1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "SplitKit.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
18 #include "llvm/CodeGen/LiveRangeEdit.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/VirtRegMap.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28
29 using namespace llvm;
30
31 #define DEBUG_TYPE "regalloc"
32
33 STATISTIC(NumFinished, "Number of splits finished");
34 STATISTIC(NumSimple, "Number of splits that were simple");
35 STATISTIC(NumCopies, "Number of copies inserted for splitting");
36 STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
37 STATISTIC(NumRepairs, "Number of invalid live ranges repaired");
38
39 //===----------------------------------------------------------------------===//
40 // Split Analysis
41 //===----------------------------------------------------------------------===//
42
SplitAnalysis(const VirtRegMap & vrm,const LiveIntervals & lis,const MachineLoopInfo & mli)43 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
44 const MachineLoopInfo &mli)
45 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
46 TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr),
47 LastSplitPoint(MF.getNumBlockIDs()) {}
48
clear()49 void SplitAnalysis::clear() {
50 UseSlots.clear();
51 UseBlocks.clear();
52 ThroughBlocks.clear();
53 CurLI = nullptr;
54 DidRepairRange = false;
55 }
56
computeLastSplitPoint(unsigned Num)57 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
58 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
59 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
60 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
61 SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
62
63 // Compute split points on the first call. The pair is independent of the
64 // current live interval.
65 if (!LSP.first.isValid()) {
66 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
67 if (FirstTerm == MBB->end())
68 LSP.first = MBBEnd;
69 else
70 LSP.first = LIS.getInstructionIndex(FirstTerm);
71
72 // If there is a landing pad successor, also find the call instruction.
73 if (!LPad)
74 return LSP.first;
75 // There may not be a call instruction (?) in which case we ignore LPad.
76 LSP.second = LSP.first;
77 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
78 I != E;) {
79 --I;
80 if (I->isCall()) {
81 LSP.second = LIS.getInstructionIndex(I);
82 break;
83 }
84 }
85 }
86
87 // If CurLI is live into a landing pad successor, move the last split point
88 // back to the call that may throw.
89 if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
90 return LSP.first;
91
92 // Find the value leaving MBB.
93 const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
94 if (!VNI)
95 return LSP.first;
96
97 // If the value leaving MBB was defined after the call in MBB, it can't
98 // really be live-in to the landing pad. This can happen if the landing pad
99 // has a PHI, and this register is undef on the exceptional edge.
100 // <rdar://problem/10664933>
101 if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
102 return LSP.first;
103
104 // Value is properly live-in to the landing pad.
105 // Only allow splits before the call.
106 return LSP.second;
107 }
108
109 MachineBasicBlock::iterator
getLastSplitPointIter(MachineBasicBlock * MBB)110 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
111 SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
112 if (LSP == LIS.getMBBEndIdx(MBB))
113 return MBB->end();
114 return LIS.getInstructionFromIndex(LSP);
115 }
116
117 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
analyzeUses()118 void SplitAnalysis::analyzeUses() {
119 assert(UseSlots.empty() && "Call clear first");
120
121 // First get all the defs from the interval values. This provides the correct
122 // slots for early clobbers.
123 for (const VNInfo *VNI : CurLI->valnos)
124 if (!VNI->isPHIDef() && !VNI->isUnused())
125 UseSlots.push_back(VNI->def);
126
127 // Get use slots form the use-def chain.
128 const MachineRegisterInfo &MRI = MF.getRegInfo();
129 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
130 if (!MO.isUndef())
131 UseSlots.push_back(LIS.getInstructionIndex(MO.getParent()).getRegSlot());
132
133 array_pod_sort(UseSlots.begin(), UseSlots.end());
134
135 // Remove duplicates, keeping the smaller slot for each instruction.
136 // That is what we want for early clobbers.
137 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
138 SlotIndex::isSameInstr),
139 UseSlots.end());
140
141 // Compute per-live block info.
142 if (!calcLiveBlockInfo()) {
143 // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
144 // I am looking at you, RegisterCoalescer!
145 DidRepairRange = true;
146 ++NumRepairs;
147 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
148 const_cast<LiveIntervals&>(LIS)
149 .shrinkToUses(const_cast<LiveInterval*>(CurLI));
150 UseBlocks.clear();
151 ThroughBlocks.clear();
152 bool fixed = calcLiveBlockInfo();
153 (void)fixed;
154 assert(fixed && "Couldn't fix broken live interval");
155 }
156
157 DEBUG(dbgs() << "Analyze counted "
158 << UseSlots.size() << " instrs in "
159 << UseBlocks.size() << " blocks, through "
160 << NumThroughBlocks << " blocks.\n");
161 }
162
163 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
164 /// where CurLI is live.
calcLiveBlockInfo()165 bool SplitAnalysis::calcLiveBlockInfo() {
166 ThroughBlocks.resize(MF.getNumBlockIDs());
167 NumThroughBlocks = NumGapBlocks = 0;
168 if (CurLI->empty())
169 return true;
170
171 LiveInterval::const_iterator LVI = CurLI->begin();
172 LiveInterval::const_iterator LVE = CurLI->end();
173
174 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
175 UseI = UseSlots.begin();
176 UseE = UseSlots.end();
177
178 // Loop over basic blocks where CurLI is live.
179 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
180 for (;;) {
181 BlockInfo BI;
182 BI.MBB = MFI;
183 SlotIndex Start, Stop;
184 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
185
186 // If the block contains no uses, the range must be live through. At one
187 // point, RegisterCoalescer could create dangling ranges that ended
188 // mid-block.
189 if (UseI == UseE || *UseI >= Stop) {
190 ++NumThroughBlocks;
191 ThroughBlocks.set(BI.MBB->getNumber());
192 // The range shouldn't end mid-block if there are no uses. This shouldn't
193 // happen.
194 if (LVI->end < Stop)
195 return false;
196 } else {
197 // This block has uses. Find the first and last uses in the block.
198 BI.FirstInstr = *UseI;
199 assert(BI.FirstInstr >= Start);
200 do ++UseI;
201 while (UseI != UseE && *UseI < Stop);
202 BI.LastInstr = UseI[-1];
203 assert(BI.LastInstr < Stop);
204
205 // LVI is the first live segment overlapping MBB.
206 BI.LiveIn = LVI->start <= Start;
207
208 // When not live in, the first use should be a def.
209 if (!BI.LiveIn) {
210 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
211 assert(LVI->start == BI.FirstInstr && "First instr should be a def");
212 BI.FirstDef = BI.FirstInstr;
213 }
214
215 // Look for gaps in the live range.
216 BI.LiveOut = true;
217 while (LVI->end < Stop) {
218 SlotIndex LastStop = LVI->end;
219 if (++LVI == LVE || LVI->start >= Stop) {
220 BI.LiveOut = false;
221 BI.LastInstr = LastStop;
222 break;
223 }
224
225 if (LastStop < LVI->start) {
226 // There is a gap in the live range. Create duplicate entries for the
227 // live-in snippet and the live-out snippet.
228 ++NumGapBlocks;
229
230 // Push the Live-in part.
231 BI.LiveOut = false;
232 UseBlocks.push_back(BI);
233 UseBlocks.back().LastInstr = LastStop;
234
235 // Set up BI for the live-out part.
236 BI.LiveIn = false;
237 BI.LiveOut = true;
238 BI.FirstInstr = BI.FirstDef = LVI->start;
239 }
240
241 // A Segment that starts in the middle of the block must be a def.
242 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
243 if (!BI.FirstDef)
244 BI.FirstDef = LVI->start;
245 }
246
247 UseBlocks.push_back(BI);
248
249 // LVI is now at LVE or LVI->end >= Stop.
250 if (LVI == LVE)
251 break;
252 }
253
254 // Live segment ends exactly at Stop. Move to the next segment.
255 if (LVI->end == Stop && ++LVI == LVE)
256 break;
257
258 // Pick the next basic block.
259 if (LVI->start < Stop)
260 ++MFI;
261 else
262 MFI = LIS.getMBBFromIndex(LVI->start);
263 }
264
265 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
266 return true;
267 }
268
countLiveBlocks(const LiveInterval * cli) const269 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
270 if (cli->empty())
271 return 0;
272 LiveInterval *li = const_cast<LiveInterval*>(cli);
273 LiveInterval::iterator LVI = li->begin();
274 LiveInterval::iterator LVE = li->end();
275 unsigned Count = 0;
276
277 // Loop over basic blocks where li is live.
278 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
279 SlotIndex Stop = LIS.getMBBEndIdx(MFI);
280 for (;;) {
281 ++Count;
282 LVI = li->advanceTo(LVI, Stop);
283 if (LVI == LVE)
284 return Count;
285 do {
286 ++MFI;
287 Stop = LIS.getMBBEndIdx(MFI);
288 } while (Stop <= LVI->start);
289 }
290 }
291
isOriginalEndpoint(SlotIndex Idx) const292 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
293 unsigned OrigReg = VRM.getOriginal(CurLI->reg);
294 const LiveInterval &Orig = LIS.getInterval(OrigReg);
295 assert(!Orig.empty() && "Splitting empty interval?");
296 LiveInterval::const_iterator I = Orig.find(Idx);
297
298 // Range containing Idx should begin at Idx.
299 if (I != Orig.end() && I->start <= Idx)
300 return I->start == Idx;
301
302 // Range does not contain Idx, previous must end at Idx.
303 return I != Orig.begin() && (--I)->end == Idx;
304 }
305
analyze(const LiveInterval * li)306 void SplitAnalysis::analyze(const LiveInterval *li) {
307 clear();
308 CurLI = li;
309 analyzeUses();
310 }
311
312
313 //===----------------------------------------------------------------------===//
314 // Split Editor
315 //===----------------------------------------------------------------------===//
316
317 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor(SplitAnalysis & sa,LiveIntervals & lis,VirtRegMap & vrm,MachineDominatorTree & mdt,MachineBlockFrequencyInfo & mbfi)318 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
319 MachineDominatorTree &mdt,
320 MachineBlockFrequencyInfo &mbfi)
321 : SA(sa), LIS(lis), VRM(vrm), MRI(vrm.getMachineFunction().getRegInfo()),
322 MDT(mdt), TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
323 TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
324 MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition),
325 RegAssign(Allocator) {}
326
reset(LiveRangeEdit & LRE,ComplementSpillMode SM)327 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
328 Edit = &LRE;
329 SpillMode = SM;
330 OpenIdx = 0;
331 RegAssign.clear();
332 Values.clear();
333
334 // Reset the LiveRangeCalc instances needed for this spill mode.
335 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
336 &LIS.getVNInfoAllocator());
337 if (SpillMode)
338 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
339 &LIS.getVNInfoAllocator());
340
341 // We don't need an AliasAnalysis since we will only be performing
342 // cheap-as-a-copy remats anyway.
343 Edit->anyRematerializable(nullptr);
344 }
345
346 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const347 void SplitEditor::dump() const {
348 if (RegAssign.empty()) {
349 dbgs() << " empty\n";
350 return;
351 }
352
353 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
354 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
355 dbgs() << '\n';
356 }
357 #endif
358
defValue(unsigned RegIdx,const VNInfo * ParentVNI,SlotIndex Idx)359 VNInfo *SplitEditor::defValue(unsigned RegIdx,
360 const VNInfo *ParentVNI,
361 SlotIndex Idx) {
362 assert(ParentVNI && "Mapping NULL value");
363 assert(Idx.isValid() && "Invalid SlotIndex");
364 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
365 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
366
367 // Create a new value.
368 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
369
370 // Use insert for lookup, so we can add missing values with a second lookup.
371 std::pair<ValueMap::iterator, bool> InsP =
372 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
373 ValueForcePair(VNI, false)));
374
375 // This was the first time (RegIdx, ParentVNI) was mapped.
376 // Keep it as a simple def without any liveness.
377 if (InsP.second)
378 return VNI;
379
380 // If the previous value was a simple mapping, add liveness for it now.
381 if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
382 SlotIndex Def = OldVNI->def;
383 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI));
384 // No longer a simple mapping. Switch to a complex, non-forced mapping.
385 InsP.first->second = ValueForcePair();
386 }
387
388 // This is a complex mapping, add liveness for VNI
389 SlotIndex Def = VNI->def;
390 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
391
392 return VNI;
393 }
394
forceRecompute(unsigned RegIdx,const VNInfo * ParentVNI)395 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
396 assert(ParentVNI && "Mapping NULL value");
397 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
398 VNInfo *VNI = VFP.getPointer();
399
400 // ParentVNI was either unmapped or already complex mapped. Either way, just
401 // set the force bit.
402 if (!VNI) {
403 VFP.setInt(true);
404 return;
405 }
406
407 // This was previously a single mapping. Make sure the old def is represented
408 // by a trivial live range.
409 SlotIndex Def = VNI->def;
410 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
411 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
412 // Mark as complex mapped, forced.
413 VFP = ValueForcePair(nullptr, true);
414 }
415
defFromParent(unsigned RegIdx,VNInfo * ParentVNI,SlotIndex UseIdx,MachineBasicBlock & MBB,MachineBasicBlock::iterator I)416 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
417 VNInfo *ParentVNI,
418 SlotIndex UseIdx,
419 MachineBasicBlock &MBB,
420 MachineBasicBlock::iterator I) {
421 MachineInstr *CopyMI = nullptr;
422 SlotIndex Def;
423 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
424
425 // We may be trying to avoid interference that ends at a deleted instruction,
426 // so always begin RegIdx 0 early and all others late.
427 bool Late = RegIdx != 0;
428
429 // Attempt cheap-as-a-copy rematerialization.
430 LiveRangeEdit::Remat RM(ParentVNI);
431 if (Edit->canRematerializeAt(RM, UseIdx, true)) {
432 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
433 ++NumRemats;
434 } else {
435 // Can't remat, just insert a copy from parent.
436 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
437 .addReg(Edit->getReg());
438 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
439 .getRegSlot();
440 ++NumCopies;
441 }
442
443 // Define the value in Reg.
444 return defValue(RegIdx, ParentVNI, Def);
445 }
446
447 /// Create a new virtual register and live interval.
openIntv()448 unsigned SplitEditor::openIntv() {
449 // Create the complement as index 0.
450 if (Edit->empty())
451 Edit->createEmptyInterval();
452
453 // Create the open interval.
454 OpenIdx = Edit->size();
455 Edit->createEmptyInterval();
456 return OpenIdx;
457 }
458
selectIntv(unsigned Idx)459 void SplitEditor::selectIntv(unsigned Idx) {
460 assert(Idx != 0 && "Cannot select the complement interval");
461 assert(Idx < Edit->size() && "Can only select previously opened interval");
462 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
463 OpenIdx = Idx;
464 }
465
enterIntvBefore(SlotIndex Idx)466 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
467 assert(OpenIdx && "openIntv not called before enterIntvBefore");
468 DEBUG(dbgs() << " enterIntvBefore " << Idx);
469 Idx = Idx.getBaseIndex();
470 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
471 if (!ParentVNI) {
472 DEBUG(dbgs() << ": not live\n");
473 return Idx;
474 }
475 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
476 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
477 assert(MI && "enterIntvBefore called with invalid index");
478
479 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
480 return VNI->def;
481 }
482
enterIntvAfter(SlotIndex Idx)483 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
484 assert(OpenIdx && "openIntv not called before enterIntvAfter");
485 DEBUG(dbgs() << " enterIntvAfter " << Idx);
486 Idx = Idx.getBoundaryIndex();
487 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
488 if (!ParentVNI) {
489 DEBUG(dbgs() << ": not live\n");
490 return Idx;
491 }
492 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
493 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
494 assert(MI && "enterIntvAfter called with invalid index");
495
496 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
497 std::next(MachineBasicBlock::iterator(MI)));
498 return VNI->def;
499 }
500
enterIntvAtEnd(MachineBasicBlock & MBB)501 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
502 assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
503 SlotIndex End = LIS.getMBBEndIdx(&MBB);
504 SlotIndex Last = End.getPrevSlot();
505 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
506 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
507 if (!ParentVNI) {
508 DEBUG(dbgs() << ": not live\n");
509 return End;
510 }
511 DEBUG(dbgs() << ": valno " << ParentVNI->id);
512 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
513 SA.getLastSplitPointIter(&MBB));
514 RegAssign.insert(VNI->def, End, OpenIdx);
515 DEBUG(dump());
516 return VNI->def;
517 }
518
519 /// useIntv - indicate that all instructions in MBB should use OpenLI.
useIntv(const MachineBasicBlock & MBB)520 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
521 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
522 }
523
useIntv(SlotIndex Start,SlotIndex End)524 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
525 assert(OpenIdx && "openIntv not called before useIntv");
526 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
527 RegAssign.insert(Start, End, OpenIdx);
528 DEBUG(dump());
529 }
530
leaveIntvAfter(SlotIndex Idx)531 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
532 assert(OpenIdx && "openIntv not called before leaveIntvAfter");
533 DEBUG(dbgs() << " leaveIntvAfter " << Idx);
534
535 // The interval must be live beyond the instruction at Idx.
536 SlotIndex Boundary = Idx.getBoundaryIndex();
537 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
538 if (!ParentVNI) {
539 DEBUG(dbgs() << ": not live\n");
540 return Boundary.getNextSlot();
541 }
542 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
543 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
544 assert(MI && "No instruction at index");
545
546 // In spill mode, make live ranges as short as possible by inserting the copy
547 // before MI. This is only possible if that instruction doesn't redefine the
548 // value. The inserted COPY is not a kill, and we don't need to recompute
549 // the source live range. The spiller also won't try to hoist this copy.
550 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
551 MI->readsVirtualRegister(Edit->getReg())) {
552 forceRecompute(0, ParentVNI);
553 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
554 return Idx;
555 }
556
557 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
558 std::next(MachineBasicBlock::iterator(MI)));
559 return VNI->def;
560 }
561
leaveIntvBefore(SlotIndex Idx)562 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
563 assert(OpenIdx && "openIntv not called before leaveIntvBefore");
564 DEBUG(dbgs() << " leaveIntvBefore " << Idx);
565
566 // The interval must be live into the instruction at Idx.
567 Idx = Idx.getBaseIndex();
568 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
569 if (!ParentVNI) {
570 DEBUG(dbgs() << ": not live\n");
571 return Idx.getNextSlot();
572 }
573 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
574
575 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
576 assert(MI && "No instruction at index");
577 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
578 return VNI->def;
579 }
580
leaveIntvAtTop(MachineBasicBlock & MBB)581 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
582 assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
583 SlotIndex Start = LIS.getMBBStartIdx(&MBB);
584 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
585
586 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
587 if (!ParentVNI) {
588 DEBUG(dbgs() << ": not live\n");
589 return Start;
590 }
591
592 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
593 MBB.SkipPHIsAndLabels(MBB.begin()));
594 RegAssign.insert(Start, VNI->def, OpenIdx);
595 DEBUG(dump());
596 return VNI->def;
597 }
598
overlapIntv(SlotIndex Start,SlotIndex End)599 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
600 assert(OpenIdx && "openIntv not called before overlapIntv");
601 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
602 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
603 "Parent changes value in extended range");
604 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
605 "Range cannot span basic blocks");
606
607 // The complement interval will be extended as needed by LRCalc.extend().
608 if (ParentVNI)
609 forceRecompute(0, ParentVNI);
610 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
611 RegAssign.insert(Start, End, OpenIdx);
612 DEBUG(dump());
613 }
614
615 //===----------------------------------------------------------------------===//
616 // Spill modes
617 //===----------------------------------------------------------------------===//
618
removeBackCopies(SmallVectorImpl<VNInfo * > & Copies)619 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
620 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
621 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
622 RegAssignMap::iterator AssignI;
623 AssignI.setMap(RegAssign);
624
625 for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
626 SlotIndex Def = Copies[i]->def;
627 MachineInstr *MI = LIS.getInstructionFromIndex(Def);
628 assert(MI && "No instruction for back-copy");
629
630 MachineBasicBlock *MBB = MI->getParent();
631 MachineBasicBlock::iterator MBBI(MI);
632 bool AtBegin;
633 do AtBegin = MBBI == MBB->begin();
634 while (!AtBegin && (--MBBI)->isDebugValue());
635
636 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
637 LIS.removeVRegDefAt(*LI, Def);
638 LIS.RemoveMachineInstrFromMaps(MI);
639 MI->eraseFromParent();
640
641 // Adjust RegAssign if a register assignment is killed at Def. We want to
642 // avoid calculating the live range of the source register if possible.
643 AssignI.find(Def.getPrevSlot());
644 if (!AssignI.valid() || AssignI.start() >= Def)
645 continue;
646 // If MI doesn't kill the assigned register, just leave it.
647 if (AssignI.stop() != Def)
648 continue;
649 unsigned RegIdx = AssignI.value();
650 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
651 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n');
652 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
653 } else {
654 SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot();
655 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
656 AssignI.setStop(Kill);
657 }
658 }
659 }
660
661 MachineBasicBlock*
findShallowDominator(MachineBasicBlock * MBB,MachineBasicBlock * DefMBB)662 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
663 MachineBasicBlock *DefMBB) {
664 if (MBB == DefMBB)
665 return MBB;
666 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
667
668 const MachineLoopInfo &Loops = SA.Loops;
669 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
670 MachineDomTreeNode *DefDomNode = MDT[DefMBB];
671
672 // Best candidate so far.
673 MachineBasicBlock *BestMBB = MBB;
674 unsigned BestDepth = UINT_MAX;
675
676 for (;;) {
677 const MachineLoop *Loop = Loops.getLoopFor(MBB);
678
679 // MBB isn't in a loop, it doesn't get any better. All dominators have a
680 // higher frequency by definition.
681 if (!Loop) {
682 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
683 << MBB->getNumber() << " at depth 0\n");
684 return MBB;
685 }
686
687 // We'll never be able to exit the DefLoop.
688 if (Loop == DefLoop) {
689 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
690 << MBB->getNumber() << " in the same loop\n");
691 return MBB;
692 }
693
694 // Least busy dominator seen so far.
695 unsigned Depth = Loop->getLoopDepth();
696 if (Depth < BestDepth) {
697 BestMBB = MBB;
698 BestDepth = Depth;
699 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
700 << MBB->getNumber() << " at depth " << Depth << '\n');
701 }
702
703 // Leave loop by going to the immediate dominator of the loop header.
704 // This is a bigger stride than simply walking up the dominator tree.
705 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
706
707 // Too far up the dominator tree?
708 if (!IDom || !MDT.dominates(DefDomNode, IDom))
709 return BestMBB;
710
711 MBB = IDom->getBlock();
712 }
713 }
714
hoistCopiesForSize()715 void SplitEditor::hoistCopiesForSize() {
716 // Get the complement interval, always RegIdx 0.
717 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
718 LiveInterval *Parent = &Edit->getParent();
719
720 // Track the nearest common dominator for all back-copies for each ParentVNI,
721 // indexed by ParentVNI->id.
722 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
723 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
724
725 // Find the nearest common dominator for parent values with multiple
726 // back-copies. If a single back-copy dominates, put it in DomPair.second.
727 for (VNInfo *VNI : LI->valnos) {
728 if (VNI->isUnused())
729 continue;
730 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
731 assert(ParentVNI && "Parent not live at complement def");
732
733 // Don't hoist remats. The complement is probably going to disappear
734 // completely anyway.
735 if (Edit->didRematerialize(ParentVNI))
736 continue;
737
738 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
739 DomPair &Dom = NearestDom[ParentVNI->id];
740
741 // Keep directly defined parent values. This is either a PHI or an
742 // instruction in the complement range. All other copies of ParentVNI
743 // should be eliminated.
744 if (VNI->def == ParentVNI->def) {
745 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
746 Dom = DomPair(ValMBB, VNI->def);
747 continue;
748 }
749 // Skip the singly mapped values. There is nothing to gain from hoisting a
750 // single back-copy.
751 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
752 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
753 continue;
754 }
755
756 if (!Dom.first) {
757 // First time we see ParentVNI. VNI dominates itself.
758 Dom = DomPair(ValMBB, VNI->def);
759 } else if (Dom.first == ValMBB) {
760 // Two defs in the same block. Pick the earlier def.
761 if (!Dom.second.isValid() || VNI->def < Dom.second)
762 Dom.second = VNI->def;
763 } else {
764 // Different basic blocks. Check if one dominates.
765 MachineBasicBlock *Near =
766 MDT.findNearestCommonDominator(Dom.first, ValMBB);
767 if (Near == ValMBB)
768 // Def ValMBB dominates.
769 Dom = DomPair(ValMBB, VNI->def);
770 else if (Near != Dom.first)
771 // None dominate. Hoist to common dominator, need new def.
772 Dom = DomPair(Near, SlotIndex());
773 }
774
775 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
776 << " for parent " << ParentVNI->id << '@' << ParentVNI->def
777 << " hoist to BB#" << Dom.first->getNumber() << ' '
778 << Dom.second << '\n');
779 }
780
781 // Insert the hoisted copies.
782 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
783 DomPair &Dom = NearestDom[i];
784 if (!Dom.first || Dom.second.isValid())
785 continue;
786 // This value needs a hoisted copy inserted at the end of Dom.first.
787 VNInfo *ParentVNI = Parent->getValNumInfo(i);
788 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
789 // Get a less loopy dominator than Dom.first.
790 Dom.first = findShallowDominator(Dom.first, DefMBB);
791 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
792 Dom.second =
793 defFromParent(0, ParentVNI, Last, *Dom.first,
794 SA.getLastSplitPointIter(Dom.first))->def;
795 }
796
797 // Remove redundant back-copies that are now known to be dominated by another
798 // def with the same value.
799 SmallVector<VNInfo*, 8> BackCopies;
800 for (VNInfo *VNI : LI->valnos) {
801 if (VNI->isUnused())
802 continue;
803 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
804 const DomPair &Dom = NearestDom[ParentVNI->id];
805 if (!Dom.first || Dom.second == VNI->def)
806 continue;
807 BackCopies.push_back(VNI);
808 forceRecompute(0, ParentVNI);
809 }
810 removeBackCopies(BackCopies);
811 }
812
813
814 /// transferValues - Transfer all possible values to the new live ranges.
815 /// Values that were rematerialized are left alone, they need LRCalc.extend().
transferValues()816 bool SplitEditor::transferValues() {
817 bool Skipped = false;
818 RegAssignMap::const_iterator AssignI = RegAssign.begin();
819 for (const LiveRange::Segment &S : Edit->getParent()) {
820 DEBUG(dbgs() << " blit " << S << ':');
821 VNInfo *ParentVNI = S.valno;
822 // RegAssign has holes where RegIdx 0 should be used.
823 SlotIndex Start = S.start;
824 AssignI.advanceTo(Start);
825 do {
826 unsigned RegIdx;
827 SlotIndex End = S.end;
828 if (!AssignI.valid()) {
829 RegIdx = 0;
830 } else if (AssignI.start() <= Start) {
831 RegIdx = AssignI.value();
832 if (AssignI.stop() < End) {
833 End = AssignI.stop();
834 ++AssignI;
835 }
836 } else {
837 RegIdx = 0;
838 End = std::min(End, AssignI.start());
839 }
840
841 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
842 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
843 LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
844
845 // Check for a simply defined value that can be blitted directly.
846 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
847 if (VNInfo *VNI = VFP.getPointer()) {
848 DEBUG(dbgs() << ':' << VNI->id);
849 LR.addSegment(LiveInterval::Segment(Start, End, VNI));
850 Start = End;
851 continue;
852 }
853
854 // Skip values with forced recomputation.
855 if (VFP.getInt()) {
856 DEBUG(dbgs() << "(recalc)");
857 Skipped = true;
858 Start = End;
859 continue;
860 }
861
862 LiveRangeCalc &LRC = getLRCalc(RegIdx);
863
864 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
865 // so the live range is accurate. Add live-in blocks in [Start;End) to the
866 // LiveInBlocks.
867 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
868 SlotIndex BlockStart, BlockEnd;
869 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
870
871 // The first block may be live-in, or it may have its own def.
872 if (Start != BlockStart) {
873 VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
874 assert(VNI && "Missing def for complex mapped value");
875 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
876 // MBB has its own def. Is it also live-out?
877 if (BlockEnd <= End)
878 LRC.setLiveOutValue(MBB, VNI);
879
880 // Skip to the next block for live-in.
881 ++MBB;
882 BlockStart = BlockEnd;
883 }
884
885 // Handle the live-in blocks covered by [Start;End).
886 assert(Start <= BlockStart && "Expected live-in block");
887 while (BlockStart < End) {
888 DEBUG(dbgs() << ">BB#" << MBB->getNumber());
889 BlockEnd = LIS.getMBBEndIdx(MBB);
890 if (BlockStart == ParentVNI->def) {
891 // This block has the def of a parent PHI, so it isn't live-in.
892 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
893 VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
894 assert(VNI && "Missing def for complex mapped parent PHI");
895 if (End >= BlockEnd)
896 LRC.setLiveOutValue(MBB, VNI); // Live-out as well.
897 } else {
898 // This block needs a live-in value. The last block covered may not
899 // be live-out.
900 if (End < BlockEnd)
901 LRC.addLiveInBlock(LR, MDT[MBB], End);
902 else {
903 // Live-through, and we don't know the value.
904 LRC.addLiveInBlock(LR, MDT[MBB]);
905 LRC.setLiveOutValue(MBB, nullptr);
906 }
907 }
908 BlockStart = BlockEnd;
909 ++MBB;
910 }
911 Start = End;
912 } while (Start != S.end);
913 DEBUG(dbgs() << '\n');
914 }
915
916 LRCalc[0].calculateValues();
917 if (SpillMode)
918 LRCalc[1].calculateValues();
919
920 return Skipped;
921 }
922
extendPHIKillRanges()923 void SplitEditor::extendPHIKillRanges() {
924 // Extend live ranges to be live-out for successor PHI values.
925 for (const VNInfo *PHIVNI : Edit->getParent().valnos) {
926 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
927 continue;
928 unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
929 LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
930 LiveRangeCalc &LRC = getLRCalc(RegIdx);
931 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
932 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
933 PE = MBB->pred_end(); PI != PE; ++PI) {
934 SlotIndex End = LIS.getMBBEndIdx(*PI);
935 SlotIndex LastUse = End.getPrevSlot();
936 // The predecessor may not have a live-out value. That is OK, like an
937 // undef PHI operand.
938 if (Edit->getParent().liveAt(LastUse)) {
939 assert(RegAssign.lookup(LastUse) == RegIdx &&
940 "Different register assignment in phi predecessor");
941 LRC.extend(LR, End);
942 }
943 }
944 }
945 }
946
947 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
rewriteAssigned(bool ExtendRanges)948 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
949 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
950 RE = MRI.reg_end(); RI != RE;) {
951 MachineOperand &MO = *RI;
952 MachineInstr *MI = MO.getParent();
953 ++RI;
954 // LiveDebugVariables should have handled all DBG_VALUE instructions.
955 if (MI->isDebugValue()) {
956 DEBUG(dbgs() << "Zapping " << *MI);
957 MO.setReg(0);
958 continue;
959 }
960
961 // <undef> operands don't really read the register, so it doesn't matter
962 // which register we choose. When the use operand is tied to a def, we must
963 // use the same register as the def, so just do that always.
964 SlotIndex Idx = LIS.getInstructionIndex(MI);
965 if (MO.isDef() || MO.isUndef())
966 Idx = Idx.getRegSlot(MO.isEarlyClobber());
967
968 // Rewrite to the mapped register at Idx.
969 unsigned RegIdx = RegAssign.lookup(Idx);
970 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
971 MO.setReg(LI->reg);
972 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
973 << Idx << ':' << RegIdx << '\t' << *MI);
974
975 // Extend liveness to Idx if the instruction reads reg.
976 if (!ExtendRanges || MO.isUndef())
977 continue;
978
979 // Skip instructions that don't read Reg.
980 if (MO.isDef()) {
981 if (!MO.getSubReg() && !MO.isEarlyClobber())
982 continue;
983 // We may wan't to extend a live range for a partial redef, or for a use
984 // tied to an early clobber.
985 Idx = Idx.getPrevSlot();
986 if (!Edit->getParent().liveAt(Idx))
987 continue;
988 } else
989 Idx = Idx.getRegSlot(true);
990
991 getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot());
992 }
993 }
994
deleteRematVictims()995 void SplitEditor::deleteRematVictims() {
996 SmallVector<MachineInstr*, 8> Dead;
997 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
998 LiveInterval *LI = &LIS.getInterval(*I);
999 for (const LiveRange::Segment &S : LI->segments) {
1000 // Dead defs end at the dead slot.
1001 if (S.end != S.valno->def.getDeadSlot())
1002 continue;
1003 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1004 assert(MI && "Missing instruction for dead def");
1005 MI->addRegisterDead(LI->reg, &TRI);
1006
1007 if (!MI->allDefsAreDead())
1008 continue;
1009
1010 DEBUG(dbgs() << "All defs dead: " << *MI);
1011 Dead.push_back(MI);
1012 }
1013 }
1014
1015 if (Dead.empty())
1016 return;
1017
1018 Edit->eliminateDeadDefs(Dead);
1019 }
1020
finish(SmallVectorImpl<unsigned> * LRMap)1021 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1022 ++NumFinished;
1023
1024 // At this point, the live intervals in Edit contain VNInfos corresponding to
1025 // the inserted copies.
1026
1027 // Add the original defs from the parent interval.
1028 for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1029 if (ParentVNI->isUnused())
1030 continue;
1031 unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1032 defValue(RegIdx, ParentVNI, ParentVNI->def);
1033
1034 // Force rematted values to be recomputed everywhere.
1035 // The new live ranges may be truncated.
1036 if (Edit->didRematerialize(ParentVNI))
1037 for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1038 forceRecompute(i, ParentVNI);
1039 }
1040
1041 // Hoist back-copies to the complement interval when in spill mode.
1042 switch (SpillMode) {
1043 case SM_Partition:
1044 // Leave all back-copies as is.
1045 break;
1046 case SM_Size:
1047 hoistCopiesForSize();
1048 break;
1049 case SM_Speed:
1050 llvm_unreachable("Spill mode 'speed' not implemented yet");
1051 }
1052
1053 // Transfer the simply mapped values, check if any are skipped.
1054 bool Skipped = transferValues();
1055 if (Skipped)
1056 extendPHIKillRanges();
1057 else
1058 ++NumSimple;
1059
1060 // Rewrite virtual registers, possibly extending ranges.
1061 rewriteAssigned(Skipped);
1062
1063 // Delete defs that were rematted everywhere.
1064 if (Skipped)
1065 deleteRematVictims();
1066
1067 // Get rid of unused values and set phi-kill flags.
1068 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) {
1069 LiveInterval &LI = LIS.getInterval(*I);
1070 LI.RenumberValues();
1071 }
1072
1073 // Provide a reverse mapping from original indices to Edit ranges.
1074 if (LRMap) {
1075 LRMap->clear();
1076 for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1077 LRMap->push_back(i);
1078 }
1079
1080 // Now check if any registers were separated into multiple components.
1081 ConnectedVNInfoEqClasses ConEQ(LIS);
1082 for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1083 // Don't use iterators, they are invalidated by create() below.
1084 LiveInterval *li = &LIS.getInterval(Edit->get(i));
1085 unsigned NumComp = ConEQ.Classify(li);
1086 if (NumComp <= 1)
1087 continue;
1088 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n');
1089 SmallVector<LiveInterval*, 8> dups;
1090 dups.push_back(li);
1091 for (unsigned j = 1; j != NumComp; ++j)
1092 dups.push_back(&Edit->createEmptyInterval());
1093 ConEQ.Distribute(&dups[0], MRI);
1094 // The new intervals all map back to i.
1095 if (LRMap)
1096 LRMap->resize(Edit->size(), i);
1097 }
1098
1099 // Calculate spill weight and allocation hints for new intervals.
1100 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1101
1102 assert(!LRMap || LRMap->size() == Edit->size());
1103 }
1104
1105
1106 //===----------------------------------------------------------------------===//
1107 // Single Block Splitting
1108 //===----------------------------------------------------------------------===//
1109
shouldSplitSingleBlock(const BlockInfo & BI,bool SingleInstrs) const1110 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1111 bool SingleInstrs) const {
1112 // Always split for multiple instructions.
1113 if (!BI.isOneInstr())
1114 return true;
1115 // Don't split for single instructions unless explicitly requested.
1116 if (!SingleInstrs)
1117 return false;
1118 // Splitting a live-through range always makes progress.
1119 if (BI.LiveIn && BI.LiveOut)
1120 return true;
1121 // No point in isolating a copy. It has no register class constraints.
1122 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1123 return false;
1124 // Finally, don't isolate an end point that was created by earlier splits.
1125 return isOriginalEndpoint(BI.FirstInstr);
1126 }
1127
splitSingleBlock(const SplitAnalysis::BlockInfo & BI)1128 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1129 openIntv();
1130 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1131 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1132 LastSplitPoint));
1133 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1134 useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1135 } else {
1136 // The last use is after the last valid split point.
1137 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1138 useIntv(SegStart, SegStop);
1139 overlapIntv(SegStop, BI.LastInstr);
1140 }
1141 }
1142
1143
1144 //===----------------------------------------------------------------------===//
1145 // Global Live Range Splitting Support
1146 //===----------------------------------------------------------------------===//
1147
1148 // These methods support a method of global live range splitting that uses a
1149 // global algorithm to decide intervals for CFG edges. They will insert split
1150 // points and color intervals in basic blocks while avoiding interference.
1151 //
1152 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1153 // are on the stack.
1154
splitLiveThroughBlock(unsigned MBBNum,unsigned IntvIn,SlotIndex LeaveBefore,unsigned IntvOut,SlotIndex EnterAfter)1155 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1156 unsigned IntvIn, SlotIndex LeaveBefore,
1157 unsigned IntvOut, SlotIndex EnterAfter){
1158 SlotIndex Start, Stop;
1159 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1160
1161 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1162 << ") intf " << LeaveBefore << '-' << EnterAfter
1163 << ", live-through " << IntvIn << " -> " << IntvOut);
1164
1165 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1166
1167 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1168 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1169 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1170
1171 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1172
1173 if (!IntvOut) {
1174 DEBUG(dbgs() << ", spill on entry.\n");
1175 //
1176 // <<<<<<<<< Possible LeaveBefore interference.
1177 // |-----------| Live through.
1178 // -____________ Spill on entry.
1179 //
1180 selectIntv(IntvIn);
1181 SlotIndex Idx = leaveIntvAtTop(*MBB);
1182 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1183 (void)Idx;
1184 return;
1185 }
1186
1187 if (!IntvIn) {
1188 DEBUG(dbgs() << ", reload on exit.\n");
1189 //
1190 // >>>>>>> Possible EnterAfter interference.
1191 // |-----------| Live through.
1192 // ___________-- Reload on exit.
1193 //
1194 selectIntv(IntvOut);
1195 SlotIndex Idx = enterIntvAtEnd(*MBB);
1196 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1197 (void)Idx;
1198 return;
1199 }
1200
1201 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1202 DEBUG(dbgs() << ", straight through.\n");
1203 //
1204 // |-----------| Live through.
1205 // ------------- Straight through, same intv, no interference.
1206 //
1207 selectIntv(IntvOut);
1208 useIntv(Start, Stop);
1209 return;
1210 }
1211
1212 // We cannot legally insert splits after LSP.
1213 SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1214 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1215
1216 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1217 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1218 DEBUG(dbgs() << ", switch avoiding interference.\n");
1219 //
1220 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1221 // |-----------| Live through.
1222 // ------======= Switch intervals between interference.
1223 //
1224 selectIntv(IntvOut);
1225 SlotIndex Idx;
1226 if (LeaveBefore && LeaveBefore < LSP) {
1227 Idx = enterIntvBefore(LeaveBefore);
1228 useIntv(Idx, Stop);
1229 } else {
1230 Idx = enterIntvAtEnd(*MBB);
1231 }
1232 selectIntv(IntvIn);
1233 useIntv(Start, Idx);
1234 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1235 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1236 return;
1237 }
1238
1239 DEBUG(dbgs() << ", create local intv for interference.\n");
1240 //
1241 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1242 // |-----------| Live through.
1243 // ==---------== Switch intervals before/after interference.
1244 //
1245 assert(LeaveBefore <= EnterAfter && "Missed case");
1246
1247 selectIntv(IntvOut);
1248 SlotIndex Idx = enterIntvAfter(EnterAfter);
1249 useIntv(Idx, Stop);
1250 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1251
1252 selectIntv(IntvIn);
1253 Idx = leaveIntvBefore(LeaveBefore);
1254 useIntv(Start, Idx);
1255 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1256 }
1257
1258
splitRegInBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvIn,SlotIndex LeaveBefore)1259 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1260 unsigned IntvIn, SlotIndex LeaveBefore) {
1261 SlotIndex Start, Stop;
1262 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1263
1264 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1265 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1266 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1267 << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1268
1269 assert(IntvIn && "Must have register in");
1270 assert(BI.LiveIn && "Must be live-in");
1271 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1272
1273 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1274 DEBUG(dbgs() << " before interference.\n");
1275 //
1276 // <<< Interference after kill.
1277 // |---o---x | Killed in block.
1278 // ========= Use IntvIn everywhere.
1279 //
1280 selectIntv(IntvIn);
1281 useIntv(Start, BI.LastInstr);
1282 return;
1283 }
1284
1285 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1286
1287 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1288 //
1289 // <<< Possible interference after last use.
1290 // |---o---o---| Live-out on stack.
1291 // =========____ Leave IntvIn after last use.
1292 //
1293 // < Interference after last use.
1294 // |---o---o--o| Live-out on stack, late last use.
1295 // ============ Copy to stack after LSP, overlap IntvIn.
1296 // \_____ Stack interval is live-out.
1297 //
1298 if (BI.LastInstr < LSP) {
1299 DEBUG(dbgs() << ", spill after last use before interference.\n");
1300 selectIntv(IntvIn);
1301 SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1302 useIntv(Start, Idx);
1303 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1304 } else {
1305 DEBUG(dbgs() << ", spill before last split point.\n");
1306 selectIntv(IntvIn);
1307 SlotIndex Idx = leaveIntvBefore(LSP);
1308 overlapIntv(Idx, BI.LastInstr);
1309 useIntv(Start, Idx);
1310 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1311 }
1312 return;
1313 }
1314
1315 // The interference is overlapping somewhere we wanted to use IntvIn. That
1316 // means we need to create a local interval that can be allocated a
1317 // different register.
1318 unsigned LocalIntv = openIntv();
1319 (void)LocalIntv;
1320 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1321
1322 if (!BI.LiveOut || BI.LastInstr < LSP) {
1323 //
1324 // <<<<<<< Interference overlapping uses.
1325 // |---o---o---| Live-out on stack.
1326 // =====----____ Leave IntvIn before interference, then spill.
1327 //
1328 SlotIndex To = leaveIntvAfter(BI.LastInstr);
1329 SlotIndex From = enterIntvBefore(LeaveBefore);
1330 useIntv(From, To);
1331 selectIntv(IntvIn);
1332 useIntv(Start, From);
1333 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1334 return;
1335 }
1336
1337 // <<<<<<< Interference overlapping uses.
1338 // |---o---o--o| Live-out on stack, late last use.
1339 // =====------- Copy to stack before LSP, overlap LocalIntv.
1340 // \_____ Stack interval is live-out.
1341 //
1342 SlotIndex To = leaveIntvBefore(LSP);
1343 overlapIntv(To, BI.LastInstr);
1344 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1345 useIntv(From, To);
1346 selectIntv(IntvIn);
1347 useIntv(Start, From);
1348 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1349 }
1350
splitRegOutBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvOut,SlotIndex EnterAfter)1351 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1352 unsigned IntvOut, SlotIndex EnterAfter) {
1353 SlotIndex Start, Stop;
1354 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1355
1356 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1357 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1358 << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1359 << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1360
1361 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1362
1363 assert(IntvOut && "Must have register out");
1364 assert(BI.LiveOut && "Must be live-out");
1365 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1366
1367 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1368 DEBUG(dbgs() << " after interference.\n");
1369 //
1370 // >>>> Interference before def.
1371 // | o---o---| Defined in block.
1372 // ========= Use IntvOut everywhere.
1373 //
1374 selectIntv(IntvOut);
1375 useIntv(BI.FirstInstr, Stop);
1376 return;
1377 }
1378
1379 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1380 DEBUG(dbgs() << ", reload after interference.\n");
1381 //
1382 // >>>> Interference before def.
1383 // |---o---o---| Live-through, stack-in.
1384 // ____========= Enter IntvOut before first use.
1385 //
1386 selectIntv(IntvOut);
1387 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1388 useIntv(Idx, Stop);
1389 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1390 return;
1391 }
1392
1393 // The interference is overlapping somewhere we wanted to use IntvOut. That
1394 // means we need to create a local interval that can be allocated a
1395 // different register.
1396 DEBUG(dbgs() << ", interference overlaps uses.\n");
1397 //
1398 // >>>>>>> Interference overlapping uses.
1399 // |---o---o---| Live-through, stack-in.
1400 // ____---====== Create local interval for interference range.
1401 //
1402 selectIntv(IntvOut);
1403 SlotIndex Idx = enterIntvAfter(EnterAfter);
1404 useIntv(Idx, Stop);
1405 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1406
1407 openIntv();
1408 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1409 useIntv(From, Idx);
1410 }
1411