[1].fY);
1039     if (fSectorEnd < 0) {
1040 deferTilLater:
1041         fSectorStart = fSectorEnd = -1;
1042         fSectorMask = 0;
1043         fComputeSector = true;  // can't determine sector until segment length can be found
1044         return;
1045     }
1046     if (fSectorEnd == fSectorStart
1047             && (fSectorStart & 3) != 3) { // if the sector has no span, it can't be an exact angle
1048         fSectorMask = 1 << fSectorStart;
1049         return;
1050     }
1051     bool crossesZero = this->checkCrossesZero();
1052     int start = SkTMin(fSectorStart, fSectorEnd);
1053     bool curveBendsCCW = (fSectorStart == start) ^ crossesZero;
1054     // bump the start and end of the sector span if they are on exact compass points
1055     if ((fSectorStart & 3) == 3) {
1056         fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f;
1057     }
1058     if ((fSectorEnd & 3) == 3) {
1059         fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f;
1060     }
1061     crossesZero = this->checkCrossesZero();
1062     start = SkTMin(fSectorStart, fSectorEnd);
1063     int end = SkTMax(fSectorStart, fSectorEnd);
1064     if (!crossesZero) {
1065         fSectorMask = (unsigned) -1 >> (31 - end + start) << start;
1066     } else {
1067         fSectorMask = (unsigned) -1 >> (31 - start) | (-1 << end);
1068     }
1069 }
1070 
starter()1071 SkOpSpan* SkOpAngle::starter() {
1072     return fStart->starter(fEnd);
1073 }
1074 
tangentsDiverge(const SkOpAngle * rh,double s0xt0) const1075 bool SkOpAngle::tangentsDiverge(const SkOpAngle* rh, double s0xt0) const {
1076     if (s0xt0 == 0) {
1077         return false;
1078     }
1079     // if the ctrl tangents are not nearly parallel, use them
1080     // solve for opposite direction displacement scale factor == m
1081     // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
1082     // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
1083     // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
1084     //                       v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
1085     // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
1086     // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
1087     // m = v1.cross(v2) / v1.dot(v2)
1088     const SkDVector* sweep = fSweep;
1089     const SkDVector* tweep = rh->fSweep;
1090     double s0dt0 = sweep[0].dot(tweep[0]);
1091     if (!s0dt0) {
1092         return true;
1093     }
1094     SkASSERT(s0dt0 != 0);
1095     double m = s0xt0 / s0dt0;
1096     double sDist = sweep[0].length() * m;
1097     double tDist = tweep[0].length() * m;
1098     bool useS = fabs(sDist) < fabs(tDist);
1099     double mFactor = fabs(useS ? this->distEndRatio(sDist) : rh->distEndRatio(tDist));
1100     return mFactor < 2400;  // empirically found limit
1101 }
1102