1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Target/TargetLoweringObjectFile.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
TargetLowering(const TargetMachine & tm)39 TargetLowering::TargetLowering(const TargetMachine &tm)
40   : TargetLoweringBase(tm) {}
41 
getTargetNodeName(unsigned Opcode) const42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 /// Check whether a given call node is in tail position within its function. If
47 /// so, it sets Chain to the input chain of the tail call.
isInTailCallPosition(SelectionDAG & DAG,SDNode * Node,SDValue & Chain) const48 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
49                                           SDValue &Chain) const {
50   const Function *F = DAG.getMachineFunction().getFunction();
51 
52   // Conservatively require the attributes of the call to match those of
53   // the return. Ignore noalias because it doesn't affect the call sequence.
54   AttributeSet CallerAttrs = F->getAttributes();
55   if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
56       .removeAttribute(Attribute::NoAlias).hasAttributes())
57     return false;
58 
59   // It's not safe to eliminate the sign / zero extension of the return value.
60   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
61       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
62     return false;
63 
64   // Check if the only use is a function return node.
65   return isUsedByReturnOnly(Node, Chain);
66 }
67 
68 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
69 /// and called function attributes.
setAttributes(ImmutableCallSite * CS,unsigned AttrIdx)70 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS,
71                                                  unsigned AttrIdx) {
72   isSExt     = CS->paramHasAttr(AttrIdx, Attribute::SExt);
73   isZExt     = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
74   isInReg    = CS->paramHasAttr(AttrIdx, Attribute::InReg);
75   isSRet     = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
76   isNest     = CS->paramHasAttr(AttrIdx, Attribute::Nest);
77   isByVal    = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
78   isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
79   isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
80   Alignment  = CS->getParamAlignment(AttrIdx);
81 }
82 
83 /// Generate a libcall taking the given operands as arguments and returning a
84 /// result of type RetVT.
85 std::pair<SDValue, SDValue>
makeLibCall(SelectionDAG & DAG,RTLIB::Libcall LC,EVT RetVT,const SDValue * Ops,unsigned NumOps,bool isSigned,SDLoc dl,bool doesNotReturn,bool isReturnValueUsed) const86 TargetLowering::makeLibCall(SelectionDAG &DAG,
87                             RTLIB::Libcall LC, EVT RetVT,
88                             const SDValue *Ops, unsigned NumOps,
89                             bool isSigned, SDLoc dl,
90                             bool doesNotReturn,
91                             bool isReturnValueUsed) const {
92   TargetLowering::ArgListTy Args;
93   Args.reserve(NumOps);
94 
95   TargetLowering::ArgListEntry Entry;
96   for (unsigned i = 0; i != NumOps; ++i) {
97     Entry.Node = Ops[i];
98     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
99     Entry.isSExt = shouldSignExtendTypeInLibCall(Ops[i].getValueType(), isSigned);
100     Entry.isZExt = !shouldSignExtendTypeInLibCall(Ops[i].getValueType(), isSigned);
101     Args.push_back(Entry);
102   }
103   if (LC == RTLIB::UNKNOWN_LIBCALL)
104     report_fatal_error("Unsupported library call operation!");
105   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy());
106 
107   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
108   TargetLowering::CallLoweringInfo CLI(DAG);
109   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
110   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
111     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
112     .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed)
113     .setSExtResult(signExtend).setZExtResult(!signExtend);
114   return LowerCallTo(CLI);
115 }
116 
117 
118 /// SoftenSetCCOperands - Soften the operands of a comparison.  This code is
119 /// shared among BR_CC, SELECT_CC, and SETCC handlers.
softenSetCCOperands(SelectionDAG & DAG,EVT VT,SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode & CCCode,SDLoc dl) const120 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
121                                          SDValue &NewLHS, SDValue &NewRHS,
122                                          ISD::CondCode &CCCode,
123                                          SDLoc dl) const {
124   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
125          && "Unsupported setcc type!");
126 
127   // Expand into one or more soft-fp libcall(s).
128   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
129   switch (CCCode) {
130   case ISD::SETEQ:
131   case ISD::SETOEQ:
132     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
133           (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
134     break;
135   case ISD::SETNE:
136   case ISD::SETUNE:
137     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
138           (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128;
139     break;
140   case ISD::SETGE:
141   case ISD::SETOGE:
142     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
143           (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
144     break;
145   case ISD::SETLT:
146   case ISD::SETOLT:
147     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
148           (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
149     break;
150   case ISD::SETLE:
151   case ISD::SETOLE:
152     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
153           (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
154     break;
155   case ISD::SETGT:
156   case ISD::SETOGT:
157     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
158           (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
159     break;
160   case ISD::SETUO:
161     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
162           (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
163     break;
164   case ISD::SETO:
165     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
166           (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128;
167     break;
168   default:
169     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
170           (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
171     switch (CCCode) {
172     case ISD::SETONE:
173       // SETONE = SETOLT | SETOGT
174       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
175             (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
176       // Fallthrough
177     case ISD::SETUGT:
178       LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
179             (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
180       break;
181     case ISD::SETUGE:
182       LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
183             (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
184       break;
185     case ISD::SETULT:
186       LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
187             (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
188       break;
189     case ISD::SETULE:
190       LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
191             (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
192       break;
193     case ISD::SETUEQ:
194       LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
195             (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
196       break;
197     default: llvm_unreachable("Do not know how to soften this setcc!");
198     }
199   }
200 
201   // Use the target specific return value for comparions lib calls.
202   EVT RetVT = getCmpLibcallReturnType();
203   SDValue Ops[2] = { NewLHS, NewRHS };
204   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/,
205                        dl).first;
206   NewRHS = DAG.getConstant(0, RetVT);
207   CCCode = getCmpLibcallCC(LC1);
208   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
209     SDValue Tmp = DAG.getNode(ISD::SETCC, dl,
210                               getSetCCResultType(*DAG.getContext(), RetVT),
211                               NewLHS, NewRHS, DAG.getCondCode(CCCode));
212     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/,
213                          dl).first;
214     NewLHS = DAG.getNode(ISD::SETCC, dl,
215                          getSetCCResultType(*DAG.getContext(), RetVT), NewLHS,
216                          NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
217     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
218     NewRHS = SDValue();
219   }
220 }
221 
222 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
223 /// current function.  The returned value is a member of the
224 /// MachineJumpTableInfo::JTEntryKind enum.
getJumpTableEncoding() const225 unsigned TargetLowering::getJumpTableEncoding() const {
226   // In non-pic modes, just use the address of a block.
227   if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
228     return MachineJumpTableInfo::EK_BlockAddress;
229 
230   // In PIC mode, if the target supports a GPRel32 directive, use it.
231   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
232     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
233 
234   // Otherwise, use a label difference.
235   return MachineJumpTableInfo::EK_LabelDifference32;
236 }
237 
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const238 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
239                                                  SelectionDAG &DAG) const {
240   // If our PIC model is GP relative, use the global offset table as the base.
241   unsigned JTEncoding = getJumpTableEncoding();
242 
243   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
244       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
245     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0));
246 
247   return Table;
248 }
249 
250 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
251 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
252 /// MCExpr.
253 const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction * MF,unsigned JTI,MCContext & Ctx) const254 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
255                                              unsigned JTI,MCContext &Ctx) const{
256   // The normal PIC reloc base is the label at the start of the jump table.
257   return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
258 }
259 
260 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const261 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
262   // Assume that everything is safe in static mode.
263   if (getTargetMachine().getRelocationModel() == Reloc::Static)
264     return true;
265 
266   // In dynamic-no-pic mode, assume that known defined values are safe.
267   if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
268       GA &&
269       !GA->getGlobal()->isDeclaration() &&
270       !GA->getGlobal()->isWeakForLinker())
271     return true;
272 
273   // Otherwise assume nothing is safe.
274   return false;
275 }
276 
277 //===----------------------------------------------------------------------===//
278 //  Optimization Methods
279 //===----------------------------------------------------------------------===//
280 
281 /// ShrinkDemandedConstant - Check to see if the specified operand of the
282 /// specified instruction is a constant integer.  If so, check to see if there
283 /// are any bits set in the constant that are not demanded.  If so, shrink the
284 /// constant and return true.
ShrinkDemandedConstant(SDValue Op,const APInt & Demanded)285 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
286                                                         const APInt &Demanded) {
287   SDLoc dl(Op);
288 
289   // FIXME: ISD::SELECT, ISD::SELECT_CC
290   switch (Op.getOpcode()) {
291   default: break;
292   case ISD::XOR:
293   case ISD::AND:
294   case ISD::OR: {
295     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
296     if (!C) return false;
297 
298     if (Op.getOpcode() == ISD::XOR &&
299         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
300       return false;
301 
302     // if we can expand it to have all bits set, do it
303     if (C->getAPIntValue().intersects(~Demanded)) {
304       EVT VT = Op.getValueType();
305       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
306                                 DAG.getConstant(Demanded &
307                                                 C->getAPIntValue(),
308                                                 VT));
309       return CombineTo(Op, New);
310     }
311 
312     break;
313   }
314   }
315 
316   return false;
317 }
318 
319 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
320 /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
321 /// cast, but it could be generalized for targets with other types of
322 /// implicit widening casts.
323 bool
ShrinkDemandedOp(SDValue Op,unsigned BitWidth,const APInt & Demanded,SDLoc dl)324 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
325                                                     unsigned BitWidth,
326                                                     const APInt &Demanded,
327                                                     SDLoc dl) {
328   assert(Op.getNumOperands() == 2 &&
329          "ShrinkDemandedOp only supports binary operators!");
330   assert(Op.getNode()->getNumValues() == 1 &&
331          "ShrinkDemandedOp only supports nodes with one result!");
332 
333   // Early return, as this function cannot handle vector types.
334   if (Op.getValueType().isVector())
335     return false;
336 
337   // Don't do this if the node has another user, which may require the
338   // full value.
339   if (!Op.getNode()->hasOneUse())
340     return false;
341 
342   // Search for the smallest integer type with free casts to and from
343   // Op's type. For expedience, just check power-of-2 integer types.
344   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
345   unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
346   unsigned SmallVTBits = DemandedSize;
347   if (!isPowerOf2_32(SmallVTBits))
348     SmallVTBits = NextPowerOf2(SmallVTBits);
349   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
350     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
351     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
352         TLI.isZExtFree(SmallVT, Op.getValueType())) {
353       // We found a type with free casts.
354       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
355                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
356                                           Op.getNode()->getOperand(0)),
357                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
358                                           Op.getNode()->getOperand(1)));
359       bool NeedZext = DemandedSize > SmallVTBits;
360       SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
361                               dl, Op.getValueType(), X);
362       return CombineTo(Op, Z);
363     }
364   }
365   return false;
366 }
367 
368 /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
369 /// DemandedMask bits of the result of Op are ever used downstream.  If we can
370 /// use this information to simplify Op, create a new simplified DAG node and
371 /// return true, returning the original and new nodes in Old and New. Otherwise,
372 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
373 /// the expression (used to simplify the caller).  The KnownZero/One bits may
374 /// only be accurate for those bits in the DemandedMask.
SimplifyDemandedBits(SDValue Op,const APInt & DemandedMask,APInt & KnownZero,APInt & KnownOne,TargetLoweringOpt & TLO,unsigned Depth) const375 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
376                                           const APInt &DemandedMask,
377                                           APInt &KnownZero,
378                                           APInt &KnownOne,
379                                           TargetLoweringOpt &TLO,
380                                           unsigned Depth) const {
381   unsigned BitWidth = DemandedMask.getBitWidth();
382   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
383          "Mask size mismatches value type size!");
384   APInt NewMask = DemandedMask;
385   SDLoc dl(Op);
386 
387   // Don't know anything.
388   KnownZero = KnownOne = APInt(BitWidth, 0);
389 
390   // Other users may use these bits.
391   if (!Op.getNode()->hasOneUse()) {
392     if (Depth != 0) {
393       // If not at the root, Just compute the KnownZero/KnownOne bits to
394       // simplify things downstream.
395       TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
396       return false;
397     }
398     // If this is the root being simplified, allow it to have multiple uses,
399     // just set the NewMask to all bits.
400     NewMask = APInt::getAllOnesValue(BitWidth);
401   } else if (DemandedMask == 0) {
402     // Not demanding any bits from Op.
403     if (Op.getOpcode() != ISD::UNDEF)
404       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
405     return false;
406   } else if (Depth == 6) {        // Limit search depth.
407     return false;
408   }
409 
410   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
411   switch (Op.getOpcode()) {
412   case ISD::Constant:
413     // We know all of the bits for a constant!
414     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
415     KnownZero = ~KnownOne;
416     return false;   // Don't fall through, will infinitely loop.
417   case ISD::AND:
418     // If the RHS is a constant, check to see if the LHS would be zero without
419     // using the bits from the RHS.  Below, we use knowledge about the RHS to
420     // simplify the LHS, here we're using information from the LHS to simplify
421     // the RHS.
422     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
423       APInt LHSZero, LHSOne;
424       // Do not increment Depth here; that can cause an infinite loop.
425       TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
426       // If the LHS already has zeros where RHSC does, this and is dead.
427       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
428         return TLO.CombineTo(Op, Op.getOperand(0));
429       // If any of the set bits in the RHS are known zero on the LHS, shrink
430       // the constant.
431       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
432         return true;
433     }
434 
435     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
436                              KnownOne, TLO, Depth+1))
437       return true;
438     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
439     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
440                              KnownZero2, KnownOne2, TLO, Depth+1))
441       return true;
442     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
443 
444     // If all of the demanded bits are known one on one side, return the other.
445     // These bits cannot contribute to the result of the 'and'.
446     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
447       return TLO.CombineTo(Op, Op.getOperand(0));
448     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
449       return TLO.CombineTo(Op, Op.getOperand(1));
450     // If all of the demanded bits in the inputs are known zeros, return zero.
451     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
452       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
453     // If the RHS is a constant, see if we can simplify it.
454     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
455       return true;
456     // If the operation can be done in a smaller type, do so.
457     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
458       return true;
459 
460     // Output known-1 bits are only known if set in both the LHS & RHS.
461     KnownOne &= KnownOne2;
462     // Output known-0 are known to be clear if zero in either the LHS | RHS.
463     KnownZero |= KnownZero2;
464     break;
465   case ISD::OR:
466     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
467                              KnownOne, TLO, Depth+1))
468       return true;
469     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
470     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
471                              KnownZero2, KnownOne2, TLO, Depth+1))
472       return true;
473     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
474 
475     // If all of the demanded bits are known zero on one side, return the other.
476     // These bits cannot contribute to the result of the 'or'.
477     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
478       return TLO.CombineTo(Op, Op.getOperand(0));
479     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
480       return TLO.CombineTo(Op, Op.getOperand(1));
481     // If all of the potentially set bits on one side are known to be set on
482     // the other side, just use the 'other' side.
483     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
484       return TLO.CombineTo(Op, Op.getOperand(0));
485     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
486       return TLO.CombineTo(Op, Op.getOperand(1));
487     // If the RHS is a constant, see if we can simplify it.
488     if (TLO.ShrinkDemandedConstant(Op, NewMask))
489       return true;
490     // If the operation can be done in a smaller type, do so.
491     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
492       return true;
493 
494     // Output known-0 bits are only known if clear in both the LHS & RHS.
495     KnownZero &= KnownZero2;
496     // Output known-1 are known to be set if set in either the LHS | RHS.
497     KnownOne |= KnownOne2;
498     break;
499   case ISD::XOR:
500     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
501                              KnownOne, TLO, Depth+1))
502       return true;
503     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
504     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
505                              KnownOne2, TLO, Depth+1))
506       return true;
507     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
508 
509     // If all of the demanded bits are known zero on one side, return the other.
510     // These bits cannot contribute to the result of the 'xor'.
511     if ((KnownZero & NewMask) == NewMask)
512       return TLO.CombineTo(Op, Op.getOperand(0));
513     if ((KnownZero2 & NewMask) == NewMask)
514       return TLO.CombineTo(Op, Op.getOperand(1));
515     // If the operation can be done in a smaller type, do so.
516     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
517       return true;
518 
519     // If all of the unknown bits are known to be zero on one side or the other
520     // (but not both) turn this into an *inclusive* or.
521     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
522     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
523       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
524                                                Op.getOperand(0),
525                                                Op.getOperand(1)));
526 
527     // Output known-0 bits are known if clear or set in both the LHS & RHS.
528     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
529     // Output known-1 are known to be set if set in only one of the LHS, RHS.
530     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
531 
532     // If all of the demanded bits on one side are known, and all of the set
533     // bits on that side are also known to be set on the other side, turn this
534     // into an AND, as we know the bits will be cleared.
535     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
536     // NB: it is okay if more bits are known than are requested
537     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
538       if (KnownOne == KnownOne2) { // set bits are the same on both sides
539         EVT VT = Op.getValueType();
540         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
541         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
542                                                  Op.getOperand(0), ANDC));
543       }
544     }
545 
546     // If the RHS is a constant, see if we can simplify it.
547     // for XOR, we prefer to force bits to 1 if they will make a -1.
548     // if we can't force bits, try to shrink constant
549     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
550       APInt Expanded = C->getAPIntValue() | (~NewMask);
551       // if we can expand it to have all bits set, do it
552       if (Expanded.isAllOnesValue()) {
553         if (Expanded != C->getAPIntValue()) {
554           EVT VT = Op.getValueType();
555           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
556                                           TLO.DAG.getConstant(Expanded, VT));
557           return TLO.CombineTo(Op, New);
558         }
559         // if it already has all the bits set, nothing to change
560         // but don't shrink either!
561       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
562         return true;
563       }
564     }
565 
566     KnownZero = KnownZeroOut;
567     KnownOne  = KnownOneOut;
568     break;
569   case ISD::SELECT:
570     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
571                              KnownOne, TLO, Depth+1))
572       return true;
573     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
574                              KnownOne2, TLO, Depth+1))
575       return true;
576     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
577     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
578 
579     // If the operands are constants, see if we can simplify them.
580     if (TLO.ShrinkDemandedConstant(Op, NewMask))
581       return true;
582 
583     // Only known if known in both the LHS and RHS.
584     KnownOne &= KnownOne2;
585     KnownZero &= KnownZero2;
586     break;
587   case ISD::SELECT_CC:
588     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
589                              KnownOne, TLO, Depth+1))
590       return true;
591     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
592                              KnownOne2, TLO, Depth+1))
593       return true;
594     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
595     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
596 
597     // If the operands are constants, see if we can simplify them.
598     if (TLO.ShrinkDemandedConstant(Op, NewMask))
599       return true;
600 
601     // Only known if known in both the LHS and RHS.
602     KnownOne &= KnownOne2;
603     KnownZero &= KnownZero2;
604     break;
605   case ISD::SHL:
606     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
607       unsigned ShAmt = SA->getZExtValue();
608       SDValue InOp = Op.getOperand(0);
609 
610       // If the shift count is an invalid immediate, don't do anything.
611       if (ShAmt >= BitWidth)
612         break;
613 
614       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
615       // single shift.  We can do this if the bottom bits (which are shifted
616       // out) are never demanded.
617       if (InOp.getOpcode() == ISD::SRL &&
618           isa<ConstantSDNode>(InOp.getOperand(1))) {
619         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
620           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
621           unsigned Opc = ISD::SHL;
622           int Diff = ShAmt-C1;
623           if (Diff < 0) {
624             Diff = -Diff;
625             Opc = ISD::SRL;
626           }
627 
628           SDValue NewSA =
629             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
630           EVT VT = Op.getValueType();
631           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
632                                                    InOp.getOperand(0), NewSA));
633         }
634       }
635 
636       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
637                                KnownZero, KnownOne, TLO, Depth+1))
638         return true;
639 
640       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
641       // are not demanded. This will likely allow the anyext to be folded away.
642       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
643         SDValue InnerOp = InOp.getNode()->getOperand(0);
644         EVT InnerVT = InnerOp.getValueType();
645         unsigned InnerBits = InnerVT.getSizeInBits();
646         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
647             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
648           EVT ShTy = getShiftAmountTy(InnerVT);
649           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
650             ShTy = InnerVT;
651           SDValue NarrowShl =
652             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
653                             TLO.DAG.getConstant(ShAmt, ShTy));
654           return
655             TLO.CombineTo(Op,
656                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
657                                           NarrowShl));
658         }
659         // Repeat the SHL optimization above in cases where an extension
660         // intervenes: (shl (anyext (shr x, c1)), c2) to
661         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
662         // aren't demanded (as above) and that the shifted upper c1 bits of
663         // x aren't demanded.
664         if (InOp.hasOneUse() &&
665             InnerOp.getOpcode() == ISD::SRL &&
666             InnerOp.hasOneUse() &&
667             isa<ConstantSDNode>(InnerOp.getOperand(1))) {
668           uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
669             ->getZExtValue();
670           if (InnerShAmt < ShAmt &&
671               InnerShAmt < InnerBits &&
672               NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
673               NewMask.trunc(ShAmt) == 0) {
674             SDValue NewSA =
675               TLO.DAG.getConstant(ShAmt - InnerShAmt,
676                                   Op.getOperand(1).getValueType());
677             EVT VT = Op.getValueType();
678             SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
679                                              InnerOp.getOperand(0));
680             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
681                                                      NewExt, NewSA));
682           }
683         }
684       }
685 
686       KnownZero <<= SA->getZExtValue();
687       KnownOne  <<= SA->getZExtValue();
688       // low bits known zero.
689       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
690     }
691     break;
692   case ISD::SRL:
693     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
694       EVT VT = Op.getValueType();
695       unsigned ShAmt = SA->getZExtValue();
696       unsigned VTSize = VT.getSizeInBits();
697       SDValue InOp = Op.getOperand(0);
698 
699       // If the shift count is an invalid immediate, don't do anything.
700       if (ShAmt >= BitWidth)
701         break;
702 
703       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
704       // single shift.  We can do this if the top bits (which are shifted out)
705       // are never demanded.
706       if (InOp.getOpcode() == ISD::SHL &&
707           isa<ConstantSDNode>(InOp.getOperand(1))) {
708         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
709           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
710           unsigned Opc = ISD::SRL;
711           int Diff = ShAmt-C1;
712           if (Diff < 0) {
713             Diff = -Diff;
714             Opc = ISD::SHL;
715           }
716 
717           SDValue NewSA =
718             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
719           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
720                                                    InOp.getOperand(0), NewSA));
721         }
722       }
723 
724       // Compute the new bits that are at the top now.
725       if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
726                                KnownZero, KnownOne, TLO, Depth+1))
727         return true;
728       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
729       KnownZero = KnownZero.lshr(ShAmt);
730       KnownOne  = KnownOne.lshr(ShAmt);
731 
732       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
733       KnownZero |= HighBits;  // High bits known zero.
734     }
735     break;
736   case ISD::SRA:
737     // If this is an arithmetic shift right and only the low-bit is set, we can
738     // always convert this into a logical shr, even if the shift amount is
739     // variable.  The low bit of the shift cannot be an input sign bit unless
740     // the shift amount is >= the size of the datatype, which is undefined.
741     if (NewMask == 1)
742       return TLO.CombineTo(Op,
743                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
744                                            Op.getOperand(0), Op.getOperand(1)));
745 
746     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
747       EVT VT = Op.getValueType();
748       unsigned ShAmt = SA->getZExtValue();
749 
750       // If the shift count is an invalid immediate, don't do anything.
751       if (ShAmt >= BitWidth)
752         break;
753 
754       APInt InDemandedMask = (NewMask << ShAmt);
755 
756       // If any of the demanded bits are produced by the sign extension, we also
757       // demand the input sign bit.
758       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
759       if (HighBits.intersects(NewMask))
760         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
761 
762       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
763                                KnownZero, KnownOne, TLO, Depth+1))
764         return true;
765       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
766       KnownZero = KnownZero.lshr(ShAmt);
767       KnownOne  = KnownOne.lshr(ShAmt);
768 
769       // Handle the sign bit, adjusted to where it is now in the mask.
770       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
771 
772       // If the input sign bit is known to be zero, or if none of the top bits
773       // are demanded, turn this into an unsigned shift right.
774       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits)
775         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
776                                                  Op.getOperand(0),
777                                                  Op.getOperand(1)));
778 
779       int Log2 = NewMask.exactLogBase2();
780       if (Log2 >= 0) {
781         // The bit must come from the sign.
782         SDValue NewSA =
783           TLO.DAG.getConstant(BitWidth - 1 - Log2,
784                               Op.getOperand(1).getValueType());
785         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
786                                                  Op.getOperand(0), NewSA));
787       }
788 
789       if (KnownOne.intersects(SignBit))
790         // New bits are known one.
791         KnownOne |= HighBits;
792     }
793     break;
794   case ISD::SIGN_EXTEND_INREG: {
795     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
796 
797     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
798     // If we only care about the highest bit, don't bother shifting right.
799     if (MsbMask == NewMask) {
800       unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
801       SDValue InOp = Op.getOperand(0);
802       unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits();
803       bool AlreadySignExtended =
804         TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1;
805       // However if the input is already sign extended we expect the sign
806       // extension to be dropped altogether later and do not simplify.
807       if (!AlreadySignExtended) {
808         // Compute the correct shift amount type, which must be getShiftAmountTy
809         // for scalar types after legalization.
810         EVT ShiftAmtTy = Op.getValueType();
811         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
812           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
813 
814         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
815         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
816                                                  Op.getValueType(), InOp,
817                                                  ShiftAmt));
818       }
819     }
820 
821     // Sign extension.  Compute the demanded bits in the result that are not
822     // present in the input.
823     APInt NewBits =
824       APInt::getHighBitsSet(BitWidth,
825                             BitWidth - ExVT.getScalarType().getSizeInBits());
826 
827     // If none of the extended bits are demanded, eliminate the sextinreg.
828     if ((NewBits & NewMask) == 0)
829       return TLO.CombineTo(Op, Op.getOperand(0));
830 
831     APInt InSignBit =
832       APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
833     APInt InputDemandedBits =
834       APInt::getLowBitsSet(BitWidth,
835                            ExVT.getScalarType().getSizeInBits()) &
836       NewMask;
837 
838     // Since the sign extended bits are demanded, we know that the sign
839     // bit is demanded.
840     InputDemandedBits |= InSignBit;
841 
842     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
843                              KnownZero, KnownOne, TLO, Depth+1))
844       return true;
845     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
846 
847     // If the sign bit of the input is known set or clear, then we know the
848     // top bits of the result.
849 
850     // If the input sign bit is known zero, convert this into a zero extension.
851     if (KnownZero.intersects(InSignBit))
852       return TLO.CombineTo(Op,
853                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
854 
855     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
856       KnownOne |= NewBits;
857       KnownZero &= ~NewBits;
858     } else {                       // Input sign bit unknown
859       KnownZero &= ~NewBits;
860       KnownOne &= ~NewBits;
861     }
862     break;
863   }
864   case ISD::BUILD_PAIR: {
865     EVT HalfVT = Op.getOperand(0).getValueType();
866     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
867 
868     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
869     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
870 
871     APInt KnownZeroLo, KnownOneLo;
872     APInt KnownZeroHi, KnownOneHi;
873 
874     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo,
875                              KnownOneLo, TLO, Depth + 1))
876       return true;
877 
878     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi,
879                              KnownOneHi, TLO, Depth + 1))
880       return true;
881 
882     KnownZero = KnownZeroLo.zext(BitWidth) |
883                 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth);
884 
885     KnownOne = KnownOneLo.zext(BitWidth) |
886                KnownOneHi.zext(BitWidth).shl(HalfBitWidth);
887     break;
888   }
889   case ISD::ZERO_EXTEND: {
890     unsigned OperandBitWidth =
891       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
892     APInt InMask = NewMask.trunc(OperandBitWidth);
893 
894     // If none of the top bits are demanded, convert this into an any_extend.
895     APInt NewBits =
896       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
897     if (!NewBits.intersects(NewMask))
898       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
899                                                Op.getValueType(),
900                                                Op.getOperand(0)));
901 
902     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
903                              KnownZero, KnownOne, TLO, Depth+1))
904       return true;
905     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
906     KnownZero = KnownZero.zext(BitWidth);
907     KnownOne = KnownOne.zext(BitWidth);
908     KnownZero |= NewBits;
909     break;
910   }
911   case ISD::SIGN_EXTEND: {
912     EVT InVT = Op.getOperand(0).getValueType();
913     unsigned InBits = InVT.getScalarType().getSizeInBits();
914     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
915     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
916     APInt NewBits   = ~InMask & NewMask;
917 
918     // If none of the top bits are demanded, convert this into an any_extend.
919     if (NewBits == 0)
920       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
921                                               Op.getValueType(),
922                                               Op.getOperand(0)));
923 
924     // Since some of the sign extended bits are demanded, we know that the sign
925     // bit is demanded.
926     APInt InDemandedBits = InMask & NewMask;
927     InDemandedBits |= InSignBit;
928     InDemandedBits = InDemandedBits.trunc(InBits);
929 
930     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
931                              KnownOne, TLO, Depth+1))
932       return true;
933     KnownZero = KnownZero.zext(BitWidth);
934     KnownOne = KnownOne.zext(BitWidth);
935 
936     // If the sign bit is known zero, convert this to a zero extend.
937     if (KnownZero.intersects(InSignBit))
938       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
939                                                Op.getValueType(),
940                                                Op.getOperand(0)));
941 
942     // If the sign bit is known one, the top bits match.
943     if (KnownOne.intersects(InSignBit)) {
944       KnownOne |= NewBits;
945       assert((KnownZero & NewBits) == 0);
946     } else {   // Otherwise, top bits aren't known.
947       assert((KnownOne & NewBits) == 0);
948       assert((KnownZero & NewBits) == 0);
949     }
950     break;
951   }
952   case ISD::ANY_EXTEND: {
953     unsigned OperandBitWidth =
954       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
955     APInt InMask = NewMask.trunc(OperandBitWidth);
956     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
957                              KnownZero, KnownOne, TLO, Depth+1))
958       return true;
959     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
960     KnownZero = KnownZero.zext(BitWidth);
961     KnownOne = KnownOne.zext(BitWidth);
962     break;
963   }
964   case ISD::TRUNCATE: {
965     // Simplify the input, using demanded bit information, and compute the known
966     // zero/one bits live out.
967     unsigned OperandBitWidth =
968       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
969     APInt TruncMask = NewMask.zext(OperandBitWidth);
970     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
971                              KnownZero, KnownOne, TLO, Depth+1))
972       return true;
973     KnownZero = KnownZero.trunc(BitWidth);
974     KnownOne = KnownOne.trunc(BitWidth);
975 
976     // If the input is only used by this truncate, see if we can shrink it based
977     // on the known demanded bits.
978     if (Op.getOperand(0).getNode()->hasOneUse()) {
979       SDValue In = Op.getOperand(0);
980       switch (In.getOpcode()) {
981       default: break;
982       case ISD::SRL:
983         // Shrink SRL by a constant if none of the high bits shifted in are
984         // demanded.
985         if (TLO.LegalTypes() &&
986             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
987           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
988           // undesirable.
989           break;
990         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
991         if (!ShAmt)
992           break;
993         SDValue Shift = In.getOperand(1);
994         if (TLO.LegalTypes()) {
995           uint64_t ShVal = ShAmt->getZExtValue();
996           Shift =
997             TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
998         }
999 
1000         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1001                                                OperandBitWidth - BitWidth);
1002         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1003 
1004         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1005           // None of the shifted in bits are needed.  Add a truncate of the
1006           // shift input, then shift it.
1007           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1008                                              Op.getValueType(),
1009                                              In.getOperand(0));
1010           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1011                                                    Op.getValueType(),
1012                                                    NewTrunc,
1013                                                    Shift));
1014         }
1015         break;
1016       }
1017     }
1018 
1019     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1020     break;
1021   }
1022   case ISD::AssertZext: {
1023     // AssertZext demands all of the high bits, plus any of the low bits
1024     // demanded by its users.
1025     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1026     APInt InMask = APInt::getLowBitsSet(BitWidth,
1027                                         VT.getSizeInBits());
1028     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1029                              KnownZero, KnownOne, TLO, Depth+1))
1030       return true;
1031     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1032 
1033     KnownZero |= ~InMask & NewMask;
1034     break;
1035   }
1036   case ISD::BITCAST:
1037     // If this is an FP->Int bitcast and if the sign bit is the only
1038     // thing demanded, turn this into a FGETSIGN.
1039     if (!TLO.LegalOperations() &&
1040         !Op.getValueType().isVector() &&
1041         !Op.getOperand(0).getValueType().isVector() &&
1042         NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1043         Op.getOperand(0).getValueType().isFloatingPoint()) {
1044       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1045       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1046       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
1047         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1048         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1049         // place.  We expect the SHL to be eliminated by other optimizations.
1050         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1051         unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1052         if (!OpVTLegal && OpVTSizeInBits > 32)
1053           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1054         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1055         SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
1056         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1057                                                  Op.getValueType(),
1058                                                  Sign, ShAmt));
1059       }
1060     }
1061     break;
1062   case ISD::ADD:
1063   case ISD::MUL:
1064   case ISD::SUB: {
1065     // Add, Sub, and Mul don't demand any bits in positions beyond that
1066     // of the highest bit demanded of them.
1067     APInt LoMask = APInt::getLowBitsSet(BitWidth,
1068                                         BitWidth - NewMask.countLeadingZeros());
1069     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1070                              KnownOne2, TLO, Depth+1))
1071       return true;
1072     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1073                              KnownOne2, TLO, Depth+1))
1074       return true;
1075     // See if the operation should be performed at a smaller bit width.
1076     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1077       return true;
1078   }
1079   // FALL THROUGH
1080   default:
1081     // Just use computeKnownBits to compute output bits.
1082     TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
1083     break;
1084   }
1085 
1086   // If we know the value of all of the demanded bits, return this as a
1087   // constant.
1088   if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1089     return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1090 
1091   return false;
1092 }
1093 
1094 /// computeKnownBitsForTargetNode - Determine which of the bits specified
1095 /// in Mask are known to be either zero or one and return them in the
1096 /// KnownZero/KnownOne bitsets.
computeKnownBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const1097 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1098                                                    APInt &KnownZero,
1099                                                    APInt &KnownOne,
1100                                                    const SelectionDAG &DAG,
1101                                                    unsigned Depth) const {
1102   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1103           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1104           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1105           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1106          "Should use MaskedValueIsZero if you don't know whether Op"
1107          " is a target node!");
1108   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1109 }
1110 
1111 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1112 /// targets that want to expose additional information about sign bits to the
1113 /// DAG Combiner.
ComputeNumSignBitsForTargetNode(SDValue Op,const SelectionDAG &,unsigned Depth) const1114 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1115                                                          const SelectionDAG &,
1116                                                          unsigned Depth) const {
1117   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1118           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1119           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1120           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1121          "Should use ComputeNumSignBits if you don't know whether Op"
1122          " is a target node!");
1123   return 1;
1124 }
1125 
1126 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1127 /// one bit set. This differs from computeKnownBits in that it doesn't need to
1128 /// determine which bit is set.
1129 ///
ValueHasExactlyOneBitSet(SDValue Val,const SelectionDAG & DAG)1130 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1131   // A left-shift of a constant one will have exactly one bit set, because
1132   // shifting the bit off the end is undefined.
1133   if (Val.getOpcode() == ISD::SHL)
1134     if (ConstantSDNode *C =
1135          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1136       if (C->getAPIntValue() == 1)
1137         return true;
1138 
1139   // Similarly, a right-shift of a constant sign-bit will have exactly
1140   // one bit set.
1141   if (Val.getOpcode() == ISD::SRL)
1142     if (ConstantSDNode *C =
1143          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1144       if (C->getAPIntValue().isSignBit())
1145         return true;
1146 
1147   // More could be done here, though the above checks are enough
1148   // to handle some common cases.
1149 
1150   // Fall back to computeKnownBits to catch other known cases.
1151   EVT OpVT = Val.getValueType();
1152   unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1153   APInt KnownZero, KnownOne;
1154   DAG.computeKnownBits(Val, KnownZero, KnownOne);
1155   return (KnownZero.countPopulation() == BitWidth - 1) &&
1156          (KnownOne.countPopulation() == 1);
1157 }
1158 
isConstTrueVal(const SDNode * N) const1159 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1160   if (!N)
1161     return false;
1162 
1163   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1164   if (!CN) {
1165     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1166     if (!BV)
1167       return false;
1168 
1169     BitVector UndefElements;
1170     CN = BV->getConstantSplatNode(&UndefElements);
1171     // Only interested in constant splats, and we don't try to handle undef
1172     // elements in identifying boolean constants.
1173     if (!CN || UndefElements.none())
1174       return false;
1175   }
1176 
1177   switch (getBooleanContents(N->getValueType(0))) {
1178   case UndefinedBooleanContent:
1179     return CN->getAPIntValue()[0];
1180   case ZeroOrOneBooleanContent:
1181     return CN->isOne();
1182   case ZeroOrNegativeOneBooleanContent:
1183     return CN->isAllOnesValue();
1184   }
1185 
1186   llvm_unreachable("Invalid boolean contents");
1187 }
1188 
isConstFalseVal(const SDNode * N) const1189 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1190   if (!N)
1191     return false;
1192 
1193   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1194   if (!CN) {
1195     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1196     if (!BV)
1197       return false;
1198 
1199     BitVector UndefElements;
1200     CN = BV->getConstantSplatNode(&UndefElements);
1201     // Only interested in constant splats, and we don't try to handle undef
1202     // elements in identifying boolean constants.
1203     if (!CN || UndefElements.none())
1204       return false;
1205   }
1206 
1207   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1208     return !CN->getAPIntValue()[0];
1209 
1210   return CN->isNullValue();
1211 }
1212 
1213 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1214 /// and cc. If it is unable to simplify it, return a null SDValue.
1215 SDValue
SimplifySetCC(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,bool foldBooleans,DAGCombinerInfo & DCI,SDLoc dl) const1216 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1217                               ISD::CondCode Cond, bool foldBooleans,
1218                               DAGCombinerInfo &DCI, SDLoc dl) const {
1219   SelectionDAG &DAG = DCI.DAG;
1220 
1221   // These setcc operations always fold.
1222   switch (Cond) {
1223   default: break;
1224   case ISD::SETFALSE:
1225   case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1226   case ISD::SETTRUE:
1227   case ISD::SETTRUE2: {
1228     TargetLowering::BooleanContent Cnt =
1229         getBooleanContents(N0->getValueType(0));
1230     return DAG.getConstant(
1231         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT);
1232   }
1233   }
1234 
1235   // Ensure that the constant occurs on the RHS, and fold constant
1236   // comparisons.
1237   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1238   if (isa<ConstantSDNode>(N0.getNode()) &&
1239       (DCI.isBeforeLegalizeOps() ||
1240        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1241     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1242 
1243   if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1244     const APInt &C1 = N1C->getAPIntValue();
1245 
1246     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1247     // equality comparison, then we're just comparing whether X itself is
1248     // zero.
1249     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1250         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1251         N0.getOperand(1).getOpcode() == ISD::Constant) {
1252       const APInt &ShAmt
1253         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1254       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1255           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1256         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1257           // (srl (ctlz x), 5) == 0  -> X != 0
1258           // (srl (ctlz x), 5) != 1  -> X != 0
1259           Cond = ISD::SETNE;
1260         } else {
1261           // (srl (ctlz x), 5) != 0  -> X == 0
1262           // (srl (ctlz x), 5) == 1  -> X == 0
1263           Cond = ISD::SETEQ;
1264         }
1265         SDValue Zero = DAG.getConstant(0, N0.getValueType());
1266         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1267                             Zero, Cond);
1268       }
1269     }
1270 
1271     SDValue CTPOP = N0;
1272     // Look through truncs that don't change the value of a ctpop.
1273     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1274       CTPOP = N0.getOperand(0);
1275 
1276     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1277         (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1278                         Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1279       EVT CTVT = CTPOP.getValueType();
1280       SDValue CTOp = CTPOP.getOperand(0);
1281 
1282       // (ctpop x) u< 2 -> (x & x-1) == 0
1283       // (ctpop x) u> 1 -> (x & x-1) != 0
1284       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1285         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1286                                   DAG.getConstant(1, CTVT));
1287         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1288         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1289         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1290       }
1291 
1292       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1293     }
1294 
1295     // (zext x) == C --> x == (trunc C)
1296     // (sext x) == C --> x == (trunc C)
1297     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1298         DCI.isBeforeLegalize() && N0->hasOneUse()) {
1299       unsigned MinBits = N0.getValueSizeInBits();
1300       SDValue PreExt;
1301       bool Signed = false;
1302       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1303         // ZExt
1304         MinBits = N0->getOperand(0).getValueSizeInBits();
1305         PreExt = N0->getOperand(0);
1306       } else if (N0->getOpcode() == ISD::AND) {
1307         // DAGCombine turns costly ZExts into ANDs
1308         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1309           if ((C->getAPIntValue()+1).isPowerOf2()) {
1310             MinBits = C->getAPIntValue().countTrailingOnes();
1311             PreExt = N0->getOperand(0);
1312           }
1313       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
1314         // SExt
1315         MinBits = N0->getOperand(0).getValueSizeInBits();
1316         PreExt = N0->getOperand(0);
1317         Signed = true;
1318       } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1319         // ZEXTLOAD / SEXTLOAD
1320         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1321           MinBits = LN0->getMemoryVT().getSizeInBits();
1322           PreExt = N0;
1323         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
1324           Signed = true;
1325           MinBits = LN0->getMemoryVT().getSizeInBits();
1326           PreExt = N0;
1327         }
1328       }
1329 
1330       // Figure out how many bits we need to preserve this constant.
1331       unsigned ReqdBits = Signed ?
1332         C1.getBitWidth() - C1.getNumSignBits() + 1 :
1333         C1.getActiveBits();
1334 
1335       // Make sure we're not losing bits from the constant.
1336       if (MinBits > 0 &&
1337           MinBits < C1.getBitWidth() &&
1338           MinBits >= ReqdBits) {
1339         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1340         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1341           // Will get folded away.
1342           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
1343           SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
1344           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1345         }
1346       }
1347     }
1348 
1349     // If the LHS is '(and load, const)', the RHS is 0,
1350     // the test is for equality or unsigned, and all 1 bits of the const are
1351     // in the same partial word, see if we can shorten the load.
1352     if (DCI.isBeforeLegalize() &&
1353         !ISD::isSignedIntSetCC(Cond) &&
1354         N0.getOpcode() == ISD::AND && C1 == 0 &&
1355         N0.getNode()->hasOneUse() &&
1356         isa<LoadSDNode>(N0.getOperand(0)) &&
1357         N0.getOperand(0).getNode()->hasOneUse() &&
1358         isa<ConstantSDNode>(N0.getOperand(1))) {
1359       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1360       APInt bestMask;
1361       unsigned bestWidth = 0, bestOffset = 0;
1362       if (!Lod->isVolatile() && Lod->isUnindexed()) {
1363         unsigned origWidth = N0.getValueType().getSizeInBits();
1364         unsigned maskWidth = origWidth;
1365         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1366         // 8 bits, but have to be careful...
1367         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1368           origWidth = Lod->getMemoryVT().getSizeInBits();
1369         const APInt &Mask =
1370           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1371         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1372           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1373           for (unsigned offset=0; offset<origWidth/width; offset++) {
1374             if ((newMask & Mask) == Mask) {
1375               if (!getDataLayout()->isLittleEndian())
1376                 bestOffset = (origWidth/width - offset - 1) * (width/8);
1377               else
1378                 bestOffset = (uint64_t)offset * (width/8);
1379               bestMask = Mask.lshr(offset * (width/8) * 8);
1380               bestWidth = width;
1381               break;
1382             }
1383             newMask = newMask << width;
1384           }
1385         }
1386       }
1387       if (bestWidth) {
1388         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1389         if (newVT.isRound()) {
1390           EVT PtrType = Lod->getOperand(1).getValueType();
1391           SDValue Ptr = Lod->getBasePtr();
1392           if (bestOffset != 0)
1393             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1394                               DAG.getConstant(bestOffset, PtrType));
1395           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1396           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1397                                 Lod->getPointerInfo().getWithOffset(bestOffset),
1398                                         false, false, false, NewAlign);
1399           return DAG.getSetCC(dl, VT,
1400                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1401                                       DAG.getConstant(bestMask.trunc(bestWidth),
1402                                                       newVT)),
1403                               DAG.getConstant(0LL, newVT), Cond);
1404         }
1405       }
1406     }
1407 
1408     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1409     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1410       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1411 
1412       // If the comparison constant has bits in the upper part, the
1413       // zero-extended value could never match.
1414       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1415                                               C1.getBitWidth() - InSize))) {
1416         switch (Cond) {
1417         case ISD::SETUGT:
1418         case ISD::SETUGE:
1419         case ISD::SETEQ: return DAG.getConstant(0, VT);
1420         case ISD::SETULT:
1421         case ISD::SETULE:
1422         case ISD::SETNE: return DAG.getConstant(1, VT);
1423         case ISD::SETGT:
1424         case ISD::SETGE:
1425           // True if the sign bit of C1 is set.
1426           return DAG.getConstant(C1.isNegative(), VT);
1427         case ISD::SETLT:
1428         case ISD::SETLE:
1429           // True if the sign bit of C1 isn't set.
1430           return DAG.getConstant(C1.isNonNegative(), VT);
1431         default:
1432           break;
1433         }
1434       }
1435 
1436       // Otherwise, we can perform the comparison with the low bits.
1437       switch (Cond) {
1438       case ISD::SETEQ:
1439       case ISD::SETNE:
1440       case ISD::SETUGT:
1441       case ISD::SETUGE:
1442       case ISD::SETULT:
1443       case ISD::SETULE: {
1444         EVT newVT = N0.getOperand(0).getValueType();
1445         if (DCI.isBeforeLegalizeOps() ||
1446             (isOperationLegal(ISD::SETCC, newVT) &&
1447              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
1448           EVT NewSetCCVT = getSetCCResultType(*DAG.getContext(), newVT);
1449           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), newVT);
1450 
1451           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
1452                                           NewConst, Cond);
1453           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
1454         }
1455         break;
1456       }
1457       default:
1458         break;   // todo, be more careful with signed comparisons
1459       }
1460     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1461                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1462       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1463       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1464       EVT ExtDstTy = N0.getValueType();
1465       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1466 
1467       // If the constant doesn't fit into the number of bits for the source of
1468       // the sign extension, it is impossible for both sides to be equal.
1469       if (C1.getMinSignedBits() > ExtSrcTyBits)
1470         return DAG.getConstant(Cond == ISD::SETNE, VT);
1471 
1472       SDValue ZextOp;
1473       EVT Op0Ty = N0.getOperand(0).getValueType();
1474       if (Op0Ty == ExtSrcTy) {
1475         ZextOp = N0.getOperand(0);
1476       } else {
1477         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1478         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1479                               DAG.getConstant(Imm, Op0Ty));
1480       }
1481       if (!DCI.isCalledByLegalizer())
1482         DCI.AddToWorklist(ZextOp.getNode());
1483       // Otherwise, make this a use of a zext.
1484       return DAG.getSetCC(dl, VT, ZextOp,
1485                           DAG.getConstant(C1 & APInt::getLowBitsSet(
1486                                                               ExtDstTyBits,
1487                                                               ExtSrcTyBits),
1488                                           ExtDstTy),
1489                           Cond);
1490     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1491                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1492       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1493       if (N0.getOpcode() == ISD::SETCC &&
1494           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1495         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1496         if (TrueWhenTrue)
1497           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1498         // Invert the condition.
1499         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1500         CC = ISD::getSetCCInverse(CC,
1501                                   N0.getOperand(0).getValueType().isInteger());
1502         if (DCI.isBeforeLegalizeOps() ||
1503             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1504           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1505       }
1506 
1507       if ((N0.getOpcode() == ISD::XOR ||
1508            (N0.getOpcode() == ISD::AND &&
1509             N0.getOperand(0).getOpcode() == ISD::XOR &&
1510             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1511           isa<ConstantSDNode>(N0.getOperand(1)) &&
1512           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1513         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1514         // can only do this if the top bits are known zero.
1515         unsigned BitWidth = N0.getValueSizeInBits();
1516         if (DAG.MaskedValueIsZero(N0,
1517                                   APInt::getHighBitsSet(BitWidth,
1518                                                         BitWidth-1))) {
1519           // Okay, get the un-inverted input value.
1520           SDValue Val;
1521           if (N0.getOpcode() == ISD::XOR)
1522             Val = N0.getOperand(0);
1523           else {
1524             assert(N0.getOpcode() == ISD::AND &&
1525                     N0.getOperand(0).getOpcode() == ISD::XOR);
1526             // ((X^1)&1)^1 -> X & 1
1527             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1528                               N0.getOperand(0).getOperand(0),
1529                               N0.getOperand(1));
1530           }
1531 
1532           return DAG.getSetCC(dl, VT, Val, N1,
1533                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1534         }
1535       } else if (N1C->getAPIntValue() == 1 &&
1536                  (VT == MVT::i1 ||
1537                   getBooleanContents(N0->getValueType(0)) ==
1538                       ZeroOrOneBooleanContent)) {
1539         SDValue Op0 = N0;
1540         if (Op0.getOpcode() == ISD::TRUNCATE)
1541           Op0 = Op0.getOperand(0);
1542 
1543         if ((Op0.getOpcode() == ISD::XOR) &&
1544             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1545             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1546           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1547           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1548           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1549                               Cond);
1550         }
1551         if (Op0.getOpcode() == ISD::AND &&
1552             isa<ConstantSDNode>(Op0.getOperand(1)) &&
1553             cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1554           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1555           if (Op0.getValueType().bitsGT(VT))
1556             Op0 = DAG.getNode(ISD::AND, dl, VT,
1557                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1558                           DAG.getConstant(1, VT));
1559           else if (Op0.getValueType().bitsLT(VT))
1560             Op0 = DAG.getNode(ISD::AND, dl, VT,
1561                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1562                         DAG.getConstant(1, VT));
1563 
1564           return DAG.getSetCC(dl, VT, Op0,
1565                               DAG.getConstant(0, Op0.getValueType()),
1566                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1567         }
1568         if (Op0.getOpcode() == ISD::AssertZext &&
1569             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1570           return DAG.getSetCC(dl, VT, Op0,
1571                               DAG.getConstant(0, Op0.getValueType()),
1572                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1573       }
1574     }
1575 
1576     APInt MinVal, MaxVal;
1577     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1578     if (ISD::isSignedIntSetCC(Cond)) {
1579       MinVal = APInt::getSignedMinValue(OperandBitSize);
1580       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1581     } else {
1582       MinVal = APInt::getMinValue(OperandBitSize);
1583       MaxVal = APInt::getMaxValue(OperandBitSize);
1584     }
1585 
1586     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1587     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1588       if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1589       // X >= C0 --> X > (C0 - 1)
1590       APInt C = C1 - 1;
1591       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
1592       if ((DCI.isBeforeLegalizeOps() ||
1593            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1594           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1595                                 isLegalICmpImmediate(C.getSExtValue())))) {
1596         return DAG.getSetCC(dl, VT, N0,
1597                             DAG.getConstant(C, N1.getValueType()),
1598                             NewCC);
1599       }
1600     }
1601 
1602     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1603       if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1604       // X <= C0 --> X < (C0 + 1)
1605       APInt C = C1 + 1;
1606       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
1607       if ((DCI.isBeforeLegalizeOps() ||
1608            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1609           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1610                                 isLegalICmpImmediate(C.getSExtValue())))) {
1611         return DAG.getSetCC(dl, VT, N0,
1612                             DAG.getConstant(C, N1.getValueType()),
1613                             NewCC);
1614       }
1615     }
1616 
1617     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1618       return DAG.getConstant(0, VT);      // X < MIN --> false
1619     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1620       return DAG.getConstant(1, VT);      // X >= MIN --> true
1621     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1622       return DAG.getConstant(0, VT);      // X > MAX --> false
1623     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1624       return DAG.getConstant(1, VT);      // X <= MAX --> true
1625 
1626     // Canonicalize setgt X, Min --> setne X, Min
1627     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1628       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1629     // Canonicalize setlt X, Max --> setne X, Max
1630     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1631       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1632 
1633     // If we have setult X, 1, turn it into seteq X, 0
1634     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1635       return DAG.getSetCC(dl, VT, N0,
1636                           DAG.getConstant(MinVal, N0.getValueType()),
1637                           ISD::SETEQ);
1638     // If we have setugt X, Max-1, turn it into seteq X, Max
1639     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1640       return DAG.getSetCC(dl, VT, N0,
1641                           DAG.getConstant(MaxVal, N0.getValueType()),
1642                           ISD::SETEQ);
1643 
1644     // If we have "setcc X, C0", check to see if we can shrink the immediate
1645     // by changing cc.
1646 
1647     // SETUGT X, SINTMAX  -> SETLT X, 0
1648     if (Cond == ISD::SETUGT &&
1649         C1 == APInt::getSignedMaxValue(OperandBitSize))
1650       return DAG.getSetCC(dl, VT, N0,
1651                           DAG.getConstant(0, N1.getValueType()),
1652                           ISD::SETLT);
1653 
1654     // SETULT X, SINTMIN  -> SETGT X, -1
1655     if (Cond == ISD::SETULT &&
1656         C1 == APInt::getSignedMinValue(OperandBitSize)) {
1657       SDValue ConstMinusOne =
1658           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1659                           N1.getValueType());
1660       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1661     }
1662 
1663     // Fold bit comparisons when we can.
1664     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1665         (VT == N0.getValueType() ||
1666          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1667         N0.getOpcode() == ISD::AND)
1668       if (ConstantSDNode *AndRHS =
1669                   dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1670         EVT ShiftTy = DCI.isBeforeLegalize() ?
1671           getPointerTy() : getShiftAmountTy(N0.getValueType());
1672         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1673           // Perform the xform if the AND RHS is a single bit.
1674           if (AndRHS->getAPIntValue().isPowerOf2()) {
1675             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1676                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1677                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
1678           }
1679         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1680           // (X & 8) == 8  -->  (X & 8) >> 3
1681           // Perform the xform if C1 is a single bit.
1682           if (C1.isPowerOf2()) {
1683             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1684                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1685                                       DAG.getConstant(C1.logBase2(), ShiftTy)));
1686           }
1687         }
1688       }
1689 
1690     if (C1.getMinSignedBits() <= 64 &&
1691         !isLegalICmpImmediate(C1.getSExtValue())) {
1692       // (X & -256) == 256 -> (X >> 8) == 1
1693       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1694           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
1695         if (ConstantSDNode *AndRHS =
1696             dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1697           const APInt &AndRHSC = AndRHS->getAPIntValue();
1698           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
1699             unsigned ShiftBits = AndRHSC.countTrailingZeros();
1700             EVT ShiftTy = DCI.isBeforeLegalize() ?
1701               getPointerTy() : getShiftAmountTy(N0.getValueType());
1702             EVT CmpTy = N0.getValueType();
1703             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
1704                                         DAG.getConstant(ShiftBits, ShiftTy));
1705             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
1706             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
1707           }
1708         }
1709       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
1710                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
1711         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
1712         // X <  0x100000000 -> (X >> 32) <  1
1713         // X >= 0x100000000 -> (X >> 32) >= 1
1714         // X <= 0x0ffffffff -> (X >> 32) <  1
1715         // X >  0x0ffffffff -> (X >> 32) >= 1
1716         unsigned ShiftBits;
1717         APInt NewC = C1;
1718         ISD::CondCode NewCond = Cond;
1719         if (AdjOne) {
1720           ShiftBits = C1.countTrailingOnes();
1721           NewC = NewC + 1;
1722           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1723         } else {
1724           ShiftBits = C1.countTrailingZeros();
1725         }
1726         NewC = NewC.lshr(ShiftBits);
1727         if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
1728           EVT ShiftTy = DCI.isBeforeLegalize() ?
1729             getPointerTy() : getShiftAmountTy(N0.getValueType());
1730           EVT CmpTy = N0.getValueType();
1731           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
1732                                       DAG.getConstant(ShiftBits, ShiftTy));
1733           SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
1734           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
1735         }
1736       }
1737     }
1738   }
1739 
1740   if (isa<ConstantFPSDNode>(N0.getNode())) {
1741     // Constant fold or commute setcc.
1742     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1743     if (O.getNode()) return O;
1744   } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1745     // If the RHS of an FP comparison is a constant, simplify it away in
1746     // some cases.
1747     if (CFP->getValueAPF().isNaN()) {
1748       // If an operand is known to be a nan, we can fold it.
1749       switch (ISD::getUnorderedFlavor(Cond)) {
1750       default: llvm_unreachable("Unknown flavor!");
1751       case 0:  // Known false.
1752         return DAG.getConstant(0, VT);
1753       case 1:  // Known true.
1754         return DAG.getConstant(1, VT);
1755       case 2:  // Undefined.
1756         return DAG.getUNDEF(VT);
1757       }
1758     }
1759 
1760     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1761     // constant if knowing that the operand is non-nan is enough.  We prefer to
1762     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1763     // materialize 0.0.
1764     if (Cond == ISD::SETO || Cond == ISD::SETUO)
1765       return DAG.getSetCC(dl, VT, N0, N0, Cond);
1766 
1767     // If the condition is not legal, see if we can find an equivalent one
1768     // which is legal.
1769     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
1770       // If the comparison was an awkward floating-point == or != and one of
1771       // the comparison operands is infinity or negative infinity, convert the
1772       // condition to a less-awkward <= or >=.
1773       if (CFP->getValueAPF().isInfinity()) {
1774         if (CFP->getValueAPF().isNegative()) {
1775           if (Cond == ISD::SETOEQ &&
1776               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1777             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
1778           if (Cond == ISD::SETUEQ &&
1779               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1780             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
1781           if (Cond == ISD::SETUNE &&
1782               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1783             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
1784           if (Cond == ISD::SETONE &&
1785               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1786             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
1787         } else {
1788           if (Cond == ISD::SETOEQ &&
1789               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1790             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
1791           if (Cond == ISD::SETUEQ &&
1792               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1793             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
1794           if (Cond == ISD::SETUNE &&
1795               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1796             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
1797           if (Cond == ISD::SETONE &&
1798               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1799             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
1800         }
1801       }
1802     }
1803   }
1804 
1805   if (N0 == N1) {
1806     // The sext(setcc()) => setcc() optimization relies on the appropriate
1807     // constant being emitted.
1808     uint64_t EqVal = 0;
1809     switch (getBooleanContents(N0.getValueType())) {
1810     case UndefinedBooleanContent:
1811     case ZeroOrOneBooleanContent:
1812       EqVal = ISD::isTrueWhenEqual(Cond);
1813       break;
1814     case ZeroOrNegativeOneBooleanContent:
1815       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
1816       break;
1817     }
1818 
1819     // We can always fold X == X for integer setcc's.
1820     if (N0.getValueType().isInteger()) {
1821       return DAG.getConstant(EqVal, VT);
1822     }
1823     unsigned UOF = ISD::getUnorderedFlavor(Cond);
1824     if (UOF == 2)   // FP operators that are undefined on NaNs.
1825       return DAG.getConstant(EqVal, VT);
1826     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1827       return DAG.getConstant(EqVal, VT);
1828     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1829     // if it is not already.
1830     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1831     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
1832           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
1833       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1834   }
1835 
1836   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1837       N0.getValueType().isInteger()) {
1838     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1839         N0.getOpcode() == ISD::XOR) {
1840       // Simplify (X+Y) == (X+Z) -->  Y == Z
1841       if (N0.getOpcode() == N1.getOpcode()) {
1842         if (N0.getOperand(0) == N1.getOperand(0))
1843           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1844         if (N0.getOperand(1) == N1.getOperand(1))
1845           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1846         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1847           // If X op Y == Y op X, try other combinations.
1848           if (N0.getOperand(0) == N1.getOperand(1))
1849             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1850                                 Cond);
1851           if (N0.getOperand(1) == N1.getOperand(0))
1852             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1853                                 Cond);
1854         }
1855       }
1856 
1857       // If RHS is a legal immediate value for a compare instruction, we need
1858       // to be careful about increasing register pressure needlessly.
1859       bool LegalRHSImm = false;
1860 
1861       if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1862         if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1863           // Turn (X+C1) == C2 --> X == C2-C1
1864           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1865             return DAG.getSetCC(dl, VT, N0.getOperand(0),
1866                                 DAG.getConstant(RHSC->getAPIntValue()-
1867                                                 LHSR->getAPIntValue(),
1868                                 N0.getValueType()), Cond);
1869           }
1870 
1871           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1872           if (N0.getOpcode() == ISD::XOR)
1873             // If we know that all of the inverted bits are zero, don't bother
1874             // performing the inversion.
1875             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1876               return
1877                 DAG.getSetCC(dl, VT, N0.getOperand(0),
1878                              DAG.getConstant(LHSR->getAPIntValue() ^
1879                                                RHSC->getAPIntValue(),
1880                                              N0.getValueType()),
1881                              Cond);
1882         }
1883 
1884         // Turn (C1-X) == C2 --> X == C1-C2
1885         if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1886           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1887             return
1888               DAG.getSetCC(dl, VT, N0.getOperand(1),
1889                            DAG.getConstant(SUBC->getAPIntValue() -
1890                                              RHSC->getAPIntValue(),
1891                                            N0.getValueType()),
1892                            Cond);
1893           }
1894         }
1895 
1896         // Could RHSC fold directly into a compare?
1897         if (RHSC->getValueType(0).getSizeInBits() <= 64)
1898           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
1899       }
1900 
1901       // Simplify (X+Z) == X -->  Z == 0
1902       // Don't do this if X is an immediate that can fold into a cmp
1903       // instruction and X+Z has other uses. It could be an induction variable
1904       // chain, and the transform would increase register pressure.
1905       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
1906         if (N0.getOperand(0) == N1)
1907           return DAG.getSetCC(dl, VT, N0.getOperand(1),
1908                               DAG.getConstant(0, N0.getValueType()), Cond);
1909         if (N0.getOperand(1) == N1) {
1910           if (DAG.isCommutativeBinOp(N0.getOpcode()))
1911             return DAG.getSetCC(dl, VT, N0.getOperand(0),
1912                                 DAG.getConstant(0, N0.getValueType()), Cond);
1913           if (N0.getNode()->hasOneUse()) {
1914             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1915             // (Z-X) == X  --> Z == X<<1
1916             SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
1917                        DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
1918             if (!DCI.isCalledByLegalizer())
1919               DCI.AddToWorklist(SH.getNode());
1920             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1921           }
1922         }
1923       }
1924     }
1925 
1926     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1927         N1.getOpcode() == ISD::XOR) {
1928       // Simplify  X == (X+Z) -->  Z == 0
1929       if (N1.getOperand(0) == N0)
1930         return DAG.getSetCC(dl, VT, N1.getOperand(1),
1931                         DAG.getConstant(0, N1.getValueType()), Cond);
1932       if (N1.getOperand(1) == N0) {
1933         if (DAG.isCommutativeBinOp(N1.getOpcode()))
1934           return DAG.getSetCC(dl, VT, N1.getOperand(0),
1935                           DAG.getConstant(0, N1.getValueType()), Cond);
1936         if (N1.getNode()->hasOneUse()) {
1937           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1938           // X == (Z-X)  --> X<<1 == Z
1939           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1940                        DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
1941           if (!DCI.isCalledByLegalizer())
1942             DCI.AddToWorklist(SH.getNode());
1943           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1944         }
1945       }
1946     }
1947 
1948     // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1949     // Note that where y is variable and is known to have at most
1950     // one bit set (for example, if it is z&1) we cannot do this;
1951     // the expressions are not equivalent when y==0.
1952     if (N0.getOpcode() == ISD::AND)
1953       if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1954         if (ValueHasExactlyOneBitSet(N1, DAG)) {
1955           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1956           if (DCI.isBeforeLegalizeOps() ||
1957               isCondCodeLegal(Cond, N0.getSimpleValueType())) {
1958             SDValue Zero = DAG.getConstant(0, N1.getValueType());
1959             return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1960           }
1961         }
1962       }
1963     if (N1.getOpcode() == ISD::AND)
1964       if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1965         if (ValueHasExactlyOneBitSet(N0, DAG)) {
1966           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1967           if (DCI.isBeforeLegalizeOps() ||
1968               isCondCodeLegal(Cond, N1.getSimpleValueType())) {
1969             SDValue Zero = DAG.getConstant(0, N0.getValueType());
1970             return DAG.getSetCC(dl, VT, N1, Zero, Cond);
1971           }
1972         }
1973       }
1974   }
1975 
1976   // Fold away ALL boolean setcc's.
1977   SDValue Temp;
1978   if (N0.getValueType() == MVT::i1 && foldBooleans) {
1979     switch (Cond) {
1980     default: llvm_unreachable("Unknown integer setcc!");
1981     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
1982       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1983       N0 = DAG.getNOT(dl, Temp, MVT::i1);
1984       if (!DCI.isCalledByLegalizer())
1985         DCI.AddToWorklist(Temp.getNode());
1986       break;
1987     case ISD::SETNE:  // X != Y   -->  (X^Y)
1988       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1989       break;
1990     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
1991     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
1992       Temp = DAG.getNOT(dl, N0, MVT::i1);
1993       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
1994       if (!DCI.isCalledByLegalizer())
1995         DCI.AddToWorklist(Temp.getNode());
1996       break;
1997     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
1998     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
1999       Temp = DAG.getNOT(dl, N1, MVT::i1);
2000       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2001       if (!DCI.isCalledByLegalizer())
2002         DCI.AddToWorklist(Temp.getNode());
2003       break;
2004     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2005     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2006       Temp = DAG.getNOT(dl, N0, MVT::i1);
2007       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2008       if (!DCI.isCalledByLegalizer())
2009         DCI.AddToWorklist(Temp.getNode());
2010       break;
2011     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2012     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2013       Temp = DAG.getNOT(dl, N1, MVT::i1);
2014       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2015       break;
2016     }
2017     if (VT != MVT::i1) {
2018       if (!DCI.isCalledByLegalizer())
2019         DCI.AddToWorklist(N0.getNode());
2020       // FIXME: If running after legalize, we probably can't do this.
2021       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2022     }
2023     return N0;
2024   }
2025 
2026   // Could not fold it.
2027   return SDValue();
2028 }
2029 
2030 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2031 /// node is a GlobalAddress + offset.
isGAPlusOffset(SDNode * N,const GlobalValue * & GA,int64_t & Offset) const2032 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2033                                     int64_t &Offset) const {
2034   if (isa<GlobalAddressSDNode>(N)) {
2035     GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2036     GA = GASD->getGlobal();
2037     Offset += GASD->getOffset();
2038     return true;
2039   }
2040 
2041   if (N->getOpcode() == ISD::ADD) {
2042     SDValue N1 = N->getOperand(0);
2043     SDValue N2 = N->getOperand(1);
2044     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2045       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2046       if (V) {
2047         Offset += V->getSExtValue();
2048         return true;
2049       }
2050     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2051       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2052       if (V) {
2053         Offset += V->getSExtValue();
2054         return true;
2055       }
2056     }
2057   }
2058 
2059   return false;
2060 }
2061 
2062 
2063 SDValue TargetLowering::
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const2064 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2065   // Default implementation: no optimization.
2066   return SDValue();
2067 }
2068 
2069 //===----------------------------------------------------------------------===//
2070 //  Inline Assembler Implementation Methods
2071 //===----------------------------------------------------------------------===//
2072 
2073 
2074 TargetLowering::ConstraintType
getConstraintType(const std::string & Constraint) const2075 TargetLowering::getConstraintType(const std::string &Constraint) const {
2076   unsigned S = Constraint.size();
2077 
2078   if (S == 1) {
2079     switch (Constraint[0]) {
2080     default: break;
2081     case 'r': return C_RegisterClass;
2082     case 'm':    // memory
2083     case 'o':    // offsetable
2084     case 'V':    // not offsetable
2085       return C_Memory;
2086     case 'i':    // Simple Integer or Relocatable Constant
2087     case 'n':    // Simple Integer
2088     case 'E':    // Floating Point Constant
2089     case 'F':    // Floating Point Constant
2090     case 's':    // Relocatable Constant
2091     case 'p':    // Address.
2092     case 'X':    // Allow ANY value.
2093     case 'I':    // Target registers.
2094     case 'J':
2095     case 'K':
2096     case 'L':
2097     case 'M':
2098     case 'N':
2099     case 'O':
2100     case 'P':
2101     case '<':
2102     case '>':
2103       return C_Other;
2104     }
2105   }
2106 
2107   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2108     if (S == 8 && !Constraint.compare(1, 6, "memory", 6))  // "{memory}"
2109       return C_Memory;
2110     return C_Register;
2111   }
2112   return C_Unknown;
2113 }
2114 
2115 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2116 /// with another that has more specific requirements based on the type of the
2117 /// corresponding operand.
LowerXConstraint(EVT ConstraintVT) const2118 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2119   if (ConstraintVT.isInteger())
2120     return "r";
2121   if (ConstraintVT.isFloatingPoint())
2122     return "f";      // works for many targets
2123   return nullptr;
2124 }
2125 
2126 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2127 /// vector.  If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const2128 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2129                                                   std::string &Constraint,
2130                                                   std::vector<SDValue> &Ops,
2131                                                   SelectionDAG &DAG) const {
2132 
2133   if (Constraint.length() > 1) return;
2134 
2135   char ConstraintLetter = Constraint[0];
2136   switch (ConstraintLetter) {
2137   default: break;
2138   case 'X':     // Allows any operand; labels (basic block) use this.
2139     if (Op.getOpcode() == ISD::BasicBlock) {
2140       Ops.push_back(Op);
2141       return;
2142     }
2143     // fall through
2144   case 'i':    // Simple Integer or Relocatable Constant
2145   case 'n':    // Simple Integer
2146   case 's': {  // Relocatable Constant
2147     // These operands are interested in values of the form (GV+C), where C may
2148     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2149     // is possible and fine if either GV or C are missing.
2150     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2151     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2152 
2153     // If we have "(add GV, C)", pull out GV/C
2154     if (Op.getOpcode() == ISD::ADD) {
2155       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2156       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2157       if (!C || !GA) {
2158         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2159         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2160       }
2161       if (!C || !GA)
2162         C = nullptr, GA = nullptr;
2163     }
2164 
2165     // If we find a valid operand, map to the TargetXXX version so that the
2166     // value itself doesn't get selected.
2167     if (GA) {   // Either &GV   or   &GV+C
2168       if (ConstraintLetter != 'n') {
2169         int64_t Offs = GA->getOffset();
2170         if (C) Offs += C->getZExtValue();
2171         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2172                                                  C ? SDLoc(C) : SDLoc(),
2173                                                  Op.getValueType(), Offs));
2174         return;
2175       }
2176     }
2177     if (C) {   // just C, no GV.
2178       // Simple constants are not allowed for 's'.
2179       if (ConstraintLetter != 's') {
2180         // gcc prints these as sign extended.  Sign extend value to 64 bits
2181         // now; without this it would get ZExt'd later in
2182         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2183         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2184                                             MVT::i64));
2185         return;
2186       }
2187     }
2188     break;
2189   }
2190   }
2191 }
2192 
2193 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * RI,const std::string & Constraint,MVT VT) const2194 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
2195                                              const std::string &Constraint,
2196                                              MVT VT) const {
2197   if (Constraint.empty() || Constraint[0] != '{')
2198     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
2199   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2200 
2201   // Remove the braces from around the name.
2202   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2203 
2204   std::pair<unsigned, const TargetRegisterClass*> R =
2205     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
2206 
2207   // Figure out which register class contains this reg.
2208   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2209        E = RI->regclass_end(); RCI != E; ++RCI) {
2210     const TargetRegisterClass *RC = *RCI;
2211 
2212     // If none of the value types for this register class are valid, we
2213     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2214     if (!isLegalRC(RC))
2215       continue;
2216 
2217     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2218          I != E; ++I) {
2219       if (RegName.equals_lower(RI->getName(*I))) {
2220         std::pair<unsigned, const TargetRegisterClass*> S =
2221           std::make_pair(*I, RC);
2222 
2223         // If this register class has the requested value type, return it,
2224         // otherwise keep searching and return the first class found
2225         // if no other is found which explicitly has the requested type.
2226         if (RC->hasType(VT))
2227           return S;
2228         else if (!R.second)
2229           R = S;
2230       }
2231     }
2232   }
2233 
2234   return R;
2235 }
2236 
2237 //===----------------------------------------------------------------------===//
2238 // Constraint Selection.
2239 
2240 /// isMatchingInputConstraint - Return true of this is an input operand that is
2241 /// a matching constraint like "4".
isMatchingInputConstraint() const2242 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2243   assert(!ConstraintCode.empty() && "No known constraint!");
2244   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2245 }
2246 
2247 /// getMatchedOperand - If this is an input matching constraint, this method
2248 /// returns the output operand it matches.
getMatchedOperand() const2249 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2250   assert(!ConstraintCode.empty() && "No known constraint!");
2251   return atoi(ConstraintCode.c_str());
2252 }
2253 
2254 
2255 /// ParseConstraints - Split up the constraint string from the inline
2256 /// assembly value into the specific constraints and their prefixes,
2257 /// and also tie in the associated operand values.
2258 /// If this returns an empty vector, and if the constraint string itself
2259 /// isn't empty, there was an error parsing.
2260 TargetLowering::AsmOperandInfoVector
ParseConstraints(const TargetRegisterInfo * TRI,ImmutableCallSite CS) const2261 TargetLowering::ParseConstraints(const TargetRegisterInfo *TRI,
2262                                  ImmutableCallSite CS) const {
2263   /// ConstraintOperands - Information about all of the constraints.
2264   AsmOperandInfoVector ConstraintOperands;
2265   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2266   unsigned maCount = 0; // Largest number of multiple alternative constraints.
2267 
2268   // Do a prepass over the constraints, canonicalizing them, and building up the
2269   // ConstraintOperands list.
2270   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2271   unsigned ResNo = 0;   // ResNo - The result number of the next output.
2272 
2273   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2274     ConstraintOperands.emplace_back(std::move(CI));
2275     AsmOperandInfo &OpInfo = ConstraintOperands.back();
2276 
2277     // Update multiple alternative constraint count.
2278     if (OpInfo.multipleAlternatives.size() > maCount)
2279       maCount = OpInfo.multipleAlternatives.size();
2280 
2281     OpInfo.ConstraintVT = MVT::Other;
2282 
2283     // Compute the value type for each operand.
2284     switch (OpInfo.Type) {
2285     case InlineAsm::isOutput:
2286       // Indirect outputs just consume an argument.
2287       if (OpInfo.isIndirect) {
2288         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2289         break;
2290       }
2291 
2292       // The return value of the call is this value.  As such, there is no
2293       // corresponding argument.
2294       assert(!CS.getType()->isVoidTy() &&
2295              "Bad inline asm!");
2296       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2297         OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo));
2298       } else {
2299         assert(ResNo == 0 && "Asm only has one result!");
2300         OpInfo.ConstraintVT = getSimpleValueType(CS.getType());
2301       }
2302       ++ResNo;
2303       break;
2304     case InlineAsm::isInput:
2305       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2306       break;
2307     case InlineAsm::isClobber:
2308       // Nothing to do.
2309       break;
2310     }
2311 
2312     if (OpInfo.CallOperandVal) {
2313       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2314       if (OpInfo.isIndirect) {
2315         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2316         if (!PtrTy)
2317           report_fatal_error("Indirect operand for inline asm not a pointer!");
2318         OpTy = PtrTy->getElementType();
2319       }
2320 
2321       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2322       if (StructType *STy = dyn_cast<StructType>(OpTy))
2323         if (STy->getNumElements() == 1)
2324           OpTy = STy->getElementType(0);
2325 
2326       // If OpTy is not a single value, it may be a struct/union that we
2327       // can tile with integers.
2328       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2329         unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy);
2330         switch (BitSize) {
2331         default: break;
2332         case 1:
2333         case 8:
2334         case 16:
2335         case 32:
2336         case 64:
2337         case 128:
2338           OpInfo.ConstraintVT =
2339             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2340           break;
2341         }
2342       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2343         unsigned PtrSize
2344           = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace());
2345         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
2346       } else {
2347         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2348       }
2349     }
2350   }
2351 
2352   // If we have multiple alternative constraints, select the best alternative.
2353   if (!ConstraintOperands.empty()) {
2354     if (maCount) {
2355       unsigned bestMAIndex = 0;
2356       int bestWeight = -1;
2357       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2358       int weight = -1;
2359       unsigned maIndex;
2360       // Compute the sums of the weights for each alternative, keeping track
2361       // of the best (highest weight) one so far.
2362       for (maIndex = 0; maIndex < maCount; ++maIndex) {
2363         int weightSum = 0;
2364         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2365             cIndex != eIndex; ++cIndex) {
2366           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2367           if (OpInfo.Type == InlineAsm::isClobber)
2368             continue;
2369 
2370           // If this is an output operand with a matching input operand,
2371           // look up the matching input. If their types mismatch, e.g. one
2372           // is an integer, the other is floating point, or their sizes are
2373           // different, flag it as an maCantMatch.
2374           if (OpInfo.hasMatchingInput()) {
2375             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2376             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2377               if ((OpInfo.ConstraintVT.isInteger() !=
2378                    Input.ConstraintVT.isInteger()) ||
2379                   (OpInfo.ConstraintVT.getSizeInBits() !=
2380                    Input.ConstraintVT.getSizeInBits())) {
2381                 weightSum = -1;  // Can't match.
2382                 break;
2383               }
2384             }
2385           }
2386           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2387           if (weight == -1) {
2388             weightSum = -1;
2389             break;
2390           }
2391           weightSum += weight;
2392         }
2393         // Update best.
2394         if (weightSum > bestWeight) {
2395           bestWeight = weightSum;
2396           bestMAIndex = maIndex;
2397         }
2398       }
2399 
2400       // Now select chosen alternative in each constraint.
2401       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2402           cIndex != eIndex; ++cIndex) {
2403         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2404         if (cInfo.Type == InlineAsm::isClobber)
2405           continue;
2406         cInfo.selectAlternative(bestMAIndex);
2407       }
2408     }
2409   }
2410 
2411   // Check and hook up tied operands, choose constraint code to use.
2412   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2413       cIndex != eIndex; ++cIndex) {
2414     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2415 
2416     // If this is an output operand with a matching input operand, look up the
2417     // matching input. If their types mismatch, e.g. one is an integer, the
2418     // other is floating point, or their sizes are different, flag it as an
2419     // error.
2420     if (OpInfo.hasMatchingInput()) {
2421       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2422 
2423       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2424         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
2425             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
2426                                          OpInfo.ConstraintVT);
2427         std::pair<unsigned, const TargetRegisterClass *> InputRC =
2428             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
2429                                          Input.ConstraintVT);
2430         if ((OpInfo.ConstraintVT.isInteger() !=
2431              Input.ConstraintVT.isInteger()) ||
2432             (MatchRC.second != InputRC.second)) {
2433           report_fatal_error("Unsupported asm: input constraint"
2434                              " with a matching output constraint of"
2435                              " incompatible type!");
2436         }
2437       }
2438 
2439     }
2440   }
2441 
2442   return ConstraintOperands;
2443 }
2444 
2445 
2446 /// getConstraintGenerality - Return an integer indicating how general CT
2447 /// is.
getConstraintGenerality(TargetLowering::ConstraintType CT)2448 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2449   switch (CT) {
2450   case TargetLowering::C_Other:
2451   case TargetLowering::C_Unknown:
2452     return 0;
2453   case TargetLowering::C_Register:
2454     return 1;
2455   case TargetLowering::C_RegisterClass:
2456     return 2;
2457   case TargetLowering::C_Memory:
2458     return 3;
2459   }
2460   llvm_unreachable("Invalid constraint type");
2461 }
2462 
2463 /// Examine constraint type and operand type and determine a weight value.
2464 /// This object must already have been set up with the operand type
2465 /// and the current alternative constraint selected.
2466 TargetLowering::ConstraintWeight
getMultipleConstraintMatchWeight(AsmOperandInfo & info,int maIndex) const2467   TargetLowering::getMultipleConstraintMatchWeight(
2468     AsmOperandInfo &info, int maIndex) const {
2469   InlineAsm::ConstraintCodeVector *rCodes;
2470   if (maIndex >= (int)info.multipleAlternatives.size())
2471     rCodes = &info.Codes;
2472   else
2473     rCodes = &info.multipleAlternatives[maIndex].Codes;
2474   ConstraintWeight BestWeight = CW_Invalid;
2475 
2476   // Loop over the options, keeping track of the most general one.
2477   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2478     ConstraintWeight weight =
2479       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2480     if (weight > BestWeight)
2481       BestWeight = weight;
2482   }
2483 
2484   return BestWeight;
2485 }
2486 
2487 /// Examine constraint type and operand type and determine a weight value.
2488 /// This object must already have been set up with the operand type
2489 /// and the current alternative constraint selected.
2490 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const2491   TargetLowering::getSingleConstraintMatchWeight(
2492     AsmOperandInfo &info, const char *constraint) const {
2493   ConstraintWeight weight = CW_Invalid;
2494   Value *CallOperandVal = info.CallOperandVal;
2495     // If we don't have a value, we can't do a match,
2496     // but allow it at the lowest weight.
2497   if (!CallOperandVal)
2498     return CW_Default;
2499   // Look at the constraint type.
2500   switch (*constraint) {
2501     case 'i': // immediate integer.
2502     case 'n': // immediate integer with a known value.
2503       if (isa<ConstantInt>(CallOperandVal))
2504         weight = CW_Constant;
2505       break;
2506     case 's': // non-explicit intregal immediate.
2507       if (isa<GlobalValue>(CallOperandVal))
2508         weight = CW_Constant;
2509       break;
2510     case 'E': // immediate float if host format.
2511     case 'F': // immediate float.
2512       if (isa<ConstantFP>(CallOperandVal))
2513         weight = CW_Constant;
2514       break;
2515     case '<': // memory operand with autodecrement.
2516     case '>': // memory operand with autoincrement.
2517     case 'm': // memory operand.
2518     case 'o': // offsettable memory operand
2519     case 'V': // non-offsettable memory operand
2520       weight = CW_Memory;
2521       break;
2522     case 'r': // general register.
2523     case 'g': // general register, memory operand or immediate integer.
2524               // note: Clang converts "g" to "imr".
2525       if (CallOperandVal->getType()->isIntegerTy())
2526         weight = CW_Register;
2527       break;
2528     case 'X': // any operand.
2529     default:
2530       weight = CW_Default;
2531       break;
2532   }
2533   return weight;
2534 }
2535 
2536 /// ChooseConstraint - If there are multiple different constraints that we
2537 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2538 /// This is somewhat tricky: constraints fall into four classes:
2539 ///    Other         -> immediates and magic values
2540 ///    Register      -> one specific register
2541 ///    RegisterClass -> a group of regs
2542 ///    Memory        -> memory
2543 /// Ideally, we would pick the most specific constraint possible: if we have
2544 /// something that fits into a register, we would pick it.  The problem here
2545 /// is that if we have something that could either be in a register or in
2546 /// memory that use of the register could cause selection of *other*
2547 /// operands to fail: they might only succeed if we pick memory.  Because of
2548 /// this the heuristic we use is:
2549 ///
2550 ///  1) If there is an 'other' constraint, and if the operand is valid for
2551 ///     that constraint, use it.  This makes us take advantage of 'i'
2552 ///     constraints when available.
2553 ///  2) Otherwise, pick the most general constraint present.  This prefers
2554 ///     'm' over 'r', for example.
2555 ///
ChooseConstraint(TargetLowering::AsmOperandInfo & OpInfo,const TargetLowering & TLI,SDValue Op,SelectionDAG * DAG)2556 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2557                              const TargetLowering &TLI,
2558                              SDValue Op, SelectionDAG *DAG) {
2559   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2560   unsigned BestIdx = 0;
2561   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2562   int BestGenerality = -1;
2563 
2564   // Loop over the options, keeping track of the most general one.
2565   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2566     TargetLowering::ConstraintType CType =
2567       TLI.getConstraintType(OpInfo.Codes[i]);
2568 
2569     // If this is an 'other' constraint, see if the operand is valid for it.
2570     // For example, on X86 we might have an 'rI' constraint.  If the operand
2571     // is an integer in the range [0..31] we want to use I (saving a load
2572     // of a register), otherwise we must use 'r'.
2573     if (CType == TargetLowering::C_Other && Op.getNode()) {
2574       assert(OpInfo.Codes[i].size() == 1 &&
2575              "Unhandled multi-letter 'other' constraint");
2576       std::vector<SDValue> ResultOps;
2577       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2578                                        ResultOps, *DAG);
2579       if (!ResultOps.empty()) {
2580         BestType = CType;
2581         BestIdx = i;
2582         break;
2583       }
2584     }
2585 
2586     // Things with matching constraints can only be registers, per gcc
2587     // documentation.  This mainly affects "g" constraints.
2588     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2589       continue;
2590 
2591     // This constraint letter is more general than the previous one, use it.
2592     int Generality = getConstraintGenerality(CType);
2593     if (Generality > BestGenerality) {
2594       BestType = CType;
2595       BestIdx = i;
2596       BestGenerality = Generality;
2597     }
2598   }
2599 
2600   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2601   OpInfo.ConstraintType = BestType;
2602 }
2603 
2604 /// ComputeConstraintToUse - Determines the constraint code and constraint
2605 /// type to use for the specific AsmOperandInfo, setting
2606 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
ComputeConstraintToUse(AsmOperandInfo & OpInfo,SDValue Op,SelectionDAG * DAG) const2607 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2608                                             SDValue Op,
2609                                             SelectionDAG *DAG) const {
2610   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2611 
2612   // Single-letter constraints ('r') are very common.
2613   if (OpInfo.Codes.size() == 1) {
2614     OpInfo.ConstraintCode = OpInfo.Codes[0];
2615     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2616   } else {
2617     ChooseConstraint(OpInfo, *this, Op, DAG);
2618   }
2619 
2620   // 'X' matches anything.
2621   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2622     // Labels and constants are handled elsewhere ('X' is the only thing
2623     // that matches labels).  For Functions, the type here is the type of
2624     // the result, which is not what we want to look at; leave them alone.
2625     Value *v = OpInfo.CallOperandVal;
2626     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2627       OpInfo.CallOperandVal = v;
2628       return;
2629     }
2630 
2631     // Otherwise, try to resolve it to something we know about by looking at
2632     // the actual operand type.
2633     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2634       OpInfo.ConstraintCode = Repl;
2635       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2636     }
2637   }
2638 }
2639 
2640 /// \brief Given an exact SDIV by a constant, create a multiplication
2641 /// with the multiplicative inverse of the constant.
BuildExactSDIV(SDValue Op1,SDValue Op2,SDLoc dl,SelectionDAG & DAG) const2642 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
2643                                        SelectionDAG &DAG) const {
2644   ConstantSDNode *C = cast<ConstantSDNode>(Op2);
2645   APInt d = C->getAPIntValue();
2646   assert(d != 0 && "Division by zero!");
2647 
2648   // Shift the value upfront if it is even, so the LSB is one.
2649   unsigned ShAmt = d.countTrailingZeros();
2650   if (ShAmt) {
2651     // TODO: For UDIV use SRL instead of SRA.
2652     SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
2653     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, false, false,
2654                       true);
2655     d = d.ashr(ShAmt);
2656   }
2657 
2658   // Calculate the multiplicative inverse, using Newton's method.
2659   APInt t, xn = d;
2660   while ((t = d*xn) != 1)
2661     xn *= APInt(d.getBitWidth(), 2) - t;
2662 
2663   Op2 = DAG.getConstant(xn, Op1.getValueType());
2664   return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2665 }
2666 
2667 /// \brief Given an ISD::SDIV node expressing a divide by constant,
2668 /// return a DAG expression to select that will generate the same value by
2669 /// multiplying by a magic number.
2670 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
BuildSDIV(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,bool IsAfterLegalization,std::vector<SDNode * > * Created) const2671 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
2672                                   SelectionDAG &DAG, bool IsAfterLegalization,
2673                                   std::vector<SDNode *> *Created) const {
2674   assert(Created && "No vector to hold sdiv ops.");
2675 
2676   EVT VT = N->getValueType(0);
2677   SDLoc dl(N);
2678 
2679   // Check to see if we can do this.
2680   // FIXME: We should be more aggressive here.
2681   if (!isTypeLegal(VT))
2682     return SDValue();
2683 
2684   APInt::ms magics = Divisor.magic();
2685 
2686   // Multiply the numerator (operand 0) by the magic value
2687   // FIXME: We should support doing a MUL in a wider type
2688   SDValue Q;
2689   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
2690                             isOperationLegalOrCustom(ISD::MULHS, VT))
2691     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2692                     DAG.getConstant(magics.m, VT));
2693   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
2694                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2695     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2696                               N->getOperand(0),
2697                               DAG.getConstant(magics.m, VT)).getNode(), 1);
2698   else
2699     return SDValue();       // No mulhs or equvialent
2700   // If d > 0 and m < 0, add the numerator
2701   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
2702     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2703     Created->push_back(Q.getNode());
2704   }
2705   // If d < 0 and m > 0, subtract the numerator.
2706   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
2707     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2708     Created->push_back(Q.getNode());
2709   }
2710   // Shift right algebraic if shift value is nonzero
2711   if (magics.s > 0) {
2712     Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2713                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
2714     Created->push_back(Q.getNode());
2715   }
2716   // Extract the sign bit and add it to the quotient
2717   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q,
2718                           DAG.getConstant(VT.getScalarSizeInBits() - 1,
2719                                           getShiftAmountTy(Q.getValueType())));
2720   Created->push_back(T.getNode());
2721   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2722 }
2723 
2724 /// \brief Given an ISD::UDIV node expressing a divide by constant,
2725 /// return a DAG expression to select that will generate the same value by
2726 /// multiplying by a magic number.
2727 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
BuildUDIV(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,bool IsAfterLegalization,std::vector<SDNode * > * Created) const2728 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
2729                                   SelectionDAG &DAG, bool IsAfterLegalization,
2730                                   std::vector<SDNode *> *Created) const {
2731   assert(Created && "No vector to hold udiv ops.");
2732 
2733   EVT VT = N->getValueType(0);
2734   SDLoc dl(N);
2735 
2736   // Check to see if we can do this.
2737   // FIXME: We should be more aggressive here.
2738   if (!isTypeLegal(VT))
2739     return SDValue();
2740 
2741   // FIXME: We should use a narrower constant when the upper
2742   // bits are known to be zero.
2743   APInt::mu magics = Divisor.magicu();
2744 
2745   SDValue Q = N->getOperand(0);
2746 
2747   // If the divisor is even, we can avoid using the expensive fixup by shifting
2748   // the divided value upfront.
2749   if (magics.a != 0 && !Divisor[0]) {
2750     unsigned Shift = Divisor.countTrailingZeros();
2751     Q = DAG.getNode(ISD::SRL, dl, VT, Q,
2752                     DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
2753     Created->push_back(Q.getNode());
2754 
2755     // Get magic number for the shifted divisor.
2756     magics = Divisor.lshr(Shift).magicu(Shift);
2757     assert(magics.a == 0 && "Should use cheap fixup now");
2758   }
2759 
2760   // Multiply the numerator (operand 0) by the magic value
2761   // FIXME: We should support doing a MUL in a wider type
2762   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
2763                             isOperationLegalOrCustom(ISD::MULHU, VT))
2764     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
2765   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
2766                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2767     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
2768                             DAG.getConstant(magics.m, VT)).getNode(), 1);
2769   else
2770     return SDValue();       // No mulhu or equvialent
2771 
2772   Created->push_back(Q.getNode());
2773 
2774   if (magics.a == 0) {
2775     assert(magics.s < Divisor.getBitWidth() &&
2776            "We shouldn't generate an undefined shift!");
2777     return DAG.getNode(ISD::SRL, dl, VT, Q,
2778                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
2779   } else {
2780     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2781     Created->push_back(NPQ.getNode());
2782     NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2783                       DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
2784     Created->push_back(NPQ.getNode());
2785     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2786     Created->push_back(NPQ.getNode());
2787     return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2788              DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
2789   }
2790 }
2791 
2792 bool TargetLowering::
verifyReturnAddressArgumentIsConstant(SDValue Op,SelectionDAG & DAG) const2793 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
2794   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
2795     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
2796                                 "be a constant integer");
2797     return true;
2798   }
2799 
2800   return false;
2801 }
2802 
2803 //===----------------------------------------------------------------------===//
2804 // Legalization Utilities
2805 //===----------------------------------------------------------------------===//
2806 
expandMUL(SDNode * N,SDValue & Lo,SDValue & Hi,EVT HiLoVT,SelectionDAG & DAG,SDValue LL,SDValue LH,SDValue RL,SDValue RH) const2807 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
2808                                SelectionDAG &DAG, SDValue LL, SDValue LH,
2809                                SDValue RL, SDValue RH) const {
2810   EVT VT = N->getValueType(0);
2811   SDLoc dl(N);
2812 
2813   bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
2814   bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
2815   bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
2816   bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
2817   if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
2818     unsigned OuterBitSize = VT.getSizeInBits();
2819     unsigned InnerBitSize = HiLoVT.getSizeInBits();
2820     unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
2821     unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
2822 
2823     // LL, LH, RL, and RH must be either all NULL or all set to a value.
2824     assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
2825            (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
2826 
2827     if (!LL.getNode() && !RL.getNode() &&
2828         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
2829       LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0));
2830       RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1));
2831     }
2832 
2833     if (!LL.getNode())
2834       return false;
2835 
2836     APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
2837     if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
2838         DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
2839       // The inputs are both zero-extended.
2840       if (HasUMUL_LOHI) {
2841         // We can emit a umul_lohi.
2842         Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
2843                          RL);
2844         Hi = SDValue(Lo.getNode(), 1);
2845         return true;
2846       }
2847       if (HasMULHU) {
2848         // We can emit a mulhu+mul.
2849         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
2850         Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
2851         return true;
2852       }
2853     }
2854     if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
2855       // The input values are both sign-extended.
2856       if (HasSMUL_LOHI) {
2857         // We can emit a smul_lohi.
2858         Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
2859                          RL);
2860         Hi = SDValue(Lo.getNode(), 1);
2861         return true;
2862       }
2863       if (HasMULHS) {
2864         // We can emit a mulhs+mul.
2865         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
2866         Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL);
2867         return true;
2868       }
2869     }
2870 
2871     if (!LH.getNode() && !RH.getNode() &&
2872         isOperationLegalOrCustom(ISD::SRL, VT) &&
2873         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
2874       unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits();
2875       SDValue Shift = DAG.getConstant(ShiftAmt, getShiftAmountTy(VT));
2876       LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift);
2877       LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
2878       RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift);
2879       RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
2880     }
2881 
2882     if (!LH.getNode())
2883       return false;
2884 
2885     if (HasUMUL_LOHI) {
2886       // Lo,Hi = umul LHS, RHS.
2887       SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
2888                                      DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
2889       Lo = UMulLOHI;
2890       Hi = UMulLOHI.getValue(1);
2891       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
2892       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
2893       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
2894       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
2895       return true;
2896     }
2897     if (HasMULHU) {
2898       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
2899       Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
2900       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
2901       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
2902       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
2903       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
2904       return true;
2905     }
2906   }
2907   return false;
2908 }
2909 
expandFP_TO_SINT(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const2910 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
2911                                SelectionDAG &DAG) const {
2912   EVT VT = Node->getOperand(0).getValueType();
2913   EVT NVT = Node->getValueType(0);
2914   SDLoc dl(SDValue(Node, 0));
2915 
2916   // FIXME: Only f32 to i64 conversions are supported.
2917   if (VT != MVT::f32 || NVT != MVT::i64)
2918     return false;
2919 
2920   // Expand f32 -> i64 conversion
2921   // This algorithm comes from compiler-rt's implementation of fixsfdi:
2922   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
2923   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
2924                                 VT.getSizeInBits());
2925   SDValue ExponentMask = DAG.getConstant(0x7F800000, IntVT);
2926   SDValue ExponentLoBit = DAG.getConstant(23, IntVT);
2927   SDValue Bias = DAG.getConstant(127, IntVT);
2928   SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()),
2929                                      IntVT);
2930   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, IntVT);
2931   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, IntVT);
2932 
2933   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
2934 
2935   SDValue ExponentBits = DAG.getNode(ISD::SRL, dl, IntVT,
2936       DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
2937       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT)));
2938   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
2939 
2940   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
2941       DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
2942       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT)));
2943   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
2944 
2945   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
2946       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
2947       DAG.getConstant(0x00800000, IntVT));
2948 
2949   R = DAG.getZExtOrTrunc(R, dl, NVT);
2950 
2951 
2952   R = DAG.getSelectCC(dl, Exponent, ExponentLoBit,
2953      DAG.getNode(ISD::SHL, dl, NVT, R,
2954                  DAG.getZExtOrTrunc(
2955                     DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
2956                     dl, getShiftAmountTy(IntVT))),
2957      DAG.getNode(ISD::SRL, dl, NVT, R,
2958                  DAG.getZExtOrTrunc(
2959                     DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
2960                     dl, getShiftAmountTy(IntVT))),
2961      ISD::SETGT);
2962 
2963   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
2964       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
2965       Sign);
2966 
2967   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, IntVT),
2968       DAG.getConstant(0, NVT), Ret, ISD::SETLT);
2969   return true;
2970 }
2971