1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #ifndef CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_
32 #define CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_
33 
34 #include <vector>
35 #include "ceres/internal/macros.h"
36 #include "ceres/internal/port.h"
37 #include "ceres/sparse_matrix.h"
38 #include "ceres/types.h"
39 #include "glog/logging.h"
40 
41 namespace ceres {
42 
43 struct CRSMatrix;
44 
45 namespace internal {
46 
47 class TripletSparseMatrix;
48 
49 class CompressedRowSparseMatrix : public SparseMatrix {
50  public:
51   // Build a matrix with the same content as the TripletSparseMatrix
52   // m. TripletSparseMatrix objects are easier to construct
53   // incrementally, so we use them to initialize SparseMatrix
54   // objects.
55   //
56   // We assume that m does not have any repeated entries.
57   explicit CompressedRowSparseMatrix(const TripletSparseMatrix& m);
58 
59   // Use this constructor only if you know what you are doing. This
60   // creates a "blank" matrix with the appropriate amount of memory
61   // allocated. However, the object itself is in an inconsistent state
62   // as the rows and cols matrices do not match the values of
63   // num_rows, num_cols and max_num_nonzeros.
64   //
65   // The use case for this constructor is that when the user knows the
66   // size of the matrix to begin with and wants to update the layout
67   // manually, instead of going via the indirect route of first
68   // constructing a TripletSparseMatrix, which leads to more than
69   // double the peak memory usage.
70   CompressedRowSparseMatrix(int num_rows,
71                             int num_cols,
72                             int max_num_nonzeros);
73 
74   // Build a square sparse diagonal matrix with num_rows rows and
75   // columns. The diagonal m(i,i) = diagonal(i);
76   CompressedRowSparseMatrix(const double* diagonal, int num_rows);
77 
78   virtual ~CompressedRowSparseMatrix();
79 
80   // SparseMatrix interface.
81   virtual void SetZero();
82   virtual void RightMultiply(const double* x, double* y) const;
83   virtual void LeftMultiply(const double* x, double* y) const;
84   virtual void SquaredColumnNorm(double* x) const;
85   virtual void ScaleColumns(const double* scale);
86 
87   virtual void ToDenseMatrix(Matrix* dense_matrix) const;
88   virtual void ToTextFile(FILE* file) const;
num_rows()89   virtual int num_rows() const { return num_rows_; }
num_cols()90   virtual int num_cols() const { return num_cols_; }
num_nonzeros()91   virtual int num_nonzeros() const { return rows_[num_rows_]; }
values()92   virtual const double* values() const { return &values_[0]; }
mutable_values()93   virtual double* mutable_values() { return &values_[0]; }
94 
95   // Delete the bottom delta_rows.
96   // num_rows -= delta_rows
97   void DeleteRows(int delta_rows);
98 
99   // Append the contents of m to the bottom of this matrix. m must
100   // have the same number of columns as this matrix.
101   void AppendRows(const CompressedRowSparseMatrix& m);
102 
103   void ToCRSMatrix(CRSMatrix* matrix) const;
104 
105   // Low level access methods that expose the structure of the matrix.
cols()106   const int* cols() const { return &cols_[0]; }
mutable_cols()107   int* mutable_cols() { return &cols_[0]; }
108 
rows()109   const int* rows() const { return &rows_[0]; }
mutable_rows()110   int* mutable_rows() { return &rows_[0]; }
111 
row_blocks()112   const vector<int>& row_blocks() const { return row_blocks_; }
mutable_row_blocks()113   vector<int>* mutable_row_blocks() { return &row_blocks_; }
114 
col_blocks()115   const vector<int>& col_blocks() const { return col_blocks_; }
mutable_col_blocks()116   vector<int>* mutable_col_blocks() { return &col_blocks_; }
117 
118   // Destructive array resizing method.
119   void SetMaxNumNonZeros(int num_nonzeros);
120 
121   // Non-destructive array resizing method.
set_num_rows(const int num_rows)122   void set_num_rows(const int num_rows) { num_rows_ = num_rows; }
set_num_cols(const int num_cols)123   void set_num_cols(const int num_cols) { num_cols_ = num_cols; }
124 
125   void SolveLowerTriangularInPlace(double* solution) const;
126   void SolveLowerTriangularTransposeInPlace(double* solution) const;
127 
128   CompressedRowSparseMatrix* Transpose() const;
129 
130   static CompressedRowSparseMatrix* CreateBlockDiagonalMatrix(
131       const double* diagonal,
132       const vector<int>& blocks);
133 
134   // Compute the sparsity structure of the product m.transpose() * m
135   // and create a CompressedRowSparseMatrix corresponding to it.
136   //
137   // Also compute a "program" vector, which for every term in the
138   // outer product points to the entry in the values array of the
139   // result matrix where it should be accumulated.
140   //
141   // This program is used by the ComputeOuterProduct function below to
142   // compute the outer product.
143   //
144   // Since the entries of the program are the same for rows with the
145   // same sparsity structure, the program only stores the result for
146   // one row per row block. The ComputeOuterProduct function reuses
147   // this information for each row in the row block.
148   static CompressedRowSparseMatrix* CreateOuterProductMatrixAndProgram(
149       const CompressedRowSparseMatrix& m,
150       vector<int>* program);
151 
152   // Compute the values array for the expression m.transpose() * m,
153   // where the matrix used to store the result and a program have been
154   // created using the CreateOuterProductMatrixAndProgram function
155   // above.
156   static void ComputeOuterProduct(const CompressedRowSparseMatrix& m,
157                                   const vector<int>& program,
158                                   CompressedRowSparseMatrix* result);
159 
160  private:
161   int num_rows_;
162   int num_cols_;
163   vector<int> rows_;
164   vector<int> cols_;
165   vector<double> values_;
166 
167   // If the matrix has an underlying block structure, then it can also
168   // carry with it row and column block sizes. This is auxilliary and
169   // optional information for use by algorithms operating on the
170   // matrix. The class itself does not make use of this information in
171   // any way.
172   vector<int> row_blocks_;
173   vector<int> col_blocks_;
174 
175   CERES_DISALLOW_COPY_AND_ASSIGN(CompressedRowSparseMatrix);
176 };
177 
178 }  // namespace internal
179 }  // namespace ceres
180 
181 #endif  // CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_
182