1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18 #define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19 
20 #include "base/arena_allocator.h"
21 #include "base/arena_containers.h"
22 #include "base/arena_object.h"
23 #include "compiled_method.h"
24 #include "dex/compiler_enums.h"
25 #include "dex/dex_flags.h"
26 #include "dex/dex_types.h"
27 #include "dex/reg_location.h"
28 #include "dex/reg_storage.h"
29 #include "dex/quick/resource_mask.h"
30 #include "entrypoints/quick/quick_entrypoints_enum.h"
31 #include "invoke_type.h"
32 #include "lazy_debug_frame_opcode_writer.h"
33 #include "leb128.h"
34 #include "primitive.h"
35 #include "safe_map.h"
36 #include "utils/array_ref.h"
37 #include "utils/dex_cache_arrays_layout.h"
38 #include "utils/stack_checks.h"
39 
40 namespace art {
41 
42 // Set to 1 to measure cost of suspend check.
43 #define NO_SUSPEND 0
44 
45 #define IS_BINARY_OP         (1ULL << kIsBinaryOp)
46 #define IS_BRANCH            (1ULL << kIsBranch)
47 #define IS_IT                (1ULL << kIsIT)
48 #define IS_MOVE              (1ULL << kIsMoveOp)
49 #define IS_LOAD              (1ULL << kMemLoad)
50 #define IS_QUAD_OP           (1ULL << kIsQuadOp)
51 #define IS_QUIN_OP           (1ULL << kIsQuinOp)
52 #define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
53 #define IS_STORE             (1ULL << kMemStore)
54 #define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
55 #define IS_UNARY_OP          (1ULL << kIsUnaryOp)
56 #define IS_VOLATILE          (1ULL << kMemVolatile)
57 #define NEEDS_FIXUP          (1ULL << kPCRelFixup)
58 #define NO_OPERAND           (1ULL << kNoOperand)
59 #define REG_DEF0             (1ULL << kRegDef0)
60 #define REG_DEF1             (1ULL << kRegDef1)
61 #define REG_DEF2             (1ULL << kRegDef2)
62 #define REG_DEFA             (1ULL << kRegDefA)
63 #define REG_DEFD             (1ULL << kRegDefD)
64 #define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
65 #define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
66 #define REG_DEF_LIST0        (1ULL << kRegDefList0)
67 #define REG_DEF_LIST1        (1ULL << kRegDefList1)
68 #define REG_DEF_LR           (1ULL << kRegDefLR)
69 #define REG_DEF_SP           (1ULL << kRegDefSP)
70 #define REG_USE0             (1ULL << kRegUse0)
71 #define REG_USE1             (1ULL << kRegUse1)
72 #define REG_USE2             (1ULL << kRegUse2)
73 #define REG_USE3             (1ULL << kRegUse3)
74 #define REG_USE4             (1ULL << kRegUse4)
75 #define REG_USEA             (1ULL << kRegUseA)
76 #define REG_USEC             (1ULL << kRegUseC)
77 #define REG_USED             (1ULL << kRegUseD)
78 #define REG_USEB             (1ULL << kRegUseB)
79 #define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
80 #define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
81 #define REG_USE_LIST0        (1ULL << kRegUseList0)
82 #define REG_USE_LIST1        (1ULL << kRegUseList1)
83 #define REG_USE_LR           (1ULL << kRegUseLR)
84 #define REG_USE_PC           (1ULL << kRegUsePC)
85 #define REG_USE_SP           (1ULL << kRegUseSP)
86 #define SETS_CCODES          (1ULL << kSetsCCodes)
87 #define USES_CCODES          (1ULL << kUsesCCodes)
88 #define USE_FP_STACK         (1ULL << kUseFpStack)
89 #define REG_USE_LO           (1ULL << kUseLo)
90 #define REG_USE_HI           (1ULL << kUseHi)
91 #define REG_DEF_LO           (1ULL << kDefLo)
92 #define REG_DEF_HI           (1ULL << kDefHi)
93 #define SCALED_OFFSET_X0     (1ULL << kMemScaledx0)
94 #define SCALED_OFFSET_X2     (1ULL << kMemScaledx2)
95 #define SCALED_OFFSET_X4     (1ULL << kMemScaledx4)
96 
97 // Special load/stores
98 #define IS_LOADX             (IS_LOAD | IS_VOLATILE)
99 #define IS_LOAD_OFF          (IS_LOAD | SCALED_OFFSET_X0)
100 #define IS_LOAD_OFF2         (IS_LOAD | SCALED_OFFSET_X2)
101 #define IS_LOAD_OFF4         (IS_LOAD | SCALED_OFFSET_X4)
102 
103 #define IS_STOREX            (IS_STORE | IS_VOLATILE)
104 #define IS_STORE_OFF         (IS_STORE | SCALED_OFFSET_X0)
105 #define IS_STORE_OFF2        (IS_STORE | SCALED_OFFSET_X2)
106 #define IS_STORE_OFF4        (IS_STORE | SCALED_OFFSET_X4)
107 
108 // Common combo register usage patterns.
109 #define REG_DEF01            (REG_DEF0 | REG_DEF1)
110 #define REG_DEF012           (REG_DEF0 | REG_DEF1 | REG_DEF2)
111 #define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
112 #define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
113 #define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
114 #define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
115 #define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
116 #define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
117 #define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
118 #define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
119 #define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
120 #define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
121 #define REG_USE012           (REG_USE01 | REG_USE2)
122 #define REG_USE014           (REG_USE01 | REG_USE4)
123 #define REG_USE01            (REG_USE0 | REG_USE1)
124 #define REG_USE02            (REG_USE0 | REG_USE2)
125 #define REG_USE12            (REG_USE1 | REG_USE2)
126 #define REG_USE23            (REG_USE2 | REG_USE3)
127 #define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
128 
129 /*
130  * Assembly is an iterative process, and usually terminates within
131  * two or three passes.  This should be high enough to handle bizarre
132  * cases, but detect an infinite loop bug.
133  */
134 #define MAX_ASSEMBLER_RETRIES 50
135 
136 class BasicBlock;
137 class BitVector;
138 struct CallInfo;
139 struct CompilationUnit;
140 struct CompilerTemp;
141 struct InlineMethod;
142 class MIR;
143 struct LIR;
144 struct RegisterInfo;
145 class DexFileMethodInliner;
146 class MIRGraph;
147 class MirMethodLoweringInfo;
148 class MirSFieldLoweringInfo;
149 
150 typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
151                             const MethodReference& target_method,
152                             uint32_t method_idx, uintptr_t direct_code,
153                             uintptr_t direct_method, InvokeType type);
154 
155 typedef ArenaVector<uint8_t> CodeBuffer;
156 typedef uint32_t CodeOffset;           // Native code offset in bytes.
157 
158 struct UseDefMasks {
159   const ResourceMask* use_mask;        // Resource mask for use.
160   const ResourceMask* def_mask;        // Resource mask for def.
161 };
162 
163 struct AssemblyInfo {
164   LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
165 };
166 
167 struct LIR {
168   CodeOffset offset;             // Offset of this instruction.
169   NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
170   int16_t opcode;
171   LIR* next;
172   LIR* prev;
173   LIR* target;
174   struct {
175     unsigned int alias_info:17;  // For Dalvik register disambiguation.
176     bool is_nop:1;               // LIR is optimized away.
177     unsigned int size:4;         // Note: size of encoded instruction is in bytes.
178     bool use_def_invalid:1;      // If true, masks should not be used.
179     unsigned int generation:1;   // Used to track visitation state during fixup pass.
180     unsigned int fixup:8;        // Fixup kind.
181   } flags;
182   union {
183     UseDefMasks m;               // Use & Def masks used during optimization.
184     AssemblyInfo a;              // Instruction info used during assembly phase.
185   } u;
186   int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
187 };
188 
189 // Utility macros to traverse the LIR list.
190 #define NEXT_LIR(lir) (lir->next)
191 #define PREV_LIR(lir) (lir->prev)
192 
193 // Defines for alias_info (tracks Dalvik register references).
194 #define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
195 #define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
196 #define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
197 #define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
198 
199 #define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
200 #define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
201   do { \
202     low_reg = both_regs & 0xff; \
203     high_reg = (both_regs >> 8) & 0xff; \
204   } while (false)
205 
206 // Mask to denote sreg as the start of a 64-bit item.  Must not interfere with low 16 bits.
207 #define STARTING_WIDE_SREG 0x10000
208 
209 class Mir2Lir {
210   public:
211     static constexpr bool kFailOnSizeError = true && kIsDebugBuild;
212     static constexpr bool kReportSizeError = true && kIsDebugBuild;
213 
214     // TODO: If necessary, this could be made target-dependent.
215     static constexpr uint16_t kSmallSwitchThreshold = 5;
216 
217     /*
218      * Auxiliary information describing the location of data embedded in the Dalvik
219      * byte code stream.
220      */
221     struct EmbeddedData {
222       CodeOffset offset;        // Code offset of data block.
223       const uint16_t* table;      // Original dex data.
224       DexOffset vaddr;            // Dalvik offset of parent opcode.
225     };
226 
227     struct FillArrayData : EmbeddedData {
228       int32_t size;
229     };
230 
231     struct SwitchTable : EmbeddedData {
232       LIR* anchor;                // Reference instruction for relative offsets.
233       MIR* switch_mir;            // The switch mir.
234     };
235 
236     /* Static register use counts */
237     struct RefCounts {
238       int count;
239       int s_reg;
240     };
241 
242     /*
243      * Data structure tracking the mapping detween a Dalvik value (32 or 64 bits)
244      * and native register storage.  The primary purpose is to reuse previuosly
245      * loaded values, if possible, and otherwise to keep the value in register
246      * storage as long as possible.
247      *
248      * NOTE 1: wide_value refers to the width of the Dalvik value contained in
249      * this register (or pair).  For example, a 64-bit register containing a 32-bit
250      * Dalvik value would have wide_value==false even though the storage container itself
251      * is wide.  Similarly, a 32-bit register containing half of a 64-bit Dalvik value
252      * would have wide_value==true (and additionally would have its partner field set to the
253      * other half whose wide_value field would also be true.
254      *
255      * NOTE 2: In the case of a register pair, you can determine which of the partners
256      * is the low half by looking at the s_reg names.  The high s_reg will equal low_sreg + 1.
257      *
258      * NOTE 3: In the case of a 64-bit register holding a Dalvik wide value, wide_value
259      * will be true and partner==self.  s_reg refers to the low-order word of the Dalvik
260      * value, and the s_reg of the high word is implied (s_reg + 1).
261      *
262      * NOTE 4: The reg and is_temp fields should always be correct.  If is_temp is false no
263      * other fields have meaning. [perhaps not true, wide should work for promoted regs?]
264      * If is_temp==true and live==false, no other fields have
265      * meaning.  If is_temp==true and live==true, wide_value, partner, dirty, s_reg, def_start
266      * and def_end describe the relationship between the temp register/register pair and
267      * the Dalvik value[s] described by s_reg/s_reg+1.
268      *
269      * The fields used_storage, master_storage and storage_mask are used to track allocation
270      * in light of potential aliasing.  For example, consider Arm's d2, which overlaps s4 & s5.
271      * d2's storage mask would be 0x00000003, the two low-order bits denoting 64 bits of
272      * storage use.  For s4, it would be 0x0000001; for s5 0x00000002.  These values should not
273      * change once initialized.  The "used_storage" field tracks current allocation status.
274      * Although each record contains this field, only the field from the largest member of
275      * an aliased group is used.  In our case, it would be d2's.  The master_storage pointer
276      * of d2, s4 and s5 would all point to d2's used_storage field.  Each bit in a used_storage
277      * represents 32 bits of storage.  d2's used_storage would be initialized to 0xfffffffc.
278      * Then, if we wanted to determine whether s4 could be allocated, we would "and"
279      * s4's storage_mask with s4's *master_storage.  If the result is zero, s4 is free and
280      * to allocate: *master_storage |= storage_mask.  To free, *master_storage &= ~storage_mask.
281      *
282      * For an X86 vector register example, storage_mask would be:
283      *    0x00000001 for 32-bit view of xmm1
284      *    0x00000003 for 64-bit view of xmm1
285      *    0x0000000f for 128-bit view of xmm1
286      *    0x000000ff for 256-bit view of ymm1   // future expansion, if needed
287      *    0x0000ffff for 512-bit view of ymm1   // future expansion, if needed
288      *    0xffffffff for 1024-bit view of ymm1  // future expansion, if needed
289      *
290      * The "liveness" of a register is handled in a similar way.  The liveness_ storage is
291      * held in the widest member of an aliased set.  Note, though, that for a temp register to
292      * reused as live, it must both be marked live and the associated SReg() must match the
293      * desired s_reg.  This gets a little complicated when dealing with aliased registers.  All
294      * members of an aliased set will share the same liveness flags, but each will individually
295      * maintain s_reg_.  In this way we can know that at least one member of an
296      * aliased set is live, but will only fully match on the appropriate alias view.  For example,
297      * if Arm d1 is live as a double and has s_reg_ set to Dalvik v8 (which also implies v9
298      * because it is wide), its aliases s2 and s3 will show as live, but will have
299      * s_reg_ == INVALID_SREG.  An attempt to later AllocLiveReg() of v9 with a single-precision
300      * view will fail because although s3's liveness bit is set, its s_reg_ will not match v9.
301      * This will cause all members of the aliased set to be clobbered and AllocLiveReg() will
302      * report that v9 is currently not live as a single (which is what we want).
303      *
304      * NOTE: the x86 usage is still somewhat in flux.  There are competing notions of how
305      * to treat xmm registers:
306      *     1. Treat them all as 128-bits wide, but denote how much data used via bytes field.
307      *         o This more closely matches reality, but means you'd need to be able to get
308      *           to the associated RegisterInfo struct to figure out how it's being used.
309      *         o This is how 64-bit core registers will be used - always 64 bits, but the
310      *           "bytes" field will be 4 for 32-bit usage and 8 for 64-bit usage.
311      *     2. View the xmm registers based on contents.
312      *         o A single in a xmm2 register would be k32BitVector, while a double in xmm2 would
313      *           be a k64BitVector.
314      *         o Note that the two uses above would be considered distinct registers (but with
315      *           the aliasing mechanism, we could detect interference).
316      *         o This is how aliased double and single float registers will be handled on
317      *           Arm and MIPS.
318      * Working plan is, for all targets, to follow mechanism 1 for 64-bit core registers, and
319      * mechanism 2 for aliased float registers and x86 vector registers.
320      */
321     class RegisterInfo : public ArenaObject<kArenaAllocRegAlloc> {
322      public:
323       RegisterInfo(RegStorage r, const ResourceMask& mask = kEncodeAll);
~RegisterInfo()324       ~RegisterInfo() {}
325 
326       static const uint32_t k32SoloStorageMask     = 0x00000001;
327       static const uint32_t kLowSingleStorageMask  = 0x00000001;
328       static const uint32_t kHighSingleStorageMask = 0x00000002;
329       static const uint32_t k64SoloStorageMask     = 0x00000003;
330       static const uint32_t k128SoloStorageMask    = 0x0000000f;
331       static const uint32_t k256SoloStorageMask    = 0x000000ff;
332       static const uint32_t k512SoloStorageMask    = 0x0000ffff;
333       static const uint32_t k1024SoloStorageMask   = 0xffffffff;
334 
InUse()335       bool InUse() { return (storage_mask_ & master_->used_storage_) != 0; }
MarkInUse()336       void MarkInUse() { master_->used_storage_ |= storage_mask_; }
MarkFree()337       void MarkFree() { master_->used_storage_ &= ~storage_mask_; }
338       // No part of the containing storage is live in this view.
IsDead()339       bool IsDead() { return (master_->liveness_ & storage_mask_) == 0; }
340       // Liveness of this view matches.  Note: not equivalent to !IsDead().
IsLive()341       bool IsLive() { return (master_->liveness_ & storage_mask_) == storage_mask_; }
MarkLive(int s_reg)342       void MarkLive(int s_reg) {
343         // TODO: Anything useful to assert here?
344         s_reg_ = s_reg;
345         master_->liveness_ |= storage_mask_;
346       }
MarkDead()347       void MarkDead() {
348         if (SReg() != INVALID_SREG) {
349           s_reg_ = INVALID_SREG;
350           master_->liveness_ &= ~storage_mask_;
351           ResetDefBody();
352         }
353       }
GetReg()354       RegStorage GetReg() { return reg_; }
SetReg(RegStorage reg)355       void SetReg(RegStorage reg) { reg_ = reg; }
IsTemp()356       bool IsTemp() { return is_temp_; }
SetIsTemp(bool val)357       void SetIsTemp(bool val) { is_temp_ = val; }
IsWide()358       bool IsWide() { return wide_value_; }
SetIsWide(bool val)359       void SetIsWide(bool val) {
360         wide_value_ = val;
361         if (!val) {
362           // If not wide, reset partner to self.
363           SetPartner(GetReg());
364         }
365       }
IsDirty()366       bool IsDirty() { return dirty_; }
SetIsDirty(bool val)367       void SetIsDirty(bool val) { dirty_ = val; }
Partner()368       RegStorage Partner() { return partner_; }
SetPartner(RegStorage partner)369       void SetPartner(RegStorage partner) { partner_ = partner; }
SReg()370       int SReg() { return (!IsTemp() || IsLive()) ? s_reg_ : INVALID_SREG; }
DefUseMask()371       const ResourceMask& DefUseMask() { return def_use_mask_; }
SetDefUseMask(const ResourceMask & def_use_mask)372       void SetDefUseMask(const ResourceMask& def_use_mask) { def_use_mask_ = def_use_mask; }
Master()373       RegisterInfo* Master() { return master_; }
SetMaster(RegisterInfo * master)374       void SetMaster(RegisterInfo* master) {
375         master_ = master;
376         if (master != this) {
377           master_->aliased_ = true;
378           DCHECK(alias_chain_ == nullptr);
379           alias_chain_ = master_->alias_chain_;
380           master_->alias_chain_ = this;
381         }
382       }
IsAliased()383       bool IsAliased() { return aliased_; }
GetAliasChain()384       RegisterInfo* GetAliasChain() { return alias_chain_; }
StorageMask()385       uint32_t StorageMask() { return storage_mask_; }
SetStorageMask(uint32_t storage_mask)386       void SetStorageMask(uint32_t storage_mask) { storage_mask_ = storage_mask; }
DefStart()387       LIR* DefStart() { return def_start_; }
SetDefStart(LIR * def_start)388       void SetDefStart(LIR* def_start) { def_start_ = def_start; }
DefEnd()389       LIR* DefEnd() { return def_end_; }
SetDefEnd(LIR * def_end)390       void SetDefEnd(LIR* def_end) { def_end_ = def_end; }
ResetDefBody()391       void ResetDefBody() { def_start_ = def_end_ = nullptr; }
392       // Find member of aliased set matching storage_used; return null if none.
FindMatchingView(uint32_t storage_used)393       RegisterInfo* FindMatchingView(uint32_t storage_used) {
394         RegisterInfo* res = Master();
395         for (; res != nullptr; res = res->GetAliasChain()) {
396           if (res->StorageMask() == storage_used)
397             break;
398         }
399         return res;
400       }
401 
402      private:
403       RegStorage reg_;
404       bool is_temp_;               // Can allocate as temp?
405       bool wide_value_;            // Holds a Dalvik wide value (either itself, or part of a pair).
406       bool dirty_;                 // If live, is it dirty?
407       bool aliased_;               // Is this the master for other aliased RegisterInfo's?
408       RegStorage partner_;         // If wide_value, other reg of pair or self if 64-bit register.
409       int s_reg_;                  // Name of live value.
410       ResourceMask def_use_mask_;  // Resources for this element.
411       uint32_t used_storage_;      // 1 bit per 4 bytes of storage. Unused by aliases.
412       uint32_t liveness_;          // 1 bit per 4 bytes of storage. Unused by aliases.
413       RegisterInfo* master_;       // Pointer to controlling storage mask.
414       uint32_t storage_mask_;      // Track allocation of sub-units.
415       LIR *def_start_;             // Starting inst in last def sequence.
416       LIR *def_end_;               // Ending inst in last def sequence.
417       RegisterInfo* alias_chain_;  // Chain of aliased registers.
418     };
419 
420     class RegisterPool : public DeletableArenaObject<kArenaAllocRegAlloc> {
421      public:
422       RegisterPool(Mir2Lir* m2l, ArenaAllocator* arena,
423                    const ArrayRef<const RegStorage>& core_regs,
424                    const ArrayRef<const RegStorage>& core64_regs,
425                    const ArrayRef<const RegStorage>& sp_regs,
426                    const ArrayRef<const RegStorage>& dp_regs,
427                    const ArrayRef<const RegStorage>& reserved_regs,
428                    const ArrayRef<const RegStorage>& reserved64_regs,
429                    const ArrayRef<const RegStorage>& core_temps,
430                    const ArrayRef<const RegStorage>& core64_temps,
431                    const ArrayRef<const RegStorage>& sp_temps,
432                    const ArrayRef<const RegStorage>& dp_temps);
~RegisterPool()433       ~RegisterPool() {}
ResetNextTemp()434       void ResetNextTemp() {
435         next_core_reg_ = 0;
436         next_sp_reg_ = 0;
437         next_dp_reg_ = 0;
438       }
439       ArenaVector<RegisterInfo*> core_regs_;
440       int next_core_reg_;
441       ArenaVector<RegisterInfo*> core64_regs_;
442       int next_core64_reg_;
443       ArenaVector<RegisterInfo*> sp_regs_;    // Single precision float.
444       int next_sp_reg_;
445       ArenaVector<RegisterInfo*> dp_regs_;    // Double precision float.
446       int next_dp_reg_;
447       ArenaVector<RegisterInfo*>* ref_regs_;  // Points to core_regs_ or core64_regs_
448       int* next_ref_reg_;
449 
450      private:
451       Mir2Lir* const m2l_;
452     };
453 
454     struct PromotionMap {
455       RegLocationType core_location:3;
456       uint8_t core_reg;
457       RegLocationType fp_location:3;
458       uint8_t fp_reg;
459       bool first_in_pair;
460     };
461 
462     //
463     // Slow paths.  This object is used generate a sequence of code that is executed in the
464     // slow path.  For example, resolving a string or class is slow as it will only be executed
465     // once (after that it is resolved and doesn't need to be done again).  We want slow paths
466     // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
467     // branch over them.
468     //
469     // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
470     // the Compile() function that will be called near the end of the code generated by the
471     // method.
472     //
473     // The basic flow for a slow path is:
474     //
475     //     CMP reg, #value
476     //     BEQ fromfast
477     //   cont:
478     //     ...
479     //     fast path code
480     //     ...
481     //     more code
482     //     ...
483     //     RETURN
484     ///
485     //   fromfast:
486     //     ...
487     //     slow path code
488     //     ...
489     //     B cont
490     //
491     // So you see we need two labels and two branches.  The first branch (called fromfast) is
492     // the conditional branch to the slow path code.  The second label (called cont) is used
493     // as an unconditional branch target for getting back to the code after the slow path
494     // has completed.
495     //
496 
497     class LIRSlowPath : public ArenaObject<kArenaAllocSlowPaths> {
498      public:
499       LIRSlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont = nullptr)
m2l_(m2l)500           : m2l_(m2l), cu_(m2l->cu_),
501             current_dex_pc_(m2l->current_dalvik_offset_), current_mir_(m2l->current_mir_),
502             fromfast_(fromfast), cont_(cont) {
503       }
~LIRSlowPath()504       virtual ~LIRSlowPath() {}
505       virtual void Compile() = 0;
506 
GetContinuationLabel()507       LIR *GetContinuationLabel() {
508         return cont_;
509       }
510 
GetFromFast()511       LIR *GetFromFast() {
512         return fromfast_;
513       }
514 
515      protected:
516       LIR* GenerateTargetLabel(int opcode = kPseudoTargetLabel);
517 
518       Mir2Lir* const m2l_;
519       CompilationUnit* const cu_;
520       const DexOffset current_dex_pc_;
521       MIR* current_mir_;
522       LIR* const fromfast_;
523       LIR* const cont_;
524     };
525 
526     class SuspendCheckSlowPath;
527     class SpecialSuspendCheckSlowPath;
528 
529     // Helper class for changing mem_ref_type_ until the end of current scope. See mem_ref_type_.
530     class ScopedMemRefType {
531      public:
ScopedMemRefType(Mir2Lir * m2l,ResourceMask::ResourceBit new_mem_ref_type)532       ScopedMemRefType(Mir2Lir* m2l, ResourceMask::ResourceBit new_mem_ref_type)
533           : m2l_(m2l),
534             old_mem_ref_type_(m2l->mem_ref_type_) {
535         m2l_->mem_ref_type_ = new_mem_ref_type;
536       }
537 
~ScopedMemRefType()538       ~ScopedMemRefType() {
539         m2l_->mem_ref_type_ = old_mem_ref_type_;
540       }
541 
542      private:
543       Mir2Lir* const m2l_;
544       ResourceMask::ResourceBit old_mem_ref_type_;
545 
546       DISALLOW_COPY_AND_ASSIGN(ScopedMemRefType);
547     };
548 
~Mir2Lir()549     virtual ~Mir2Lir() {}
550 
551     /**
552      * @brief Decodes the LIR offset.
553      * @return Returns the scaled offset of LIR.
554      */
555     virtual size_t GetInstructionOffset(LIR* lir);
556 
s4FromSwitchData(const void * switch_data)557     int32_t s4FromSwitchData(const void* switch_data) {
558       return *reinterpret_cast<const int32_t*>(switch_data);
559     }
560 
561     /*
562      * TODO: this is a trace JIT vestige, and its use should be reconsidered.  At the time
563      * it was introduced, it was intended to be a quick best guess of type without having to
564      * take the time to do type analysis.  Currently, though, we have a much better idea of
565      * the types of Dalvik virtual registers.  Instead of using this for a best guess, why not
566      * just use our knowledge of type to select the most appropriate register class?
567      */
RegClassBySize(OpSize size)568     RegisterClass RegClassBySize(OpSize size) {
569       if (size == kReference) {
570         return kRefReg;
571       } else {
572         return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
573                 size == kSignedByte) ? kCoreReg : kAnyReg;
574       }
575     }
576 
CodeBufferSizeInBytes()577     size_t CodeBufferSizeInBytes() {
578       return code_buffer_.size() / sizeof(code_buffer_[0]);
579     }
580 
IsPseudoLirOp(int opcode)581     static bool IsPseudoLirOp(int opcode) {
582       return (opcode < 0);
583     }
584 
585     /*
586      * LIR operands are 32-bit integers.  Sometimes, (especially for managing
587      * instructions which require PC-relative fixups), we need the operands to carry
588      * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
589      * hold that index in the operand array.
590      * TUNING: If use of these utilities becomes more common on 32-bit builds, it
591      * may be worth conditionally-compiling a set of identity functions here.
592      */
593     template <typename T>
WrapPointer(const T * pointer)594     uint32_t WrapPointer(const T* pointer) {
595       uint32_t res = pointer_storage_.size();
596       pointer_storage_.push_back(pointer);
597       return res;
598     }
599 
600     template <typename T>
UnwrapPointer(size_t index)601     const T* UnwrapPointer(size_t index) {
602       return reinterpret_cast<const T*>(pointer_storage_[index]);
603     }
604 
605     // strdup(), but allocates from the arena.
ArenaStrdup(const char * str)606     char* ArenaStrdup(const char* str) {
607       size_t len = strlen(str) + 1;
608       char* res = arena_->AllocArray<char>(len, kArenaAllocMisc);
609       if (res != nullptr) {
610         strncpy(res, str, len);
611       }
612       return res;
613     }
614 
615     // Shared by all targets - implemented in codegen_util.cc
616     void AppendLIR(LIR* lir);
617     void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
618     void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
619 
620     /**
621      * @brief Provides the maximum number of compiler temporaries that the backend can/wants
622      * to place in a frame.
623      * @return Returns the maximum number of compiler temporaries.
624      */
625     size_t GetMaxPossibleCompilerTemps() const;
626 
627     /**
628      * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
629      * @return Returns the size in bytes for space needed for compiler temporary spill region.
630      */
631     size_t GetNumBytesForCompilerTempSpillRegion();
632 
GetCurrentDexPc()633     DexOffset GetCurrentDexPc() const {
634       return current_dalvik_offset_;
635     }
636 
637     RegisterClass ShortyToRegClass(char shorty_type);
638     int ComputeFrameSize();
639     void Materialize();
640     virtual CompiledMethod* GetCompiledMethod();
641     void MarkSafepointPC(LIR* inst);
642     void MarkSafepointPCAfter(LIR* after);
643     void SetupResourceMasks(LIR* lir);
644     void SetMemRefType(LIR* lir, bool is_load, int mem_type);
645     void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
646     void SetupRegMask(ResourceMask* mask, int reg);
647     void ClearRegMask(ResourceMask* mask, int reg);
648     void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
649     void EliminateLoad(LIR* lir, int reg_id);
650     void DumpDependentInsnPair(LIR* check_lir, LIR* this_lir, const char* type);
651     void DumpPromotionMap();
652     void CodegenDump();
653     LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
654                 int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = nullptr);
655     LIR* NewLIR0(int opcode);
656     LIR* NewLIR1(int opcode, int dest);
657     LIR* NewLIR2(int opcode, int dest, int src1);
658     LIR* NewLIR2NoDest(int opcode, int src, int info);
659     LIR* NewLIR3(int opcode, int dest, int src1, int src2);
660     LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
661     LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
662     LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
663     LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
664     LIR* ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method);
665     LIR* ScanLiteralPoolClass(LIR* data_target, const DexFile& dex_file, uint32_t type_idx);
666     LIR* AddWordData(LIR* *constant_list_p, int value);
667     LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
668     void DumpSparseSwitchTable(const uint16_t* table);
669     void DumpPackedSwitchTable(const uint16_t* table);
670     void MarkBoundary(DexOffset offset, const char* inst_str);
671     void NopLIR(LIR* lir);
672     void UnlinkLIR(LIR* lir);
673     bool IsInexpensiveConstant(RegLocation rl_src);
674     ConditionCode FlipComparisonOrder(ConditionCode before);
675     ConditionCode NegateComparison(ConditionCode before);
676     virtual void InstallLiteralPools();
677     void InstallSwitchTables();
678     void InstallFillArrayData();
679     bool VerifyCatchEntries();
680     void CreateMappingTables();
681     void CreateNativeGcMap();
682     void CreateNativeGcMapWithoutRegisterPromotion();
683     int AssignLiteralOffset(CodeOffset offset);
684     int AssignSwitchTablesOffset(CodeOffset offset);
685     int AssignFillArrayDataOffset(CodeOffset offset);
686     LIR* InsertCaseLabel(uint32_t bbid, int keyVal);
687 
688     // Handle bookkeeping to convert a wide RegLocation to a narrow RegLocation.  No code generated.
689     virtual RegLocation NarrowRegLoc(RegLocation loc);
690 
691     // Shared by all targets - implemented in local_optimizations.cc
692     void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src);
693     void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
694     void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
695     virtual void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
696 
697     // Shared by all targets - implemented in ralloc_util.cc
698     int GetSRegHi(int lowSreg);
699     bool LiveOut(int s_reg);
700     void SimpleRegAlloc();
701     void ResetRegPool();
702     void CompilerInitPool(RegisterInfo* info, RegStorage* regs, int num);
703     void DumpRegPool(ArenaVector<RegisterInfo*>* regs);
704     void DumpCoreRegPool();
705     void DumpFpRegPool();
706     void DumpRegPools();
707     /* Mark a temp register as dead.  Does not affect allocation state. */
708     void Clobber(RegStorage reg);
709     void ClobberSReg(int s_reg);
710     void ClobberAliases(RegisterInfo* info, uint32_t clobber_mask);
711     int SRegToPMap(int s_reg);
712     void RecordCorePromotion(RegStorage reg, int s_reg);
713     RegStorage AllocPreservedCoreReg(int s_reg);
714     void RecordFpPromotion(RegStorage reg, int s_reg);
715     RegStorage AllocPreservedFpReg(int s_reg);
716     virtual RegStorage AllocPreservedSingle(int s_reg);
717     virtual RegStorage AllocPreservedDouble(int s_reg);
718     RegStorage AllocTempBody(ArenaVector<RegisterInfo*>& regs, int* next_temp, bool required);
719     virtual RegStorage AllocTemp(bool required = true);
720     virtual RegStorage AllocTempWide(bool required = true);
721     virtual RegStorage AllocTempRef(bool required = true);
722     virtual RegStorage AllocTempSingle(bool required = true);
723     virtual RegStorage AllocTempDouble(bool required = true);
724     virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class, bool required = true);
725     virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class, bool required = true);
726     void FlushReg(RegStorage reg);
727     void FlushRegWide(RegStorage reg);
728     RegStorage AllocLiveReg(int s_reg, int reg_class, bool wide);
729     RegStorage FindLiveReg(ArenaVector<RegisterInfo*>& regs, int s_reg);
730     virtual void FreeTemp(RegStorage reg);
731     virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free);
732     virtual bool IsLive(RegStorage reg);
733     virtual bool IsTemp(RegStorage reg);
734     bool IsPromoted(RegStorage reg);
735     bool IsDirty(RegStorage reg);
736     virtual void LockTemp(RegStorage reg);
737     void ResetDef(RegStorage reg);
738     void NullifyRange(RegStorage reg, int s_reg);
739     void MarkDef(RegLocation rl, LIR *start, LIR *finish);
740     void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
741     void ResetDefLoc(RegLocation rl);
742     void ResetDefLocWide(RegLocation rl);
743     void ResetDefTracking();
744     void ClobberAllTemps();
745     void FlushSpecificReg(RegisterInfo* info);
746     void FlushAllRegs();
747     bool RegClassMatches(int reg_class, RegStorage reg);
748     void MarkLive(RegLocation loc);
749     void MarkTemp(RegStorage reg);
750     void UnmarkTemp(RegStorage reg);
751     void MarkWide(RegStorage reg);
752     void MarkNarrow(RegStorage reg);
753     void MarkClean(RegLocation loc);
754     void MarkDirty(RegLocation loc);
755     void MarkInUse(RegStorage reg);
756     bool CheckCorePoolSanity();
757     virtual RegLocation UpdateLoc(RegLocation loc);
758     virtual RegLocation UpdateLocWide(RegLocation loc);
759     RegLocation UpdateRawLoc(RegLocation loc);
760 
761     /**
762      * @brief Used to prepare a register location to receive a wide value.
763      * @see EvalLoc
764      * @param loc the location where the value will be stored.
765      * @param reg_class Type of register needed.
766      * @param update Whether the liveness information should be updated.
767      * @return Returns the properly typed temporary in physical register pairs.
768      */
769     virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
770 
771     /**
772      * @brief Used to prepare a register location to receive a value.
773      * @param loc the location where the value will be stored.
774      * @param reg_class Type of register needed.
775      * @param update Whether the liveness information should be updated.
776      * @return Returns the properly typed temporary in physical register.
777      */
778     virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
779 
780     virtual void AnalyzeMIR(RefCounts* core_counts, MIR* mir, uint32_t weight);
781     virtual void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
782     void DumpCounts(const RefCounts* arr, int size, const char* msg);
783     virtual void DoPromotion();
784     int VRegOffset(int v_reg);
785     int SRegOffset(int s_reg);
786     RegLocation GetReturnWide(RegisterClass reg_class);
787     RegLocation GetReturn(RegisterClass reg_class);
788     RegisterInfo* GetRegInfo(RegStorage reg);
789 
790     // Shared by all targets - implemented in gen_common.cc.
791     void AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume = nullptr);
792     virtual bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
793                                   RegLocation rl_src, RegLocation rl_dest, int lit);
794     bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
795     bool HandleEasyFloatingPointDiv(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2);
796     virtual void HandleSlowPaths();
797     void GenBarrier();
798     void GenDivZeroException();
799     // c_code holds condition code that's generated from testing divisor against 0.
800     void GenDivZeroCheck(ConditionCode c_code);
801     // reg holds divisor.
802     void GenDivZeroCheck(RegStorage reg);
803     void GenArrayBoundsCheck(RegStorage index, RegStorage length);
804     void GenArrayBoundsCheck(int32_t index, RegStorage length);
805     LIR* GenNullCheck(RegStorage reg);
806     void MarkPossibleNullPointerException(int opt_flags);
807     void MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after);
808     void MarkPossibleStackOverflowException();
809     void ForceImplicitNullCheck(RegStorage reg, int opt_flags);
810     LIR* GenNullCheck(RegStorage m_reg, int opt_flags);
811     LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags);
812     virtual void GenImplicitNullCheck(RegStorage reg, int opt_flags);
813     void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1, RegLocation rl_src2,
814                              LIR* taken);
815     void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken);
816     virtual void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
817     virtual void GenLongToInt(RegLocation rl_dest, RegLocation rl_src);
818     void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
819                          RegLocation rl_src);
820     void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
821                      RegLocation rl_src);
822     void GenFilledNewArray(CallInfo* info);
823     void GenFillArrayData(MIR* mir, DexOffset table_offset, RegLocation rl_src);
824     void GenSput(MIR* mir, RegLocation rl_src, OpSize size);
825     // Get entrypoints are specific for types, size alone is not sufficient to safely infer
826     // entrypoint.
827     void GenSget(MIR* mir, RegLocation rl_dest, OpSize size, Primitive::Type type);
828     void GenIGet(MIR* mir, int opt_flags, OpSize size, Primitive::Type type,
829                  RegLocation rl_dest, RegLocation rl_obj);
830     void GenIPut(MIR* mir, int opt_flags, OpSize size,
831                  RegLocation rl_src, RegLocation rl_obj);
832     void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
833                         RegLocation rl_src);
834 
835     void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
836     void GenConstString(uint32_t string_idx, RegLocation rl_dest);
837     void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
838     void GenThrow(RegLocation rl_src);
839     void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
840     void GenCheckCast(int opt_flags, uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src);
841     void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
842                       RegLocation rl_src1, RegLocation rl_src2);
843     virtual void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
844                         RegLocation rl_src1, RegLocation rl_shift);
845     void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
846                           RegLocation rl_src, int lit);
847     virtual void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
848                                 RegLocation rl_src1, RegLocation rl_src2, int flags);
849     void GenConversionCall(QuickEntrypointEnum trampoline, RegLocation rl_dest, RegLocation rl_src,
850                            RegisterClass return_reg_class);
851     void GenSuspendTest(int opt_flags);
852     void GenSuspendTestAndBranch(int opt_flags, LIR* target);
853 
854     // This will be overridden by x86 implementation.
855     virtual void GenConstWide(RegLocation rl_dest, int64_t value);
856     virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
857                        RegLocation rl_src1, RegLocation rl_src2, int flags);
858 
859     // Shared by all targets - implemented in gen_invoke.cc.
860     LIR* CallHelper(RegStorage r_tgt, QuickEntrypointEnum trampoline, bool safepoint_pc,
861                     bool use_link = true);
862     RegStorage CallHelperSetup(QuickEntrypointEnum trampoline);
863 
864     void CallRuntimeHelper(QuickEntrypointEnum trampoline, bool safepoint_pc);
865     void CallRuntimeHelperImm(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc);
866     void CallRuntimeHelperReg(QuickEntrypointEnum trampoline, RegStorage arg0, bool safepoint_pc);
867     void CallRuntimeHelperRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0,
868                                       bool safepoint_pc);
869     void CallRuntimeHelperImmImm(QuickEntrypointEnum trampoline, int arg0, int arg1,
870                                  bool safepoint_pc);
871     void CallRuntimeHelperImmRegLocation(QuickEntrypointEnum trampoline, int arg0, RegLocation arg1,
872                                          bool safepoint_pc);
873     void CallRuntimeHelperRegLocationImm(QuickEntrypointEnum trampoline, RegLocation arg0, int arg1,
874                                          bool safepoint_pc);
875     void CallRuntimeHelperImmReg(QuickEntrypointEnum trampoline, int arg0, RegStorage arg1,
876                                  bool safepoint_pc);
877     void CallRuntimeHelperRegImm(QuickEntrypointEnum trampoline, RegStorage arg0, int arg1,
878                                  bool safepoint_pc);
879     void CallRuntimeHelperImmMethod(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc);
880     void CallRuntimeHelperRegMethod(QuickEntrypointEnum trampoline, RegStorage arg0,
881                                     bool safepoint_pc);
882     void CallRuntimeHelperRegRegLocationMethod(QuickEntrypointEnum trampoline, RegStorage arg0,
883                                                RegLocation arg1, bool safepoint_pc);
884     void CallRuntimeHelperRegLocationRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0,
885                                                  RegLocation arg1, bool safepoint_pc);
886     void CallRuntimeHelperRegReg(QuickEntrypointEnum trampoline, RegStorage arg0, RegStorage arg1,
887                                  bool safepoint_pc);
888     void CallRuntimeHelperRegRegImm(QuickEntrypointEnum trampoline, RegStorage arg0,
889                                     RegStorage arg1, int arg2, bool safepoint_pc);
890     void CallRuntimeHelperImmRegLocationMethod(QuickEntrypointEnum trampoline, int arg0,
891                                                RegLocation arg1, bool safepoint_pc);
892     void CallRuntimeHelperImmImmMethod(QuickEntrypointEnum trampoline, int arg0, int arg1,
893                                        bool safepoint_pc);
894     void CallRuntimeHelperImmRegLocationRegLocation(QuickEntrypointEnum trampoline, int arg0,
895                                                     RegLocation arg1, RegLocation arg2,
896                                                     bool safepoint_pc);
897     void CallRuntimeHelperRegLocationRegLocationRegLocation(QuickEntrypointEnum trampoline,
898                                                             RegLocation arg0, RegLocation arg1,
899                                                             RegLocation arg2,
900                                                             bool safepoint_pc);
901     void CallRuntimeHelperRegLocationRegLocationRegLocationRegLocation(
902         QuickEntrypointEnum trampoline, RegLocation arg0, RegLocation arg1,
903         RegLocation arg2, RegLocation arg3, bool safepoint_pc);
904 
905     void GenInvoke(CallInfo* info);
906     void GenInvokeNoInline(CallInfo* info);
907     virtual NextCallInsn GetNextSDCallInsn() = 0;
908 
909     /*
910      * @brief Generate the actual call insn based on the method info.
911      * @param method_info the lowering info for the method call.
912      * @returns Call instruction
913      */
914     virtual LIR* GenCallInsn(const MirMethodLoweringInfo& method_info) = 0;
915 
916     virtual void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
917     virtual int GenDalvikArgs(CallInfo* info, int call_state, LIR** pcrLabel,
918                       NextCallInsn next_call_insn,
919                       const MethodReference& target_method,
920                       uint32_t vtable_idx,
921                       uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
922                       bool skip_this);
923     virtual int GenDalvikArgsBulkCopy(CallInfo* info, int first, int count);
924     virtual void GenDalvikArgsFlushPromoted(CallInfo* info, int start);
925     /**
926      * @brief Used to determine the register location of destination.
927      * @details This is needed during generation of inline intrinsics because it finds destination
928      *  of return,
929      * either the physical register or the target of move-result.
930      * @param info Information about the invoke.
931      * @return Returns the destination location.
932      */
933     RegLocation InlineTarget(CallInfo* info);
934 
935     /**
936      * @brief Used to determine the wide register location of destination.
937      * @see InlineTarget
938      * @param info Information about the invoke.
939      * @return Returns the destination location.
940      */
941     RegLocation InlineTargetWide(CallInfo* info);
942 
943     bool GenInlinedReferenceGetReferent(CallInfo* info);
944     virtual bool GenInlinedCharAt(CallInfo* info);
945     bool GenInlinedStringGetCharsNoCheck(CallInfo* info);
946     bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
947     bool GenInlinedStringFactoryNewStringFromBytes(CallInfo* info);
948     bool GenInlinedStringFactoryNewStringFromChars(CallInfo* info);
949     bool GenInlinedStringFactoryNewStringFromString(CallInfo* info);
950     virtual bool GenInlinedReverseBits(CallInfo* info, OpSize size);
951     bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
952     virtual bool GenInlinedAbsInt(CallInfo* info);
953     virtual bool GenInlinedAbsLong(CallInfo* info);
954     virtual bool GenInlinedAbsFloat(CallInfo* info) = 0;
955     virtual bool GenInlinedAbsDouble(CallInfo* info) = 0;
956     bool GenInlinedFloatCvt(CallInfo* info);
957     bool GenInlinedDoubleCvt(CallInfo* info);
958     virtual bool GenInlinedCeil(CallInfo* info);
959     virtual bool GenInlinedFloor(CallInfo* info);
960     virtual bool GenInlinedRint(CallInfo* info);
961     virtual bool GenInlinedRound(CallInfo* info, bool is_double);
962     virtual bool GenInlinedArrayCopyCharArray(CallInfo* info);
963     virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
964     bool GenInlinedStringCompareTo(CallInfo* info);
965     virtual bool GenInlinedCurrentThread(CallInfo* info);
966     bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_object, bool is_volatile);
967     bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
968                              bool is_volatile, bool is_ordered);
969 
970     // Shared by all targets - implemented in gen_loadstore.cc.
971     RegLocation LoadCurrMethod();
972     void LoadCurrMethodDirect(RegStorage r_tgt);
973     RegStorage LoadCurrMethodWithHint(RegStorage r_hint);
974     virtual LIR* LoadConstant(RegStorage r_dest, int value);
975     // Natural word size.
LoadWordDisp(RegStorage r_base,int displacement,RegStorage r_dest)976     LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
977       return LoadBaseDisp(r_base, displacement, r_dest, kWord, kNotVolatile);
978     }
979     // Load 32 bits, regardless of target.
Load32Disp(RegStorage r_base,int displacement,RegStorage r_dest)980     LIR* Load32Disp(RegStorage r_base, int displacement, RegStorage r_dest)  {
981       return LoadBaseDisp(r_base, displacement, r_dest, k32, kNotVolatile);
982     }
983     // Load a reference at base + displacement and decompress into register.
LoadRefDisp(RegStorage r_base,int displacement,RegStorage r_dest,VolatileKind is_volatile)984     LIR* LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest,
985                      VolatileKind is_volatile) {
986       return LoadBaseDisp(r_base, displacement, r_dest, kReference, is_volatile);
987     }
988     // Load a reference at base + index and decompress into register.
LoadRefIndexed(RegStorage r_base,RegStorage r_index,RegStorage r_dest,int scale)989     LIR* LoadRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale) {
990       return LoadBaseIndexed(r_base, r_index, r_dest, scale, kReference);
991     }
992     // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
993     virtual RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
994     // Load Dalvik value with 64-bit memory storage.
995     virtual RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
996     // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
997     virtual void LoadValueDirect(RegLocation rl_src, RegStorage r_dest);
998     // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
999     virtual void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest);
1000     // Load Dalvik value with 64-bit memory storage.
1001     virtual void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest);
1002     // Load Dalvik value with 64-bit memory storage.
1003     virtual void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest);
1004     // Store an item of natural word size.
StoreWordDisp(RegStorage r_base,int displacement,RegStorage r_src)1005     LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src) {
1006       return StoreBaseDisp(r_base, displacement, r_src, kWord, kNotVolatile);
1007     }
1008     // Store an uncompressed reference into a compressed 32-bit container.
StoreRefDisp(RegStorage r_base,int displacement,RegStorage r_src,VolatileKind is_volatile)1009     LIR* StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src,
1010                       VolatileKind is_volatile) {
1011       return StoreBaseDisp(r_base, displacement, r_src, kReference, is_volatile);
1012     }
1013     // Store an uncompressed reference into a compressed 32-bit container by index.
StoreRefIndexed(RegStorage r_base,RegStorage r_index,RegStorage r_src,int scale)1014     LIR* StoreRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale) {
1015       return StoreBaseIndexed(r_base, r_index, r_src, scale, kReference);
1016     }
1017     // Store 32 bits, regardless of target.
Store32Disp(RegStorage r_base,int displacement,RegStorage r_src)1018     LIR* Store32Disp(RegStorage r_base, int displacement, RegStorage r_src) {
1019       return StoreBaseDisp(r_base, displacement, r_src, k32, kNotVolatile);
1020     }
1021 
1022     /**
1023      * @brief Used to do the final store in the destination as per bytecode semantics.
1024      * @param rl_dest The destination dalvik register location.
1025      * @param rl_src The source register location. Can be either physical register or dalvik register.
1026      */
1027     virtual void StoreValue(RegLocation rl_dest, RegLocation rl_src);
1028 
1029     /**
1030      * @brief Used to do the final store in a wide destination as per bytecode semantics.
1031      * @see StoreValue
1032      * @param rl_dest The destination dalvik register location.
1033      * @param rl_src The source register location. Can be either physical register or dalvik
1034      *  register.
1035      */
1036     virtual void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
1037 
1038     /**
1039      * @brief Used to do the final store to a destination as per bytecode semantics.
1040      * @see StoreValue
1041      * @param rl_dest The destination dalvik register location.
1042      * @param rl_src The source register location. It must be kLocPhysReg
1043      *
1044      * This is used for x86 two operand computations, where we have computed the correct
1045      * register value that now needs to be properly registered.  This is used to avoid an
1046      * extra register copy that would result if StoreValue was called.
1047      */
1048     virtual void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
1049 
1050     /**
1051      * @brief Used to do the final store in a wide destination as per bytecode semantics.
1052      * @see StoreValueWide
1053      * @param rl_dest The destination dalvik register location.
1054      * @param rl_src The source register location. It must be kLocPhysReg
1055      *
1056      * This is used for x86 two operand computations, where we have computed the correct
1057      * register values that now need to be properly registered.  This is used to avoid an
1058      * extra pair of register copies that would result if StoreValueWide was called.
1059      */
1060     virtual void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
1061 
1062     // Shared by all targets - implemented in mir_to_lir.cc.
1063     void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
1064     virtual void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1065     bool MethodBlockCodeGen(BasicBlock* bb);
1066     bool SpecialMIR2LIR(const InlineMethod& special);
1067     virtual void MethodMIR2LIR();
1068     // Update LIR for verbose listings.
1069     void UpdateLIROffsets();
1070 
1071     /**
1072      * @brief Mark a garbage collection card. Skip if the stored value is null.
1073      * @param val_reg the register holding the stored value to check against null.
1074      * @param tgt_addr_reg the address of the object or array where the value was stored.
1075      * @param opt_flags the optimization flags which may indicate that the value is non-null.
1076      */
1077     void MarkGCCard(int opt_flags, RegStorage val_reg, RegStorage tgt_addr_reg);
1078 
1079     /*
1080      * @brief Load the address of the dex method into the register.
1081      * @param target_method The MethodReference of the method to be invoked.
1082      * @param type How the method will be invoked.
1083      * @param register that will contain the code address.
1084      * @note register will be passed to TargetReg to get physical register.
1085      */
1086     void LoadCodeAddress(const MethodReference& target_method, InvokeType type,
1087                          SpecialTargetRegister symbolic_reg);
1088 
1089     /*
1090      * @brief Load the Method* of a dex method into the register.
1091      * @param target_method The MethodReference of the method to be invoked.
1092      * @param type How the method will be invoked.
1093      * @param register that will contain the code address.
1094      * @note register will be passed to TargetReg to get physical register.
1095      */
1096     virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
1097                                    SpecialTargetRegister symbolic_reg);
1098 
1099     /*
1100      * @brief Load the Class* of a Dex Class type into the register.
1101      * @param dex DexFile that contains the class type.
1102      * @param type How the method will be invoked.
1103      * @param register that will contain the code address.
1104      * @note register will be passed to TargetReg to get physical register.
1105      */
1106     virtual void LoadClassType(const DexFile& dex_file, uint32_t type_idx,
1107                                SpecialTargetRegister symbolic_reg);
1108 
1109     // TODO: Support PC-relative dex cache array loads on all platforms and
1110     // replace CanUseOpPcRelDexCacheArrayLoad() with dex_cache_arrays_layout_.Valid().
1111     virtual bool CanUseOpPcRelDexCacheArrayLoad() const;
1112 
1113     /*
1114      * @brief Load an element of one of the dex cache arrays.
1115      * @param dex_file the dex file associated with the target dex cache.
1116      * @param offset the offset of the element in the fixed dex cache arrays' layout.
1117      * @param r_dest the register where to load the element.
1118      * @param wide, load 64 bits if true, otherwise 32 bits.
1119      */
1120     virtual void OpPcRelDexCacheArrayLoad(const DexFile* dex_file, int offset, RegStorage r_dest,
1121                                           bool wide);
1122 
1123     // Routines that work for the generic case, but may be overriden by target.
1124     /*
1125      * @brief Compare memory to immediate, and branch if condition true.
1126      * @param cond The condition code that when true will branch to the target.
1127      * @param temp_reg A temporary register that can be used if compare to memory is not
1128      * supported by the architecture.
1129      * @param base_reg The register holding the base address.
1130      * @param offset The offset from the base.
1131      * @param check_value The immediate to compare to.
1132      * @param target branch target (or null)
1133      * @param compare output for getting LIR for comparison (or null)
1134      * @returns The branch instruction that was generated.
1135      */
1136     virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
1137                                    int offset, int check_value, LIR* target, LIR** compare);
1138 
1139     // Required for target - codegen helpers.
1140     virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
1141                                     RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1142     virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1143     virtual void GenMultiplyByConstantFloat(RegLocation rl_dest, RegLocation rl_src1,
1144                                             int32_t constant) = 0;
1145     virtual void GenMultiplyByConstantDouble(RegLocation rl_dest, RegLocation rl_src1,
1146                                              int64_t constant) = 0;
1147     virtual LIR* CheckSuspendUsingLoad() = 0;
1148 
1149     virtual RegStorage LoadHelper(QuickEntrypointEnum trampoline) = 0;
1150 
1151     virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
1152                               OpSize size, VolatileKind is_volatile) = 0;
1153     virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1154                                  int scale, OpSize size) = 0;
1155     virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0;
1156     virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0;
1157     virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
1158                                OpSize size, VolatileKind is_volatile) = 0;
1159     virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1160                                   int scale, OpSize size) = 0;
1161 
1162     /**
1163      * @brief Unconditionally mark a garbage collection card.
1164      * @param tgt_addr_reg the address of the object or array where the value was stored.
1165      */
1166     virtual void UnconditionallyMarkGCCard(RegStorage tgt_addr_reg) = 0;
1167 
1168     // Required for target - register utilities.
1169 
IsSameReg(RegStorage reg1,RegStorage reg2)1170     bool IsSameReg(RegStorage reg1, RegStorage reg2) {
1171       RegisterInfo* info1 = GetRegInfo(reg1);
1172       RegisterInfo* info2 = GetRegInfo(reg2);
1173       return (info1->Master() == info2->Master() &&
1174              (info1->StorageMask() & info2->StorageMask()) != 0);
1175     }
1176 
IsWide(OpSize size)1177     static constexpr bool IsWide(OpSize size) {
1178       return size == k64 || size == kDouble;
1179     }
1180 
IsRef(OpSize size)1181     static constexpr bool IsRef(OpSize size) {
1182       return size == kReference;
1183     }
1184 
1185     /**
1186      * @brief Portable way of getting special registers from the backend.
1187      * @param reg Enumeration describing the purpose of the register.
1188      * @return Return the #RegStorage corresponding to the given purpose @p reg.
1189      * @note This function is currently allowed to return any suitable view of the registers
1190      *   (e.g. this could be 64-bit solo or 32-bit solo for 64-bit backends).
1191      */
1192     virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0;
1193 
1194     /**
1195      * @brief Portable way of getting special registers from the backend.
1196      * @param reg Enumeration describing the purpose of the register.
1197      * @param wide_kind What kind of view of the special register is required.
1198      * @return Return the #RegStorage corresponding to the given purpose @p reg.
1199      *
1200      * @note For 32b system, wide (kWide) views only make sense for the argument registers and the
1201      *       return. In that case, this function should return a pair where the first component of
1202      *       the result will be the indicated special register.
1203      */
TargetReg(SpecialTargetRegister reg,WideKind wide_kind)1204     virtual RegStorage TargetReg(SpecialTargetRegister reg, WideKind wide_kind) {
1205       if (wide_kind == kWide) {
1206         DCHECK((kArg0 <= reg && reg < kArg7) || (kFArg0 <= reg && reg < kFArg15) || (kRet0 == reg));
1207         static_assert((kArg1 == kArg0 + 1) && (kArg2 == kArg1 + 1) && (kArg3 == kArg2 + 1) &&
1208                       (kArg4 == kArg3 + 1) && (kArg5 == kArg4 + 1) && (kArg6 == kArg5 + 1) &&
1209                       (kArg7 == kArg6 + 1), "kargs range unexpected");
1210         static_assert((kFArg1 == kFArg0 + 1) && (kFArg2 == kFArg1 + 1) && (kFArg3 == kFArg2 + 1) &&
1211                       (kFArg4 == kFArg3 + 1) && (kFArg5 == kFArg4 + 1) && (kFArg6 == kFArg5 + 1) &&
1212                       (kFArg7 == kFArg6 + 1) && (kFArg8 == kFArg7 + 1) && (kFArg9 == kFArg8 + 1) &&
1213                       (kFArg10 == kFArg9 + 1) && (kFArg11 == kFArg10 + 1) &&
1214                       (kFArg12 == kFArg11 + 1) && (kFArg13 == kFArg12 + 1) &&
1215                       (kFArg14 == kFArg13 + 1) && (kFArg15 == kFArg14 + 1),
1216                       "kfargs range unexpected");
1217         static_assert(kRet1 == kRet0 + 1, "kret range unexpected");
1218         return RegStorage::MakeRegPair(TargetReg(reg),
1219                                        TargetReg(static_cast<SpecialTargetRegister>(reg + 1)));
1220       } else {
1221         return TargetReg(reg);
1222       }
1223     }
1224 
1225     /**
1226      * @brief Portable way of getting a special register for storing a pointer.
1227      * @see TargetReg()
1228      */
TargetPtrReg(SpecialTargetRegister reg)1229     virtual RegStorage TargetPtrReg(SpecialTargetRegister reg) {
1230       return TargetReg(reg);
1231     }
1232 
1233     // Get a reg storage corresponding to the wide & ref flags of the reg location.
TargetReg(SpecialTargetRegister reg,RegLocation loc)1234     virtual RegStorage TargetReg(SpecialTargetRegister reg, RegLocation loc) {
1235       if (loc.ref) {
1236         return TargetReg(reg, kRef);
1237       } else {
1238         return TargetReg(reg, loc.wide ? kWide : kNotWide);
1239       }
1240     }
1241 
1242     void EnsureInitializedArgMappingToPhysicalReg();
1243     virtual RegLocation GetReturnAlt() = 0;
1244     virtual RegLocation GetReturnWideAlt() = 0;
1245     virtual RegLocation LocCReturn() = 0;
1246     virtual RegLocation LocCReturnRef() = 0;
1247     virtual RegLocation LocCReturnDouble() = 0;
1248     virtual RegLocation LocCReturnFloat() = 0;
1249     virtual RegLocation LocCReturnWide() = 0;
1250     virtual ResourceMask GetRegMaskCommon(const RegStorage& reg) const = 0;
1251     virtual void AdjustSpillMask() = 0;
1252     virtual void ClobberCallerSave() = 0;
1253     virtual void FreeCallTemps() = 0;
1254     virtual void LockCallTemps() = 0;
1255     virtual void CompilerInitializeRegAlloc() = 0;
1256 
1257     // Required for target - miscellaneous.
1258     virtual void AssembleLIR() = 0;
1259     virtual void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) = 0;
1260     virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
1261                                           ResourceMask* use_mask, ResourceMask* def_mask) = 0;
1262     virtual const char* GetTargetInstFmt(int opcode) = 0;
1263     virtual const char* GetTargetInstName(int opcode) = 0;
1264     virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
1265 
1266     // Note: This may return kEncodeNone on architectures that do not expose a PC. The caller must
1267     //       take care of this.
1268     virtual ResourceMask GetPCUseDefEncoding() const = 0;
1269     virtual uint64_t GetTargetInstFlags(int opcode) = 0;
1270     virtual size_t GetInsnSize(LIR* lir) = 0;
1271     virtual bool IsUnconditionalBranch(LIR* lir) = 0;
1272 
1273     // Get the register class for load/store of a field.
1274     virtual RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) = 0;
1275 
1276     // Required for target - Dalvik-level generators.
1277     virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1278                                    RegLocation rl_src1, RegLocation rl_src2, int flags) = 0;
1279     virtual void GenArithOpDouble(Instruction::Code opcode,
1280                                   RegLocation rl_dest, RegLocation rl_src1,
1281                                   RegLocation rl_src2) = 0;
1282     virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
1283                                  RegLocation rl_src1, RegLocation rl_src2) = 0;
1284     virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
1285                           RegLocation rl_src1, RegLocation rl_src2) = 0;
1286     virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
1287                                RegLocation rl_src) = 0;
1288     virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
1289 
1290     /**
1291      * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
1292      * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
1293      * that applies on integers. The generated code will write the smallest or largest value
1294      * directly into the destination register as specified by the invoke information.
1295      * @param info Information about the invoke.
1296      * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
1297      * @param is_long If true the value value is Long. Otherwise the value is Int.
1298      * @return Returns true if successfully generated
1299      */
1300     virtual bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) = 0;
1301     virtual bool GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double);
1302 
1303     virtual bool GenInlinedSqrt(CallInfo* info) = 0;
1304     virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
1305     virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
1306     virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
1307                                   bool is_div) = 0;
1308     virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit,
1309                                      bool is_div) = 0;
1310     /*
1311      * @brief Generate an integer div or rem operation by a literal.
1312      * @param rl_dest Destination Location.
1313      * @param rl_src1 Numerator Location.
1314      * @param rl_src2 Divisor Location.
1315      * @param is_div 'true' if this is a division, 'false' for a remainder.
1316      * @param flags The instruction optimization flags. It can include information
1317      * if exception check can be elided.
1318      */
1319     virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
1320                                   RegLocation rl_src2, bool is_div, int flags) = 0;
1321     /*
1322      * @brief Generate an integer div or rem operation by a literal.
1323      * @param rl_dest Destination Location.
1324      * @param rl_src Numerator Location.
1325      * @param lit Divisor.
1326      * @param is_div 'true' if this is a division, 'false' for a remainder.
1327      */
1328     virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
1329                                      bool is_div) = 0;
1330     virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0;
1331 
1332     /**
1333      * @brief Used for generating code that throws ArithmeticException if both registers are zero.
1334      * @details This is used for generating DivideByZero checks when divisor is held in two
1335      *  separate registers.
1336      * @param reg The register holding the pair of 32-bit values.
1337      */
1338     virtual void GenDivZeroCheckWide(RegStorage reg) = 0;
1339 
1340     virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0;
1341     virtual void GenExitSequence() = 0;
1342     virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0;
1343     virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
1344 
1345     /*
1346      * @brief Handle Machine Specific MIR Extended opcodes.
1347      * @param bb The basic block in which the MIR is from.
1348      * @param mir The MIR whose opcode is not standard extended MIR.
1349      * @note Base class implementation will abort for unknown opcodes.
1350      */
1351     virtual void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1352 
1353     /**
1354      * @brief Lowers the kMirOpSelect MIR into LIR.
1355      * @param bb The basic block in which the MIR is from.
1356      * @param mir The MIR whose opcode is kMirOpSelect.
1357      */
1358     virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
1359 
1360     /**
1361      * @brief Generates code to select one of the given constants depending on the given opcode.
1362      */
1363     virtual void GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
1364                                   int32_t true_val, int32_t false_val, RegStorage rs_dest,
1365                                   RegisterClass dest_reg_class) = 0;
1366 
1367     /**
1368      * @brief Used to generate a memory barrier in an architecture specific way.
1369      * @details The last generated LIR will be considered for use as barrier. Namely,
1370      * if the last LIR can be updated in a way where it will serve the semantics of
1371      * barrier, then it will be used as such. Otherwise, a new LIR will be generated
1372      * that can keep the semantics.
1373      * @param barrier_kind The kind of memory barrier to generate.
1374      * @return whether a new instruction was generated.
1375      */
1376     virtual bool GenMemBarrier(MemBarrierKind barrier_kind) = 0;
1377 
1378     virtual void GenMoveException(RegLocation rl_dest) = 0;
1379     virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
1380                                                int first_bit, int second_bit) = 0;
1381     virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
1382     virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
1383 
1384     // Create code for switch statements. Will decide between short and long versions below.
1385     void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
1386     void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
1387 
1388     // Potentially backend-specific versions of switch instructions for shorter switch statements.
1389     // The default implementation will create a chained compare-and-branch.
1390     virtual void GenSmallPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
1391     virtual void GenSmallSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
1392     // Backend-specific versions of switch instructions for longer switch statements.
1393     virtual void GenLargePackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1394     virtual void GenLargeSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1395 
1396     virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1397                              RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
1398     virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1399                              RegLocation rl_index, RegLocation rl_src, int scale,
1400                              bool card_mark) = 0;
1401     virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1402                                    RegLocation rl_src1, RegLocation rl_shift, int flags) = 0;
1403 
1404     // Required for target - single operation generators.
1405     virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
1406     virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0;
1407     virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
1408                                 LIR* target) = 0;
1409     virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
1410     virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0;
1411     virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1412     virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
1413     virtual void OpEndIT(LIR* it) = 0;
1414     virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0;
1415     virtual void OpPcRelLoad(RegStorage reg, LIR* target) = 0;
1416     virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0;
1417     virtual void OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1418     virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0;
1419     virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0;
1420     virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0;
1421 
1422     /**
1423      * @brief Used to generate an LIR that does a load from mem to reg.
1424      * @param r_dest The destination physical register.
1425      * @param r_base The base physical register for memory operand.
1426      * @param offset The displacement for memory operand.
1427      * @param move_type Specification on the move desired (size, alignment, register kind).
1428      * @return Returns the generate move LIR.
1429      */
1430     virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
1431                              MoveType move_type) = 0;
1432 
1433     /**
1434      * @brief Used to generate an LIR that does a store from reg to mem.
1435      * @param r_base The base physical register for memory operand.
1436      * @param offset The displacement for memory operand.
1437      * @param r_src The destination physical register.
1438      * @param bytes_to_move The number of bytes to move.
1439      * @param is_aligned Whether the memory location is known to be aligned.
1440      * @return Returns the generate move LIR.
1441      */
1442     virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
1443                              MoveType move_type) = 0;
1444 
1445     /**
1446      * @brief Used for generating a conditional register to register operation.
1447      * @param op The opcode kind.
1448      * @param cc The condition code that when true will perform the opcode.
1449      * @param r_dest The destination physical register.
1450      * @param r_src The source physical register.
1451      * @return Returns the newly created LIR or null in case of creation failure.
1452      */
1453     virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0;
1454 
1455     virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0;
1456     virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
1457                              RegStorage r_src2) = 0;
1458     virtual LIR* OpTestSuspend(LIR* target) = 0;
1459     virtual LIR* OpVldm(RegStorage r_base, int count) = 0;
1460     virtual LIR* OpVstm(RegStorage r_base, int count) = 0;
1461     virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0;
1462     virtual bool InexpensiveConstantInt(int32_t value) = 0;
1463     virtual bool InexpensiveConstantFloat(int32_t value) = 0;
1464     virtual bool InexpensiveConstantLong(int64_t value) = 0;
1465     virtual bool InexpensiveConstantDouble(int64_t value) = 0;
InexpensiveConstantInt(int32_t value,Instruction::Code opcode)1466     virtual bool InexpensiveConstantInt(int32_t value, Instruction::Code opcode) {
1467       UNUSED(opcode);
1468       return InexpensiveConstantInt(value);
1469     }
1470 
1471     // May be optimized by targets.
1472     virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
1473     virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
1474 
1475     virtual LIR* InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) = 0;
1476 
1477     // Queries for backend support for vectors
1478     /*
1479      * Return the number of bits in a vector register.
1480      * @return 0 if vector registers are not supported, or the
1481      * number of bits in the vector register if supported.
1482      */
VectorRegisterSize()1483     virtual int VectorRegisterSize() {
1484       return 0;
1485     }
1486 
1487     /*
1488      * Return the number of reservable vector registers supported
1489      * @param long_or_fp, true if floating point computations will be
1490      * executed or the operations will be long type while vector
1491      * registers are reserved.
1492      * @return the number of vector registers that are available
1493      * @note The backend should ensure that sufficient vector registers
1494      * are held back to generate scalar code without exhausting vector
1495      * registers, if scalar code also uses the vector registers.
1496      */
NumReservableVectorRegisters(bool long_or_fp ATTRIBUTE_UNUSED)1497     virtual int NumReservableVectorRegisters(bool long_or_fp ATTRIBUTE_UNUSED) {
1498       return 0;
1499     }
1500 
1501     /**
1502      * @brief Buffer of DWARF's Call Frame Information opcodes.
1503      * @details It is used by debuggers and other tools to unwind the call stack.
1504      */
cfi()1505     dwarf::LazyDebugFrameOpCodeWriter& cfi() { return cfi_; }
1506 
1507   protected:
1508     Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1509 
GetCompilationUnit()1510     CompilationUnit* GetCompilationUnit() {
1511       return cu_;
1512     }
1513     /*
1514      * @brief Do these SRs overlap?
1515      * @param rl_op1 One RegLocation
1516      * @param rl_op2 The other RegLocation
1517      * @return 'true' if the VR pairs overlap
1518      *
1519      * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1520      * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1521      * dex, we'll want to make this case illegal.
1522      */
1523     bool PartiallyIntersects(RegLocation rl_op1, RegLocation rl_op2);
1524 
1525     /*
1526      * @brief Do these SRs intersect?
1527      * @param rl_op1 One RegLocation
1528      * @param rl_op2 The other RegLocation
1529      * @return 'true' if the VR pairs intersect
1530      *
1531      * Check to see if a result pair has misaligned overlap or
1532      * full overlap with an operand pair.
1533      */
1534     bool Intersects(RegLocation rl_op1, RegLocation rl_op2);
1535 
1536     /*
1537      * @brief Force a location (in a register) into a temporary register
1538      * @param loc location of result
1539      * @returns update location
1540      */
1541     virtual RegLocation ForceTemp(RegLocation loc);
1542 
1543     /*
1544      * @brief Force a wide location (in registers) into temporary registers
1545      * @param loc location of result
1546      * @returns update location
1547      */
1548     virtual RegLocation ForceTempWide(RegLocation loc);
1549 
1550     virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1551                                     RegLocation rl_dest, RegLocation rl_src);
1552 
1553     void AddSlowPath(LIRSlowPath* slowpath);
1554 
1555     /*
1556      *
1557      * @brief Implement Set up instanceof a class.
1558      * @param needs_access_check 'true' if we must check the access.
1559      * @param type_known_final 'true' if the type is known to be a final class.
1560      * @param type_known_abstract 'true' if the type is known to be an abstract class.
1561      * @param use_declaring_class 'true' if the type can be loaded off the current Method*.
1562      * @param can_assume_type_is_in_dex_cache 'true' if the type is known to be in the cache.
1563      * @param type_idx Type index to use if use_declaring_class is 'false'.
1564      * @param rl_dest Result to be set to 0 or 1.
1565      * @param rl_src Object to be tested.
1566      */
1567     void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1568                                     bool type_known_abstract, bool use_declaring_class,
1569                                     bool can_assume_type_is_in_dex_cache,
1570                                     uint32_t type_idx, RegLocation rl_dest,
1571                                     RegLocation rl_src);
1572 
1573     /**
1574      * @brief Used to insert marker that can be used to associate MIR with LIR.
1575      * @details Only inserts marker if verbosity is enabled.
1576      * @param mir The mir that is currently being generated.
1577      */
1578     void GenPrintLabel(MIR* mir);
1579 
1580     /**
1581      * @brief Used to generate return sequence when there is no frame.
1582      * @details Assumes that the return registers have already been populated.
1583      */
1584     virtual void GenSpecialExitSequence() = 0;
1585 
1586     /**
1587      * @brief Used to generate stack frame for suspend path of special methods.
1588      */
1589     virtual void GenSpecialEntryForSuspend() = 0;
1590 
1591     /**
1592      * @brief Used to pop the stack frame for suspend path of special methods.
1593      */
1594     virtual void GenSpecialExitForSuspend() = 0;
1595 
1596     /**
1597      * @brief Used to generate code for special methods that are known to be
1598      * small enough to work in frameless mode.
1599      * @param bb The basic block of the first MIR.
1600      * @param mir The first MIR of the special method.
1601      * @param special Information about the special method.
1602      * @return Returns whether or not this was handled successfully. Returns false
1603      * if caller should punt to normal MIR2LIR conversion.
1604      */
1605     virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
1606 
1607     void ClobberBody(RegisterInfo* p);
SetCurrentDexPc(DexOffset dexpc)1608     void SetCurrentDexPc(DexOffset dexpc) {
1609       current_dalvik_offset_ = dexpc;
1610     }
1611 
1612     /**
1613      * @brief Used to lock register if argument at in_position was passed that way.
1614      * @details Does nothing if the argument is passed via stack.
1615      * @param in_position The argument number whose register to lock.
1616      */
1617     void LockArg(size_t in_position);
1618 
1619     /**
1620      * @brief Used to load VR argument to a physical register.
1621      * @details The load is only done if the argument is not already in physical register.
1622      * LockArg must have been previously called.
1623      * @param in_position The argument number to load.
1624      * @param wide Whether the argument is 64-bit or not.
1625      * @return Returns the register (or register pair) for the loaded argument.
1626      */
1627     RegStorage LoadArg(size_t in_position, RegisterClass reg_class, bool wide = false);
1628 
1629     /**
1630      * @brief Used to load a VR argument directly to a specified register location.
1631      * @param in_position The argument number to place in register.
1632      * @param rl_dest The register location where to place argument.
1633      */
1634     void LoadArgDirect(size_t in_position, RegLocation rl_dest);
1635 
1636     /**
1637      * @brief Used to spill register if argument at in_position was passed that way.
1638      * @details Does nothing if the argument is passed via stack.
1639      * @param in_position The argument number whose register to spill.
1640      */
1641     void SpillArg(size_t in_position);
1642 
1643     /**
1644      * @brief Used to unspill register if argument at in_position was passed that way.
1645      * @details Does nothing if the argument is passed via stack.
1646      * @param in_position The argument number whose register to spill.
1647      */
1648     void UnspillArg(size_t in_position);
1649 
1650     /**
1651      * @brief Generate suspend test in a special method.
1652      */
1653     SpecialSuspendCheckSlowPath* GenSpecialSuspendTest();
1654 
1655     /**
1656      * @brief Used to generate LIR for special getter method.
1657      * @param mir The mir that represents the iget.
1658      * @param special Information about the special getter method.
1659      * @return Returns whether LIR was successfully generated.
1660      */
1661     bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
1662 
1663     /**
1664      * @brief Used to generate LIR for special setter method.
1665      * @param mir The mir that represents the iput.
1666      * @param special Information about the special setter method.
1667      * @return Returns whether LIR was successfully generated.
1668      */
1669     bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
1670 
1671     /**
1672      * @brief Used to generate LIR for special return-args method.
1673      * @param mir The mir that represents the return of argument.
1674      * @param special Information about the special return-args method.
1675      * @return Returns whether LIR was successfully generated.
1676      */
1677     bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
1678 
1679     /**
1680      * @brief Generate code to check if result is null and, if it is, call helper to load it.
1681      * @param r_result the result register.
1682      * @param trampoline the helper to call in slow path.
1683      * @param imm the immediate passed to the helper.
1684      */
1685     void GenIfNullUseHelperImm(RegStorage r_result, QuickEntrypointEnum trampoline, int imm);
1686 
1687     /**
1688      * @brief Generate code to retrieve Class* for another type to be used by SGET/SPUT.
1689      * @param field_info information about the field to be accessed.
1690      * @param opt_flags the optimization flags of the MIR.
1691      */
1692     RegStorage GenGetOtherTypeForSgetSput(const MirSFieldLoweringInfo& field_info, int opt_flags);
1693 
1694     void AddDivZeroCheckSlowPath(LIR* branch);
1695 
1696     // Copy arg0 and arg1 to kArg0 and kArg1 safely, possibly using
1697     // kArg2 as temp.
1698     virtual void CopyToArgumentRegs(RegStorage arg0, RegStorage arg1);
1699 
1700     /**
1701      * @brief Load Constant into RegLocation
1702      * @param rl_dest Destination RegLocation
1703      * @param value Constant value
1704      */
1705     virtual void GenConst(RegLocation rl_dest, int value);
1706 
1707     /**
1708      * Returns true iff wide GPRs are just different views on the same physical register.
1709      */
1710     virtual bool WideGPRsAreAliases() const = 0;
1711 
1712     /**
1713      * Returns true iff wide FPRs are just different views on the same physical register.
1714      */
1715     virtual bool WideFPRsAreAliases() const = 0;
1716 
1717 
1718     enum class WidenessCheck {  // private
1719       kIgnoreWide,
1720       kCheckWide,
1721       kCheckNotWide
1722     };
1723 
1724     enum class RefCheck {  // private
1725       kIgnoreRef,
1726       kCheckRef,
1727       kCheckNotRef
1728     };
1729 
1730     enum class FPCheck {  // private
1731       kIgnoreFP,
1732       kCheckFP,
1733       kCheckNotFP
1734     };
1735 
1736     /**
1737      * Check whether a reg storage seems well-formed, that is, if a reg storage is valid,
1738      * that it has the expected form for the flags.
1739      * A flag value of 0 means ignore. A flag value of -1 means false. A flag value of 1 means true.
1740      */
1741     void CheckRegStorageImpl(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp, bool fail,
1742                              bool report)
1743         const;
1744 
1745     /**
1746      * Check whether a reg location seems well-formed, that is, if a reg storage is encoded,
1747      * that it has the expected size.
1748      */
1749     void CheckRegLocationImpl(RegLocation rl, bool fail, bool report) const;
1750 
1751     // See CheckRegStorageImpl. Will print or fail depending on kFailOnSizeError and
1752     // kReportSizeError.
1753     void CheckRegStorage(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp) const;
1754     // See CheckRegLocationImpl.
1755     void CheckRegLocation(RegLocation rl) const;
1756 
1757     // Find the references at the beginning of a basic block (for generating GC maps).
1758     void InitReferenceVRegs(BasicBlock* bb, BitVector* references);
1759 
1760     // Update references from prev_mir to mir in the same BB. If mir is null or before
1761     // prev_mir, report failure (return false) and update references to the end of the BB.
1762     bool UpdateReferenceVRegsLocal(MIR* mir, MIR* prev_mir, BitVector* references);
1763 
1764     // Update references from prev_mir to mir.
1765     void UpdateReferenceVRegs(MIR* mir, MIR* prev_mir, BitVector* references);
1766 
1767     /**
1768      * Returns true if the frame spills the given core register.
1769      */
CoreSpillMaskContains(int reg)1770     bool CoreSpillMaskContains(int reg) {
1771       return (core_spill_mask_ & (1u << reg)) != 0;
1772     }
1773 
1774   public:
1775     // TODO: add accessors for these.
1776     LIR* literal_list_;                        // Constants.
1777     LIR* method_literal_list_;                 // Method literals requiring patching.
1778     LIR* class_literal_list_;                  // Class literals requiring patching.
1779     LIR* code_literal_list_;                   // Code literals requiring patching.
1780     LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1781 
1782   protected:
1783     ArenaAllocator* const arena_;
1784     CompilationUnit* const cu_;
1785     MIRGraph* const mir_graph_;
1786     ArenaVector<SwitchTable*> switch_tables_;
1787     ArenaVector<FillArrayData*> fill_array_data_;
1788     ArenaVector<RegisterInfo*> tempreg_info_;
1789     ArenaVector<RegisterInfo*> reginfo_map_;
1790     ArenaVector<const void*> pointer_storage_;
1791     CodeOffset data_offset_;            // starting offset of literal pool.
1792     size_t total_size_;                   // header + code size.
1793     LIR* block_label_list_;
1794     PromotionMap* promotion_map_;
1795     /*
1796      * TODO: The code generation utilities don't have a built-in
1797      * mechanism to propagate the original Dalvik opcode address to the
1798      * associated generated instructions.  For the trace compiler, this wasn't
1799      * necessary because the interpreter handled all throws and debugging
1800      * requests.  For now we'll handle this by placing the Dalvik offset
1801      * in the CompilationUnit struct before codegen for each instruction.
1802      * The low-level LIR creation utilites will pull it from here.  Rework this.
1803      */
1804     DexOffset current_dalvik_offset_;
1805     MIR* current_mir_;
1806     size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1807     std::unique_ptr<RegisterPool> reg_pool_;
1808     /*
1809      * Sanity checking for the register temp tracking.  The same ssa
1810      * name should never be associated with one temp register per
1811      * instruction compilation.
1812      */
1813     int live_sreg_;
1814     CodeBuffer code_buffer_;
1815     // The source mapping table data (pc -> dex). More entries than in encoded_mapping_table_
1816     DefaultSrcMap src_mapping_table_;
1817     // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1818     ArenaVector<uint8_t> encoded_mapping_table_;
1819     ArenaVector<uint32_t> core_vmap_table_;
1820     ArenaVector<uint32_t> fp_vmap_table_;
1821     ArenaVector<uint8_t> native_gc_map_;
1822     ArenaVector<LinkerPatch> patches_;
1823     int num_core_spills_;
1824     int num_fp_spills_;
1825     int frame_size_;
1826     unsigned int core_spill_mask_;
1827     unsigned int fp_spill_mask_;
1828     LIR* first_lir_insn_;
1829     LIR* last_lir_insn_;
1830 
1831     ArenaVector<LIRSlowPath*> slow_paths_;
1832 
1833     // The memory reference type for new LIRs.
1834     // NOTE: Passing this as an explicit parameter by all functions that directly or indirectly
1835     // invoke RawLIR() would clutter the code and reduce the readability.
1836     ResourceMask::ResourceBit mem_ref_type_;
1837 
1838     // Each resource mask now takes 16-bytes, so having both use/def masks directly in a LIR
1839     // would consume 32 bytes per LIR. Instead, the LIR now holds only pointers to the masks
1840     // (i.e. 8 bytes on 32-bit arch, 16 bytes on 64-bit arch) and we use ResourceMaskCache
1841     // to deduplicate the masks.
1842     ResourceMaskCache mask_cache_;
1843 
1844     // Record the MIR that generated a given safepoint (null for prologue safepoints).
1845     ArenaVector<std::pair<LIR*, MIR*>> safepoints_;
1846 
1847     // The layout of the cu_->dex_file's dex cache arrays for PC-relative addressing.
1848     const DexCacheArraysLayout dex_cache_arrays_layout_;
1849 
1850     // For architectures that don't have true PC-relative addressing, we can promote
1851     // a PC of an instruction (or another PC-relative address such as a pointer to
1852     // the dex cache arrays if supported) to a register. This is indicated to the
1853     // register promotion by allocating a backend temp.
1854     CompilerTemp* pc_rel_temp_;
1855 
1856     // For architectures that don't have true PC-relative addressing (see pc_rel_temp_
1857     // above) and also have a limited range of offsets for loads, it's be useful to
1858     // know the minimum offset into the dex cache arrays, so we calculate that as well
1859     // if pc_rel_temp_ isn't null.
1860     uint32_t dex_cache_arrays_min_offset_;
1861 
1862     dwarf::LazyDebugFrameOpCodeWriter cfi_;
1863 
1864     // ABI support
1865     class ShortyArg {
1866       public:
ShortyArg(char type)1867         explicit ShortyArg(char type) : type_(type) { }
IsFP()1868         bool IsFP() { return type_ == 'F' || type_ == 'D'; }
IsWide()1869         bool IsWide() { return type_ == 'J' || type_ == 'D'; }
IsRef()1870         bool IsRef() { return type_ == 'L'; }
GetType()1871         char GetType() { return type_; }
1872       private:
1873         char type_;
1874     };
1875 
1876     class ShortyIterator {
1877       public:
1878         ShortyIterator(const char* shorty, bool is_static);
1879         bool Next();
GetArg()1880         ShortyArg GetArg() { return ShortyArg(pending_this_ ? 'L' : *cur_); }
1881       private:
1882         const char* cur_;
1883         bool pending_this_;
1884         bool initialized_;
1885     };
1886 
1887     class InToRegStorageMapper {
1888      public:
1889       virtual RegStorage GetNextReg(ShortyArg arg) = 0;
~InToRegStorageMapper()1890       virtual ~InToRegStorageMapper() {}
1891       virtual void Reset() = 0;
1892     };
1893 
1894     class InToRegStorageMapping {
1895      public:
InToRegStorageMapping(ArenaAllocator * arena)1896       explicit InToRegStorageMapping(ArenaAllocator* arena)
1897           : mapping_(arena->Adapter()),
1898             end_mapped_in_(0u), has_arguments_on_stack_(false),  initialized_(false) {}
1899       void Initialize(ShortyIterator* shorty, InToRegStorageMapper* mapper);
1900       /**
1901        * @return the past-the-end index of VRs mapped to physical registers.
1902        * In other words any VR starting from this index is mapped to memory.
1903        */
GetEndMappedIn()1904       size_t GetEndMappedIn() { return end_mapped_in_; }
HasArgumentsOnStack()1905       bool HasArgumentsOnStack() { return has_arguments_on_stack_; }
1906       RegStorage GetReg(size_t in_position);
1907       ShortyArg GetShorty(size_t in_position);
IsInitialized()1908       bool IsInitialized() { return initialized_; }
1909      private:
1910       static constexpr char kInvalidShorty = '-';
1911       ArenaVector<std::pair<ShortyArg, RegStorage>> mapping_;
1912       size_t end_mapped_in_;
1913       bool has_arguments_on_stack_;
1914       bool initialized_;
1915     };
1916 
1917   // Cached mapping of method input to reg storage according to ABI.
1918   InToRegStorageMapping in_to_reg_storage_mapping_;
1919   virtual InToRegStorageMapper* GetResetedInToRegStorageMapper() = 0;
1920 
1921   private:
1922     static bool SizeMatchesTypeForEntrypoint(OpSize size, Primitive::Type type);
1923 
1924     friend class QuickCFITest;
1925 };  // Class Mir2Lir
1926 
1927 }  // namespace art
1928 
1929 #endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1930