1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package android.view; 18 19 import android.hardware.display.DisplayManagerGlobal; 20 import android.os.Handler; 21 import android.os.Looper; 22 import android.os.Message; 23 import android.os.SystemClock; 24 import android.os.SystemProperties; 25 import android.os.Trace; 26 import android.util.Log; 27 import android.util.TimeUtils; 28 29 import java.io.PrintWriter; 30 31 /** 32 * Coordinates the timing of animations, input and drawing. 33 * <p> 34 * The choreographer receives timing pulses (such as vertical synchronization) 35 * from the display subsystem then schedules work to occur as part of rendering 36 * the next display frame. 37 * </p><p> 38 * Applications typically interact with the choreographer indirectly using 39 * higher level abstractions in the animation framework or the view hierarchy. 40 * Here are some examples of things you can do using the higher-level APIs. 41 * </p> 42 * <ul> 43 * <li>To post an animation to be processed on a regular time basis synchronized with 44 * display frame rendering, use {@link android.animation.ValueAnimator#start}.</li> 45 * <li>To post a {@link Runnable} to be invoked once at the beginning of the next display 46 * frame, use {@link View#postOnAnimation}.</li> 47 * <li>To post a {@link Runnable} to be invoked once at the beginning of the next display 48 * frame after a delay, use {@link View#postOnAnimationDelayed}.</li> 49 * <li>To post a call to {@link View#invalidate()} to occur once at the beginning of the 50 * next display frame, use {@link View#postInvalidateOnAnimation()} or 51 * {@link View#postInvalidateOnAnimation(int, int, int, int)}.</li> 52 * <li>To ensure that the contents of a {@link View} scroll smoothly and are drawn in 53 * sync with display frame rendering, do nothing. This already happens automatically. 54 * {@link View#onDraw} will be called at the appropriate time.</li> 55 * </ul> 56 * <p> 57 * However, there are a few cases where you might want to use the functions of the 58 * choreographer directly in your application. Here are some examples. 59 * </p> 60 * <ul> 61 * <li>If your application does its rendering in a different thread, possibly using GL, 62 * or does not use the animation framework or view hierarchy at all 63 * and you want to ensure that it is appropriately synchronized with the display, then use 64 * {@link Choreographer#postFrameCallback}.</li> 65 * <li>... and that's about it.</li> 66 * </ul> 67 * <p> 68 * Each {@link Looper} thread has its own choreographer. Other threads can 69 * post callbacks to run on the choreographer but they will run on the {@link Looper} 70 * to which the choreographer belongs. 71 * </p> 72 */ 73 public final class Choreographer { 74 private static final String TAG = "Choreographer"; 75 76 // Prints debug messages about jank which was detected (low volume). 77 private static final boolean DEBUG_JANK = false; 78 79 // Prints debug messages about every frame and callback registered (high volume). 80 private static final boolean DEBUG_FRAMES = false; 81 82 // The default amount of time in ms between animation frames. 83 // When vsync is not enabled, we want to have some idea of how long we should 84 // wait before posting the next animation message. It is important that the 85 // default value be less than the true inter-frame delay on all devices to avoid 86 // situations where we might skip frames by waiting too long (we must compensate 87 // for jitter and hardware variations). Regardless of this value, the animation 88 // and display loop is ultimately rate-limited by how fast new graphics buffers can 89 // be dequeued. 90 private static final long DEFAULT_FRAME_DELAY = 10; 91 92 // The number of milliseconds between animation frames. 93 private static volatile long sFrameDelay = DEFAULT_FRAME_DELAY; 94 95 // Thread local storage for the choreographer. 96 private static final ThreadLocal<Choreographer> sThreadInstance = 97 new ThreadLocal<Choreographer>() { 98 @Override 99 protected Choreographer initialValue() { 100 Looper looper = Looper.myLooper(); 101 if (looper == null) { 102 throw new IllegalStateException("The current thread must have a looper!"); 103 } 104 return new Choreographer(looper); 105 } 106 }; 107 108 // Enable/disable vsync for animations and drawing. 109 private static final boolean USE_VSYNC = SystemProperties.getBoolean( 110 "debug.choreographer.vsync", true); 111 112 // Enable/disable using the frame time instead of returning now. 113 private static final boolean USE_FRAME_TIME = SystemProperties.getBoolean( 114 "debug.choreographer.frametime", true); 115 116 // Set a limit to warn about skipped frames. 117 // Skipped frames imply jank. 118 private static final int SKIPPED_FRAME_WARNING_LIMIT = SystemProperties.getInt( 119 "debug.choreographer.skipwarning", 30); 120 121 private static final int MSG_DO_FRAME = 0; 122 private static final int MSG_DO_SCHEDULE_VSYNC = 1; 123 private static final int MSG_DO_SCHEDULE_CALLBACK = 2; 124 125 // All frame callbacks posted by applications have this token. 126 private static final Object FRAME_CALLBACK_TOKEN = new Object() { 127 public String toString() { return "FRAME_CALLBACK_TOKEN"; } 128 }; 129 130 private final Object mLock = new Object(); 131 132 private final Looper mLooper; 133 private final FrameHandler mHandler; 134 135 // The display event receiver can only be accessed by the looper thread to which 136 // it is attached. We take care to ensure that we post message to the looper 137 // if appropriate when interacting with the display event receiver. 138 private final FrameDisplayEventReceiver mDisplayEventReceiver; 139 140 private CallbackRecord mCallbackPool; 141 142 private final CallbackQueue[] mCallbackQueues; 143 144 private boolean mFrameScheduled; 145 private boolean mCallbacksRunning; 146 private long mLastFrameTimeNanos; 147 private long mFrameIntervalNanos; 148 private boolean mDebugPrintNextFrameTimeDelta; 149 150 /** 151 * Contains information about the current frame for jank-tracking, 152 * mainly timings of key events along with a bit of metadata about 153 * view tree state 154 * 155 * TODO: Is there a better home for this? Currently Choreographer 156 * is the only one with CALLBACK_ANIMATION start time, hence why this 157 * resides here. 158 * 159 * @hide 160 */ 161 FrameInfo mFrameInfo = new FrameInfo(); 162 163 /** 164 * Must be kept in sync with CALLBACK_* ints below, used to index into this array. 165 * @hide 166 */ 167 private static final String[] CALLBACK_TRACE_TITLES = { 168 "input", "animation", "traversal", "commit" 169 }; 170 171 /** 172 * Callback type: Input callback. Runs first. 173 * @hide 174 */ 175 public static final int CALLBACK_INPUT = 0; 176 177 /** 178 * Callback type: Animation callback. Runs before traversals. 179 * @hide 180 */ 181 public static final int CALLBACK_ANIMATION = 1; 182 183 /** 184 * Callback type: Traversal callback. Handles layout and draw. Runs 185 * after all other asynchronous messages have been handled. 186 * @hide 187 */ 188 public static final int CALLBACK_TRAVERSAL = 2; 189 190 /** 191 * Callback type: Commit callback. Handles post-draw operations for the frame. 192 * Runs after traversal completes. The {@link #getFrameTime() frame time} reported 193 * during this callback may be updated to reflect delays that occurred while 194 * traversals were in progress in case heavy layout operations caused some frames 195 * to be skipped. The frame time reported during this callback provides a better 196 * estimate of the start time of the frame in which animations (and other updates 197 * to the view hierarchy state) actually took effect. 198 * @hide 199 */ 200 public static final int CALLBACK_COMMIT = 3; 201 202 private static final int CALLBACK_LAST = CALLBACK_COMMIT; 203 Choreographer(Looper looper)204 private Choreographer(Looper looper) { 205 mLooper = looper; 206 mHandler = new FrameHandler(looper); 207 mDisplayEventReceiver = USE_VSYNC ? new FrameDisplayEventReceiver(looper) : null; 208 mLastFrameTimeNanos = Long.MIN_VALUE; 209 210 mFrameIntervalNanos = (long)(1000000000 / getRefreshRate()); 211 212 mCallbackQueues = new CallbackQueue[CALLBACK_LAST + 1]; 213 for (int i = 0; i <= CALLBACK_LAST; i++) { 214 mCallbackQueues[i] = new CallbackQueue(); 215 } 216 } 217 getRefreshRate()218 private static float getRefreshRate() { 219 DisplayInfo di = DisplayManagerGlobal.getInstance().getDisplayInfo( 220 Display.DEFAULT_DISPLAY); 221 return di.getMode().getRefreshRate(); 222 } 223 224 /** 225 * Gets the choreographer for the calling thread. Must be called from 226 * a thread that already has a {@link android.os.Looper} associated with it. 227 * 228 * @return The choreographer for this thread. 229 * @throws IllegalStateException if the thread does not have a looper. 230 */ getInstance()231 public static Choreographer getInstance() { 232 return sThreadInstance.get(); 233 } 234 235 /** 236 * The amount of time, in milliseconds, between each frame of the animation. 237 * <p> 238 * This is a requested time that the animation will attempt to honor, but the actual delay 239 * between frames may be different, depending on system load and capabilities. This is a static 240 * function because the same delay will be applied to all animations, since they are all 241 * run off of a single timing loop. 242 * </p><p> 243 * The frame delay may be ignored when the animation system uses an external timing 244 * source, such as the display refresh rate (vsync), to govern animations. 245 * </p> 246 * 247 * @return the requested time between frames, in milliseconds 248 * @hide 249 */ getFrameDelay()250 public static long getFrameDelay() { 251 return sFrameDelay; 252 } 253 254 /** 255 * The amount of time, in milliseconds, between each frame of the animation. 256 * <p> 257 * This is a requested time that the animation will attempt to honor, but the actual delay 258 * between frames may be different, depending on system load and capabilities. This is a static 259 * function because the same delay will be applied to all animations, since they are all 260 * run off of a single timing loop. 261 * </p><p> 262 * The frame delay may be ignored when the animation system uses an external timing 263 * source, such as the display refresh rate (vsync), to govern animations. 264 * </p> 265 * 266 * @param frameDelay the requested time between frames, in milliseconds 267 * @hide 268 */ setFrameDelay(long frameDelay)269 public static void setFrameDelay(long frameDelay) { 270 sFrameDelay = frameDelay; 271 } 272 273 /** 274 * Subtracts typical frame delay time from a delay interval in milliseconds. 275 * <p> 276 * This method can be used to compensate for animation delay times that have baked 277 * in assumptions about the frame delay. For example, it's quite common for code to 278 * assume a 60Hz frame time and bake in a 16ms delay. When we call 279 * {@link #postAnimationCallbackDelayed} we want to know how long to wait before 280 * posting the animation callback but let the animation timer take care of the remaining 281 * frame delay time. 282 * </p><p> 283 * This method is somewhat conservative about how much of the frame delay it 284 * subtracts. It uses the same value returned by {@link #getFrameDelay} which by 285 * default is 10ms even though many parts of the system assume 16ms. Consequently, 286 * we might still wait 6ms before posting an animation callback that we want to run 287 * on the next frame, but this is much better than waiting a whole 16ms and likely 288 * missing the deadline. 289 * </p> 290 * 291 * @param delayMillis The original delay time including an assumed frame delay. 292 * @return The adjusted delay time with the assumed frame delay subtracted out. 293 * @hide 294 */ subtractFrameDelay(long delayMillis)295 public static long subtractFrameDelay(long delayMillis) { 296 final long frameDelay = sFrameDelay; 297 return delayMillis <= frameDelay ? 0 : delayMillis - frameDelay; 298 } 299 300 /** 301 * @return The refresh rate as the nanoseconds between frames 302 * @hide 303 */ getFrameIntervalNanos()304 public long getFrameIntervalNanos() { 305 return mFrameIntervalNanos; 306 } 307 dump(String prefix, PrintWriter writer)308 void dump(String prefix, PrintWriter writer) { 309 String innerPrefix = prefix + " "; 310 writer.print(prefix); writer.println("Choreographer:"); 311 writer.print(innerPrefix); writer.print("mFrameScheduled="); 312 writer.println(mFrameScheduled); 313 writer.print(innerPrefix); writer.print("mLastFrameTime="); 314 writer.println(TimeUtils.formatUptime(mLastFrameTimeNanos / 1000000)); 315 } 316 317 /** 318 * Posts a callback to run on the next frame. 319 * <p> 320 * The callback runs once then is automatically removed. 321 * </p> 322 * 323 * @param callbackType The callback type. 324 * @param action The callback action to run during the next frame. 325 * @param token The callback token, or null if none. 326 * 327 * @see #removeCallbacks 328 * @hide 329 */ postCallback(int callbackType, Runnable action, Object token)330 public void postCallback(int callbackType, Runnable action, Object token) { 331 postCallbackDelayed(callbackType, action, token, 0); 332 } 333 334 /** 335 * Posts a callback to run on the next frame after the specified delay. 336 * <p> 337 * The callback runs once then is automatically removed. 338 * </p> 339 * 340 * @param callbackType The callback type. 341 * @param action The callback action to run during the next frame after the specified delay. 342 * @param token The callback token, or null if none. 343 * @param delayMillis The delay time in milliseconds. 344 * 345 * @see #removeCallback 346 * @hide 347 */ postCallbackDelayed(int callbackType, Runnable action, Object token, long delayMillis)348 public void postCallbackDelayed(int callbackType, 349 Runnable action, Object token, long delayMillis) { 350 if (action == null) { 351 throw new IllegalArgumentException("action must not be null"); 352 } 353 if (callbackType < 0 || callbackType > CALLBACK_LAST) { 354 throw new IllegalArgumentException("callbackType is invalid"); 355 } 356 357 postCallbackDelayedInternal(callbackType, action, token, delayMillis); 358 } 359 postCallbackDelayedInternal(int callbackType, Object action, Object token, long delayMillis)360 private void postCallbackDelayedInternal(int callbackType, 361 Object action, Object token, long delayMillis) { 362 if (DEBUG_FRAMES) { 363 Log.d(TAG, "PostCallback: type=" + callbackType 364 + ", action=" + action + ", token=" + token 365 + ", delayMillis=" + delayMillis); 366 } 367 368 synchronized (mLock) { 369 final long now = SystemClock.uptimeMillis(); 370 final long dueTime = now + delayMillis; 371 mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token); 372 373 if (dueTime <= now) { 374 scheduleFrameLocked(now); 375 } else { 376 Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action); 377 msg.arg1 = callbackType; 378 msg.setAsynchronous(true); 379 mHandler.sendMessageAtTime(msg, dueTime); 380 } 381 } 382 } 383 384 /** 385 * Removes callbacks that have the specified action and token. 386 * 387 * @param callbackType The callback type. 388 * @param action The action property of the callbacks to remove, or null to remove 389 * callbacks with any action. 390 * @param token The token property of the callbacks to remove, or null to remove 391 * callbacks with any token. 392 * 393 * @see #postCallback 394 * @see #postCallbackDelayed 395 * @hide 396 */ removeCallbacks(int callbackType, Runnable action, Object token)397 public void removeCallbacks(int callbackType, Runnable action, Object token) { 398 if (callbackType < 0 || callbackType > CALLBACK_LAST) { 399 throw new IllegalArgumentException("callbackType is invalid"); 400 } 401 402 removeCallbacksInternal(callbackType, action, token); 403 } 404 removeCallbacksInternal(int callbackType, Object action, Object token)405 private void removeCallbacksInternal(int callbackType, Object action, Object token) { 406 if (DEBUG_FRAMES) { 407 Log.d(TAG, "RemoveCallbacks: type=" + callbackType 408 + ", action=" + action + ", token=" + token); 409 } 410 411 synchronized (mLock) { 412 mCallbackQueues[callbackType].removeCallbacksLocked(action, token); 413 if (action != null && token == null) { 414 mHandler.removeMessages(MSG_DO_SCHEDULE_CALLBACK, action); 415 } 416 } 417 } 418 419 /** 420 * Posts a frame callback to run on the next frame. 421 * <p> 422 * The callback runs once then is automatically removed. 423 * </p> 424 * 425 * @param callback The frame callback to run during the next frame. 426 * 427 * @see #postFrameCallbackDelayed 428 * @see #removeFrameCallback 429 */ postFrameCallback(FrameCallback callback)430 public void postFrameCallback(FrameCallback callback) { 431 postFrameCallbackDelayed(callback, 0); 432 } 433 434 /** 435 * Posts a frame callback to run on the next frame after the specified delay. 436 * <p> 437 * The callback runs once then is automatically removed. 438 * </p> 439 * 440 * @param callback The frame callback to run during the next frame. 441 * @param delayMillis The delay time in milliseconds. 442 * 443 * @see #postFrameCallback 444 * @see #removeFrameCallback 445 */ postFrameCallbackDelayed(FrameCallback callback, long delayMillis)446 public void postFrameCallbackDelayed(FrameCallback callback, long delayMillis) { 447 if (callback == null) { 448 throw new IllegalArgumentException("callback must not be null"); 449 } 450 451 postCallbackDelayedInternal(CALLBACK_ANIMATION, 452 callback, FRAME_CALLBACK_TOKEN, delayMillis); 453 } 454 455 /** 456 * Removes a previously posted frame callback. 457 * 458 * @param callback The frame callback to remove. 459 * 460 * @see #postFrameCallback 461 * @see #postFrameCallbackDelayed 462 */ removeFrameCallback(FrameCallback callback)463 public void removeFrameCallback(FrameCallback callback) { 464 if (callback == null) { 465 throw new IllegalArgumentException("callback must not be null"); 466 } 467 468 removeCallbacksInternal(CALLBACK_ANIMATION, callback, FRAME_CALLBACK_TOKEN); 469 } 470 471 /** 472 * Gets the time when the current frame started. 473 * <p> 474 * This method provides the time in milliseconds when the frame started being rendered. 475 * The frame time provides a stable time base for synchronizing animations 476 * and drawing. It should be used instead of {@link SystemClock#uptimeMillis()} 477 * or {@link System#nanoTime()} for animations and drawing in the UI. Using the frame 478 * time helps to reduce inter-frame jitter because the frame time is fixed at the time 479 * the frame was scheduled to start, regardless of when the animations or drawing 480 * callback actually runs. All callbacks that run as part of rendering a frame will 481 * observe the same frame time so using the frame time also helps to synchronize effects 482 * that are performed by different callbacks. 483 * </p><p> 484 * Please note that the framework already takes care to process animations and 485 * drawing using the frame time as a stable time base. Most applications should 486 * not need to use the frame time information directly. 487 * </p><p> 488 * This method should only be called from within a callback. 489 * </p> 490 * 491 * @return The frame start time, in the {@link SystemClock#uptimeMillis()} time base. 492 * 493 * @throws IllegalStateException if no frame is in progress. 494 * @hide 495 */ getFrameTime()496 public long getFrameTime() { 497 return getFrameTimeNanos() / TimeUtils.NANOS_PER_MS; 498 } 499 500 /** 501 * Same as {@link #getFrameTime()} but with nanosecond precision. 502 * 503 * @return The frame start time, in the {@link System#nanoTime()} time base. 504 * 505 * @throws IllegalStateException if no frame is in progress. 506 * @hide 507 */ getFrameTimeNanos()508 public long getFrameTimeNanos() { 509 synchronized (mLock) { 510 if (!mCallbacksRunning) { 511 throw new IllegalStateException("This method must only be called as " 512 + "part of a callback while a frame is in progress."); 513 } 514 return USE_FRAME_TIME ? mLastFrameTimeNanos : System.nanoTime(); 515 } 516 } 517 scheduleFrameLocked(long now)518 private void scheduleFrameLocked(long now) { 519 if (!mFrameScheduled) { 520 mFrameScheduled = true; 521 if (USE_VSYNC) { 522 if (DEBUG_FRAMES) { 523 Log.d(TAG, "Scheduling next frame on vsync."); 524 } 525 526 // If running on the Looper thread, then schedule the vsync immediately, 527 // otherwise post a message to schedule the vsync from the UI thread 528 // as soon as possible. 529 if (isRunningOnLooperThreadLocked()) { 530 scheduleVsyncLocked(); 531 } else { 532 Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_VSYNC); 533 msg.setAsynchronous(true); 534 mHandler.sendMessageAtFrontOfQueue(msg); 535 } 536 } else { 537 final long nextFrameTime = Math.max( 538 mLastFrameTimeNanos / TimeUtils.NANOS_PER_MS + sFrameDelay, now); 539 if (DEBUG_FRAMES) { 540 Log.d(TAG, "Scheduling next frame in " + (nextFrameTime - now) + " ms."); 541 } 542 Message msg = mHandler.obtainMessage(MSG_DO_FRAME); 543 msg.setAsynchronous(true); 544 mHandler.sendMessageAtTime(msg, nextFrameTime); 545 } 546 } 547 } 548 doFrame(long frameTimeNanos, int frame)549 void doFrame(long frameTimeNanos, int frame) { 550 final long startNanos; 551 synchronized (mLock) { 552 if (!mFrameScheduled) { 553 return; // no work to do 554 } 555 556 if (DEBUG_JANK && mDebugPrintNextFrameTimeDelta) { 557 mDebugPrintNextFrameTimeDelta = false; 558 Log.d(TAG, "Frame time delta: " 559 + ((frameTimeNanos - mLastFrameTimeNanos) * 0.000001f) + " ms"); 560 } 561 562 long intendedFrameTimeNanos = frameTimeNanos; 563 startNanos = System.nanoTime(); 564 final long jitterNanos = startNanos - frameTimeNanos; 565 if (jitterNanos >= mFrameIntervalNanos) { 566 final long skippedFrames = jitterNanos / mFrameIntervalNanos; 567 if (skippedFrames >= SKIPPED_FRAME_WARNING_LIMIT) { 568 Log.i(TAG, "Skipped " + skippedFrames + " frames! " 569 + "The application may be doing too much work on its main thread."); 570 } 571 final long lastFrameOffset = jitterNanos % mFrameIntervalNanos; 572 if (DEBUG_JANK) { 573 Log.d(TAG, "Missed vsync by " + (jitterNanos * 0.000001f) + " ms " 574 + "which is more than the frame interval of " 575 + (mFrameIntervalNanos * 0.000001f) + " ms! " 576 + "Skipping " + skippedFrames + " frames and setting frame " 577 + "time to " + (lastFrameOffset * 0.000001f) + " ms in the past."); 578 } 579 frameTimeNanos = startNanos - lastFrameOffset; 580 } 581 582 if (frameTimeNanos < mLastFrameTimeNanos) { 583 if (DEBUG_JANK) { 584 Log.d(TAG, "Frame time appears to be going backwards. May be due to a " 585 + "previously skipped frame. Waiting for next vsync."); 586 } 587 scheduleVsyncLocked(); 588 return; 589 } 590 591 mFrameInfo.setVsync(intendedFrameTimeNanos, frameTimeNanos); 592 mFrameScheduled = false; 593 mLastFrameTimeNanos = frameTimeNanos; 594 } 595 596 try { 597 Trace.traceBegin(Trace.TRACE_TAG_VIEW, "Choreographer#doFrame"); 598 599 mFrameInfo.markInputHandlingStart(); 600 doCallbacks(Choreographer.CALLBACK_INPUT, frameTimeNanos); 601 602 mFrameInfo.markAnimationsStart(); 603 doCallbacks(Choreographer.CALLBACK_ANIMATION, frameTimeNanos); 604 605 mFrameInfo.markPerformTraversalsStart(); 606 doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos); 607 608 doCallbacks(Choreographer.CALLBACK_COMMIT, frameTimeNanos); 609 } finally { 610 Trace.traceEnd(Trace.TRACE_TAG_VIEW); 611 } 612 613 if (DEBUG_FRAMES) { 614 final long endNanos = System.nanoTime(); 615 Log.d(TAG, "Frame " + frame + ": Finished, took " 616 + (endNanos - startNanos) * 0.000001f + " ms, latency " 617 + (startNanos - frameTimeNanos) * 0.000001f + " ms."); 618 } 619 } 620 doCallbacks(int callbackType, long frameTimeNanos)621 void doCallbacks(int callbackType, long frameTimeNanos) { 622 CallbackRecord callbacks; 623 synchronized (mLock) { 624 // We use "now" to determine when callbacks become due because it's possible 625 // for earlier processing phases in a frame to post callbacks that should run 626 // in a following phase, such as an input event that causes an animation to start. 627 final long now = System.nanoTime(); 628 callbacks = mCallbackQueues[callbackType].extractDueCallbacksLocked( 629 now / TimeUtils.NANOS_PER_MS); 630 if (callbacks == null) { 631 return; 632 } 633 mCallbacksRunning = true; 634 635 // Update the frame time if necessary when committing the frame. 636 // We only update the frame time if we are more than 2 frames late reaching 637 // the commit phase. This ensures that the frame time which is observed by the 638 // callbacks will always increase from one frame to the next and never repeat. 639 // We never want the next frame's starting frame time to end up being less than 640 // or equal to the previous frame's commit frame time. Keep in mind that the 641 // next frame has most likely already been scheduled by now so we play it 642 // safe by ensuring the commit time is always at least one frame behind. 643 if (callbackType == Choreographer.CALLBACK_COMMIT) { 644 final long jitterNanos = now - frameTimeNanos; 645 Trace.traceCounter(Trace.TRACE_TAG_VIEW, "jitterNanos", (int) jitterNanos); 646 if (jitterNanos >= 2 * mFrameIntervalNanos) { 647 final long lastFrameOffset = jitterNanos % mFrameIntervalNanos 648 + mFrameIntervalNanos; 649 if (DEBUG_JANK) { 650 Log.d(TAG, "Commit callback delayed by " + (jitterNanos * 0.000001f) 651 + " ms which is more than twice the frame interval of " 652 + (mFrameIntervalNanos * 0.000001f) + " ms! " 653 + "Setting frame time to " + (lastFrameOffset * 0.000001f) 654 + " ms in the past."); 655 mDebugPrintNextFrameTimeDelta = true; 656 } 657 frameTimeNanos = now - lastFrameOffset; 658 mLastFrameTimeNanos = frameTimeNanos; 659 } 660 } 661 } 662 try { 663 Trace.traceBegin(Trace.TRACE_TAG_VIEW, CALLBACK_TRACE_TITLES[callbackType]); 664 for (CallbackRecord c = callbacks; c != null; c = c.next) { 665 if (DEBUG_FRAMES) { 666 Log.d(TAG, "RunCallback: type=" + callbackType 667 + ", action=" + c.action + ", token=" + c.token 668 + ", latencyMillis=" + (SystemClock.uptimeMillis() - c.dueTime)); 669 } 670 c.run(frameTimeNanos); 671 } 672 } finally { 673 synchronized (mLock) { 674 mCallbacksRunning = false; 675 do { 676 final CallbackRecord next = callbacks.next; 677 recycleCallbackLocked(callbacks); 678 callbacks = next; 679 } while (callbacks != null); 680 } 681 Trace.traceEnd(Trace.TRACE_TAG_VIEW); 682 } 683 } 684 doScheduleVsync()685 void doScheduleVsync() { 686 synchronized (mLock) { 687 if (mFrameScheduled) { 688 scheduleVsyncLocked(); 689 } 690 } 691 } 692 doScheduleCallback(int callbackType)693 void doScheduleCallback(int callbackType) { 694 synchronized (mLock) { 695 if (!mFrameScheduled) { 696 final long now = SystemClock.uptimeMillis(); 697 if (mCallbackQueues[callbackType].hasDueCallbacksLocked(now)) { 698 scheduleFrameLocked(now); 699 } 700 } 701 } 702 } 703 scheduleVsyncLocked()704 private void scheduleVsyncLocked() { 705 mDisplayEventReceiver.scheduleVsync(); 706 } 707 isRunningOnLooperThreadLocked()708 private boolean isRunningOnLooperThreadLocked() { 709 return Looper.myLooper() == mLooper; 710 } 711 obtainCallbackLocked(long dueTime, Object action, Object token)712 private CallbackRecord obtainCallbackLocked(long dueTime, Object action, Object token) { 713 CallbackRecord callback = mCallbackPool; 714 if (callback == null) { 715 callback = new CallbackRecord(); 716 } else { 717 mCallbackPool = callback.next; 718 callback.next = null; 719 } 720 callback.dueTime = dueTime; 721 callback.action = action; 722 callback.token = token; 723 return callback; 724 } 725 recycleCallbackLocked(CallbackRecord callback)726 private void recycleCallbackLocked(CallbackRecord callback) { 727 callback.action = null; 728 callback.token = null; 729 callback.next = mCallbackPool; 730 mCallbackPool = callback; 731 } 732 733 /** 734 * Implement this interface to receive a callback when a new display frame is 735 * being rendered. The callback is invoked on the {@link Looper} thread to 736 * which the {@link Choreographer} is attached. 737 */ 738 public interface FrameCallback { 739 /** 740 * Called when a new display frame is being rendered. 741 * <p> 742 * This method provides the time in nanoseconds when the frame started being rendered. 743 * The frame time provides a stable time base for synchronizing animations 744 * and drawing. It should be used instead of {@link SystemClock#uptimeMillis()} 745 * or {@link System#nanoTime()} for animations and drawing in the UI. Using the frame 746 * time helps to reduce inter-frame jitter because the frame time is fixed at the time 747 * the frame was scheduled to start, regardless of when the animations or drawing 748 * callback actually runs. All callbacks that run as part of rendering a frame will 749 * observe the same frame time so using the frame time also helps to synchronize effects 750 * that are performed by different callbacks. 751 * </p><p> 752 * Please note that the framework already takes care to process animations and 753 * drawing using the frame time as a stable time base. Most applications should 754 * not need to use the frame time information directly. 755 * </p> 756 * 757 * @param frameTimeNanos The time in nanoseconds when the frame started being rendered, 758 * in the {@link System#nanoTime()} timebase. Divide this value by {@code 1000000} 759 * to convert it to the {@link SystemClock#uptimeMillis()} time base. 760 */ doFrame(long frameTimeNanos)761 public void doFrame(long frameTimeNanos); 762 } 763 764 private final class FrameHandler extends Handler { FrameHandler(Looper looper)765 public FrameHandler(Looper looper) { 766 super(looper); 767 } 768 769 @Override handleMessage(Message msg)770 public void handleMessage(Message msg) { 771 switch (msg.what) { 772 case MSG_DO_FRAME: 773 doFrame(System.nanoTime(), 0); 774 break; 775 case MSG_DO_SCHEDULE_VSYNC: 776 doScheduleVsync(); 777 break; 778 case MSG_DO_SCHEDULE_CALLBACK: 779 doScheduleCallback(msg.arg1); 780 break; 781 } 782 } 783 } 784 785 private final class FrameDisplayEventReceiver extends DisplayEventReceiver 786 implements Runnable { 787 private boolean mHavePendingVsync; 788 private long mTimestampNanos; 789 private int mFrame; 790 FrameDisplayEventReceiver(Looper looper)791 public FrameDisplayEventReceiver(Looper looper) { 792 super(looper); 793 } 794 795 @Override onVsync(long timestampNanos, int builtInDisplayId, int frame)796 public void onVsync(long timestampNanos, int builtInDisplayId, int frame) { 797 // Ignore vsync from secondary display. 798 // This can be problematic because the call to scheduleVsync() is a one-shot. 799 // We need to ensure that we will still receive the vsync from the primary 800 // display which is the one we really care about. Ideally we should schedule 801 // vsync for a particular display. 802 // At this time Surface Flinger won't send us vsyncs for secondary displays 803 // but that could change in the future so let's log a message to help us remember 804 // that we need to fix this. 805 if (builtInDisplayId != SurfaceControl.BUILT_IN_DISPLAY_ID_MAIN) { 806 Log.d(TAG, "Received vsync from secondary display, but we don't support " 807 + "this case yet. Choreographer needs a way to explicitly request " 808 + "vsync for a specific display to ensure it doesn't lose track " 809 + "of its scheduled vsync."); 810 scheduleVsync(); 811 return; 812 } 813 814 // Post the vsync event to the Handler. 815 // The idea is to prevent incoming vsync events from completely starving 816 // the message queue. If there are no messages in the queue with timestamps 817 // earlier than the frame time, then the vsync event will be processed immediately. 818 // Otherwise, messages that predate the vsync event will be handled first. 819 long now = System.nanoTime(); 820 if (timestampNanos > now) { 821 Log.w(TAG, "Frame time is " + ((timestampNanos - now) * 0.000001f) 822 + " ms in the future! Check that graphics HAL is generating vsync " 823 + "timestamps using the correct timebase."); 824 timestampNanos = now; 825 } 826 827 if (mHavePendingVsync) { 828 Log.w(TAG, "Already have a pending vsync event. There should only be " 829 + "one at a time."); 830 } else { 831 mHavePendingVsync = true; 832 } 833 834 mTimestampNanos = timestampNanos; 835 mFrame = frame; 836 Message msg = Message.obtain(mHandler, this); 837 msg.setAsynchronous(true); 838 mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS); 839 } 840 841 @Override run()842 public void run() { 843 mHavePendingVsync = false; 844 doFrame(mTimestampNanos, mFrame); 845 } 846 } 847 848 private static final class CallbackRecord { 849 public CallbackRecord next; 850 public long dueTime; 851 public Object action; // Runnable or FrameCallback 852 public Object token; 853 run(long frameTimeNanos)854 public void run(long frameTimeNanos) { 855 if (token == FRAME_CALLBACK_TOKEN) { 856 ((FrameCallback)action).doFrame(frameTimeNanos); 857 } else { 858 ((Runnable)action).run(); 859 } 860 } 861 } 862 863 private final class CallbackQueue { 864 private CallbackRecord mHead; 865 hasDueCallbacksLocked(long now)866 public boolean hasDueCallbacksLocked(long now) { 867 return mHead != null && mHead.dueTime <= now; 868 } 869 extractDueCallbacksLocked(long now)870 public CallbackRecord extractDueCallbacksLocked(long now) { 871 CallbackRecord callbacks = mHead; 872 if (callbacks == null || callbacks.dueTime > now) { 873 return null; 874 } 875 876 CallbackRecord last = callbacks; 877 CallbackRecord next = last.next; 878 while (next != null) { 879 if (next.dueTime > now) { 880 last.next = null; 881 break; 882 } 883 last = next; 884 next = next.next; 885 } 886 mHead = next; 887 return callbacks; 888 } 889 addCallbackLocked(long dueTime, Object action, Object token)890 public void addCallbackLocked(long dueTime, Object action, Object token) { 891 CallbackRecord callback = obtainCallbackLocked(dueTime, action, token); 892 CallbackRecord entry = mHead; 893 if (entry == null) { 894 mHead = callback; 895 return; 896 } 897 if (dueTime < entry.dueTime) { 898 callback.next = entry; 899 mHead = callback; 900 return; 901 } 902 while (entry.next != null) { 903 if (dueTime < entry.next.dueTime) { 904 callback.next = entry.next; 905 break; 906 } 907 entry = entry.next; 908 } 909 entry.next = callback; 910 } 911 removeCallbacksLocked(Object action, Object token)912 public void removeCallbacksLocked(Object action, Object token) { 913 CallbackRecord predecessor = null; 914 for (CallbackRecord callback = mHead; callback != null;) { 915 final CallbackRecord next = callback.next; 916 if ((action == null || callback.action == action) 917 && (token == null || callback.token == token)) { 918 if (predecessor != null) { 919 predecessor.next = next; 920 } else { 921 mHead = next; 922 } 923 recycleCallbackLocked(callback); 924 } else { 925 predecessor = callback; 926 } 927 callback = next; 928 } 929 } 930 } 931 } 932