1 /*
2 * The copyright in this software is being made available under the 2-clauses
3 * BSD License, included below. This software may be subject to other third
4 * party and contributor rights, including patent rights, and no such rights
5 * are granted under this license.
6 *
7 * Copyright (c) 2008, Jerome Fimes, Communications & Systemes <jerome.fimes@c-s.fr>
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include "opj_includes.h"
33
34 /**
35 * LUP decomposition
36 */
37 static OPJ_BOOL opj_lupDecompose(OPJ_FLOAT32 * matrix,
38 OPJ_UINT32 * permutations,
39 OPJ_FLOAT32 * p_swap_area,
40 OPJ_UINT32 nb_compo);
41 /**
42 * LUP solving
43 */
44 static void opj_lupSolve(OPJ_FLOAT32 * pResult,
45 OPJ_FLOAT32* pMatrix,
46 OPJ_FLOAT32* pVector,
47 OPJ_UINT32* pPermutations,
48 OPJ_UINT32 nb_compo,
49 OPJ_FLOAT32 * p_intermediate_data);
50
51 /**
52 *LUP inversion (call with the result of lupDecompose)
53 */
54 static void opj_lupInvert ( OPJ_FLOAT32 * pSrcMatrix,
55 OPJ_FLOAT32 * pDestMatrix,
56 OPJ_UINT32 nb_compo,
57 OPJ_UINT32 * pPermutations,
58 OPJ_FLOAT32 * p_src_temp,
59 OPJ_FLOAT32 * p_dest_temp,
60 OPJ_FLOAT32 * p_swap_area);
61
62 /*
63 ==========================================================
64 Matric inversion interface
65 ==========================================================
66 */
67 /**
68 * Matrix inversion.
69 */
opj_matrix_inversion_f(OPJ_FLOAT32 * pSrcMatrix,OPJ_FLOAT32 * pDestMatrix,OPJ_UINT32 nb_compo)70 OPJ_BOOL opj_matrix_inversion_f(OPJ_FLOAT32 * pSrcMatrix,
71 OPJ_FLOAT32 * pDestMatrix,
72 OPJ_UINT32 nb_compo)
73 {
74 OPJ_BYTE * l_data = 00;
75 OPJ_UINT32 l_permutation_size = nb_compo * (OPJ_UINT32)sizeof(OPJ_UINT32);
76 OPJ_UINT32 l_swap_size = nb_compo * (OPJ_UINT32)sizeof(OPJ_FLOAT32);
77 OPJ_UINT32 l_total_size = l_permutation_size + 3 * l_swap_size;
78 OPJ_UINT32 * lPermutations = 00;
79 OPJ_FLOAT32 * l_double_data = 00;
80
81 l_data = (OPJ_BYTE *) opj_malloc(l_total_size);
82 if (l_data == 0) {
83 return OPJ_FALSE;
84 }
85 lPermutations = (OPJ_UINT32 *) l_data;
86 l_double_data = (OPJ_FLOAT32 *) (l_data + l_permutation_size);
87 memset(lPermutations,0,l_permutation_size);
88
89 if(! opj_lupDecompose(pSrcMatrix,lPermutations,l_double_data,nb_compo)) {
90 opj_free(l_data);
91 return OPJ_FALSE;
92 }
93
94 opj_lupInvert(pSrcMatrix,pDestMatrix,nb_compo,lPermutations,l_double_data,l_double_data + nb_compo,l_double_data + 2*nb_compo);
95 opj_free(l_data);
96
97 return OPJ_TRUE;
98 }
99
100
101 /*
102 ==========================================================
103 Local functions
104 ==========================================================
105 */
opj_lupDecompose(OPJ_FLOAT32 * matrix,OPJ_UINT32 * permutations,OPJ_FLOAT32 * p_swap_area,OPJ_UINT32 nb_compo)106 OPJ_BOOL opj_lupDecompose(OPJ_FLOAT32 * matrix,OPJ_UINT32 * permutations,
107 OPJ_FLOAT32 * p_swap_area,
108 OPJ_UINT32 nb_compo)
109 {
110 OPJ_UINT32 * tmpPermutations = permutations;
111 OPJ_UINT32 * dstPermutations;
112 OPJ_UINT32 k2=0,t;
113 OPJ_FLOAT32 temp;
114 OPJ_UINT32 i,j,k;
115 OPJ_FLOAT32 p;
116 OPJ_UINT32 lLastColum = nb_compo - 1;
117 OPJ_UINT32 lSwapSize = nb_compo * (OPJ_UINT32)sizeof(OPJ_FLOAT32);
118 OPJ_FLOAT32 * lTmpMatrix = matrix;
119 OPJ_FLOAT32 * lColumnMatrix,* lDestMatrix;
120 OPJ_UINT32 offset = 1;
121 OPJ_UINT32 lStride = nb_compo-1;
122
123 /*initialize permutations */
124 for (i = 0; i < nb_compo; ++i)
125 {
126 *tmpPermutations++ = i;
127 }
128 /* now make a pivot with colum switch */
129 tmpPermutations = permutations;
130 for (k = 0; k < lLastColum; ++k) {
131 p = 0.0;
132
133 /* take the middle element */
134 lColumnMatrix = lTmpMatrix + k;
135
136 /* make permutation with the biggest value in the column */
137 for (i = k; i < nb_compo; ++i) {
138 temp = ((*lColumnMatrix > 0) ? *lColumnMatrix : -(*lColumnMatrix));
139 if (temp > p) {
140 p = temp;
141 k2 = i;
142 }
143 /* next line */
144 lColumnMatrix += nb_compo;
145 }
146
147 /* a whole rest of 0 -> non singular */
148 if (p == 0.0) {
149 return OPJ_FALSE;
150 }
151
152 /* should we permute ? */
153 if (k2 != k) {
154 /*exchange of line */
155 /* k2 > k */
156 dstPermutations = tmpPermutations + k2 - k;
157 /* swap indices */
158 t = *tmpPermutations;
159 *tmpPermutations = *dstPermutations;
160 *dstPermutations = t;
161
162 /* and swap entire line. */
163 lColumnMatrix = lTmpMatrix + (k2 - k) * nb_compo;
164 memcpy(p_swap_area,lColumnMatrix,lSwapSize);
165 memcpy(lColumnMatrix,lTmpMatrix,lSwapSize);
166 memcpy(lTmpMatrix,p_swap_area,lSwapSize);
167 }
168
169 /* now update data in the rest of the line and line after */
170 lDestMatrix = lTmpMatrix + k;
171 lColumnMatrix = lDestMatrix + nb_compo;
172 /* take the middle element */
173 temp = *(lDestMatrix++);
174
175 /* now compute up data (i.e. coeff up of the diagonal). */
176 for (i = offset; i < nb_compo; ++i) {
177 /*lColumnMatrix; */
178 /* divide the lower column elements by the diagonal value */
179
180 /* matrix[i][k] /= matrix[k][k]; */
181 /* p = matrix[i][k] */
182 p = *lColumnMatrix / temp;
183 *(lColumnMatrix++) = p;
184
185 for (j = /* k + 1 */ offset; j < nb_compo; ++j) {
186 /* matrix[i][j] -= matrix[i][k] * matrix[k][j]; */
187 *(lColumnMatrix++) -= p * (*(lDestMatrix++));
188 }
189 /* come back to the k+1th element */
190 lDestMatrix -= lStride;
191 /* go to kth element of the next line */
192 lColumnMatrix += k;
193 }
194
195 /* offset is now k+2 */
196 ++offset;
197 /* 1 element less for stride */
198 --lStride;
199 /* next line */
200 lTmpMatrix+=nb_compo;
201 /* next permutation element */
202 ++tmpPermutations;
203 }
204 return OPJ_TRUE;
205 }
206
opj_lupSolve(OPJ_FLOAT32 * pResult,OPJ_FLOAT32 * pMatrix,OPJ_FLOAT32 * pVector,OPJ_UINT32 * pPermutations,OPJ_UINT32 nb_compo,OPJ_FLOAT32 * p_intermediate_data)207 void opj_lupSolve (OPJ_FLOAT32 * pResult,
208 OPJ_FLOAT32 * pMatrix,
209 OPJ_FLOAT32 * pVector,
210 OPJ_UINT32* pPermutations,
211 OPJ_UINT32 nb_compo,OPJ_FLOAT32 * p_intermediate_data)
212 {
213 OPJ_INT32 k;
214 OPJ_UINT32 i,j;
215 OPJ_FLOAT32 sum;
216 OPJ_FLOAT32 u;
217 OPJ_UINT32 lStride = nb_compo+1;
218 OPJ_FLOAT32 * lCurrentPtr;
219 OPJ_FLOAT32 * lIntermediatePtr;
220 OPJ_FLOAT32 * lDestPtr;
221 OPJ_FLOAT32 * lTmpMatrix;
222 OPJ_FLOAT32 * lLineMatrix = pMatrix;
223 OPJ_FLOAT32 * lBeginPtr = pResult + nb_compo - 1;
224 OPJ_FLOAT32 * lGeneratedData;
225 OPJ_UINT32 * lCurrentPermutationPtr = pPermutations;
226
227
228 lIntermediatePtr = p_intermediate_data;
229 lGeneratedData = p_intermediate_data + nb_compo - 1;
230
231 for (i = 0; i < nb_compo; ++i) {
232 sum = 0.0;
233 lCurrentPtr = p_intermediate_data;
234 lTmpMatrix = lLineMatrix;
235 for (j = 1; j <= i; ++j)
236 {
237 /* sum += matrix[i][j-1] * y[j-1]; */
238 sum += (*(lTmpMatrix++)) * (*(lCurrentPtr++));
239 }
240 /*y[i] = pVector[pPermutations[i]] - sum; */
241 *(lIntermediatePtr++) = pVector[*(lCurrentPermutationPtr++)] - sum;
242 lLineMatrix += nb_compo;
243 }
244
245 /* we take the last point of the matrix */
246 lLineMatrix = pMatrix + nb_compo*nb_compo - 1;
247
248 /* and we take after the last point of the destination vector */
249 lDestPtr = pResult + nb_compo;
250
251
252 assert(nb_compo != 0);
253 for (k = (OPJ_INT32)nb_compo - 1; k != -1 ; --k) {
254 sum = 0.0;
255 lTmpMatrix = lLineMatrix;
256 u = *(lTmpMatrix++);
257 lCurrentPtr = lDestPtr--;
258 for (j = (OPJ_UINT32)(k + 1); j < nb_compo; ++j) {
259 /* sum += matrix[k][j] * x[j] */
260 sum += (*(lTmpMatrix++)) * (*(lCurrentPtr++));
261 }
262 /*x[k] = (y[k] - sum) / u; */
263 *(lBeginPtr--) = (*(lGeneratedData--) - sum) / u;
264 lLineMatrix -= lStride;
265 }
266 }
267
268
opj_lupInvert(OPJ_FLOAT32 * pSrcMatrix,OPJ_FLOAT32 * pDestMatrix,OPJ_UINT32 nb_compo,OPJ_UINT32 * pPermutations,OPJ_FLOAT32 * p_src_temp,OPJ_FLOAT32 * p_dest_temp,OPJ_FLOAT32 * p_swap_area)269 void opj_lupInvert (OPJ_FLOAT32 * pSrcMatrix,
270 OPJ_FLOAT32 * pDestMatrix,
271 OPJ_UINT32 nb_compo,
272 OPJ_UINT32 * pPermutations,
273 OPJ_FLOAT32 * p_src_temp,
274 OPJ_FLOAT32 * p_dest_temp,
275 OPJ_FLOAT32 * p_swap_area )
276 {
277 OPJ_UINT32 j,i;
278 OPJ_FLOAT32 * lCurrentPtr;
279 OPJ_FLOAT32 * lLineMatrix = pDestMatrix;
280 OPJ_UINT32 lSwapSize = nb_compo * (OPJ_UINT32)sizeof(OPJ_FLOAT32);
281
282 for (j = 0; j < nb_compo; ++j) {
283 lCurrentPtr = lLineMatrix++;
284 memset(p_src_temp,0,lSwapSize);
285 p_src_temp[j] = 1.0;
286 opj_lupSolve(p_dest_temp,pSrcMatrix,p_src_temp, pPermutations, nb_compo , p_swap_area);
287
288 for (i = 0; i < nb_compo; ++i) {
289 *(lCurrentPtr) = p_dest_temp[i];
290 lCurrentPtr+=nb_compo;
291 }
292 }
293 }
294
295