1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file lower_instructions.cpp
26  *
27  * Many GPUs lack native instructions for certain expression operations, and
28  * must replace them with some other expression tree.  This pass lowers some
29  * of the most common cases, allowing the lowering code to be implemented once
30  * rather than in each driver backend.
31  *
32  * Currently supported transformations:
33  * - SUB_TO_ADD_NEG
34  * - DIV_TO_MUL_RCP
35  * - INT_DIV_TO_MUL_RCP
36  * - EXP_TO_EXP2
37  * - POW_TO_EXP2
38  * - LOG_TO_LOG2
39  * - MOD_TO_FRACT
40  *
41  * SUB_TO_ADD_NEG:
42  * ---------------
43  * Breaks an ir_binop_sub expression down to add(op0, neg(op1))
44  *
45  * This simplifies expression reassociation, and for many backends
46  * there is no subtract operation separate from adding the negation.
47  * For backends with native subtract operations, they will probably
48  * want to recognize add(op0, neg(op1)) or the other way around to
49  * produce a subtract anyway.
50  *
51  * DIV_TO_MUL_RCP and INT_DIV_TO_MUL_RCP:
52  * --------------------------------------
53  * Breaks an ir_binop_div expression down to op0 * (rcp(op1)).
54  *
55  * Many GPUs don't have a divide instruction (945 and 965 included),
56  * but they do have an RCP instruction to compute an approximate
57  * reciprocal.  By breaking the operation down, constant reciprocals
58  * can get constant folded.
59  *
60  * DIV_TO_MUL_RCP only lowers floating point division; INT_DIV_TO_MUL_RCP
61  * handles the integer case, converting to and from floating point so that
62  * RCP is possible.
63  *
64  * EXP_TO_EXP2 and LOG_TO_LOG2:
65  * ----------------------------
66  * Many GPUs don't have a base e log or exponent instruction, but they
67  * do have base 2 versions, so this pass converts exp and log to exp2
68  * and log2 operations.
69  *
70  * POW_TO_EXP2:
71  * -----------
72  * Many older GPUs don't have an x**y instruction.  For these GPUs, convert
73  * x**y to 2**(y * log2(x)).
74  *
75  * MOD_TO_FRACT:
76  * -------------
77  * Breaks an ir_binop_mod expression down to (op1 * fract(op0 / op1))
78  *
79  * Many GPUs don't have a MOD instruction (945 and 965 included), and
80  * if we have to break it down like this anyway, it gives an
81  * opportunity to do things like constant fold the (1.0 / op1) easily.
82  */
83 
84 #include "main/core.h" /* for M_LOG2E */
85 #include "glsl_types.h"
86 #include "ir.h"
87 #include "ir_optimization.h"
88 
89 class lower_instructions_visitor : public ir_hierarchical_visitor {
90 public:
lower_instructions_visitor(unsigned lower)91    lower_instructions_visitor(unsigned lower)
92       : progress(false), lower(lower) { }
93 
94    ir_visitor_status visit_leave(ir_expression *);
95 
96    bool progress;
97 
98 private:
99    unsigned lower; /** Bitfield of which operations to lower */
100 
101    void sub_to_add_neg(ir_expression *);
102    void div_to_mul_rcp(ir_expression *);
103    void int_div_to_mul_rcp(ir_expression *);
104    void mod_to_fract(ir_expression *);
105    void exp_to_exp2(ir_expression *);
106    void pow_to_exp2(ir_expression *);
107    void log_to_log2(ir_expression *);
108 };
109 
110 /**
111  * Determine if a particular type of lowering should occur
112  */
113 #define lowering(x) (this->lower & x)
114 
115 bool
lower_instructions(exec_list * instructions,unsigned what_to_lower)116 lower_instructions(exec_list *instructions, unsigned what_to_lower)
117 {
118    lower_instructions_visitor v(what_to_lower);
119 
120    visit_list_elements(&v, instructions);
121    return v.progress;
122 }
123 
124 void
sub_to_add_neg(ir_expression * ir)125 lower_instructions_visitor::sub_to_add_neg(ir_expression *ir)
126 {
127    ir->operation = ir_binop_add;
128    ir->operands[1] = new(ir) ir_expression(ir_unop_neg, ir->operands[1]->type,
129 					   ir->operands[1], NULL);
130    this->progress = true;
131 }
132 
133 void
div_to_mul_rcp(ir_expression * ir)134 lower_instructions_visitor::div_to_mul_rcp(ir_expression *ir)
135 {
136    assert(ir->operands[1]->type->is_float());
137 
138    /* New expression for the 1.0 / op1 */
139    ir_rvalue *expr;
140    expr = new(ir) ir_expression(ir_unop_rcp,
141 				ir->operands[1]->type,
142 				ir->operands[1]);
143 
144    /* op0 / op1 -> op0 * (1.0 / op1) */
145    ir->operation = ir_binop_mul;
146    ir->operands[1] = expr;
147 
148    this->progress = true;
149 }
150 
151 void
int_div_to_mul_rcp(ir_expression * ir)152 lower_instructions_visitor::int_div_to_mul_rcp(ir_expression *ir)
153 {
154    assert(ir->operands[1]->type->is_integer());
155 
156    /* Be careful with integer division -- we need to do it as a
157     * float and re-truncate, since rcp(n > 1) of an integer would
158     * just be 0.
159     */
160    ir_rvalue *op0, *op1;
161    const struct glsl_type *vec_type;
162 
163    vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
164 				      ir->operands[1]->type->vector_elements,
165 				      ir->operands[1]->type->matrix_columns);
166 
167    if (ir->operands[1]->type->base_type == GLSL_TYPE_INT)
168       op1 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[1], NULL);
169    else
170       op1 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[1], NULL);
171 
172    op1 = new(ir) ir_expression(ir_unop_rcp, op1->type, op1, NULL);
173 
174    vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
175 				      ir->operands[0]->type->vector_elements,
176 				      ir->operands[0]->type->matrix_columns);
177 
178    if (ir->operands[0]->type->base_type == GLSL_TYPE_INT)
179       op0 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[0], NULL);
180    else
181       op0 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[0], NULL);
182 
183    vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
184 				      ir->type->vector_elements,
185 				      ir->type->matrix_columns);
186 
187    op0 = new(ir) ir_expression(ir_binop_mul, vec_type, op0, op1);
188 
189    if (ir->operands[1]->type->base_type == GLSL_TYPE_INT) {
190       ir->operation = ir_unop_f2i;
191       ir->operands[0] = op0;
192    } else {
193       ir->operation = ir_unop_i2u;
194       ir->operands[0] = new(ir) ir_expression(ir_unop_f2i, op0);
195    }
196    ir->operands[1] = NULL;
197 
198    this->progress = true;
199 }
200 
201 void
exp_to_exp2(ir_expression * ir)202 lower_instructions_visitor::exp_to_exp2(ir_expression *ir)
203 {
204    ir_constant *log2_e = new(ir) ir_constant(float(M_LOG2E));
205 
206    ir->operation = ir_unop_exp2;
207    ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[0]->type,
208 					   ir->operands[0], log2_e);
209    this->progress = true;
210 }
211 
212 void
pow_to_exp2(ir_expression * ir)213 lower_instructions_visitor::pow_to_exp2(ir_expression *ir)
214 {
215    ir_expression *const log2_x =
216       new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
217 			    ir->operands[0]);
218 
219    ir->operation = ir_unop_exp2;
220    ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[1]->type,
221 					   ir->operands[1], log2_x);
222    ir->operands[1] = NULL;
223    this->progress = true;
224 }
225 
226 void
log_to_log2(ir_expression * ir)227 lower_instructions_visitor::log_to_log2(ir_expression *ir)
228 {
229    ir->operation = ir_binop_mul;
230    ir->operands[0] = new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
231 					   ir->operands[0], NULL);
232    ir->operands[1] = new(ir) ir_constant(float(1.0 / M_LOG2E));
233    this->progress = true;
234 }
235 
236 void
mod_to_fract(ir_expression * ir)237 lower_instructions_visitor::mod_to_fract(ir_expression *ir)
238 {
239    ir_variable *temp = new(ir) ir_variable(ir->operands[1]->type, "mod_b",
240 					   ir_var_temporary);
241    this->base_ir->insert_before(temp);
242 
243    ir_assignment *const assign =
244       new(ir) ir_assignment(new(ir) ir_dereference_variable(temp),
245 			    ir->operands[1], NULL);
246 
247    this->base_ir->insert_before(assign);
248 
249    ir_expression *const div_expr =
250       new(ir) ir_expression(ir_binop_div, ir->operands[0]->type,
251 			    ir->operands[0],
252 			    new(ir) ir_dereference_variable(temp));
253 
254    /* Don't generate new IR that would need to be lowered in an additional
255     * pass.
256     */
257    if (lowering(DIV_TO_MUL_RCP))
258       div_to_mul_rcp(div_expr);
259 
260    ir_rvalue *expr = new(ir) ir_expression(ir_unop_fract,
261 					   ir->operands[0]->type,
262 					   div_expr,
263 					   NULL);
264 
265    ir->operation = ir_binop_mul;
266    ir->operands[0] = new(ir) ir_dereference_variable(temp);
267    ir->operands[1] = expr;
268    this->progress = true;
269 }
270 
271 ir_visitor_status
visit_leave(ir_expression * ir)272 lower_instructions_visitor::visit_leave(ir_expression *ir)
273 {
274    switch (ir->operation) {
275    case ir_binop_sub:
276       if (lowering(SUB_TO_ADD_NEG))
277 	 sub_to_add_neg(ir);
278       break;
279 
280    case ir_binop_div:
281       if (ir->operands[1]->type->is_integer() && lowering(INT_DIV_TO_MUL_RCP))
282 	 int_div_to_mul_rcp(ir);
283       else if (ir->operands[1]->type->is_float() && lowering(DIV_TO_MUL_RCP))
284 	 div_to_mul_rcp(ir);
285       break;
286 
287    case ir_unop_exp:
288       if (lowering(EXP_TO_EXP2))
289 	 exp_to_exp2(ir);
290       break;
291 
292    case ir_unop_log:
293       if (lowering(LOG_TO_LOG2))
294 	 log_to_log2(ir);
295       break;
296 
297    case ir_binop_mod:
298       if (lowering(MOD_TO_FRACT) && ir->type->is_float())
299 	 mod_to_fract(ir);
300       break;
301 
302    case ir_binop_pow:
303       if (lowering(POW_TO_EXP2))
304 	 pow_to_exp2(ir);
305       break;
306 
307    default:
308       return visit_continue;
309    }
310 
311    return visit_continue;
312 }
313