1 //===- PartialInlining.cpp - Inline parts of functions --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs partial inlining, typically by inlining an if statement
11 // that surrounds the body of the function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/IR/CFG.h"
18 #include "llvm/IR/Dominators.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/Module.h"
21 #include "llvm/Pass.h"
22 #include "llvm/Transforms/Utils/Cloning.h"
23 #include "llvm/Transforms/Utils/CodeExtractor.h"
24 using namespace llvm;
25 
26 #define DEBUG_TYPE "partialinlining"
27 
28 STATISTIC(NumPartialInlined, "Number of functions partially inlined");
29 
30 namespace {
31   struct PartialInliner : public ModulePass {
getAnalysisUsage__anon8b265b2c0111::PartialInliner32     void getAnalysisUsage(AnalysisUsage &AU) const override { }
33     static char ID; // Pass identification, replacement for typeid
PartialInliner__anon8b265b2c0111::PartialInliner34     PartialInliner() : ModulePass(ID) {
35       initializePartialInlinerPass(*PassRegistry::getPassRegistry());
36     }
37 
38     bool runOnModule(Module& M) override;
39 
40   private:
41     Function* unswitchFunction(Function* F);
42   };
43 }
44 
45 char PartialInliner::ID = 0;
46 INITIALIZE_PASS(PartialInliner, "partial-inliner",
47                 "Partial Inliner", false, false)
48 
createPartialInliningPass()49 ModulePass* llvm::createPartialInliningPass() { return new PartialInliner(); }
50 
unswitchFunction(Function * F)51 Function* PartialInliner::unswitchFunction(Function* F) {
52   // First, verify that this function is an unswitching candidate...
53   BasicBlock* entryBlock = F->begin();
54   BranchInst *BR = dyn_cast<BranchInst>(entryBlock->getTerminator());
55   if (!BR || BR->isUnconditional())
56     return nullptr;
57 
58   BasicBlock* returnBlock = nullptr;
59   BasicBlock* nonReturnBlock = nullptr;
60   unsigned returnCount = 0;
61   for (BasicBlock *BB : successors(entryBlock)) {
62     if (isa<ReturnInst>(BB->getTerminator())) {
63       returnBlock = BB;
64       returnCount++;
65     } else
66       nonReturnBlock = BB;
67   }
68 
69   if (returnCount != 1)
70     return nullptr;
71 
72   // Clone the function, so that we can hack away on it.
73   ValueToValueMapTy VMap;
74   Function* duplicateFunction = CloneFunction(F, VMap,
75                                               /*ModuleLevelChanges=*/false);
76   duplicateFunction->setLinkage(GlobalValue::InternalLinkage);
77   F->getParent()->getFunctionList().push_back(duplicateFunction);
78   BasicBlock* newEntryBlock = cast<BasicBlock>(VMap[entryBlock]);
79   BasicBlock* newReturnBlock = cast<BasicBlock>(VMap[returnBlock]);
80   BasicBlock* newNonReturnBlock = cast<BasicBlock>(VMap[nonReturnBlock]);
81 
82   // Go ahead and update all uses to the duplicate, so that we can just
83   // use the inliner functionality when we're done hacking.
84   F->replaceAllUsesWith(duplicateFunction);
85 
86   // Special hackery is needed with PHI nodes that have inputs from more than
87   // one extracted block.  For simplicity, just split the PHIs into a two-level
88   // sequence of PHIs, some of which will go in the extracted region, and some
89   // of which will go outside.
90   BasicBlock* preReturn = newReturnBlock;
91   newReturnBlock = newReturnBlock->splitBasicBlock(
92                                               newReturnBlock->getFirstNonPHI());
93   BasicBlock::iterator I = preReturn->begin();
94   BasicBlock::iterator Ins = newReturnBlock->begin();
95   while (I != preReturn->end()) {
96     PHINode* OldPhi = dyn_cast<PHINode>(I);
97     if (!OldPhi) break;
98 
99     PHINode* retPhi = PHINode::Create(OldPhi->getType(), 2, "", Ins);
100     OldPhi->replaceAllUsesWith(retPhi);
101     Ins = newReturnBlock->getFirstNonPHI();
102 
103     retPhi->addIncoming(I, preReturn);
104     retPhi->addIncoming(OldPhi->getIncomingValueForBlock(newEntryBlock),
105                         newEntryBlock);
106     OldPhi->removeIncomingValue(newEntryBlock);
107 
108     ++I;
109   }
110   newEntryBlock->getTerminator()->replaceUsesOfWith(preReturn, newReturnBlock);
111 
112   // Gather up the blocks that we're going to extract.
113   std::vector<BasicBlock*> toExtract;
114   toExtract.push_back(newNonReturnBlock);
115   for (Function::iterator FI = duplicateFunction->begin(),
116        FE = duplicateFunction->end(); FI != FE; ++FI)
117     if (&*FI != newEntryBlock && &*FI != newReturnBlock &&
118         &*FI != newNonReturnBlock)
119       toExtract.push_back(FI);
120 
121   // The CodeExtractor needs a dominator tree.
122   DominatorTree DT;
123   DT.recalculate(*duplicateFunction);
124 
125   // Extract the body of the if.
126   Function* extractedFunction
127     = CodeExtractor(toExtract, &DT).extractCodeRegion();
128 
129   InlineFunctionInfo IFI;
130 
131   // Inline the top-level if test into all callers.
132   std::vector<User *> Users(duplicateFunction->user_begin(),
133                             duplicateFunction->user_end());
134   for (std::vector<User*>::iterator UI = Users.begin(), UE = Users.end();
135        UI != UE; ++UI)
136     if (CallInst *CI = dyn_cast<CallInst>(*UI))
137       InlineFunction(CI, IFI);
138     else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI))
139       InlineFunction(II, IFI);
140 
141   // Ditch the duplicate, since we're done with it, and rewrite all remaining
142   // users (function pointers, etc.) back to the original function.
143   duplicateFunction->replaceAllUsesWith(F);
144   duplicateFunction->eraseFromParent();
145 
146   ++NumPartialInlined;
147 
148   return extractedFunction;
149 }
150 
runOnModule(Module & M)151 bool PartialInliner::runOnModule(Module& M) {
152   std::vector<Function*> worklist;
153   worklist.reserve(M.size());
154   for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI)
155     if (!FI->use_empty() && !FI->isDeclaration())
156       worklist.push_back(&*FI);
157 
158   bool changed = false;
159   while (!worklist.empty()) {
160     Function* currFunc = worklist.back();
161     worklist.pop_back();
162 
163     if (currFunc->use_empty()) continue;
164 
165     bool recursive = false;
166     for (User *U : currFunc->users())
167       if (Instruction* I = dyn_cast<Instruction>(U))
168         if (I->getParent()->getParent() == currFunc) {
169           recursive = true;
170           break;
171         }
172     if (recursive) continue;
173 
174 
175     if (Function* newFunc = unswitchFunction(currFunc)) {
176       worklist.push_back(newFunc);
177       changed = true;
178     }
179 
180   }
181 
182   return changed;
183 }
184