1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implements C++ name mangling according to the Itanium C++ ABI,
11 // which is used in GCC 3.2 and newer (and many compilers that are
12 // ABI-compatible with GCC):
13 //
14 // http://mentorembedded.github.io/cxx-abi/abi.html#mangling
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/ABI.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34
35 #define MANGLE_CHECKER 0
36
37 #if MANGLE_CHECKER
38 #include <cxxabi.h>
39 #endif
40
41 using namespace clang;
42
43 namespace {
44
45 /// \brief Retrieve the declaration context that should be used when mangling
46 /// the given declaration.
getEffectiveDeclContext(const Decl * D)47 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
48 // The ABI assumes that lambda closure types that occur within
49 // default arguments live in the context of the function. However, due to
50 // the way in which Clang parses and creates function declarations, this is
51 // not the case: the lambda closure type ends up living in the context
52 // where the function itself resides, because the function declaration itself
53 // had not yet been created. Fix the context here.
54 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
55 if (RD->isLambda())
56 if (ParmVarDecl *ContextParam
57 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
58 return ContextParam->getDeclContext();
59 }
60
61 // Perform the same check for block literals.
62 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
63 if (ParmVarDecl *ContextParam
64 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
65 return ContextParam->getDeclContext();
66 }
67
68 const DeclContext *DC = D->getDeclContext();
69 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
70 return getEffectiveDeclContext(CD);
71
72 if (const auto *VD = dyn_cast<VarDecl>(D))
73 if (VD->isExternC())
74 return VD->getASTContext().getTranslationUnitDecl();
75
76 if (const auto *FD = dyn_cast<FunctionDecl>(D))
77 if (FD->isExternC())
78 return FD->getASTContext().getTranslationUnitDecl();
79
80 return DC;
81 }
82
getEffectiveParentContext(const DeclContext * DC)83 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
84 return getEffectiveDeclContext(cast<Decl>(DC));
85 }
86
isLocalContainerContext(const DeclContext * DC)87 static bool isLocalContainerContext(const DeclContext *DC) {
88 return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
89 }
90
GetLocalClassDecl(const Decl * D)91 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
92 const DeclContext *DC = getEffectiveDeclContext(D);
93 while (!DC->isNamespace() && !DC->isTranslationUnit()) {
94 if (isLocalContainerContext(DC))
95 return dyn_cast<RecordDecl>(D);
96 D = cast<Decl>(DC);
97 DC = getEffectiveDeclContext(D);
98 }
99 return nullptr;
100 }
101
getStructor(const FunctionDecl * fn)102 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
103 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
104 return ftd->getTemplatedDecl();
105
106 return fn;
107 }
108
getStructor(const NamedDecl * decl)109 static const NamedDecl *getStructor(const NamedDecl *decl) {
110 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
111 return (fn ? getStructor(fn) : decl);
112 }
113
isLambda(const NamedDecl * ND)114 static bool isLambda(const NamedDecl *ND) {
115 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
116 if (!Record)
117 return false;
118
119 return Record->isLambda();
120 }
121
122 static const unsigned UnknownArity = ~0U;
123
124 class ItaniumMangleContextImpl : public ItaniumMangleContext {
125 typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
126 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
127 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
128
129 public:
ItaniumMangleContextImpl(ASTContext & Context,DiagnosticsEngine & Diags)130 explicit ItaniumMangleContextImpl(ASTContext &Context,
131 DiagnosticsEngine &Diags)
132 : ItaniumMangleContext(Context, Diags) {}
133
134 /// @name Mangler Entry Points
135 /// @{
136
137 bool shouldMangleCXXName(const NamedDecl *D) override;
shouldMangleStringLiteral(const StringLiteral *)138 bool shouldMangleStringLiteral(const StringLiteral *) override {
139 return false;
140 }
141 void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
142 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
143 raw_ostream &) override;
144 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
145 const ThisAdjustment &ThisAdjustment,
146 raw_ostream &) override;
147 void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
148 raw_ostream &) override;
149 void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
150 void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
151 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
152 const CXXRecordDecl *Type, raw_ostream &) override;
153 void mangleCXXRTTI(QualType T, raw_ostream &) override;
154 void mangleCXXRTTIName(QualType T, raw_ostream &) override;
155 void mangleTypeName(QualType T, raw_ostream &) override;
156 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
157 raw_ostream &) override;
158 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
159 raw_ostream &) override;
160
161 void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
162 void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
163 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
164 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
165 void mangleDynamicAtExitDestructor(const VarDecl *D,
166 raw_ostream &Out) override;
167 void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
168 raw_ostream &Out) override;
169 void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
170 raw_ostream &Out) override;
171 void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
172 void mangleItaniumThreadLocalWrapper(const VarDecl *D,
173 raw_ostream &) override;
174
175 void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
176
177 void mangleCXXVTableBitSet(const CXXRecordDecl *RD, raw_ostream &) override;
178
getNextDiscriminator(const NamedDecl * ND,unsigned & disc)179 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
180 // Lambda closure types are already numbered.
181 if (isLambda(ND))
182 return false;
183
184 // Anonymous tags are already numbered.
185 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
186 if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
187 return false;
188 }
189
190 // Use the canonical number for externally visible decls.
191 if (ND->isExternallyVisible()) {
192 unsigned discriminator = getASTContext().getManglingNumber(ND);
193 if (discriminator == 1)
194 return false;
195 disc = discriminator - 2;
196 return true;
197 }
198
199 // Make up a reasonable number for internal decls.
200 unsigned &discriminator = Uniquifier[ND];
201 if (!discriminator) {
202 const DeclContext *DC = getEffectiveDeclContext(ND);
203 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
204 }
205 if (discriminator == 1)
206 return false;
207 disc = discriminator-2;
208 return true;
209 }
210 /// @}
211 };
212
213 /// CXXNameMangler - Manage the mangling of a single name.
214 class CXXNameMangler {
215 ItaniumMangleContextImpl &Context;
216 raw_ostream &Out;
217
218 /// The "structor" is the top-level declaration being mangled, if
219 /// that's not a template specialization; otherwise it's the pattern
220 /// for that specialization.
221 const NamedDecl *Structor;
222 unsigned StructorType;
223
224 /// SeqID - The next subsitution sequence number.
225 unsigned SeqID;
226
227 class FunctionTypeDepthState {
228 unsigned Bits;
229
230 enum { InResultTypeMask = 1 };
231
232 public:
FunctionTypeDepthState()233 FunctionTypeDepthState() : Bits(0) {}
234
235 /// The number of function types we're inside.
getDepth() const236 unsigned getDepth() const {
237 return Bits >> 1;
238 }
239
240 /// True if we're in the return type of the innermost function type.
isInResultType() const241 bool isInResultType() const {
242 return Bits & InResultTypeMask;
243 }
244
push()245 FunctionTypeDepthState push() {
246 FunctionTypeDepthState tmp = *this;
247 Bits = (Bits & ~InResultTypeMask) + 2;
248 return tmp;
249 }
250
enterResultType()251 void enterResultType() {
252 Bits |= InResultTypeMask;
253 }
254
leaveResultType()255 void leaveResultType() {
256 Bits &= ~InResultTypeMask;
257 }
258
pop(FunctionTypeDepthState saved)259 void pop(FunctionTypeDepthState saved) {
260 assert(getDepth() == saved.getDepth() + 1);
261 Bits = saved.Bits;
262 }
263
264 } FunctionTypeDepth;
265
266 llvm::DenseMap<uintptr_t, unsigned> Substitutions;
267
getASTContext() const268 ASTContext &getASTContext() const { return Context.getASTContext(); }
269
270 public:
CXXNameMangler(ItaniumMangleContextImpl & C,raw_ostream & Out_,const NamedDecl * D=nullptr)271 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
272 const NamedDecl *D = nullptr)
273 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
274 SeqID(0) {
275 // These can't be mangled without a ctor type or dtor type.
276 assert(!D || (!isa<CXXDestructorDecl>(D) &&
277 !isa<CXXConstructorDecl>(D)));
278 }
CXXNameMangler(ItaniumMangleContextImpl & C,raw_ostream & Out_,const CXXConstructorDecl * D,CXXCtorType Type)279 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
280 const CXXConstructorDecl *D, CXXCtorType Type)
281 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
282 SeqID(0) { }
CXXNameMangler(ItaniumMangleContextImpl & C,raw_ostream & Out_,const CXXDestructorDecl * D,CXXDtorType Type)283 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
284 const CXXDestructorDecl *D, CXXDtorType Type)
285 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
286 SeqID(0) { }
287
288 #if MANGLE_CHECKER
~CXXNameMangler()289 ~CXXNameMangler() {
290 if (Out.str()[0] == '\01')
291 return;
292
293 int status = 0;
294 char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
295 assert(status == 0 && "Could not demangle mangled name!");
296 free(result);
297 }
298 #endif
getStream()299 raw_ostream &getStream() { return Out; }
300
301 void mangle(const NamedDecl *D);
302 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
303 void mangleNumber(const llvm::APSInt &I);
304 void mangleNumber(int64_t Number);
305 void mangleFloat(const llvm::APFloat &F);
306 void mangleFunctionEncoding(const FunctionDecl *FD);
307 void mangleSeqID(unsigned SeqID);
308 void mangleName(const NamedDecl *ND);
309 void mangleType(QualType T);
310 void mangleNameOrStandardSubstitution(const NamedDecl *ND);
311
312 private:
313
314 bool mangleSubstitution(const NamedDecl *ND);
315 bool mangleSubstitution(QualType T);
316 bool mangleSubstitution(TemplateName Template);
317 bool mangleSubstitution(uintptr_t Ptr);
318
319 void mangleExistingSubstitution(QualType type);
320 void mangleExistingSubstitution(TemplateName name);
321
322 bool mangleStandardSubstitution(const NamedDecl *ND);
323
addSubstitution(const NamedDecl * ND)324 void addSubstitution(const NamedDecl *ND) {
325 ND = cast<NamedDecl>(ND->getCanonicalDecl());
326
327 addSubstitution(reinterpret_cast<uintptr_t>(ND));
328 }
329 void addSubstitution(QualType T);
330 void addSubstitution(TemplateName Template);
331 void addSubstitution(uintptr_t Ptr);
332
333 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
334 bool recursive = false);
335 void mangleUnresolvedName(NestedNameSpecifier *qualifier,
336 DeclarationName name,
337 unsigned KnownArity = UnknownArity);
338
339 void mangleName(const TemplateDecl *TD,
340 const TemplateArgument *TemplateArgs,
341 unsigned NumTemplateArgs);
mangleUnqualifiedName(const NamedDecl * ND)342 void mangleUnqualifiedName(const NamedDecl *ND) {
343 mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
344 }
345 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
346 unsigned KnownArity);
347 void mangleUnscopedName(const NamedDecl *ND);
348 void mangleUnscopedTemplateName(const TemplateDecl *ND);
349 void mangleUnscopedTemplateName(TemplateName);
350 void mangleSourceName(const IdentifierInfo *II);
351 void mangleLocalName(const Decl *D);
352 void mangleBlockForPrefix(const BlockDecl *Block);
353 void mangleUnqualifiedBlock(const BlockDecl *Block);
354 void mangleLambda(const CXXRecordDecl *Lambda);
355 void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
356 bool NoFunction=false);
357 void mangleNestedName(const TemplateDecl *TD,
358 const TemplateArgument *TemplateArgs,
359 unsigned NumTemplateArgs);
360 void manglePrefix(NestedNameSpecifier *qualifier);
361 void manglePrefix(const DeclContext *DC, bool NoFunction=false);
362 void manglePrefix(QualType type);
363 void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
364 void mangleTemplatePrefix(TemplateName Template);
365 bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
366 StringRef Prefix = "");
367 void mangleOperatorName(DeclarationName Name, unsigned Arity);
368 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
369 void mangleQualifiers(Qualifiers Quals);
370 void mangleRefQualifier(RefQualifierKind RefQualifier);
371
372 void mangleObjCMethodName(const ObjCMethodDecl *MD);
373
374 // Declare manglers for every type class.
375 #define ABSTRACT_TYPE(CLASS, PARENT)
376 #define NON_CANONICAL_TYPE(CLASS, PARENT)
377 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
378 #include "clang/AST/TypeNodes.def"
379
380 void mangleType(const TagType*);
381 void mangleType(TemplateName);
382 void mangleBareFunctionType(const FunctionType *T,
383 bool MangleReturnType);
384 void mangleNeonVectorType(const VectorType *T);
385 void mangleAArch64NeonVectorType(const VectorType *T);
386
387 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
388 void mangleMemberExprBase(const Expr *base, bool isArrow);
389 void mangleMemberExpr(const Expr *base, bool isArrow,
390 NestedNameSpecifier *qualifier,
391 NamedDecl *firstQualifierLookup,
392 DeclarationName name,
393 unsigned knownArity);
394 void mangleCastExpression(const Expr *E, StringRef CastEncoding);
395 void mangleInitListElements(const InitListExpr *InitList);
396 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
397 void mangleCXXCtorType(CXXCtorType T);
398 void mangleCXXDtorType(CXXDtorType T);
399
400 void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
401 void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
402 unsigned NumTemplateArgs);
403 void mangleTemplateArgs(const TemplateArgumentList &AL);
404 void mangleTemplateArg(TemplateArgument A);
405
406 void mangleTemplateParameter(unsigned Index);
407
408 void mangleFunctionParam(const ParmVarDecl *parm);
409 };
410
411 }
412
shouldMangleCXXName(const NamedDecl * D)413 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
414 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
415 if (FD) {
416 LanguageLinkage L = FD->getLanguageLinkage();
417 // Overloadable functions need mangling.
418 if (FD->hasAttr<OverloadableAttr>())
419 return true;
420
421 // "main" is not mangled.
422 if (FD->isMain())
423 return false;
424
425 // C++ functions and those whose names are not a simple identifier need
426 // mangling.
427 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
428 return true;
429
430 // C functions are not mangled.
431 if (L == CLanguageLinkage)
432 return false;
433 }
434
435 // Otherwise, no mangling is done outside C++ mode.
436 if (!getASTContext().getLangOpts().CPlusPlus)
437 return false;
438
439 const VarDecl *VD = dyn_cast<VarDecl>(D);
440 if (VD) {
441 // C variables are not mangled.
442 if (VD->isExternC())
443 return false;
444
445 // Variables at global scope with non-internal linkage are not mangled
446 const DeclContext *DC = getEffectiveDeclContext(D);
447 // Check for extern variable declared locally.
448 if (DC->isFunctionOrMethod() && D->hasLinkage())
449 while (!DC->isNamespace() && !DC->isTranslationUnit())
450 DC = getEffectiveParentContext(DC);
451 if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
452 !isa<VarTemplateSpecializationDecl>(D))
453 return false;
454 }
455
456 return true;
457 }
458
mangle(const NamedDecl * D)459 void CXXNameMangler::mangle(const NamedDecl *D) {
460 // <mangled-name> ::= _Z <encoding>
461 // ::= <data name>
462 // ::= <special-name>
463 Out << "_Z";
464 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
465 mangleFunctionEncoding(FD);
466 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
467 mangleName(VD);
468 else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
469 mangleName(IFD->getAnonField());
470 else
471 mangleName(cast<FieldDecl>(D));
472 }
473
mangleFunctionEncoding(const FunctionDecl * FD)474 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
475 // <encoding> ::= <function name> <bare-function-type>
476 mangleName(FD);
477
478 // Don't mangle in the type if this isn't a decl we should typically mangle.
479 if (!Context.shouldMangleDeclName(FD))
480 return;
481
482 if (FD->hasAttr<EnableIfAttr>()) {
483 FunctionTypeDepthState Saved = FunctionTypeDepth.push();
484 Out << "Ua9enable_ifI";
485 // FIXME: specific_attr_iterator iterates in reverse order. Fix that and use
486 // it here.
487 for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(),
488 E = FD->getAttrs().rend();
489 I != E; ++I) {
490 EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
491 if (!EIA)
492 continue;
493 Out << 'X';
494 mangleExpression(EIA->getCond());
495 Out << 'E';
496 }
497 Out << 'E';
498 FunctionTypeDepth.pop(Saved);
499 }
500
501 // Whether the mangling of a function type includes the return type depends on
502 // the context and the nature of the function. The rules for deciding whether
503 // the return type is included are:
504 //
505 // 1. Template functions (names or types) have return types encoded, with
506 // the exceptions listed below.
507 // 2. Function types not appearing as part of a function name mangling,
508 // e.g. parameters, pointer types, etc., have return type encoded, with the
509 // exceptions listed below.
510 // 3. Non-template function names do not have return types encoded.
511 //
512 // The exceptions mentioned in (1) and (2) above, for which the return type is
513 // never included, are
514 // 1. Constructors.
515 // 2. Destructors.
516 // 3. Conversion operator functions, e.g. operator int.
517 bool MangleReturnType = false;
518 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
519 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
520 isa<CXXConversionDecl>(FD)))
521 MangleReturnType = true;
522
523 // Mangle the type of the primary template.
524 FD = PrimaryTemplate->getTemplatedDecl();
525 }
526
527 mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
528 MangleReturnType);
529 }
530
IgnoreLinkageSpecDecls(const DeclContext * DC)531 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
532 while (isa<LinkageSpecDecl>(DC)) {
533 DC = getEffectiveParentContext(DC);
534 }
535
536 return DC;
537 }
538
539 /// isStd - Return whether a given namespace is the 'std' namespace.
isStd(const NamespaceDecl * NS)540 static bool isStd(const NamespaceDecl *NS) {
541 if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
542 ->isTranslationUnit())
543 return false;
544
545 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
546 return II && II->isStr("std");
547 }
548
549 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
550 // namespace.
isStdNamespace(const DeclContext * DC)551 static bool isStdNamespace(const DeclContext *DC) {
552 if (!DC->isNamespace())
553 return false;
554
555 return isStd(cast<NamespaceDecl>(DC));
556 }
557
558 static const TemplateDecl *
isTemplate(const NamedDecl * ND,const TemplateArgumentList * & TemplateArgs)559 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
560 // Check if we have a function template.
561 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
562 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
563 TemplateArgs = FD->getTemplateSpecializationArgs();
564 return TD;
565 }
566 }
567
568 // Check if we have a class template.
569 if (const ClassTemplateSpecializationDecl *Spec =
570 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
571 TemplateArgs = &Spec->getTemplateArgs();
572 return Spec->getSpecializedTemplate();
573 }
574
575 // Check if we have a variable template.
576 if (const VarTemplateSpecializationDecl *Spec =
577 dyn_cast<VarTemplateSpecializationDecl>(ND)) {
578 TemplateArgs = &Spec->getTemplateArgs();
579 return Spec->getSpecializedTemplate();
580 }
581
582 return nullptr;
583 }
584
mangleName(const NamedDecl * ND)585 void CXXNameMangler::mangleName(const NamedDecl *ND) {
586 // <name> ::= <nested-name>
587 // ::= <unscoped-name>
588 // ::= <unscoped-template-name> <template-args>
589 // ::= <local-name>
590 //
591 const DeclContext *DC = getEffectiveDeclContext(ND);
592
593 // If this is an extern variable declared locally, the relevant DeclContext
594 // is that of the containing namespace, or the translation unit.
595 // FIXME: This is a hack; extern variables declared locally should have
596 // a proper semantic declaration context!
597 if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
598 while (!DC->isNamespace() && !DC->isTranslationUnit())
599 DC = getEffectiveParentContext(DC);
600 else if (GetLocalClassDecl(ND)) {
601 mangleLocalName(ND);
602 return;
603 }
604
605 DC = IgnoreLinkageSpecDecls(DC);
606
607 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
608 // Check if we have a template.
609 const TemplateArgumentList *TemplateArgs = nullptr;
610 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
611 mangleUnscopedTemplateName(TD);
612 mangleTemplateArgs(*TemplateArgs);
613 return;
614 }
615
616 mangleUnscopedName(ND);
617 return;
618 }
619
620 if (isLocalContainerContext(DC)) {
621 mangleLocalName(ND);
622 return;
623 }
624
625 mangleNestedName(ND, DC);
626 }
mangleName(const TemplateDecl * TD,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)627 void CXXNameMangler::mangleName(const TemplateDecl *TD,
628 const TemplateArgument *TemplateArgs,
629 unsigned NumTemplateArgs) {
630 const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
631
632 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
633 mangleUnscopedTemplateName(TD);
634 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
635 } else {
636 mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
637 }
638 }
639
mangleUnscopedName(const NamedDecl * ND)640 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
641 // <unscoped-name> ::= <unqualified-name>
642 // ::= St <unqualified-name> # ::std::
643
644 if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
645 Out << "St";
646
647 mangleUnqualifiedName(ND);
648 }
649
mangleUnscopedTemplateName(const TemplateDecl * ND)650 void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
651 // <unscoped-template-name> ::= <unscoped-name>
652 // ::= <substitution>
653 if (mangleSubstitution(ND))
654 return;
655
656 // <template-template-param> ::= <template-param>
657 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND))
658 mangleTemplateParameter(TTP->getIndex());
659 else
660 mangleUnscopedName(ND->getTemplatedDecl());
661
662 addSubstitution(ND);
663 }
664
mangleUnscopedTemplateName(TemplateName Template)665 void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
666 // <unscoped-template-name> ::= <unscoped-name>
667 // ::= <substitution>
668 if (TemplateDecl *TD = Template.getAsTemplateDecl())
669 return mangleUnscopedTemplateName(TD);
670
671 if (mangleSubstitution(Template))
672 return;
673
674 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
675 assert(Dependent && "Not a dependent template name?");
676 if (const IdentifierInfo *Id = Dependent->getIdentifier())
677 mangleSourceName(Id);
678 else
679 mangleOperatorName(Dependent->getOperator(), UnknownArity);
680
681 addSubstitution(Template);
682 }
683
mangleFloat(const llvm::APFloat & f)684 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
685 // ABI:
686 // Floating-point literals are encoded using a fixed-length
687 // lowercase hexadecimal string corresponding to the internal
688 // representation (IEEE on Itanium), high-order bytes first,
689 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
690 // on Itanium.
691 // The 'without leading zeroes' thing seems to be an editorial
692 // mistake; see the discussion on cxx-abi-dev beginning on
693 // 2012-01-16.
694
695 // Our requirements here are just barely weird enough to justify
696 // using a custom algorithm instead of post-processing APInt::toString().
697
698 llvm::APInt valueBits = f.bitcastToAPInt();
699 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
700 assert(numCharacters != 0);
701
702 // Allocate a buffer of the right number of characters.
703 SmallVector<char, 20> buffer;
704 buffer.set_size(numCharacters);
705
706 // Fill the buffer left-to-right.
707 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
708 // The bit-index of the next hex digit.
709 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
710
711 // Project out 4 bits starting at 'digitIndex'.
712 llvm::integerPart hexDigit
713 = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
714 hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
715 hexDigit &= 0xF;
716
717 // Map that over to a lowercase hex digit.
718 static const char charForHex[16] = {
719 '0', '1', '2', '3', '4', '5', '6', '7',
720 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
721 };
722 buffer[stringIndex] = charForHex[hexDigit];
723 }
724
725 Out.write(buffer.data(), numCharacters);
726 }
727
mangleNumber(const llvm::APSInt & Value)728 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
729 if (Value.isSigned() && Value.isNegative()) {
730 Out << 'n';
731 Value.abs().print(Out, /*signed*/ false);
732 } else {
733 Value.print(Out, /*signed*/ false);
734 }
735 }
736
mangleNumber(int64_t Number)737 void CXXNameMangler::mangleNumber(int64_t Number) {
738 // <number> ::= [n] <non-negative decimal integer>
739 if (Number < 0) {
740 Out << 'n';
741 Number = -Number;
742 }
743
744 Out << Number;
745 }
746
mangleCallOffset(int64_t NonVirtual,int64_t Virtual)747 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
748 // <call-offset> ::= h <nv-offset> _
749 // ::= v <v-offset> _
750 // <nv-offset> ::= <offset number> # non-virtual base override
751 // <v-offset> ::= <offset number> _ <virtual offset number>
752 // # virtual base override, with vcall offset
753 if (!Virtual) {
754 Out << 'h';
755 mangleNumber(NonVirtual);
756 Out << '_';
757 return;
758 }
759
760 Out << 'v';
761 mangleNumber(NonVirtual);
762 Out << '_';
763 mangleNumber(Virtual);
764 Out << '_';
765 }
766
manglePrefix(QualType type)767 void CXXNameMangler::manglePrefix(QualType type) {
768 if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
769 if (!mangleSubstitution(QualType(TST, 0))) {
770 mangleTemplatePrefix(TST->getTemplateName());
771
772 // FIXME: GCC does not appear to mangle the template arguments when
773 // the template in question is a dependent template name. Should we
774 // emulate that badness?
775 mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
776 addSubstitution(QualType(TST, 0));
777 }
778 } else if (const auto *DTST =
779 type->getAs<DependentTemplateSpecializationType>()) {
780 if (!mangleSubstitution(QualType(DTST, 0))) {
781 TemplateName Template = getASTContext().getDependentTemplateName(
782 DTST->getQualifier(), DTST->getIdentifier());
783 mangleTemplatePrefix(Template);
784
785 // FIXME: GCC does not appear to mangle the template arguments when
786 // the template in question is a dependent template name. Should we
787 // emulate that badness?
788 mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
789 addSubstitution(QualType(DTST, 0));
790 }
791 } else {
792 // We use the QualType mangle type variant here because it handles
793 // substitutions.
794 mangleType(type);
795 }
796 }
797
798 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
799 ///
800 /// \param recursive - true if this is being called recursively,
801 /// i.e. if there is more prefix "to the right".
mangleUnresolvedPrefix(NestedNameSpecifier * qualifier,bool recursive)802 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
803 bool recursive) {
804
805 // x, ::x
806 // <unresolved-name> ::= [gs] <base-unresolved-name>
807
808 // T::x / decltype(p)::x
809 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
810
811 // T::N::x /decltype(p)::N::x
812 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
813 // <base-unresolved-name>
814
815 // A::x, N::y, A<T>::z; "gs" means leading "::"
816 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
817 // <base-unresolved-name>
818
819 switch (qualifier->getKind()) {
820 case NestedNameSpecifier::Global:
821 Out << "gs";
822
823 // We want an 'sr' unless this is the entire NNS.
824 if (recursive)
825 Out << "sr";
826
827 // We never want an 'E' here.
828 return;
829
830 case NestedNameSpecifier::Super:
831 llvm_unreachable("Can't mangle __super specifier");
832
833 case NestedNameSpecifier::Namespace:
834 if (qualifier->getPrefix())
835 mangleUnresolvedPrefix(qualifier->getPrefix(),
836 /*recursive*/ true);
837 else
838 Out << "sr";
839 mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
840 break;
841 case NestedNameSpecifier::NamespaceAlias:
842 if (qualifier->getPrefix())
843 mangleUnresolvedPrefix(qualifier->getPrefix(),
844 /*recursive*/ true);
845 else
846 Out << "sr";
847 mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
848 break;
849
850 case NestedNameSpecifier::TypeSpec:
851 case NestedNameSpecifier::TypeSpecWithTemplate: {
852 const Type *type = qualifier->getAsType();
853
854 // We only want to use an unresolved-type encoding if this is one of:
855 // - a decltype
856 // - a template type parameter
857 // - a template template parameter with arguments
858 // In all of these cases, we should have no prefix.
859 if (qualifier->getPrefix()) {
860 mangleUnresolvedPrefix(qualifier->getPrefix(),
861 /*recursive*/ true);
862 } else {
863 // Otherwise, all the cases want this.
864 Out << "sr";
865 }
866
867 if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
868 return;
869
870 break;
871 }
872
873 case NestedNameSpecifier::Identifier:
874 // Member expressions can have these without prefixes.
875 if (qualifier->getPrefix())
876 mangleUnresolvedPrefix(qualifier->getPrefix(),
877 /*recursive*/ true);
878 else
879 Out << "sr";
880
881 mangleSourceName(qualifier->getAsIdentifier());
882 break;
883 }
884
885 // If this was the innermost part of the NNS, and we fell out to
886 // here, append an 'E'.
887 if (!recursive)
888 Out << 'E';
889 }
890
891 /// Mangle an unresolved-name, which is generally used for names which
892 /// weren't resolved to specific entities.
mangleUnresolvedName(NestedNameSpecifier * qualifier,DeclarationName name,unsigned knownArity)893 void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
894 DeclarationName name,
895 unsigned knownArity) {
896 if (qualifier) mangleUnresolvedPrefix(qualifier);
897 switch (name.getNameKind()) {
898 // <base-unresolved-name> ::= <simple-id>
899 case DeclarationName::Identifier:
900 mangleSourceName(name.getAsIdentifierInfo());
901 break;
902 // <base-unresolved-name> ::= dn <destructor-name>
903 case DeclarationName::CXXDestructorName:
904 Out << "dn";
905 mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
906 break;
907 // <base-unresolved-name> ::= on <operator-name>
908 case DeclarationName::CXXConversionFunctionName:
909 case DeclarationName::CXXLiteralOperatorName:
910 case DeclarationName::CXXOperatorName:
911 Out << "on";
912 mangleOperatorName(name, knownArity);
913 break;
914 case DeclarationName::CXXConstructorName:
915 llvm_unreachable("Can't mangle a constructor name!");
916 case DeclarationName::CXXUsingDirective:
917 llvm_unreachable("Can't mangle a using directive name!");
918 case DeclarationName::ObjCMultiArgSelector:
919 case DeclarationName::ObjCOneArgSelector:
920 case DeclarationName::ObjCZeroArgSelector:
921 llvm_unreachable("Can't mangle Objective-C selector names here!");
922 }
923 }
924
mangleUnqualifiedName(const NamedDecl * ND,DeclarationName Name,unsigned KnownArity)925 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
926 DeclarationName Name,
927 unsigned KnownArity) {
928 unsigned Arity = KnownArity;
929 // <unqualified-name> ::= <operator-name>
930 // ::= <ctor-dtor-name>
931 // ::= <source-name>
932 switch (Name.getNameKind()) {
933 case DeclarationName::Identifier: {
934 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
935 // We must avoid conflicts between internally- and externally-
936 // linked variable and function declaration names in the same TU:
937 // void test() { extern void foo(); }
938 // static void foo();
939 // This naming convention is the same as that followed by GCC,
940 // though it shouldn't actually matter.
941 if (ND && ND->getFormalLinkage() == InternalLinkage &&
942 getEffectiveDeclContext(ND)->isFileContext())
943 Out << 'L';
944
945 mangleSourceName(II);
946 break;
947 }
948
949 // Otherwise, an anonymous entity. We must have a declaration.
950 assert(ND && "mangling empty name without declaration");
951
952 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
953 if (NS->isAnonymousNamespace()) {
954 // This is how gcc mangles these names.
955 Out << "12_GLOBAL__N_1";
956 break;
957 }
958 }
959
960 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
961 // We must have an anonymous union or struct declaration.
962 const RecordDecl *RD =
963 cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
964
965 // Itanium C++ ABI 5.1.2:
966 //
967 // For the purposes of mangling, the name of an anonymous union is
968 // considered to be the name of the first named data member found by a
969 // pre-order, depth-first, declaration-order walk of the data members of
970 // the anonymous union. If there is no such data member (i.e., if all of
971 // the data members in the union are unnamed), then there is no way for
972 // a program to refer to the anonymous union, and there is therefore no
973 // need to mangle its name.
974 assert(RD->isAnonymousStructOrUnion()
975 && "Expected anonymous struct or union!");
976 const FieldDecl *FD = RD->findFirstNamedDataMember();
977
978 // It's actually possible for various reasons for us to get here
979 // with an empty anonymous struct / union. Fortunately, it
980 // doesn't really matter what name we generate.
981 if (!FD) break;
982 assert(FD->getIdentifier() && "Data member name isn't an identifier!");
983
984 mangleSourceName(FD->getIdentifier());
985 break;
986 }
987
988 // Class extensions have no name as a category, and it's possible
989 // for them to be the semantic parent of certain declarations
990 // (primarily, tag decls defined within declarations). Such
991 // declarations will always have internal linkage, so the name
992 // doesn't really matter, but we shouldn't crash on them. For
993 // safety, just handle all ObjC containers here.
994 if (isa<ObjCContainerDecl>(ND))
995 break;
996
997 // We must have an anonymous struct.
998 const TagDecl *TD = cast<TagDecl>(ND);
999 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1000 assert(TD->getDeclContext() == D->getDeclContext() &&
1001 "Typedef should not be in another decl context!");
1002 assert(D->getDeclName().getAsIdentifierInfo() &&
1003 "Typedef was not named!");
1004 mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1005 break;
1006 }
1007
1008 // <unnamed-type-name> ::= <closure-type-name>
1009 //
1010 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1011 // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
1012 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1013 if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1014 mangleLambda(Record);
1015 break;
1016 }
1017 }
1018
1019 if (TD->isExternallyVisible()) {
1020 unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1021 Out << "Ut";
1022 if (UnnamedMangle > 1)
1023 Out << llvm::utostr(UnnamedMangle - 2);
1024 Out << '_';
1025 break;
1026 }
1027
1028 // Get a unique id for the anonymous struct.
1029 unsigned AnonStructId = Context.getAnonymousStructId(TD);
1030
1031 // Mangle it as a source name in the form
1032 // [n] $_<id>
1033 // where n is the length of the string.
1034 SmallString<8> Str;
1035 Str += "$_";
1036 Str += llvm::utostr(AnonStructId);
1037
1038 Out << Str.size();
1039 Out << Str;
1040 break;
1041 }
1042
1043 case DeclarationName::ObjCZeroArgSelector:
1044 case DeclarationName::ObjCOneArgSelector:
1045 case DeclarationName::ObjCMultiArgSelector:
1046 llvm_unreachable("Can't mangle Objective-C selector names here!");
1047
1048 case DeclarationName::CXXConstructorName:
1049 if (ND == Structor)
1050 // If the named decl is the C++ constructor we're mangling, use the type
1051 // we were given.
1052 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1053 else
1054 // Otherwise, use the complete constructor name. This is relevant if a
1055 // class with a constructor is declared within a constructor.
1056 mangleCXXCtorType(Ctor_Complete);
1057 break;
1058
1059 case DeclarationName::CXXDestructorName:
1060 if (ND == Structor)
1061 // If the named decl is the C++ destructor we're mangling, use the type we
1062 // were given.
1063 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1064 else
1065 // Otherwise, use the complete destructor name. This is relevant if a
1066 // class with a destructor is declared within a destructor.
1067 mangleCXXDtorType(Dtor_Complete);
1068 break;
1069
1070 case DeclarationName::CXXOperatorName:
1071 if (ND && Arity == UnknownArity) {
1072 Arity = cast<FunctionDecl>(ND)->getNumParams();
1073
1074 // If we have a member function, we need to include the 'this' pointer.
1075 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1076 if (!MD->isStatic())
1077 Arity++;
1078 }
1079 // FALLTHROUGH
1080 case DeclarationName::CXXConversionFunctionName:
1081 case DeclarationName::CXXLiteralOperatorName:
1082 mangleOperatorName(Name, Arity);
1083 break;
1084
1085 case DeclarationName::CXXUsingDirective:
1086 llvm_unreachable("Can't mangle a using directive name!");
1087 }
1088 }
1089
mangleSourceName(const IdentifierInfo * II)1090 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1091 // <source-name> ::= <positive length number> <identifier>
1092 // <number> ::= [n] <non-negative decimal integer>
1093 // <identifier> ::= <unqualified source code identifier>
1094 Out << II->getLength() << II->getName();
1095 }
1096
mangleNestedName(const NamedDecl * ND,const DeclContext * DC,bool NoFunction)1097 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1098 const DeclContext *DC,
1099 bool NoFunction) {
1100 // <nested-name>
1101 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1102 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1103 // <template-args> E
1104
1105 Out << 'N';
1106 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1107 Qualifiers MethodQuals =
1108 Qualifiers::fromCVRMask(Method->getTypeQualifiers());
1109 // We do not consider restrict a distinguishing attribute for overloading
1110 // purposes so we must not mangle it.
1111 MethodQuals.removeRestrict();
1112 mangleQualifiers(MethodQuals);
1113 mangleRefQualifier(Method->getRefQualifier());
1114 }
1115
1116 // Check if we have a template.
1117 const TemplateArgumentList *TemplateArgs = nullptr;
1118 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1119 mangleTemplatePrefix(TD, NoFunction);
1120 mangleTemplateArgs(*TemplateArgs);
1121 }
1122 else {
1123 manglePrefix(DC, NoFunction);
1124 mangleUnqualifiedName(ND);
1125 }
1126
1127 Out << 'E';
1128 }
mangleNestedName(const TemplateDecl * TD,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)1129 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1130 const TemplateArgument *TemplateArgs,
1131 unsigned NumTemplateArgs) {
1132 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1133
1134 Out << 'N';
1135
1136 mangleTemplatePrefix(TD);
1137 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1138
1139 Out << 'E';
1140 }
1141
mangleLocalName(const Decl * D)1142 void CXXNameMangler::mangleLocalName(const Decl *D) {
1143 // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1144 // := Z <function encoding> E s [<discriminator>]
1145 // <local-name> := Z <function encoding> E d [ <parameter number> ]
1146 // _ <entity name>
1147 // <discriminator> := _ <non-negative number>
1148 assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1149 const RecordDecl *RD = GetLocalClassDecl(D);
1150 const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1151
1152 Out << 'Z';
1153
1154 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1155 mangleObjCMethodName(MD);
1156 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1157 mangleBlockForPrefix(BD);
1158 else
1159 mangleFunctionEncoding(cast<FunctionDecl>(DC));
1160
1161 Out << 'E';
1162
1163 if (RD) {
1164 // The parameter number is omitted for the last parameter, 0 for the
1165 // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1166 // <entity name> will of course contain a <closure-type-name>: Its
1167 // numbering will be local to the particular argument in which it appears
1168 // -- other default arguments do not affect its encoding.
1169 const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1170 if (CXXRD->isLambda()) {
1171 if (const ParmVarDecl *Parm
1172 = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1173 if (const FunctionDecl *Func
1174 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1175 Out << 'd';
1176 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1177 if (Num > 1)
1178 mangleNumber(Num - 2);
1179 Out << '_';
1180 }
1181 }
1182 }
1183
1184 // Mangle the name relative to the closest enclosing function.
1185 // equality ok because RD derived from ND above
1186 if (D == RD) {
1187 mangleUnqualifiedName(RD);
1188 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1189 manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1190 mangleUnqualifiedBlock(BD);
1191 } else {
1192 const NamedDecl *ND = cast<NamedDecl>(D);
1193 mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
1194 }
1195 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1196 // Mangle a block in a default parameter; see above explanation for
1197 // lambdas.
1198 if (const ParmVarDecl *Parm
1199 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1200 if (const FunctionDecl *Func
1201 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1202 Out << 'd';
1203 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1204 if (Num > 1)
1205 mangleNumber(Num - 2);
1206 Out << '_';
1207 }
1208 }
1209
1210 mangleUnqualifiedBlock(BD);
1211 } else {
1212 mangleUnqualifiedName(cast<NamedDecl>(D));
1213 }
1214
1215 if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1216 unsigned disc;
1217 if (Context.getNextDiscriminator(ND, disc)) {
1218 if (disc < 10)
1219 Out << '_' << disc;
1220 else
1221 Out << "__" << disc << '_';
1222 }
1223 }
1224 }
1225
mangleBlockForPrefix(const BlockDecl * Block)1226 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1227 if (GetLocalClassDecl(Block)) {
1228 mangleLocalName(Block);
1229 return;
1230 }
1231 const DeclContext *DC = getEffectiveDeclContext(Block);
1232 if (isLocalContainerContext(DC)) {
1233 mangleLocalName(Block);
1234 return;
1235 }
1236 manglePrefix(getEffectiveDeclContext(Block));
1237 mangleUnqualifiedBlock(Block);
1238 }
1239
mangleUnqualifiedBlock(const BlockDecl * Block)1240 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1241 if (Decl *Context = Block->getBlockManglingContextDecl()) {
1242 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1243 Context->getDeclContext()->isRecord()) {
1244 if (const IdentifierInfo *Name
1245 = cast<NamedDecl>(Context)->getIdentifier()) {
1246 mangleSourceName(Name);
1247 Out << 'M';
1248 }
1249 }
1250 }
1251
1252 // If we have a block mangling number, use it.
1253 unsigned Number = Block->getBlockManglingNumber();
1254 // Otherwise, just make up a number. It doesn't matter what it is because
1255 // the symbol in question isn't externally visible.
1256 if (!Number)
1257 Number = Context.getBlockId(Block, false);
1258 Out << "Ub";
1259 if (Number > 0)
1260 Out << Number - 1;
1261 Out << '_';
1262 }
1263
mangleLambda(const CXXRecordDecl * Lambda)1264 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1265 // If the context of a closure type is an initializer for a class member
1266 // (static or nonstatic), it is encoded in a qualified name with a final
1267 // <prefix> of the form:
1268 //
1269 // <data-member-prefix> := <member source-name> M
1270 //
1271 // Technically, the data-member-prefix is part of the <prefix>. However,
1272 // since a closure type will always be mangled with a prefix, it's easier
1273 // to emit that last part of the prefix here.
1274 if (Decl *Context = Lambda->getLambdaContextDecl()) {
1275 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1276 Context->getDeclContext()->isRecord()) {
1277 if (const IdentifierInfo *Name
1278 = cast<NamedDecl>(Context)->getIdentifier()) {
1279 mangleSourceName(Name);
1280 Out << 'M';
1281 }
1282 }
1283 }
1284
1285 Out << "Ul";
1286 const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1287 getAs<FunctionProtoType>();
1288 mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1289 Out << "E";
1290
1291 // The number is omitted for the first closure type with a given
1292 // <lambda-sig> in a given context; it is n-2 for the nth closure type
1293 // (in lexical order) with that same <lambda-sig> and context.
1294 //
1295 // The AST keeps track of the number for us.
1296 unsigned Number = Lambda->getLambdaManglingNumber();
1297 assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1298 if (Number > 1)
1299 mangleNumber(Number - 2);
1300 Out << '_';
1301 }
1302
manglePrefix(NestedNameSpecifier * qualifier)1303 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1304 switch (qualifier->getKind()) {
1305 case NestedNameSpecifier::Global:
1306 // nothing
1307 return;
1308
1309 case NestedNameSpecifier::Super:
1310 llvm_unreachable("Can't mangle __super specifier");
1311
1312 case NestedNameSpecifier::Namespace:
1313 mangleName(qualifier->getAsNamespace());
1314 return;
1315
1316 case NestedNameSpecifier::NamespaceAlias:
1317 mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1318 return;
1319
1320 case NestedNameSpecifier::TypeSpec:
1321 case NestedNameSpecifier::TypeSpecWithTemplate:
1322 manglePrefix(QualType(qualifier->getAsType(), 0));
1323 return;
1324
1325 case NestedNameSpecifier::Identifier:
1326 // Member expressions can have these without prefixes, but that
1327 // should end up in mangleUnresolvedPrefix instead.
1328 assert(qualifier->getPrefix());
1329 manglePrefix(qualifier->getPrefix());
1330
1331 mangleSourceName(qualifier->getAsIdentifier());
1332 return;
1333 }
1334
1335 llvm_unreachable("unexpected nested name specifier");
1336 }
1337
manglePrefix(const DeclContext * DC,bool NoFunction)1338 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1339 // <prefix> ::= <prefix> <unqualified-name>
1340 // ::= <template-prefix> <template-args>
1341 // ::= <template-param>
1342 // ::= # empty
1343 // ::= <substitution>
1344
1345 DC = IgnoreLinkageSpecDecls(DC);
1346
1347 if (DC->isTranslationUnit())
1348 return;
1349
1350 if (NoFunction && isLocalContainerContext(DC))
1351 return;
1352
1353 assert(!isLocalContainerContext(DC));
1354
1355 const NamedDecl *ND = cast<NamedDecl>(DC);
1356 if (mangleSubstitution(ND))
1357 return;
1358
1359 // Check if we have a template.
1360 const TemplateArgumentList *TemplateArgs = nullptr;
1361 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1362 mangleTemplatePrefix(TD);
1363 mangleTemplateArgs(*TemplateArgs);
1364 } else {
1365 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1366 mangleUnqualifiedName(ND);
1367 }
1368
1369 addSubstitution(ND);
1370 }
1371
mangleTemplatePrefix(TemplateName Template)1372 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1373 // <template-prefix> ::= <prefix> <template unqualified-name>
1374 // ::= <template-param>
1375 // ::= <substitution>
1376 if (TemplateDecl *TD = Template.getAsTemplateDecl())
1377 return mangleTemplatePrefix(TD);
1378
1379 if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1380 manglePrefix(Qualified->getQualifier());
1381
1382 if (OverloadedTemplateStorage *Overloaded
1383 = Template.getAsOverloadedTemplate()) {
1384 mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1385 UnknownArity);
1386 return;
1387 }
1388
1389 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1390 assert(Dependent && "Unknown template name kind?");
1391 if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1392 manglePrefix(Qualifier);
1393 mangleUnscopedTemplateName(Template);
1394 }
1395
mangleTemplatePrefix(const TemplateDecl * ND,bool NoFunction)1396 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1397 bool NoFunction) {
1398 // <template-prefix> ::= <prefix> <template unqualified-name>
1399 // ::= <template-param>
1400 // ::= <substitution>
1401 // <template-template-param> ::= <template-param>
1402 // <substitution>
1403
1404 if (mangleSubstitution(ND))
1405 return;
1406
1407 // <template-template-param> ::= <template-param>
1408 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1409 mangleTemplateParameter(TTP->getIndex());
1410 } else {
1411 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1412 mangleUnqualifiedName(ND->getTemplatedDecl());
1413 }
1414
1415 addSubstitution(ND);
1416 }
1417
1418 /// Mangles a template name under the production <type>. Required for
1419 /// template template arguments.
1420 /// <type> ::= <class-enum-type>
1421 /// ::= <template-param>
1422 /// ::= <substitution>
mangleType(TemplateName TN)1423 void CXXNameMangler::mangleType(TemplateName TN) {
1424 if (mangleSubstitution(TN))
1425 return;
1426
1427 TemplateDecl *TD = nullptr;
1428
1429 switch (TN.getKind()) {
1430 case TemplateName::QualifiedTemplate:
1431 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1432 goto HaveDecl;
1433
1434 case TemplateName::Template:
1435 TD = TN.getAsTemplateDecl();
1436 goto HaveDecl;
1437
1438 HaveDecl:
1439 if (isa<TemplateTemplateParmDecl>(TD))
1440 mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1441 else
1442 mangleName(TD);
1443 break;
1444
1445 case TemplateName::OverloadedTemplate:
1446 llvm_unreachable("can't mangle an overloaded template name as a <type>");
1447
1448 case TemplateName::DependentTemplate: {
1449 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1450 assert(Dependent->isIdentifier());
1451
1452 // <class-enum-type> ::= <name>
1453 // <name> ::= <nested-name>
1454 mangleUnresolvedPrefix(Dependent->getQualifier());
1455 mangleSourceName(Dependent->getIdentifier());
1456 break;
1457 }
1458
1459 case TemplateName::SubstTemplateTemplateParm: {
1460 // Substituted template parameters are mangled as the substituted
1461 // template. This will check for the substitution twice, which is
1462 // fine, but we have to return early so that we don't try to *add*
1463 // the substitution twice.
1464 SubstTemplateTemplateParmStorage *subst
1465 = TN.getAsSubstTemplateTemplateParm();
1466 mangleType(subst->getReplacement());
1467 return;
1468 }
1469
1470 case TemplateName::SubstTemplateTemplateParmPack: {
1471 // FIXME: not clear how to mangle this!
1472 // template <template <class> class T...> class A {
1473 // template <template <class> class U...> void foo(B<T,U> x...);
1474 // };
1475 Out << "_SUBSTPACK_";
1476 break;
1477 }
1478 }
1479
1480 addSubstitution(TN);
1481 }
1482
mangleUnresolvedTypeOrSimpleId(QualType Ty,StringRef Prefix)1483 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
1484 StringRef Prefix) {
1485 // Only certain other types are valid as prefixes; enumerate them.
1486 switch (Ty->getTypeClass()) {
1487 case Type::Builtin:
1488 case Type::Complex:
1489 case Type::Adjusted:
1490 case Type::Decayed:
1491 case Type::Pointer:
1492 case Type::BlockPointer:
1493 case Type::LValueReference:
1494 case Type::RValueReference:
1495 case Type::MemberPointer:
1496 case Type::ConstantArray:
1497 case Type::IncompleteArray:
1498 case Type::VariableArray:
1499 case Type::DependentSizedArray:
1500 case Type::DependentSizedExtVector:
1501 case Type::Vector:
1502 case Type::ExtVector:
1503 case Type::FunctionProto:
1504 case Type::FunctionNoProto:
1505 case Type::Paren:
1506 case Type::Attributed:
1507 case Type::Auto:
1508 case Type::PackExpansion:
1509 case Type::ObjCObject:
1510 case Type::ObjCInterface:
1511 case Type::ObjCObjectPointer:
1512 case Type::Atomic:
1513 llvm_unreachable("type is illegal as a nested name specifier");
1514
1515 case Type::SubstTemplateTypeParmPack:
1516 // FIXME: not clear how to mangle this!
1517 // template <class T...> class A {
1518 // template <class U...> void foo(decltype(T::foo(U())) x...);
1519 // };
1520 Out << "_SUBSTPACK_";
1521 break;
1522
1523 // <unresolved-type> ::= <template-param>
1524 // ::= <decltype>
1525 // ::= <template-template-param> <template-args>
1526 // (this last is not official yet)
1527 case Type::TypeOfExpr:
1528 case Type::TypeOf:
1529 case Type::Decltype:
1530 case Type::TemplateTypeParm:
1531 case Type::UnaryTransform:
1532 case Type::SubstTemplateTypeParm:
1533 unresolvedType:
1534 // Some callers want a prefix before the mangled type.
1535 Out << Prefix;
1536
1537 // This seems to do everything we want. It's not really
1538 // sanctioned for a substituted template parameter, though.
1539 mangleType(Ty);
1540
1541 // We never want to print 'E' directly after an unresolved-type,
1542 // so we return directly.
1543 return true;
1544
1545 case Type::Typedef:
1546 mangleSourceName(cast<TypedefType>(Ty)->getDecl()->getIdentifier());
1547 break;
1548
1549 case Type::UnresolvedUsing:
1550 mangleSourceName(
1551 cast<UnresolvedUsingType>(Ty)->getDecl()->getIdentifier());
1552 break;
1553
1554 case Type::Enum:
1555 case Type::Record:
1556 mangleSourceName(cast<TagType>(Ty)->getDecl()->getIdentifier());
1557 break;
1558
1559 case Type::TemplateSpecialization: {
1560 const TemplateSpecializationType *TST =
1561 cast<TemplateSpecializationType>(Ty);
1562 TemplateName TN = TST->getTemplateName();
1563 switch (TN.getKind()) {
1564 case TemplateName::Template:
1565 case TemplateName::QualifiedTemplate: {
1566 TemplateDecl *TD = TN.getAsTemplateDecl();
1567
1568 // If the base is a template template parameter, this is an
1569 // unresolved type.
1570 assert(TD && "no template for template specialization type");
1571 if (isa<TemplateTemplateParmDecl>(TD))
1572 goto unresolvedType;
1573
1574 mangleSourceName(TD->getIdentifier());
1575 break;
1576 }
1577
1578 case TemplateName::OverloadedTemplate:
1579 case TemplateName::DependentTemplate:
1580 llvm_unreachable("invalid base for a template specialization type");
1581
1582 case TemplateName::SubstTemplateTemplateParm: {
1583 SubstTemplateTemplateParmStorage *subst =
1584 TN.getAsSubstTemplateTemplateParm();
1585 mangleExistingSubstitution(subst->getReplacement());
1586 break;
1587 }
1588
1589 case TemplateName::SubstTemplateTemplateParmPack: {
1590 // FIXME: not clear how to mangle this!
1591 // template <template <class U> class T...> class A {
1592 // template <class U...> void foo(decltype(T<U>::foo) x...);
1593 // };
1594 Out << "_SUBSTPACK_";
1595 break;
1596 }
1597 }
1598
1599 mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1600 break;
1601 }
1602
1603 case Type::InjectedClassName:
1604 mangleSourceName(
1605 cast<InjectedClassNameType>(Ty)->getDecl()->getIdentifier());
1606 break;
1607
1608 case Type::DependentName:
1609 mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
1610 break;
1611
1612 case Type::DependentTemplateSpecialization: {
1613 const DependentTemplateSpecializationType *DTST =
1614 cast<DependentTemplateSpecializationType>(Ty);
1615 mangleSourceName(DTST->getIdentifier());
1616 mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1617 break;
1618 }
1619
1620 case Type::Elaborated:
1621 return mangleUnresolvedTypeOrSimpleId(
1622 cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
1623 }
1624
1625 return false;
1626 }
1627
mangleOperatorName(DeclarationName Name,unsigned Arity)1628 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
1629 switch (Name.getNameKind()) {
1630 case DeclarationName::CXXConstructorName:
1631 case DeclarationName::CXXDestructorName:
1632 case DeclarationName::CXXUsingDirective:
1633 case DeclarationName::Identifier:
1634 case DeclarationName::ObjCMultiArgSelector:
1635 case DeclarationName::ObjCOneArgSelector:
1636 case DeclarationName::ObjCZeroArgSelector:
1637 llvm_unreachable("Not an operator name");
1638
1639 case DeclarationName::CXXConversionFunctionName:
1640 // <operator-name> ::= cv <type> # (cast)
1641 Out << "cv";
1642 mangleType(Name.getCXXNameType());
1643 break;
1644
1645 case DeclarationName::CXXLiteralOperatorName:
1646 Out << "li";
1647 mangleSourceName(Name.getCXXLiteralIdentifier());
1648 return;
1649
1650 case DeclarationName::CXXOperatorName:
1651 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1652 break;
1653 }
1654 }
1655
1656
1657
1658 void
mangleOperatorName(OverloadedOperatorKind OO,unsigned Arity)1659 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1660 switch (OO) {
1661 // <operator-name> ::= nw # new
1662 case OO_New: Out << "nw"; break;
1663 // ::= na # new[]
1664 case OO_Array_New: Out << "na"; break;
1665 // ::= dl # delete
1666 case OO_Delete: Out << "dl"; break;
1667 // ::= da # delete[]
1668 case OO_Array_Delete: Out << "da"; break;
1669 // ::= ps # + (unary)
1670 // ::= pl # + (binary or unknown)
1671 case OO_Plus:
1672 Out << (Arity == 1? "ps" : "pl"); break;
1673 // ::= ng # - (unary)
1674 // ::= mi # - (binary or unknown)
1675 case OO_Minus:
1676 Out << (Arity == 1? "ng" : "mi"); break;
1677 // ::= ad # & (unary)
1678 // ::= an # & (binary or unknown)
1679 case OO_Amp:
1680 Out << (Arity == 1? "ad" : "an"); break;
1681 // ::= de # * (unary)
1682 // ::= ml # * (binary or unknown)
1683 case OO_Star:
1684 // Use binary when unknown.
1685 Out << (Arity == 1? "de" : "ml"); break;
1686 // ::= co # ~
1687 case OO_Tilde: Out << "co"; break;
1688 // ::= dv # /
1689 case OO_Slash: Out << "dv"; break;
1690 // ::= rm # %
1691 case OO_Percent: Out << "rm"; break;
1692 // ::= or # |
1693 case OO_Pipe: Out << "or"; break;
1694 // ::= eo # ^
1695 case OO_Caret: Out << "eo"; break;
1696 // ::= aS # =
1697 case OO_Equal: Out << "aS"; break;
1698 // ::= pL # +=
1699 case OO_PlusEqual: Out << "pL"; break;
1700 // ::= mI # -=
1701 case OO_MinusEqual: Out << "mI"; break;
1702 // ::= mL # *=
1703 case OO_StarEqual: Out << "mL"; break;
1704 // ::= dV # /=
1705 case OO_SlashEqual: Out << "dV"; break;
1706 // ::= rM # %=
1707 case OO_PercentEqual: Out << "rM"; break;
1708 // ::= aN # &=
1709 case OO_AmpEqual: Out << "aN"; break;
1710 // ::= oR # |=
1711 case OO_PipeEqual: Out << "oR"; break;
1712 // ::= eO # ^=
1713 case OO_CaretEqual: Out << "eO"; break;
1714 // ::= ls # <<
1715 case OO_LessLess: Out << "ls"; break;
1716 // ::= rs # >>
1717 case OO_GreaterGreater: Out << "rs"; break;
1718 // ::= lS # <<=
1719 case OO_LessLessEqual: Out << "lS"; break;
1720 // ::= rS # >>=
1721 case OO_GreaterGreaterEqual: Out << "rS"; break;
1722 // ::= eq # ==
1723 case OO_EqualEqual: Out << "eq"; break;
1724 // ::= ne # !=
1725 case OO_ExclaimEqual: Out << "ne"; break;
1726 // ::= lt # <
1727 case OO_Less: Out << "lt"; break;
1728 // ::= gt # >
1729 case OO_Greater: Out << "gt"; break;
1730 // ::= le # <=
1731 case OO_LessEqual: Out << "le"; break;
1732 // ::= ge # >=
1733 case OO_GreaterEqual: Out << "ge"; break;
1734 // ::= nt # !
1735 case OO_Exclaim: Out << "nt"; break;
1736 // ::= aa # &&
1737 case OO_AmpAmp: Out << "aa"; break;
1738 // ::= oo # ||
1739 case OO_PipePipe: Out << "oo"; break;
1740 // ::= pp # ++
1741 case OO_PlusPlus: Out << "pp"; break;
1742 // ::= mm # --
1743 case OO_MinusMinus: Out << "mm"; break;
1744 // ::= cm # ,
1745 case OO_Comma: Out << "cm"; break;
1746 // ::= pm # ->*
1747 case OO_ArrowStar: Out << "pm"; break;
1748 // ::= pt # ->
1749 case OO_Arrow: Out << "pt"; break;
1750 // ::= cl # ()
1751 case OO_Call: Out << "cl"; break;
1752 // ::= ix # []
1753 case OO_Subscript: Out << "ix"; break;
1754
1755 // ::= qu # ?
1756 // The conditional operator can't be overloaded, but we still handle it when
1757 // mangling expressions.
1758 case OO_Conditional: Out << "qu"; break;
1759
1760 case OO_None:
1761 case NUM_OVERLOADED_OPERATORS:
1762 llvm_unreachable("Not an overloaded operator");
1763 }
1764 }
1765
mangleQualifiers(Qualifiers Quals)1766 void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1767 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
1768 if (Quals.hasRestrict())
1769 Out << 'r';
1770 if (Quals.hasVolatile())
1771 Out << 'V';
1772 if (Quals.hasConst())
1773 Out << 'K';
1774
1775 if (Quals.hasAddressSpace()) {
1776 // Address space extension:
1777 //
1778 // <type> ::= U <target-addrspace>
1779 // <type> ::= U <OpenCL-addrspace>
1780 // <type> ::= U <CUDA-addrspace>
1781
1782 SmallString<64> ASString;
1783 unsigned AS = Quals.getAddressSpace();
1784
1785 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
1786 // <target-addrspace> ::= "AS" <address-space-number>
1787 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
1788 ASString = "AS" + llvm::utostr_32(TargetAS);
1789 } else {
1790 switch (AS) {
1791 default: llvm_unreachable("Not a language specific address space");
1792 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ]
1793 case LangAS::opencl_global: ASString = "CLglobal"; break;
1794 case LangAS::opencl_local: ASString = "CLlocal"; break;
1795 case LangAS::opencl_constant: ASString = "CLconstant"; break;
1796 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
1797 case LangAS::cuda_device: ASString = "CUdevice"; break;
1798 case LangAS::cuda_constant: ASString = "CUconstant"; break;
1799 case LangAS::cuda_shared: ASString = "CUshared"; break;
1800 }
1801 }
1802 Out << 'U' << ASString.size() << ASString;
1803 }
1804
1805 StringRef LifetimeName;
1806 switch (Quals.getObjCLifetime()) {
1807 // Objective-C ARC Extension:
1808 //
1809 // <type> ::= U "__strong"
1810 // <type> ::= U "__weak"
1811 // <type> ::= U "__autoreleasing"
1812 case Qualifiers::OCL_None:
1813 break;
1814
1815 case Qualifiers::OCL_Weak:
1816 LifetimeName = "__weak";
1817 break;
1818
1819 case Qualifiers::OCL_Strong:
1820 LifetimeName = "__strong";
1821 break;
1822
1823 case Qualifiers::OCL_Autoreleasing:
1824 LifetimeName = "__autoreleasing";
1825 break;
1826
1827 case Qualifiers::OCL_ExplicitNone:
1828 // The __unsafe_unretained qualifier is *not* mangled, so that
1829 // __unsafe_unretained types in ARC produce the same manglings as the
1830 // equivalent (but, naturally, unqualified) types in non-ARC, providing
1831 // better ABI compatibility.
1832 //
1833 // It's safe to do this because unqualified 'id' won't show up
1834 // in any type signatures that need to be mangled.
1835 break;
1836 }
1837 if (!LifetimeName.empty())
1838 Out << 'U' << LifetimeName.size() << LifetimeName;
1839 }
1840
mangleRefQualifier(RefQualifierKind RefQualifier)1841 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1842 // <ref-qualifier> ::= R # lvalue reference
1843 // ::= O # rvalue-reference
1844 switch (RefQualifier) {
1845 case RQ_None:
1846 break;
1847
1848 case RQ_LValue:
1849 Out << 'R';
1850 break;
1851
1852 case RQ_RValue:
1853 Out << 'O';
1854 break;
1855 }
1856 }
1857
mangleObjCMethodName(const ObjCMethodDecl * MD)1858 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1859 Context.mangleObjCMethodName(MD, Out);
1860 }
1861
isTypeSubstitutable(Qualifiers Quals,const Type * Ty)1862 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty) {
1863 if (Quals)
1864 return true;
1865 if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
1866 return true;
1867 if (Ty->isOpenCLSpecificType())
1868 return true;
1869 if (Ty->isBuiltinType())
1870 return false;
1871
1872 return true;
1873 }
1874
mangleType(QualType T)1875 void CXXNameMangler::mangleType(QualType T) {
1876 // If our type is instantiation-dependent but not dependent, we mangle
1877 // it as it was written in the source, removing any top-level sugar.
1878 // Otherwise, use the canonical type.
1879 //
1880 // FIXME: This is an approximation of the instantiation-dependent name
1881 // mangling rules, since we should really be using the type as written and
1882 // augmented via semantic analysis (i.e., with implicit conversions and
1883 // default template arguments) for any instantiation-dependent type.
1884 // Unfortunately, that requires several changes to our AST:
1885 // - Instantiation-dependent TemplateSpecializationTypes will need to be
1886 // uniqued, so that we can handle substitutions properly
1887 // - Default template arguments will need to be represented in the
1888 // TemplateSpecializationType, since they need to be mangled even though
1889 // they aren't written.
1890 // - Conversions on non-type template arguments need to be expressed, since
1891 // they can affect the mangling of sizeof/alignof.
1892 if (!T->isInstantiationDependentType() || T->isDependentType())
1893 T = T.getCanonicalType();
1894 else {
1895 // Desugar any types that are purely sugar.
1896 do {
1897 // Don't desugar through template specialization types that aren't
1898 // type aliases. We need to mangle the template arguments as written.
1899 if (const TemplateSpecializationType *TST
1900 = dyn_cast<TemplateSpecializationType>(T))
1901 if (!TST->isTypeAlias())
1902 break;
1903
1904 QualType Desugared
1905 = T.getSingleStepDesugaredType(Context.getASTContext());
1906 if (Desugared == T)
1907 break;
1908
1909 T = Desugared;
1910 } while (true);
1911 }
1912 SplitQualType split = T.split();
1913 Qualifiers quals = split.Quals;
1914 const Type *ty = split.Ty;
1915
1916 bool isSubstitutable = isTypeSubstitutable(quals, ty);
1917 if (isSubstitutable && mangleSubstitution(T))
1918 return;
1919
1920 // If we're mangling a qualified array type, push the qualifiers to
1921 // the element type.
1922 if (quals && isa<ArrayType>(T)) {
1923 ty = Context.getASTContext().getAsArrayType(T);
1924 quals = Qualifiers();
1925
1926 // Note that we don't update T: we want to add the
1927 // substitution at the original type.
1928 }
1929
1930 if (quals) {
1931 mangleQualifiers(quals);
1932 // Recurse: even if the qualified type isn't yet substitutable,
1933 // the unqualified type might be.
1934 mangleType(QualType(ty, 0));
1935 } else {
1936 switch (ty->getTypeClass()) {
1937 #define ABSTRACT_TYPE(CLASS, PARENT)
1938 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1939 case Type::CLASS: \
1940 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1941 return;
1942 #define TYPE(CLASS, PARENT) \
1943 case Type::CLASS: \
1944 mangleType(static_cast<const CLASS##Type*>(ty)); \
1945 break;
1946 #include "clang/AST/TypeNodes.def"
1947 }
1948 }
1949
1950 // Add the substitution.
1951 if (isSubstitutable)
1952 addSubstitution(T);
1953 }
1954
mangleNameOrStandardSubstitution(const NamedDecl * ND)1955 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1956 if (!mangleStandardSubstitution(ND))
1957 mangleName(ND);
1958 }
1959
mangleType(const BuiltinType * T)1960 void CXXNameMangler::mangleType(const BuiltinType *T) {
1961 // <type> ::= <builtin-type>
1962 // <builtin-type> ::= v # void
1963 // ::= w # wchar_t
1964 // ::= b # bool
1965 // ::= c # char
1966 // ::= a # signed char
1967 // ::= h # unsigned char
1968 // ::= s # short
1969 // ::= t # unsigned short
1970 // ::= i # int
1971 // ::= j # unsigned int
1972 // ::= l # long
1973 // ::= m # unsigned long
1974 // ::= x # long long, __int64
1975 // ::= y # unsigned long long, __int64
1976 // ::= n # __int128
1977 // ::= o # unsigned __int128
1978 // ::= f # float
1979 // ::= d # double
1980 // ::= e # long double, __float80
1981 // UNSUPPORTED: ::= g # __float128
1982 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
1983 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
1984 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
1985 // ::= Dh # IEEE 754r half-precision floating point (16 bits)
1986 // ::= Di # char32_t
1987 // ::= Ds # char16_t
1988 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1989 // ::= u <source-name> # vendor extended type
1990 switch (T->getKind()) {
1991 case BuiltinType::Void: Out << 'v'; break;
1992 case BuiltinType::Bool: Out << 'b'; break;
1993 case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1994 case BuiltinType::UChar: Out << 'h'; break;
1995 case BuiltinType::UShort: Out << 't'; break;
1996 case BuiltinType::UInt: Out << 'j'; break;
1997 case BuiltinType::ULong: Out << 'm'; break;
1998 case BuiltinType::ULongLong: Out << 'y'; break;
1999 case BuiltinType::UInt128: Out << 'o'; break;
2000 case BuiltinType::SChar: Out << 'a'; break;
2001 case BuiltinType::WChar_S:
2002 case BuiltinType::WChar_U: Out << 'w'; break;
2003 case BuiltinType::Char16: Out << "Ds"; break;
2004 case BuiltinType::Char32: Out << "Di"; break;
2005 case BuiltinType::Short: Out << 's'; break;
2006 case BuiltinType::Int: Out << 'i'; break;
2007 case BuiltinType::Long: Out << 'l'; break;
2008 case BuiltinType::LongLong: Out << 'x'; break;
2009 case BuiltinType::Int128: Out << 'n'; break;
2010 case BuiltinType::Half: Out << "Dh"; break;
2011 case BuiltinType::Float: Out << 'f'; break;
2012 case BuiltinType::Double: Out << 'd'; break;
2013 case BuiltinType::LongDouble: Out << 'e'; break;
2014 case BuiltinType::NullPtr: Out << "Dn"; break;
2015
2016 #define BUILTIN_TYPE(Id, SingletonId)
2017 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2018 case BuiltinType::Id:
2019 #include "clang/AST/BuiltinTypes.def"
2020 case BuiltinType::Dependent:
2021 llvm_unreachable("mangling a placeholder type");
2022 case BuiltinType::ObjCId: Out << "11objc_object"; break;
2023 case BuiltinType::ObjCClass: Out << "10objc_class"; break;
2024 case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
2025 case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
2026 case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
2027 case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
2028 case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
2029 case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
2030 case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
2031 case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
2032 case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
2033 }
2034 }
2035
2036 // <type> ::= <function-type>
2037 // <function-type> ::= [<CV-qualifiers>] F [Y]
2038 // <bare-function-type> [<ref-qualifier>] E
mangleType(const FunctionProtoType * T)2039 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2040 // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
2041 // e.g. "const" in "int (A::*)() const".
2042 mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
2043
2044 Out << 'F';
2045
2046 // FIXME: We don't have enough information in the AST to produce the 'Y'
2047 // encoding for extern "C" function types.
2048 mangleBareFunctionType(T, /*MangleReturnType=*/true);
2049
2050 // Mangle the ref-qualifier, if present.
2051 mangleRefQualifier(T->getRefQualifier());
2052
2053 Out << 'E';
2054 }
mangleType(const FunctionNoProtoType * T)2055 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2056 llvm_unreachable("Can't mangle K&R function prototypes");
2057 }
mangleBareFunctionType(const FunctionType * T,bool MangleReturnType)2058 void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
2059 bool MangleReturnType) {
2060 // We should never be mangling something without a prototype.
2061 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2062
2063 // Record that we're in a function type. See mangleFunctionParam
2064 // for details on what we're trying to achieve here.
2065 FunctionTypeDepthState saved = FunctionTypeDepth.push();
2066
2067 // <bare-function-type> ::= <signature type>+
2068 if (MangleReturnType) {
2069 FunctionTypeDepth.enterResultType();
2070 mangleType(Proto->getReturnType());
2071 FunctionTypeDepth.leaveResultType();
2072 }
2073
2074 if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2075 // <builtin-type> ::= v # void
2076 Out << 'v';
2077
2078 FunctionTypeDepth.pop(saved);
2079 return;
2080 }
2081
2082 for (const auto &Arg : Proto->param_types())
2083 mangleType(Context.getASTContext().getSignatureParameterType(Arg));
2084
2085 FunctionTypeDepth.pop(saved);
2086
2087 // <builtin-type> ::= z # ellipsis
2088 if (Proto->isVariadic())
2089 Out << 'z';
2090 }
2091
2092 // <type> ::= <class-enum-type>
2093 // <class-enum-type> ::= <name>
mangleType(const UnresolvedUsingType * T)2094 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2095 mangleName(T->getDecl());
2096 }
2097
2098 // <type> ::= <class-enum-type>
2099 // <class-enum-type> ::= <name>
mangleType(const EnumType * T)2100 void CXXNameMangler::mangleType(const EnumType *T) {
2101 mangleType(static_cast<const TagType*>(T));
2102 }
mangleType(const RecordType * T)2103 void CXXNameMangler::mangleType(const RecordType *T) {
2104 mangleType(static_cast<const TagType*>(T));
2105 }
mangleType(const TagType * T)2106 void CXXNameMangler::mangleType(const TagType *T) {
2107 mangleName(T->getDecl());
2108 }
2109
2110 // <type> ::= <array-type>
2111 // <array-type> ::= A <positive dimension number> _ <element type>
2112 // ::= A [<dimension expression>] _ <element type>
mangleType(const ConstantArrayType * T)2113 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2114 Out << 'A' << T->getSize() << '_';
2115 mangleType(T->getElementType());
2116 }
mangleType(const VariableArrayType * T)2117 void CXXNameMangler::mangleType(const VariableArrayType *T) {
2118 Out << 'A';
2119 // decayed vla types (size 0) will just be skipped.
2120 if (T->getSizeExpr())
2121 mangleExpression(T->getSizeExpr());
2122 Out << '_';
2123 mangleType(T->getElementType());
2124 }
mangleType(const DependentSizedArrayType * T)2125 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2126 Out << 'A';
2127 mangleExpression(T->getSizeExpr());
2128 Out << '_';
2129 mangleType(T->getElementType());
2130 }
mangleType(const IncompleteArrayType * T)2131 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2132 Out << "A_";
2133 mangleType(T->getElementType());
2134 }
2135
2136 // <type> ::= <pointer-to-member-type>
2137 // <pointer-to-member-type> ::= M <class type> <member type>
mangleType(const MemberPointerType * T)2138 void CXXNameMangler::mangleType(const MemberPointerType *T) {
2139 Out << 'M';
2140 mangleType(QualType(T->getClass(), 0));
2141 QualType PointeeType = T->getPointeeType();
2142 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2143 mangleType(FPT);
2144
2145 // Itanium C++ ABI 5.1.8:
2146 //
2147 // The type of a non-static member function is considered to be different,
2148 // for the purposes of substitution, from the type of a namespace-scope or
2149 // static member function whose type appears similar. The types of two
2150 // non-static member functions are considered to be different, for the
2151 // purposes of substitution, if the functions are members of different
2152 // classes. In other words, for the purposes of substitution, the class of
2153 // which the function is a member is considered part of the type of
2154 // function.
2155
2156 // Given that we already substitute member function pointers as a
2157 // whole, the net effect of this rule is just to unconditionally
2158 // suppress substitution on the function type in a member pointer.
2159 // We increment the SeqID here to emulate adding an entry to the
2160 // substitution table.
2161 ++SeqID;
2162 } else
2163 mangleType(PointeeType);
2164 }
2165
2166 // <type> ::= <template-param>
mangleType(const TemplateTypeParmType * T)2167 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2168 mangleTemplateParameter(T->getIndex());
2169 }
2170
2171 // <type> ::= <template-param>
mangleType(const SubstTemplateTypeParmPackType * T)2172 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2173 // FIXME: not clear how to mangle this!
2174 // template <class T...> class A {
2175 // template <class U...> void foo(T(*)(U) x...);
2176 // };
2177 Out << "_SUBSTPACK_";
2178 }
2179
2180 // <type> ::= P <type> # pointer-to
mangleType(const PointerType * T)2181 void CXXNameMangler::mangleType(const PointerType *T) {
2182 Out << 'P';
2183 mangleType(T->getPointeeType());
2184 }
mangleType(const ObjCObjectPointerType * T)2185 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2186 Out << 'P';
2187 mangleType(T->getPointeeType());
2188 }
2189
2190 // <type> ::= R <type> # reference-to
mangleType(const LValueReferenceType * T)2191 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2192 Out << 'R';
2193 mangleType(T->getPointeeType());
2194 }
2195
2196 // <type> ::= O <type> # rvalue reference-to (C++0x)
mangleType(const RValueReferenceType * T)2197 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2198 Out << 'O';
2199 mangleType(T->getPointeeType());
2200 }
2201
2202 // <type> ::= C <type> # complex pair (C 2000)
mangleType(const ComplexType * T)2203 void CXXNameMangler::mangleType(const ComplexType *T) {
2204 Out << 'C';
2205 mangleType(T->getElementType());
2206 }
2207
2208 // ARM's ABI for Neon vector types specifies that they should be mangled as
2209 // if they are structs (to match ARM's initial implementation). The
2210 // vector type must be one of the special types predefined by ARM.
mangleNeonVectorType(const VectorType * T)2211 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2212 QualType EltType = T->getElementType();
2213 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2214 const char *EltName = nullptr;
2215 if (T->getVectorKind() == VectorType::NeonPolyVector) {
2216 switch (cast<BuiltinType>(EltType)->getKind()) {
2217 case BuiltinType::SChar:
2218 case BuiltinType::UChar:
2219 EltName = "poly8_t";
2220 break;
2221 case BuiltinType::Short:
2222 case BuiltinType::UShort:
2223 EltName = "poly16_t";
2224 break;
2225 case BuiltinType::ULongLong:
2226 EltName = "poly64_t";
2227 break;
2228 default: llvm_unreachable("unexpected Neon polynomial vector element type");
2229 }
2230 } else {
2231 switch (cast<BuiltinType>(EltType)->getKind()) {
2232 case BuiltinType::SChar: EltName = "int8_t"; break;
2233 case BuiltinType::UChar: EltName = "uint8_t"; break;
2234 case BuiltinType::Short: EltName = "int16_t"; break;
2235 case BuiltinType::UShort: EltName = "uint16_t"; break;
2236 case BuiltinType::Int: EltName = "int32_t"; break;
2237 case BuiltinType::UInt: EltName = "uint32_t"; break;
2238 case BuiltinType::LongLong: EltName = "int64_t"; break;
2239 case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2240 case BuiltinType::Double: EltName = "float64_t"; break;
2241 case BuiltinType::Float: EltName = "float32_t"; break;
2242 case BuiltinType::Half: EltName = "float16_t";break;
2243 default:
2244 llvm_unreachable("unexpected Neon vector element type");
2245 }
2246 }
2247 const char *BaseName = nullptr;
2248 unsigned BitSize = (T->getNumElements() *
2249 getASTContext().getTypeSize(EltType));
2250 if (BitSize == 64)
2251 BaseName = "__simd64_";
2252 else {
2253 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2254 BaseName = "__simd128_";
2255 }
2256 Out << strlen(BaseName) + strlen(EltName);
2257 Out << BaseName << EltName;
2258 }
2259
mangleAArch64VectorBase(const BuiltinType * EltType)2260 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2261 switch (EltType->getKind()) {
2262 case BuiltinType::SChar:
2263 return "Int8";
2264 case BuiltinType::Short:
2265 return "Int16";
2266 case BuiltinType::Int:
2267 return "Int32";
2268 case BuiltinType::Long:
2269 case BuiltinType::LongLong:
2270 return "Int64";
2271 case BuiltinType::UChar:
2272 return "Uint8";
2273 case BuiltinType::UShort:
2274 return "Uint16";
2275 case BuiltinType::UInt:
2276 return "Uint32";
2277 case BuiltinType::ULong:
2278 case BuiltinType::ULongLong:
2279 return "Uint64";
2280 case BuiltinType::Half:
2281 return "Float16";
2282 case BuiltinType::Float:
2283 return "Float32";
2284 case BuiltinType::Double:
2285 return "Float64";
2286 default:
2287 llvm_unreachable("Unexpected vector element base type");
2288 }
2289 }
2290
2291 // AArch64's ABI for Neon vector types specifies that they should be mangled as
2292 // the equivalent internal name. The vector type must be one of the special
2293 // types predefined by ARM.
mangleAArch64NeonVectorType(const VectorType * T)2294 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
2295 QualType EltType = T->getElementType();
2296 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2297 unsigned BitSize =
2298 (T->getNumElements() * getASTContext().getTypeSize(EltType));
2299 (void)BitSize; // Silence warning.
2300
2301 assert((BitSize == 64 || BitSize == 128) &&
2302 "Neon vector type not 64 or 128 bits");
2303
2304 StringRef EltName;
2305 if (T->getVectorKind() == VectorType::NeonPolyVector) {
2306 switch (cast<BuiltinType>(EltType)->getKind()) {
2307 case BuiltinType::UChar:
2308 EltName = "Poly8";
2309 break;
2310 case BuiltinType::UShort:
2311 EltName = "Poly16";
2312 break;
2313 case BuiltinType::ULong:
2314 EltName = "Poly64";
2315 break;
2316 default:
2317 llvm_unreachable("unexpected Neon polynomial vector element type");
2318 }
2319 } else
2320 EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
2321
2322 std::string TypeName =
2323 ("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str();
2324 Out << TypeName.length() << TypeName;
2325 }
2326
2327 // GNU extension: vector types
2328 // <type> ::= <vector-type>
2329 // <vector-type> ::= Dv <positive dimension number> _
2330 // <extended element type>
2331 // ::= Dv [<dimension expression>] _ <element type>
2332 // <extended element type> ::= <element type>
2333 // ::= p # AltiVec vector pixel
2334 // ::= b # Altivec vector bool
mangleType(const VectorType * T)2335 void CXXNameMangler::mangleType(const VectorType *T) {
2336 if ((T->getVectorKind() == VectorType::NeonVector ||
2337 T->getVectorKind() == VectorType::NeonPolyVector)) {
2338 llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
2339 llvm::Triple::ArchType Arch =
2340 getASTContext().getTargetInfo().getTriple().getArch();
2341 if ((Arch == llvm::Triple::aarch64 ||
2342 Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
2343 mangleAArch64NeonVectorType(T);
2344 else
2345 mangleNeonVectorType(T);
2346 return;
2347 }
2348 Out << "Dv" << T->getNumElements() << '_';
2349 if (T->getVectorKind() == VectorType::AltiVecPixel)
2350 Out << 'p';
2351 else if (T->getVectorKind() == VectorType::AltiVecBool)
2352 Out << 'b';
2353 else
2354 mangleType(T->getElementType());
2355 }
mangleType(const ExtVectorType * T)2356 void CXXNameMangler::mangleType(const ExtVectorType *T) {
2357 mangleType(static_cast<const VectorType*>(T));
2358 }
mangleType(const DependentSizedExtVectorType * T)2359 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2360 Out << "Dv";
2361 mangleExpression(T->getSizeExpr());
2362 Out << '_';
2363 mangleType(T->getElementType());
2364 }
2365
mangleType(const PackExpansionType * T)2366 void CXXNameMangler::mangleType(const PackExpansionType *T) {
2367 // <type> ::= Dp <type> # pack expansion (C++0x)
2368 Out << "Dp";
2369 mangleType(T->getPattern());
2370 }
2371
mangleType(const ObjCInterfaceType * T)2372 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2373 mangleSourceName(T->getDecl()->getIdentifier());
2374 }
2375
mangleType(const ObjCObjectType * T)2376 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2377 if (!T->qual_empty()) {
2378 // Mangle protocol qualifiers.
2379 SmallString<64> QualStr;
2380 llvm::raw_svector_ostream QualOS(QualStr);
2381 QualOS << "objcproto";
2382 for (const auto *I : T->quals()) {
2383 StringRef name = I->getName();
2384 QualOS << name.size() << name;
2385 }
2386 QualOS.flush();
2387 Out << 'U' << QualStr.size() << QualStr;
2388 }
2389 mangleType(T->getBaseType());
2390 }
2391
mangleType(const BlockPointerType * T)2392 void CXXNameMangler::mangleType(const BlockPointerType *T) {
2393 Out << "U13block_pointer";
2394 mangleType(T->getPointeeType());
2395 }
2396
mangleType(const InjectedClassNameType * T)2397 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2398 // Mangle injected class name types as if the user had written the
2399 // specialization out fully. It may not actually be possible to see
2400 // this mangling, though.
2401 mangleType(T->getInjectedSpecializationType());
2402 }
2403
mangleType(const TemplateSpecializationType * T)2404 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2405 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2406 mangleName(TD, T->getArgs(), T->getNumArgs());
2407 } else {
2408 if (mangleSubstitution(QualType(T, 0)))
2409 return;
2410
2411 mangleTemplatePrefix(T->getTemplateName());
2412
2413 // FIXME: GCC does not appear to mangle the template arguments when
2414 // the template in question is a dependent template name. Should we
2415 // emulate that badness?
2416 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2417 addSubstitution(QualType(T, 0));
2418 }
2419 }
2420
mangleType(const DependentNameType * T)2421 void CXXNameMangler::mangleType(const DependentNameType *T) {
2422 // Proposal by cxx-abi-dev, 2014-03-26
2423 // <class-enum-type> ::= <name> # non-dependent or dependent type name or
2424 // # dependent elaborated type specifier using
2425 // # 'typename'
2426 // ::= Ts <name> # dependent elaborated type specifier using
2427 // # 'struct' or 'class'
2428 // ::= Tu <name> # dependent elaborated type specifier using
2429 // # 'union'
2430 // ::= Te <name> # dependent elaborated type specifier using
2431 // # 'enum'
2432 switch (T->getKeyword()) {
2433 case ETK_Typename:
2434 break;
2435 case ETK_Struct:
2436 case ETK_Class:
2437 case ETK_Interface:
2438 Out << "Ts";
2439 break;
2440 case ETK_Union:
2441 Out << "Tu";
2442 break;
2443 case ETK_Enum:
2444 Out << "Te";
2445 break;
2446 default:
2447 llvm_unreachable("unexpected keyword for dependent type name");
2448 }
2449 // Typename types are always nested
2450 Out << 'N';
2451 manglePrefix(T->getQualifier());
2452 mangleSourceName(T->getIdentifier());
2453 Out << 'E';
2454 }
2455
mangleType(const DependentTemplateSpecializationType * T)2456 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2457 // Dependently-scoped template types are nested if they have a prefix.
2458 Out << 'N';
2459
2460 // TODO: avoid making this TemplateName.
2461 TemplateName Prefix =
2462 getASTContext().getDependentTemplateName(T->getQualifier(),
2463 T->getIdentifier());
2464 mangleTemplatePrefix(Prefix);
2465
2466 // FIXME: GCC does not appear to mangle the template arguments when
2467 // the template in question is a dependent template name. Should we
2468 // emulate that badness?
2469 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2470 Out << 'E';
2471 }
2472
mangleType(const TypeOfType * T)2473 void CXXNameMangler::mangleType(const TypeOfType *T) {
2474 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2475 // "extension with parameters" mangling.
2476 Out << "u6typeof";
2477 }
2478
mangleType(const TypeOfExprType * T)2479 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2480 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2481 // "extension with parameters" mangling.
2482 Out << "u6typeof";
2483 }
2484
mangleType(const DecltypeType * T)2485 void CXXNameMangler::mangleType(const DecltypeType *T) {
2486 Expr *E = T->getUnderlyingExpr();
2487
2488 // type ::= Dt <expression> E # decltype of an id-expression
2489 // # or class member access
2490 // ::= DT <expression> E # decltype of an expression
2491
2492 // This purports to be an exhaustive list of id-expressions and
2493 // class member accesses. Note that we do not ignore parentheses;
2494 // parentheses change the semantics of decltype for these
2495 // expressions (and cause the mangler to use the other form).
2496 if (isa<DeclRefExpr>(E) ||
2497 isa<MemberExpr>(E) ||
2498 isa<UnresolvedLookupExpr>(E) ||
2499 isa<DependentScopeDeclRefExpr>(E) ||
2500 isa<CXXDependentScopeMemberExpr>(E) ||
2501 isa<UnresolvedMemberExpr>(E))
2502 Out << "Dt";
2503 else
2504 Out << "DT";
2505 mangleExpression(E);
2506 Out << 'E';
2507 }
2508
mangleType(const UnaryTransformType * T)2509 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2510 // If this is dependent, we need to record that. If not, we simply
2511 // mangle it as the underlying type since they are equivalent.
2512 if (T->isDependentType()) {
2513 Out << 'U';
2514
2515 switch (T->getUTTKind()) {
2516 case UnaryTransformType::EnumUnderlyingType:
2517 Out << "3eut";
2518 break;
2519 }
2520 }
2521
2522 mangleType(T->getUnderlyingType());
2523 }
2524
mangleType(const AutoType * T)2525 void CXXNameMangler::mangleType(const AutoType *T) {
2526 QualType D = T->getDeducedType();
2527 // <builtin-type> ::= Da # dependent auto
2528 if (D.isNull())
2529 Out << (T->isDecltypeAuto() ? "Dc" : "Da");
2530 else
2531 mangleType(D);
2532 }
2533
mangleType(const AtomicType * T)2534 void CXXNameMangler::mangleType(const AtomicType *T) {
2535 // <type> ::= U <source-name> <type> # vendor extended type qualifier
2536 // (Until there's a standardized mangling...)
2537 Out << "U7_Atomic";
2538 mangleType(T->getValueType());
2539 }
2540
mangleIntegerLiteral(QualType T,const llvm::APSInt & Value)2541 void CXXNameMangler::mangleIntegerLiteral(QualType T,
2542 const llvm::APSInt &Value) {
2543 // <expr-primary> ::= L <type> <value number> E # integer literal
2544 Out << 'L';
2545
2546 mangleType(T);
2547 if (T->isBooleanType()) {
2548 // Boolean values are encoded as 0/1.
2549 Out << (Value.getBoolValue() ? '1' : '0');
2550 } else {
2551 mangleNumber(Value);
2552 }
2553 Out << 'E';
2554
2555 }
2556
mangleMemberExprBase(const Expr * Base,bool IsArrow)2557 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
2558 // Ignore member expressions involving anonymous unions.
2559 while (const auto *RT = Base->getType()->getAs<RecordType>()) {
2560 if (!RT->getDecl()->isAnonymousStructOrUnion())
2561 break;
2562 const auto *ME = dyn_cast<MemberExpr>(Base);
2563 if (!ME)
2564 break;
2565 Base = ME->getBase();
2566 IsArrow = ME->isArrow();
2567 }
2568
2569 if (Base->isImplicitCXXThis()) {
2570 // Note: GCC mangles member expressions to the implicit 'this' as
2571 // *this., whereas we represent them as this->. The Itanium C++ ABI
2572 // does not specify anything here, so we follow GCC.
2573 Out << "dtdefpT";
2574 } else {
2575 Out << (IsArrow ? "pt" : "dt");
2576 mangleExpression(Base);
2577 }
2578 }
2579
2580 /// Mangles a member expression.
mangleMemberExpr(const Expr * base,bool isArrow,NestedNameSpecifier * qualifier,NamedDecl * firstQualifierLookup,DeclarationName member,unsigned arity)2581 void CXXNameMangler::mangleMemberExpr(const Expr *base,
2582 bool isArrow,
2583 NestedNameSpecifier *qualifier,
2584 NamedDecl *firstQualifierLookup,
2585 DeclarationName member,
2586 unsigned arity) {
2587 // <expression> ::= dt <expression> <unresolved-name>
2588 // ::= pt <expression> <unresolved-name>
2589 if (base)
2590 mangleMemberExprBase(base, isArrow);
2591 mangleUnresolvedName(qualifier, member, arity);
2592 }
2593
2594 /// Look at the callee of the given call expression and determine if
2595 /// it's a parenthesized id-expression which would have triggered ADL
2596 /// otherwise.
isParenthesizedADLCallee(const CallExpr * call)2597 static bool isParenthesizedADLCallee(const CallExpr *call) {
2598 const Expr *callee = call->getCallee();
2599 const Expr *fn = callee->IgnoreParens();
2600
2601 // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
2602 // too, but for those to appear in the callee, it would have to be
2603 // parenthesized.
2604 if (callee == fn) return false;
2605
2606 // Must be an unresolved lookup.
2607 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2608 if (!lookup) return false;
2609
2610 assert(!lookup->requiresADL());
2611
2612 // Must be an unqualified lookup.
2613 if (lookup->getQualifier()) return false;
2614
2615 // Must not have found a class member. Note that if one is a class
2616 // member, they're all class members.
2617 if (lookup->getNumDecls() > 0 &&
2618 (*lookup->decls_begin())->isCXXClassMember())
2619 return false;
2620
2621 // Otherwise, ADL would have been triggered.
2622 return true;
2623 }
2624
mangleCastExpression(const Expr * E,StringRef CastEncoding)2625 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
2626 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2627 Out << CastEncoding;
2628 mangleType(ECE->getType());
2629 mangleExpression(ECE->getSubExpr());
2630 }
2631
mangleInitListElements(const InitListExpr * InitList)2632 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
2633 if (auto *Syntactic = InitList->getSyntacticForm())
2634 InitList = Syntactic;
2635 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2636 mangleExpression(InitList->getInit(i));
2637 }
2638
mangleExpression(const Expr * E,unsigned Arity)2639 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2640 // <expression> ::= <unary operator-name> <expression>
2641 // ::= <binary operator-name> <expression> <expression>
2642 // ::= <trinary operator-name> <expression> <expression> <expression>
2643 // ::= cv <type> expression # conversion with one argument
2644 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2645 // ::= dc <type> <expression> # dynamic_cast<type> (expression)
2646 // ::= sc <type> <expression> # static_cast<type> (expression)
2647 // ::= cc <type> <expression> # const_cast<type> (expression)
2648 // ::= rc <type> <expression> # reinterpret_cast<type> (expression)
2649 // ::= st <type> # sizeof (a type)
2650 // ::= at <type> # alignof (a type)
2651 // ::= <template-param>
2652 // ::= <function-param>
2653 // ::= sr <type> <unqualified-name> # dependent name
2654 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
2655 // ::= ds <expression> <expression> # expr.*expr
2656 // ::= sZ <template-param> # size of a parameter pack
2657 // ::= sZ <function-param> # size of a function parameter pack
2658 // ::= <expr-primary>
2659 // <expr-primary> ::= L <type> <value number> E # integer literal
2660 // ::= L <type <value float> E # floating literal
2661 // ::= L <mangled-name> E # external name
2662 // ::= fpT # 'this' expression
2663 QualType ImplicitlyConvertedToType;
2664
2665 recurse:
2666 switch (E->getStmtClass()) {
2667 case Expr::NoStmtClass:
2668 #define ABSTRACT_STMT(Type)
2669 #define EXPR(Type, Base)
2670 #define STMT(Type, Base) \
2671 case Expr::Type##Class:
2672 #include "clang/AST/StmtNodes.inc"
2673 // fallthrough
2674
2675 // These all can only appear in local or variable-initialization
2676 // contexts and so should never appear in a mangling.
2677 case Expr::AddrLabelExprClass:
2678 case Expr::ImplicitValueInitExprClass:
2679 case Expr::ParenListExprClass:
2680 case Expr::LambdaExprClass:
2681 case Expr::MSPropertyRefExprClass:
2682 case Expr::TypoExprClass: // This should no longer exist in the AST by now.
2683 llvm_unreachable("unexpected statement kind");
2684
2685 // FIXME: invent manglings for all these.
2686 case Expr::BlockExprClass:
2687 case Expr::ChooseExprClass:
2688 case Expr::CompoundLiteralExprClass:
2689 case Expr::DesignatedInitExprClass:
2690 case Expr::ExtVectorElementExprClass:
2691 case Expr::GenericSelectionExprClass:
2692 case Expr::ObjCEncodeExprClass:
2693 case Expr::ObjCIsaExprClass:
2694 case Expr::ObjCIvarRefExprClass:
2695 case Expr::ObjCMessageExprClass:
2696 case Expr::ObjCPropertyRefExprClass:
2697 case Expr::ObjCProtocolExprClass:
2698 case Expr::ObjCSelectorExprClass:
2699 case Expr::ObjCStringLiteralClass:
2700 case Expr::ObjCBoxedExprClass:
2701 case Expr::ObjCArrayLiteralClass:
2702 case Expr::ObjCDictionaryLiteralClass:
2703 case Expr::ObjCSubscriptRefExprClass:
2704 case Expr::ObjCIndirectCopyRestoreExprClass:
2705 case Expr::OffsetOfExprClass:
2706 case Expr::PredefinedExprClass:
2707 case Expr::ShuffleVectorExprClass:
2708 case Expr::ConvertVectorExprClass:
2709 case Expr::StmtExprClass:
2710 case Expr::TypeTraitExprClass:
2711 case Expr::ArrayTypeTraitExprClass:
2712 case Expr::ExpressionTraitExprClass:
2713 case Expr::VAArgExprClass:
2714 case Expr::CUDAKernelCallExprClass:
2715 case Expr::AsTypeExprClass:
2716 case Expr::PseudoObjectExprClass:
2717 case Expr::AtomicExprClass:
2718 {
2719 // As bad as this diagnostic is, it's better than crashing.
2720 DiagnosticsEngine &Diags = Context.getDiags();
2721 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2722 "cannot yet mangle expression type %0");
2723 Diags.Report(E->getExprLoc(), DiagID)
2724 << E->getStmtClassName() << E->getSourceRange();
2725 break;
2726 }
2727
2728 case Expr::CXXUuidofExprClass: {
2729 const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
2730 if (UE->isTypeOperand()) {
2731 QualType UuidT = UE->getTypeOperand(Context.getASTContext());
2732 Out << "u8__uuidoft";
2733 mangleType(UuidT);
2734 } else {
2735 Expr *UuidExp = UE->getExprOperand();
2736 Out << "u8__uuidofz";
2737 mangleExpression(UuidExp, Arity);
2738 }
2739 break;
2740 }
2741
2742 // Even gcc-4.5 doesn't mangle this.
2743 case Expr::BinaryConditionalOperatorClass: {
2744 DiagnosticsEngine &Diags = Context.getDiags();
2745 unsigned DiagID =
2746 Diags.getCustomDiagID(DiagnosticsEngine::Error,
2747 "?: operator with omitted middle operand cannot be mangled");
2748 Diags.Report(E->getExprLoc(), DiagID)
2749 << E->getStmtClassName() << E->getSourceRange();
2750 break;
2751 }
2752
2753 // These are used for internal purposes and cannot be meaningfully mangled.
2754 case Expr::OpaqueValueExprClass:
2755 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2756
2757 case Expr::InitListExprClass: {
2758 Out << "il";
2759 mangleInitListElements(cast<InitListExpr>(E));
2760 Out << "E";
2761 break;
2762 }
2763
2764 case Expr::CXXDefaultArgExprClass:
2765 mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2766 break;
2767
2768 case Expr::CXXDefaultInitExprClass:
2769 mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2770 break;
2771
2772 case Expr::CXXStdInitializerListExprClass:
2773 mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
2774 break;
2775
2776 case Expr::SubstNonTypeTemplateParmExprClass:
2777 mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2778 Arity);
2779 break;
2780
2781 case Expr::UserDefinedLiteralClass:
2782 // We follow g++'s approach of mangling a UDL as a call to the literal
2783 // operator.
2784 case Expr::CXXMemberCallExprClass: // fallthrough
2785 case Expr::CallExprClass: {
2786 const CallExpr *CE = cast<CallExpr>(E);
2787
2788 // <expression> ::= cp <simple-id> <expression>* E
2789 // We use this mangling only when the call would use ADL except
2790 // for being parenthesized. Per discussion with David
2791 // Vandervoorde, 2011.04.25.
2792 if (isParenthesizedADLCallee(CE)) {
2793 Out << "cp";
2794 // The callee here is a parenthesized UnresolvedLookupExpr with
2795 // no qualifier and should always get mangled as a <simple-id>
2796 // anyway.
2797
2798 // <expression> ::= cl <expression>* E
2799 } else {
2800 Out << "cl";
2801 }
2802
2803 unsigned CallArity = CE->getNumArgs();
2804 for (const Expr *Arg : CE->arguments())
2805 if (isa<PackExpansionExpr>(Arg))
2806 CallArity = UnknownArity;
2807
2808 mangleExpression(CE->getCallee(), CallArity);
2809 for (const Expr *Arg : CE->arguments())
2810 mangleExpression(Arg);
2811 Out << 'E';
2812 break;
2813 }
2814
2815 case Expr::CXXNewExprClass: {
2816 const CXXNewExpr *New = cast<CXXNewExpr>(E);
2817 if (New->isGlobalNew()) Out << "gs";
2818 Out << (New->isArray() ? "na" : "nw");
2819 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2820 E = New->placement_arg_end(); I != E; ++I)
2821 mangleExpression(*I);
2822 Out << '_';
2823 mangleType(New->getAllocatedType());
2824 if (New->hasInitializer()) {
2825 if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2826 Out << "il";
2827 else
2828 Out << "pi";
2829 const Expr *Init = New->getInitializer();
2830 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2831 // Directly inline the initializers.
2832 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2833 E = CCE->arg_end();
2834 I != E; ++I)
2835 mangleExpression(*I);
2836 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2837 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2838 mangleExpression(PLE->getExpr(i));
2839 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2840 isa<InitListExpr>(Init)) {
2841 // Only take InitListExprs apart for list-initialization.
2842 mangleInitListElements(cast<InitListExpr>(Init));
2843 } else
2844 mangleExpression(Init);
2845 }
2846 Out << 'E';
2847 break;
2848 }
2849
2850 case Expr::CXXPseudoDestructorExprClass: {
2851 const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
2852 if (const Expr *Base = PDE->getBase())
2853 mangleMemberExprBase(Base, PDE->isArrow());
2854 NestedNameSpecifier *Qualifier = PDE->getQualifier();
2855 QualType ScopeType;
2856 if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
2857 if (Qualifier) {
2858 mangleUnresolvedPrefix(Qualifier,
2859 /*Recursive=*/true);
2860 mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
2861 Out << 'E';
2862 } else {
2863 Out << "sr";
2864 if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
2865 Out << 'E';
2866 }
2867 } else if (Qualifier) {
2868 mangleUnresolvedPrefix(Qualifier);
2869 }
2870 // <base-unresolved-name> ::= dn <destructor-name>
2871 Out << "dn";
2872 QualType DestroyedType = PDE->getDestroyedType();
2873 mangleUnresolvedTypeOrSimpleId(DestroyedType);
2874 break;
2875 }
2876
2877 case Expr::MemberExprClass: {
2878 const MemberExpr *ME = cast<MemberExpr>(E);
2879 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2880 ME->getQualifier(), nullptr,
2881 ME->getMemberDecl()->getDeclName(), Arity);
2882 break;
2883 }
2884
2885 case Expr::UnresolvedMemberExprClass: {
2886 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2887 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2888 ME->getQualifier(), nullptr, ME->getMemberName(),
2889 Arity);
2890 if (ME->hasExplicitTemplateArgs())
2891 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2892 break;
2893 }
2894
2895 case Expr::CXXDependentScopeMemberExprClass: {
2896 const CXXDependentScopeMemberExpr *ME
2897 = cast<CXXDependentScopeMemberExpr>(E);
2898 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2899 ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2900 ME->getMember(), Arity);
2901 if (ME->hasExplicitTemplateArgs())
2902 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2903 break;
2904 }
2905
2906 case Expr::UnresolvedLookupExprClass: {
2907 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2908 mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), Arity);
2909
2910 // All the <unresolved-name> productions end in a
2911 // base-unresolved-name, where <template-args> are just tacked
2912 // onto the end.
2913 if (ULE->hasExplicitTemplateArgs())
2914 mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2915 break;
2916 }
2917
2918 case Expr::CXXUnresolvedConstructExprClass: {
2919 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2920 unsigned N = CE->arg_size();
2921
2922 Out << "cv";
2923 mangleType(CE->getType());
2924 if (N != 1) Out << '_';
2925 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2926 if (N != 1) Out << 'E';
2927 break;
2928 }
2929
2930 case Expr::CXXConstructExprClass: {
2931 const auto *CE = cast<CXXConstructExpr>(E);
2932 if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
2933 assert(
2934 CE->getNumArgs() >= 1 &&
2935 (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
2936 "implicit CXXConstructExpr must have one argument");
2937 return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
2938 }
2939 Out << "il";
2940 for (auto *E : CE->arguments())
2941 mangleExpression(E);
2942 Out << "E";
2943 break;
2944 }
2945
2946 case Expr::CXXTemporaryObjectExprClass: {
2947 const auto *CE = cast<CXXTemporaryObjectExpr>(E);
2948 unsigned N = CE->getNumArgs();
2949 bool List = CE->isListInitialization();
2950
2951 if (List)
2952 Out << "tl";
2953 else
2954 Out << "cv";
2955 mangleType(CE->getType());
2956 if (!List && N != 1)
2957 Out << '_';
2958 if (CE->isStdInitListInitialization()) {
2959 // We implicitly created a std::initializer_list<T> for the first argument
2960 // of a constructor of type U in an expression of the form U{a, b, c}.
2961 // Strip all the semantic gunk off the initializer list.
2962 auto *SILE =
2963 cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
2964 auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
2965 mangleInitListElements(ILE);
2966 } else {
2967 for (auto *E : CE->arguments())
2968 mangleExpression(E);
2969 }
2970 if (List || N != 1)
2971 Out << 'E';
2972 break;
2973 }
2974
2975 case Expr::CXXScalarValueInitExprClass:
2976 Out << "cv";
2977 mangleType(E->getType());
2978 Out << "_E";
2979 break;
2980
2981 case Expr::CXXNoexceptExprClass:
2982 Out << "nx";
2983 mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2984 break;
2985
2986 case Expr::UnaryExprOrTypeTraitExprClass: {
2987 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2988
2989 if (!SAE->isInstantiationDependent()) {
2990 // Itanium C++ ABI:
2991 // If the operand of a sizeof or alignof operator is not
2992 // instantiation-dependent it is encoded as an integer literal
2993 // reflecting the result of the operator.
2994 //
2995 // If the result of the operator is implicitly converted to a known
2996 // integer type, that type is used for the literal; otherwise, the type
2997 // of std::size_t or std::ptrdiff_t is used.
2998 QualType T = (ImplicitlyConvertedToType.isNull() ||
2999 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
3000 : ImplicitlyConvertedToType;
3001 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
3002 mangleIntegerLiteral(T, V);
3003 break;
3004 }
3005
3006 switch(SAE->getKind()) {
3007 case UETT_SizeOf:
3008 Out << 's';
3009 break;
3010 case UETT_AlignOf:
3011 Out << 'a';
3012 break;
3013 case UETT_VecStep:
3014 DiagnosticsEngine &Diags = Context.getDiags();
3015 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3016 "cannot yet mangle vec_step expression");
3017 Diags.Report(DiagID);
3018 return;
3019 }
3020 if (SAE->isArgumentType()) {
3021 Out << 't';
3022 mangleType(SAE->getArgumentType());
3023 } else {
3024 Out << 'z';
3025 mangleExpression(SAE->getArgumentExpr());
3026 }
3027 break;
3028 }
3029
3030 case Expr::CXXThrowExprClass: {
3031 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
3032 // <expression> ::= tw <expression> # throw expression
3033 // ::= tr # rethrow
3034 if (TE->getSubExpr()) {
3035 Out << "tw";
3036 mangleExpression(TE->getSubExpr());
3037 } else {
3038 Out << "tr";
3039 }
3040 break;
3041 }
3042
3043 case Expr::CXXTypeidExprClass: {
3044 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
3045 // <expression> ::= ti <type> # typeid (type)
3046 // ::= te <expression> # typeid (expression)
3047 if (TIE->isTypeOperand()) {
3048 Out << "ti";
3049 mangleType(TIE->getTypeOperand(Context.getASTContext()));
3050 } else {
3051 Out << "te";
3052 mangleExpression(TIE->getExprOperand());
3053 }
3054 break;
3055 }
3056
3057 case Expr::CXXDeleteExprClass: {
3058 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
3059 // <expression> ::= [gs] dl <expression> # [::] delete expr
3060 // ::= [gs] da <expression> # [::] delete [] expr
3061 if (DE->isGlobalDelete()) Out << "gs";
3062 Out << (DE->isArrayForm() ? "da" : "dl");
3063 mangleExpression(DE->getArgument());
3064 break;
3065 }
3066
3067 case Expr::UnaryOperatorClass: {
3068 const UnaryOperator *UO = cast<UnaryOperator>(E);
3069 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
3070 /*Arity=*/1);
3071 mangleExpression(UO->getSubExpr());
3072 break;
3073 }
3074
3075 case Expr::ArraySubscriptExprClass: {
3076 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
3077
3078 // Array subscript is treated as a syntactically weird form of
3079 // binary operator.
3080 Out << "ix";
3081 mangleExpression(AE->getLHS());
3082 mangleExpression(AE->getRHS());
3083 break;
3084 }
3085
3086 case Expr::CompoundAssignOperatorClass: // fallthrough
3087 case Expr::BinaryOperatorClass: {
3088 const BinaryOperator *BO = cast<BinaryOperator>(E);
3089 if (BO->getOpcode() == BO_PtrMemD)
3090 Out << "ds";
3091 else
3092 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
3093 /*Arity=*/2);
3094 mangleExpression(BO->getLHS());
3095 mangleExpression(BO->getRHS());
3096 break;
3097 }
3098
3099 case Expr::ConditionalOperatorClass: {
3100 const ConditionalOperator *CO = cast<ConditionalOperator>(E);
3101 mangleOperatorName(OO_Conditional, /*Arity=*/3);
3102 mangleExpression(CO->getCond());
3103 mangleExpression(CO->getLHS(), Arity);
3104 mangleExpression(CO->getRHS(), Arity);
3105 break;
3106 }
3107
3108 case Expr::ImplicitCastExprClass: {
3109 ImplicitlyConvertedToType = E->getType();
3110 E = cast<ImplicitCastExpr>(E)->getSubExpr();
3111 goto recurse;
3112 }
3113
3114 case Expr::ObjCBridgedCastExprClass: {
3115 // Mangle ownership casts as a vendor extended operator __bridge,
3116 // __bridge_transfer, or __bridge_retain.
3117 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
3118 Out << "v1U" << Kind.size() << Kind;
3119 }
3120 // Fall through to mangle the cast itself.
3121
3122 case Expr::CStyleCastExprClass:
3123 mangleCastExpression(E, "cv");
3124 break;
3125
3126 case Expr::CXXFunctionalCastExprClass: {
3127 auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
3128 // FIXME: Add isImplicit to CXXConstructExpr.
3129 if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
3130 if (CCE->getParenOrBraceRange().isInvalid())
3131 Sub = CCE->getArg(0)->IgnoreImplicit();
3132 if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
3133 Sub = StdInitList->getSubExpr()->IgnoreImplicit();
3134 if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
3135 Out << "tl";
3136 mangleType(E->getType());
3137 mangleInitListElements(IL);
3138 Out << "E";
3139 } else {
3140 mangleCastExpression(E, "cv");
3141 }
3142 break;
3143 }
3144
3145 case Expr::CXXStaticCastExprClass:
3146 mangleCastExpression(E, "sc");
3147 break;
3148 case Expr::CXXDynamicCastExprClass:
3149 mangleCastExpression(E, "dc");
3150 break;
3151 case Expr::CXXReinterpretCastExprClass:
3152 mangleCastExpression(E, "rc");
3153 break;
3154 case Expr::CXXConstCastExprClass:
3155 mangleCastExpression(E, "cc");
3156 break;
3157
3158 case Expr::CXXOperatorCallExprClass: {
3159 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
3160 unsigned NumArgs = CE->getNumArgs();
3161 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
3162 // Mangle the arguments.
3163 for (unsigned i = 0; i != NumArgs; ++i)
3164 mangleExpression(CE->getArg(i));
3165 break;
3166 }
3167
3168 case Expr::ParenExprClass:
3169 mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
3170 break;
3171
3172 case Expr::DeclRefExprClass: {
3173 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
3174
3175 switch (D->getKind()) {
3176 default:
3177 // <expr-primary> ::= L <mangled-name> E # external name
3178 Out << 'L';
3179 mangle(D);
3180 Out << 'E';
3181 break;
3182
3183 case Decl::ParmVar:
3184 mangleFunctionParam(cast<ParmVarDecl>(D));
3185 break;
3186
3187 case Decl::EnumConstant: {
3188 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3189 mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3190 break;
3191 }
3192
3193 case Decl::NonTypeTemplateParm: {
3194 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3195 mangleTemplateParameter(PD->getIndex());
3196 break;
3197 }
3198
3199 }
3200
3201 break;
3202 }
3203
3204 case Expr::SubstNonTypeTemplateParmPackExprClass:
3205 // FIXME: not clear how to mangle this!
3206 // template <unsigned N...> class A {
3207 // template <class U...> void foo(U (&x)[N]...);
3208 // };
3209 Out << "_SUBSTPACK_";
3210 break;
3211
3212 case Expr::FunctionParmPackExprClass: {
3213 // FIXME: not clear how to mangle this!
3214 const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
3215 Out << "v110_SUBSTPACK";
3216 mangleFunctionParam(FPPE->getParameterPack());
3217 break;
3218 }
3219
3220 case Expr::DependentScopeDeclRefExprClass: {
3221 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
3222 mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(), Arity);
3223
3224 // All the <unresolved-name> productions end in a
3225 // base-unresolved-name, where <template-args> are just tacked
3226 // onto the end.
3227 if (DRE->hasExplicitTemplateArgs())
3228 mangleTemplateArgs(DRE->getExplicitTemplateArgs());
3229 break;
3230 }
3231
3232 case Expr::CXXBindTemporaryExprClass:
3233 mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
3234 break;
3235
3236 case Expr::ExprWithCleanupsClass:
3237 mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
3238 break;
3239
3240 case Expr::FloatingLiteralClass: {
3241 const FloatingLiteral *FL = cast<FloatingLiteral>(E);
3242 Out << 'L';
3243 mangleType(FL->getType());
3244 mangleFloat(FL->getValue());
3245 Out << 'E';
3246 break;
3247 }
3248
3249 case Expr::CharacterLiteralClass:
3250 Out << 'L';
3251 mangleType(E->getType());
3252 Out << cast<CharacterLiteral>(E)->getValue();
3253 Out << 'E';
3254 break;
3255
3256 // FIXME. __objc_yes/__objc_no are mangled same as true/false
3257 case Expr::ObjCBoolLiteralExprClass:
3258 Out << "Lb";
3259 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3260 Out << 'E';
3261 break;
3262
3263 case Expr::CXXBoolLiteralExprClass:
3264 Out << "Lb";
3265 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3266 Out << 'E';
3267 break;
3268
3269 case Expr::IntegerLiteralClass: {
3270 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
3271 if (E->getType()->isSignedIntegerType())
3272 Value.setIsSigned(true);
3273 mangleIntegerLiteral(E->getType(), Value);
3274 break;
3275 }
3276
3277 case Expr::ImaginaryLiteralClass: {
3278 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
3279 // Mangle as if a complex literal.
3280 // Proposal from David Vandevoorde, 2010.06.30.
3281 Out << 'L';
3282 mangleType(E->getType());
3283 if (const FloatingLiteral *Imag =
3284 dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
3285 // Mangle a floating-point zero of the appropriate type.
3286 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
3287 Out << '_';
3288 mangleFloat(Imag->getValue());
3289 } else {
3290 Out << "0_";
3291 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
3292 if (IE->getSubExpr()->getType()->isSignedIntegerType())
3293 Value.setIsSigned(true);
3294 mangleNumber(Value);
3295 }
3296 Out << 'E';
3297 break;
3298 }
3299
3300 case Expr::StringLiteralClass: {
3301 // Revised proposal from David Vandervoorde, 2010.07.15.
3302 Out << 'L';
3303 assert(isa<ConstantArrayType>(E->getType()));
3304 mangleType(E->getType());
3305 Out << 'E';
3306 break;
3307 }
3308
3309 case Expr::GNUNullExprClass:
3310 // FIXME: should this really be mangled the same as nullptr?
3311 // fallthrough
3312
3313 case Expr::CXXNullPtrLiteralExprClass: {
3314 Out << "LDnE";
3315 break;
3316 }
3317
3318 case Expr::PackExpansionExprClass:
3319 Out << "sp";
3320 mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3321 break;
3322
3323 case Expr::SizeOfPackExprClass: {
3324 Out << "sZ";
3325 const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
3326 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3327 mangleTemplateParameter(TTP->getIndex());
3328 else if (const NonTypeTemplateParmDecl *NTTP
3329 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3330 mangleTemplateParameter(NTTP->getIndex());
3331 else if (const TemplateTemplateParmDecl *TempTP
3332 = dyn_cast<TemplateTemplateParmDecl>(Pack))
3333 mangleTemplateParameter(TempTP->getIndex());
3334 else
3335 mangleFunctionParam(cast<ParmVarDecl>(Pack));
3336 break;
3337 }
3338
3339 case Expr::MaterializeTemporaryExprClass: {
3340 mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3341 break;
3342 }
3343
3344 case Expr::CXXFoldExprClass: {
3345 auto *FE = cast<CXXFoldExpr>(E);
3346 if (FE->isLeftFold())
3347 Out << (FE->getInit() ? "fL" : "fl");
3348 else
3349 Out << (FE->getInit() ? "fR" : "fr");
3350
3351 if (FE->getOperator() == BO_PtrMemD)
3352 Out << "ds";
3353 else
3354 mangleOperatorName(
3355 BinaryOperator::getOverloadedOperator(FE->getOperator()),
3356 /*Arity=*/2);
3357
3358 if (FE->getLHS())
3359 mangleExpression(FE->getLHS());
3360 if (FE->getRHS())
3361 mangleExpression(FE->getRHS());
3362 break;
3363 }
3364
3365 case Expr::CXXThisExprClass:
3366 Out << "fpT";
3367 break;
3368 }
3369 }
3370
3371 /// Mangle an expression which refers to a parameter variable.
3372 ///
3373 /// <expression> ::= <function-param>
3374 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
3375 /// <function-param> ::= fp <top-level CV-qualifiers>
3376 /// <parameter-2 non-negative number> _ # L == 0, I > 0
3377 /// <function-param> ::= fL <L-1 non-negative number>
3378 /// p <top-level CV-qualifiers> _ # L > 0, I == 0
3379 /// <function-param> ::= fL <L-1 non-negative number>
3380 /// p <top-level CV-qualifiers>
3381 /// <I-1 non-negative number> _ # L > 0, I > 0
3382 ///
3383 /// L is the nesting depth of the parameter, defined as 1 if the
3384 /// parameter comes from the innermost function prototype scope
3385 /// enclosing the current context, 2 if from the next enclosing
3386 /// function prototype scope, and so on, with one special case: if
3387 /// we've processed the full parameter clause for the innermost
3388 /// function type, then L is one less. This definition conveniently
3389 /// makes it irrelevant whether a function's result type was written
3390 /// trailing or leading, but is otherwise overly complicated; the
3391 /// numbering was first designed without considering references to
3392 /// parameter in locations other than return types, and then the
3393 /// mangling had to be generalized without changing the existing
3394 /// manglings.
3395 ///
3396 /// I is the zero-based index of the parameter within its parameter
3397 /// declaration clause. Note that the original ABI document describes
3398 /// this using 1-based ordinals.
mangleFunctionParam(const ParmVarDecl * parm)3399 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3400 unsigned parmDepth = parm->getFunctionScopeDepth();
3401 unsigned parmIndex = parm->getFunctionScopeIndex();
3402
3403 // Compute 'L'.
3404 // parmDepth does not include the declaring function prototype.
3405 // FunctionTypeDepth does account for that.
3406 assert(parmDepth < FunctionTypeDepth.getDepth());
3407 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3408 if (FunctionTypeDepth.isInResultType())
3409 nestingDepth--;
3410
3411 if (nestingDepth == 0) {
3412 Out << "fp";
3413 } else {
3414 Out << "fL" << (nestingDepth - 1) << 'p';
3415 }
3416
3417 // Top-level qualifiers. We don't have to worry about arrays here,
3418 // because parameters declared as arrays should already have been
3419 // transformed to have pointer type. FIXME: apparently these don't
3420 // get mangled if used as an rvalue of a known non-class type?
3421 assert(!parm->getType()->isArrayType()
3422 && "parameter's type is still an array type?");
3423 mangleQualifiers(parm->getType().getQualifiers());
3424
3425 // Parameter index.
3426 if (parmIndex != 0) {
3427 Out << (parmIndex - 1);
3428 }
3429 Out << '_';
3430 }
3431
mangleCXXCtorType(CXXCtorType T)3432 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3433 // <ctor-dtor-name> ::= C1 # complete object constructor
3434 // ::= C2 # base object constructor
3435 //
3436 // In addition, C5 is a comdat name with C1 and C2 in it.
3437 switch (T) {
3438 case Ctor_Complete:
3439 Out << "C1";
3440 break;
3441 case Ctor_Base:
3442 Out << "C2";
3443 break;
3444 case Ctor_Comdat:
3445 Out << "C5";
3446 break;
3447 case Ctor_DefaultClosure:
3448 case Ctor_CopyingClosure:
3449 llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
3450 }
3451 }
3452
mangleCXXDtorType(CXXDtorType T)3453 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3454 // <ctor-dtor-name> ::= D0 # deleting destructor
3455 // ::= D1 # complete object destructor
3456 // ::= D2 # base object destructor
3457 //
3458 // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
3459 switch (T) {
3460 case Dtor_Deleting:
3461 Out << "D0";
3462 break;
3463 case Dtor_Complete:
3464 Out << "D1";
3465 break;
3466 case Dtor_Base:
3467 Out << "D2";
3468 break;
3469 case Dtor_Comdat:
3470 Out << "D5";
3471 break;
3472 }
3473 }
3474
mangleTemplateArgs(const ASTTemplateArgumentListInfo & TemplateArgs)3475 void CXXNameMangler::mangleTemplateArgs(
3476 const ASTTemplateArgumentListInfo &TemplateArgs) {
3477 // <template-args> ::= I <template-arg>+ E
3478 Out << 'I';
3479 for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3480 mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3481 Out << 'E';
3482 }
3483
mangleTemplateArgs(const TemplateArgumentList & AL)3484 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3485 // <template-args> ::= I <template-arg>+ E
3486 Out << 'I';
3487 for (unsigned i = 0, e = AL.size(); i != e; ++i)
3488 mangleTemplateArg(AL[i]);
3489 Out << 'E';
3490 }
3491
mangleTemplateArgs(const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)3492 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3493 unsigned NumTemplateArgs) {
3494 // <template-args> ::= I <template-arg>+ E
3495 Out << 'I';
3496 for (unsigned i = 0; i != NumTemplateArgs; ++i)
3497 mangleTemplateArg(TemplateArgs[i]);
3498 Out << 'E';
3499 }
3500
mangleTemplateArg(TemplateArgument A)3501 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3502 // <template-arg> ::= <type> # type or template
3503 // ::= X <expression> E # expression
3504 // ::= <expr-primary> # simple expressions
3505 // ::= J <template-arg>* E # argument pack
3506 if (!A.isInstantiationDependent() || A.isDependent())
3507 A = Context.getASTContext().getCanonicalTemplateArgument(A);
3508
3509 switch (A.getKind()) {
3510 case TemplateArgument::Null:
3511 llvm_unreachable("Cannot mangle NULL template argument");
3512
3513 case TemplateArgument::Type:
3514 mangleType(A.getAsType());
3515 break;
3516 case TemplateArgument::Template:
3517 // This is mangled as <type>.
3518 mangleType(A.getAsTemplate());
3519 break;
3520 case TemplateArgument::TemplateExpansion:
3521 // <type> ::= Dp <type> # pack expansion (C++0x)
3522 Out << "Dp";
3523 mangleType(A.getAsTemplateOrTemplatePattern());
3524 break;
3525 case TemplateArgument::Expression: {
3526 // It's possible to end up with a DeclRefExpr here in certain
3527 // dependent cases, in which case we should mangle as a
3528 // declaration.
3529 const Expr *E = A.getAsExpr()->IgnoreParens();
3530 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3531 const ValueDecl *D = DRE->getDecl();
3532 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3533 Out << 'L';
3534 mangle(D);
3535 Out << 'E';
3536 break;
3537 }
3538 }
3539
3540 Out << 'X';
3541 mangleExpression(E);
3542 Out << 'E';
3543 break;
3544 }
3545 case TemplateArgument::Integral:
3546 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3547 break;
3548 case TemplateArgument::Declaration: {
3549 // <expr-primary> ::= L <mangled-name> E # external name
3550 // Clang produces AST's where pointer-to-member-function expressions
3551 // and pointer-to-function expressions are represented as a declaration not
3552 // an expression. We compensate for it here to produce the correct mangling.
3553 ValueDecl *D = A.getAsDecl();
3554 bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
3555 if (compensateMangling) {
3556 Out << 'X';
3557 mangleOperatorName(OO_Amp, 1);
3558 }
3559
3560 Out << 'L';
3561 // References to external entities use the mangled name; if the name would
3562 // not normally be manged then mangle it as unqualified.
3563 mangle(D);
3564 Out << 'E';
3565
3566 if (compensateMangling)
3567 Out << 'E';
3568
3569 break;
3570 }
3571 case TemplateArgument::NullPtr: {
3572 // <expr-primary> ::= L <type> 0 E
3573 Out << 'L';
3574 mangleType(A.getNullPtrType());
3575 Out << "0E";
3576 break;
3577 }
3578 case TemplateArgument::Pack: {
3579 // <template-arg> ::= J <template-arg>* E
3580 Out << 'J';
3581 for (const auto &P : A.pack_elements())
3582 mangleTemplateArg(P);
3583 Out << 'E';
3584 }
3585 }
3586 }
3587
mangleTemplateParameter(unsigned Index)3588 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3589 // <template-param> ::= T_ # first template parameter
3590 // ::= T <parameter-2 non-negative number> _
3591 if (Index == 0)
3592 Out << "T_";
3593 else
3594 Out << 'T' << (Index - 1) << '_';
3595 }
3596
mangleSeqID(unsigned SeqID)3597 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
3598 if (SeqID == 1)
3599 Out << '0';
3600 else if (SeqID > 1) {
3601 SeqID--;
3602
3603 // <seq-id> is encoded in base-36, using digits and upper case letters.
3604 char Buffer[7]; // log(2**32) / log(36) ~= 7
3605 MutableArrayRef<char> BufferRef(Buffer);
3606 MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
3607
3608 for (; SeqID != 0; SeqID /= 36) {
3609 unsigned C = SeqID % 36;
3610 *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
3611 }
3612
3613 Out.write(I.base(), I - BufferRef.rbegin());
3614 }
3615 Out << '_';
3616 }
3617
mangleExistingSubstitution(QualType type)3618 void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3619 bool result = mangleSubstitution(type);
3620 assert(result && "no existing substitution for type");
3621 (void) result;
3622 }
3623
mangleExistingSubstitution(TemplateName tname)3624 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3625 bool result = mangleSubstitution(tname);
3626 assert(result && "no existing substitution for template name");
3627 (void) result;
3628 }
3629
3630 // <substitution> ::= S <seq-id> _
3631 // ::= S_
mangleSubstitution(const NamedDecl * ND)3632 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3633 // Try one of the standard substitutions first.
3634 if (mangleStandardSubstitution(ND))
3635 return true;
3636
3637 ND = cast<NamedDecl>(ND->getCanonicalDecl());
3638 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3639 }
3640
3641 /// \brief Determine whether the given type has any qualifiers that are
3642 /// relevant for substitutions.
hasMangledSubstitutionQualifiers(QualType T)3643 static bool hasMangledSubstitutionQualifiers(QualType T) {
3644 Qualifiers Qs = T.getQualifiers();
3645 return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3646 }
3647
mangleSubstitution(QualType T)3648 bool CXXNameMangler::mangleSubstitution(QualType T) {
3649 if (!hasMangledSubstitutionQualifiers(T)) {
3650 if (const RecordType *RT = T->getAs<RecordType>())
3651 return mangleSubstitution(RT->getDecl());
3652 }
3653
3654 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3655
3656 return mangleSubstitution(TypePtr);
3657 }
3658
mangleSubstitution(TemplateName Template)3659 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3660 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3661 return mangleSubstitution(TD);
3662
3663 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3664 return mangleSubstitution(
3665 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3666 }
3667
mangleSubstitution(uintptr_t Ptr)3668 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3669 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3670 if (I == Substitutions.end())
3671 return false;
3672
3673 unsigned SeqID = I->second;
3674 Out << 'S';
3675 mangleSeqID(SeqID);
3676
3677 return true;
3678 }
3679
isCharType(QualType T)3680 static bool isCharType(QualType T) {
3681 if (T.isNull())
3682 return false;
3683
3684 return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3685 T->isSpecificBuiltinType(BuiltinType::Char_U);
3686 }
3687
3688 /// isCharSpecialization - Returns whether a given type is a template
3689 /// specialization of a given name with a single argument of type char.
isCharSpecialization(QualType T,const char * Name)3690 static bool isCharSpecialization(QualType T, const char *Name) {
3691 if (T.isNull())
3692 return false;
3693
3694 const RecordType *RT = T->getAs<RecordType>();
3695 if (!RT)
3696 return false;
3697
3698 const ClassTemplateSpecializationDecl *SD =
3699 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3700 if (!SD)
3701 return false;
3702
3703 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3704 return false;
3705
3706 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3707 if (TemplateArgs.size() != 1)
3708 return false;
3709
3710 if (!isCharType(TemplateArgs[0].getAsType()))
3711 return false;
3712
3713 return SD->getIdentifier()->getName() == Name;
3714 }
3715
3716 template <std::size_t StrLen>
isStreamCharSpecialization(const ClassTemplateSpecializationDecl * SD,const char (& Str)[StrLen])3717 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3718 const char (&Str)[StrLen]) {
3719 if (!SD->getIdentifier()->isStr(Str))
3720 return false;
3721
3722 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3723 if (TemplateArgs.size() != 2)
3724 return false;
3725
3726 if (!isCharType(TemplateArgs[0].getAsType()))
3727 return false;
3728
3729 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3730 return false;
3731
3732 return true;
3733 }
3734
mangleStandardSubstitution(const NamedDecl * ND)3735 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3736 // <substitution> ::= St # ::std::
3737 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3738 if (isStd(NS)) {
3739 Out << "St";
3740 return true;
3741 }
3742 }
3743
3744 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3745 if (!isStdNamespace(getEffectiveDeclContext(TD)))
3746 return false;
3747
3748 // <substitution> ::= Sa # ::std::allocator
3749 if (TD->getIdentifier()->isStr("allocator")) {
3750 Out << "Sa";
3751 return true;
3752 }
3753
3754 // <<substitution> ::= Sb # ::std::basic_string
3755 if (TD->getIdentifier()->isStr("basic_string")) {
3756 Out << "Sb";
3757 return true;
3758 }
3759 }
3760
3761 if (const ClassTemplateSpecializationDecl *SD =
3762 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3763 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3764 return false;
3765
3766 // <substitution> ::= Ss # ::std::basic_string<char,
3767 // ::std::char_traits<char>,
3768 // ::std::allocator<char> >
3769 if (SD->getIdentifier()->isStr("basic_string")) {
3770 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3771
3772 if (TemplateArgs.size() != 3)
3773 return false;
3774
3775 if (!isCharType(TemplateArgs[0].getAsType()))
3776 return false;
3777
3778 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3779 return false;
3780
3781 if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3782 return false;
3783
3784 Out << "Ss";
3785 return true;
3786 }
3787
3788 // <substitution> ::= Si # ::std::basic_istream<char,
3789 // ::std::char_traits<char> >
3790 if (isStreamCharSpecialization(SD, "basic_istream")) {
3791 Out << "Si";
3792 return true;
3793 }
3794
3795 // <substitution> ::= So # ::std::basic_ostream<char,
3796 // ::std::char_traits<char> >
3797 if (isStreamCharSpecialization(SD, "basic_ostream")) {
3798 Out << "So";
3799 return true;
3800 }
3801
3802 // <substitution> ::= Sd # ::std::basic_iostream<char,
3803 // ::std::char_traits<char> >
3804 if (isStreamCharSpecialization(SD, "basic_iostream")) {
3805 Out << "Sd";
3806 return true;
3807 }
3808 }
3809 return false;
3810 }
3811
addSubstitution(QualType T)3812 void CXXNameMangler::addSubstitution(QualType T) {
3813 if (!hasMangledSubstitutionQualifiers(T)) {
3814 if (const RecordType *RT = T->getAs<RecordType>()) {
3815 addSubstitution(RT->getDecl());
3816 return;
3817 }
3818 }
3819
3820 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3821 addSubstitution(TypePtr);
3822 }
3823
addSubstitution(TemplateName Template)3824 void CXXNameMangler::addSubstitution(TemplateName Template) {
3825 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3826 return addSubstitution(TD);
3827
3828 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3829 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3830 }
3831
addSubstitution(uintptr_t Ptr)3832 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3833 assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3834 Substitutions[Ptr] = SeqID++;
3835 }
3836
3837 //
3838
3839 /// \brief Mangles the name of the declaration D and emits that name to the
3840 /// given output stream.
3841 ///
3842 /// If the declaration D requires a mangled name, this routine will emit that
3843 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3844 /// and this routine will return false. In this case, the caller should just
3845 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
3846 /// name.
mangleCXXName(const NamedDecl * D,raw_ostream & Out)3847 void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
3848 raw_ostream &Out) {
3849 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3850 "Invalid mangleName() call, argument is not a variable or function!");
3851 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3852 "Invalid mangleName() call on 'structor decl!");
3853
3854 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3855 getASTContext().getSourceManager(),
3856 "Mangling declaration");
3857
3858 CXXNameMangler Mangler(*this, Out, D);
3859 Mangler.mangle(D);
3860 }
3861
mangleCXXCtor(const CXXConstructorDecl * D,CXXCtorType Type,raw_ostream & Out)3862 void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
3863 CXXCtorType Type,
3864 raw_ostream &Out) {
3865 CXXNameMangler Mangler(*this, Out, D, Type);
3866 Mangler.mangle(D);
3867 }
3868
mangleCXXDtor(const CXXDestructorDecl * D,CXXDtorType Type,raw_ostream & Out)3869 void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
3870 CXXDtorType Type,
3871 raw_ostream &Out) {
3872 CXXNameMangler Mangler(*this, Out, D, Type);
3873 Mangler.mangle(D);
3874 }
3875
mangleCXXCtorComdat(const CXXConstructorDecl * D,raw_ostream & Out)3876 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
3877 raw_ostream &Out) {
3878 CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
3879 Mangler.mangle(D);
3880 }
3881
mangleCXXDtorComdat(const CXXDestructorDecl * D,raw_ostream & Out)3882 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
3883 raw_ostream &Out) {
3884 CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
3885 Mangler.mangle(D);
3886 }
3887
mangleThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk,raw_ostream & Out)3888 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
3889 const ThunkInfo &Thunk,
3890 raw_ostream &Out) {
3891 // <special-name> ::= T <call-offset> <base encoding>
3892 // # base is the nominal target function of thunk
3893 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3894 // # base is the nominal target function of thunk
3895 // # first call-offset is 'this' adjustment
3896 // # second call-offset is result adjustment
3897
3898 assert(!isa<CXXDestructorDecl>(MD) &&
3899 "Use mangleCXXDtor for destructor decls!");
3900 CXXNameMangler Mangler(*this, Out);
3901 Mangler.getStream() << "_ZT";
3902 if (!Thunk.Return.isEmpty())
3903 Mangler.getStream() << 'c';
3904
3905 // Mangle the 'this' pointer adjustment.
3906 Mangler.mangleCallOffset(Thunk.This.NonVirtual,
3907 Thunk.This.Virtual.Itanium.VCallOffsetOffset);
3908
3909 // Mangle the return pointer adjustment if there is one.
3910 if (!Thunk.Return.isEmpty())
3911 Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3912 Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
3913
3914 Mangler.mangleFunctionEncoding(MD);
3915 }
3916
mangleCXXDtorThunk(const CXXDestructorDecl * DD,CXXDtorType Type,const ThisAdjustment & ThisAdjustment,raw_ostream & Out)3917 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
3918 const CXXDestructorDecl *DD, CXXDtorType Type,
3919 const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
3920 // <special-name> ::= T <call-offset> <base encoding>
3921 // # base is the nominal target function of thunk
3922 CXXNameMangler Mangler(*this, Out, DD, Type);
3923 Mangler.getStream() << "_ZT";
3924
3925 // Mangle the 'this' pointer adjustment.
3926 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3927 ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
3928
3929 Mangler.mangleFunctionEncoding(DD);
3930 }
3931
3932 /// mangleGuardVariable - Returns the mangled name for a guard variable
3933 /// for the passed in VarDecl.
mangleStaticGuardVariable(const VarDecl * D,raw_ostream & Out)3934 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
3935 raw_ostream &Out) {
3936 // <special-name> ::= GV <object name> # Guard variable for one-time
3937 // # initialization
3938 CXXNameMangler Mangler(*this, Out);
3939 Mangler.getStream() << "_ZGV";
3940 Mangler.mangleName(D);
3941 }
3942
mangleDynamicInitializer(const VarDecl * MD,raw_ostream & Out)3943 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
3944 raw_ostream &Out) {
3945 // These symbols are internal in the Itanium ABI, so the names don't matter.
3946 // Clang has traditionally used this symbol and allowed LLVM to adjust it to
3947 // avoid duplicate symbols.
3948 Out << "__cxx_global_var_init";
3949 }
3950
mangleDynamicAtExitDestructor(const VarDecl * D,raw_ostream & Out)3951 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
3952 raw_ostream &Out) {
3953 // Prefix the mangling of D with __dtor_.
3954 CXXNameMangler Mangler(*this, Out);
3955 Mangler.getStream() << "__dtor_";
3956 if (shouldMangleDeclName(D))
3957 Mangler.mangle(D);
3958 else
3959 Mangler.getStream() << D->getName();
3960 }
3961
mangleSEHFilterExpression(const NamedDecl * EnclosingDecl,raw_ostream & Out)3962 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
3963 const NamedDecl *EnclosingDecl, raw_ostream &Out) {
3964 CXXNameMangler Mangler(*this, Out);
3965 Mangler.getStream() << "__filt_";
3966 if (shouldMangleDeclName(EnclosingDecl))
3967 Mangler.mangle(EnclosingDecl);
3968 else
3969 Mangler.getStream() << EnclosingDecl->getName();
3970 }
3971
mangleSEHFinallyBlock(const NamedDecl * EnclosingDecl,raw_ostream & Out)3972 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
3973 const NamedDecl *EnclosingDecl, raw_ostream &Out) {
3974 CXXNameMangler Mangler(*this, Out);
3975 Mangler.getStream() << "__fin_";
3976 if (shouldMangleDeclName(EnclosingDecl))
3977 Mangler.mangle(EnclosingDecl);
3978 else
3979 Mangler.getStream() << EnclosingDecl->getName();
3980 }
3981
mangleItaniumThreadLocalInit(const VarDecl * D,raw_ostream & Out)3982 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
3983 raw_ostream &Out) {
3984 // <special-name> ::= TH <object name>
3985 CXXNameMangler Mangler(*this, Out);
3986 Mangler.getStream() << "_ZTH";
3987 Mangler.mangleName(D);
3988 }
3989
3990 void
mangleItaniumThreadLocalWrapper(const VarDecl * D,raw_ostream & Out)3991 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
3992 raw_ostream &Out) {
3993 // <special-name> ::= TW <object name>
3994 CXXNameMangler Mangler(*this, Out);
3995 Mangler.getStream() << "_ZTW";
3996 Mangler.mangleName(D);
3997 }
3998
mangleReferenceTemporary(const VarDecl * D,unsigned ManglingNumber,raw_ostream & Out)3999 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
4000 unsigned ManglingNumber,
4001 raw_ostream &Out) {
4002 // We match the GCC mangling here.
4003 // <special-name> ::= GR <object name>
4004 CXXNameMangler Mangler(*this, Out);
4005 Mangler.getStream() << "_ZGR";
4006 Mangler.mangleName(D);
4007 assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
4008 Mangler.mangleSeqID(ManglingNumber - 1);
4009 }
4010
mangleCXXVTable(const CXXRecordDecl * RD,raw_ostream & Out)4011 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
4012 raw_ostream &Out) {
4013 // <special-name> ::= TV <type> # virtual table
4014 CXXNameMangler Mangler(*this, Out);
4015 Mangler.getStream() << "_ZTV";
4016 Mangler.mangleNameOrStandardSubstitution(RD);
4017 }
4018
mangleCXXVTT(const CXXRecordDecl * RD,raw_ostream & Out)4019 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
4020 raw_ostream &Out) {
4021 // <special-name> ::= TT <type> # VTT structure
4022 CXXNameMangler Mangler(*this, Out);
4023 Mangler.getStream() << "_ZTT";
4024 Mangler.mangleNameOrStandardSubstitution(RD);
4025 }
4026
mangleCXXCtorVTable(const CXXRecordDecl * RD,int64_t Offset,const CXXRecordDecl * Type,raw_ostream & Out)4027 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
4028 int64_t Offset,
4029 const CXXRecordDecl *Type,
4030 raw_ostream &Out) {
4031 // <special-name> ::= TC <type> <offset number> _ <base type>
4032 CXXNameMangler Mangler(*this, Out);
4033 Mangler.getStream() << "_ZTC";
4034 Mangler.mangleNameOrStandardSubstitution(RD);
4035 Mangler.getStream() << Offset;
4036 Mangler.getStream() << '_';
4037 Mangler.mangleNameOrStandardSubstitution(Type);
4038 }
4039
mangleCXXRTTI(QualType Ty,raw_ostream & Out)4040 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
4041 // <special-name> ::= TI <type> # typeinfo structure
4042 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
4043 CXXNameMangler Mangler(*this, Out);
4044 Mangler.getStream() << "_ZTI";
4045 Mangler.mangleType(Ty);
4046 }
4047
mangleCXXRTTIName(QualType Ty,raw_ostream & Out)4048 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
4049 raw_ostream &Out) {
4050 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
4051 CXXNameMangler Mangler(*this, Out);
4052 Mangler.getStream() << "_ZTS";
4053 Mangler.mangleType(Ty);
4054 }
4055
mangleTypeName(QualType Ty,raw_ostream & Out)4056 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
4057 mangleCXXRTTIName(Ty, Out);
4058 }
4059
mangleCXXVTableBitSet(const CXXRecordDecl * RD,raw_ostream & Out)4060 void ItaniumMangleContextImpl::mangleCXXVTableBitSet(const CXXRecordDecl *RD,
4061 raw_ostream &Out) {
4062 Linkage L = RD->getLinkageInternal();
4063 if (L == InternalLinkage || L == UniqueExternalLinkage) {
4064 // This part of the identifier needs to be unique across all translation
4065 // units in the linked program. The scheme fails if multiple translation
4066 // units are compiled using the same relative source file path, or if
4067 // multiple translation units are built from the same source file.
4068 SourceManager &SM = getASTContext().getSourceManager();
4069 Out << "[" << SM.getFileEntryForID(SM.getMainFileID())->getName() << "]";
4070 }
4071
4072 CXXNameMangler Mangler(*this, Out);
4073 Mangler.mangleType(QualType(RD->getTypeForDecl(), 0));
4074 }
4075
mangleStringLiteral(const StringLiteral *,raw_ostream &)4076 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
4077 llvm_unreachable("Can't mangle string literals");
4078 }
4079
4080 ItaniumMangleContext *
create(ASTContext & Context,DiagnosticsEngine & Diags)4081 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
4082 return new ItaniumMangleContextImpl(Context, Diags);
4083 }
4084
4085