1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
11 // LLVM IR interface. The input module is assumed to be verified.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CPPTargetMachine.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Config/config.h"
20 #include "llvm/IR/CallingConv.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/InlineAsm.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LegacyPassManager.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCInstrInfo.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/FormattedStream.h"
35 #include "llvm/Support/TargetRegistry.h"
36 #include <algorithm>
37 #include <cctype>
38 #include <cstdio>
39 #include <map>
40 #include <set>
41 using namespace llvm;
42 
43 static cl::opt<std::string>
44 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
45          cl::value_desc("function name"));
46 
47 enum WhatToGenerate {
48   GenProgram,
49   GenModule,
50   GenContents,
51   GenFunction,
52   GenFunctions,
53   GenInline,
54   GenVariable,
55   GenType
56 };
57 
58 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
59   cl::desc("Choose what kind of output to generate"),
60   cl::init(GenProgram),
61   cl::values(
62     clEnumValN(GenProgram,  "program",   "Generate a complete program"),
63     clEnumValN(GenModule,   "module",    "Generate a module definition"),
64     clEnumValN(GenContents, "contents",  "Generate contents of a module"),
65     clEnumValN(GenFunction, "function",  "Generate a function definition"),
66     clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
67     clEnumValN(GenInline,   "inline",    "Generate an inline function"),
68     clEnumValN(GenVariable, "variable",  "Generate a variable definition"),
69     clEnumValN(GenType,     "type",      "Generate a type definition"),
70     clEnumValEnd
71   )
72 );
73 
74 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
75   cl::desc("Specify the name of the thing to generate"),
76   cl::init("!bad!"));
77 
LLVMInitializeCppBackendTarget()78 extern "C" void LLVMInitializeCppBackendTarget() {
79   // Register the target.
80   RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
81 }
82 
83 namespace {
84   typedef std::vector<Type*> TypeList;
85   typedef std::map<Type*,std::string> TypeMap;
86   typedef std::map<const Value*,std::string> ValueMap;
87   typedef std::set<std::string> NameSet;
88   typedef std::set<Type*> TypeSet;
89   typedef std::set<const Value*> ValueSet;
90   typedef std::map<const Value*,std::string> ForwardRefMap;
91 
92   /// CppWriter - This class is the main chunk of code that converts an LLVM
93   /// module to a C++ translation unit.
94   class CppWriter : public ModulePass {
95     std::unique_ptr<formatted_raw_ostream> OutOwner;
96     formatted_raw_ostream &Out;
97     const Module *TheModule;
98     uint64_t uniqueNum;
99     TypeMap TypeNames;
100     ValueMap ValueNames;
101     NameSet UsedNames;
102     TypeSet DefinedTypes;
103     ValueSet DefinedValues;
104     ForwardRefMap ForwardRefs;
105     bool is_inline;
106     unsigned indent_level;
107 
108   public:
109     static char ID;
CppWriter(std::unique_ptr<formatted_raw_ostream> o)110     explicit CppWriter(std::unique_ptr<formatted_raw_ostream> o)
111         : ModulePass(ID), OutOwner(std::move(o)), Out(*OutOwner), uniqueNum(0),
112           is_inline(false), indent_level(0) {}
113 
getPassName() const114     const char *getPassName() const override { return "C++ backend"; }
115 
116     bool runOnModule(Module &M) override;
117 
118     void printProgram(const std::string& fname, const std::string& modName );
119     void printModule(const std::string& fname, const std::string& modName );
120     void printContents(const std::string& fname, const std::string& modName );
121     void printFunction(const std::string& fname, const std::string& funcName );
122     void printFunctions();
123     void printInline(const std::string& fname, const std::string& funcName );
124     void printVariable(const std::string& fname, const std::string& varName );
125     void printType(const std::string& fname, const std::string& typeName );
126 
127     void error(const std::string& msg);
128 
129 
130     formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
in()131     inline void in() { indent_level++; }
out()132     inline void out() { if (indent_level >0) indent_level--; }
133 
134   private:
135     void printLinkageType(GlobalValue::LinkageTypes LT);
136     void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
137     void printDLLStorageClassType(GlobalValue::DLLStorageClassTypes DSCType);
138     void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM);
139     void printCallingConv(CallingConv::ID cc);
140     void printEscapedString(const std::string& str);
141     void printCFP(const ConstantFP* CFP);
142 
143     std::string getCppName(Type* val);
144     inline void printCppName(Type* val);
145 
146     std::string getCppName(const Value* val);
147     inline void printCppName(const Value* val);
148 
149     void printAttributes(const AttributeSet &PAL, const std::string &name);
150     void printType(Type* Ty);
151     void printTypes(const Module* M);
152 
153     void printConstant(const Constant *CPV);
154     void printConstants(const Module* M);
155 
156     void printVariableUses(const GlobalVariable *GV);
157     void printVariableHead(const GlobalVariable *GV);
158     void printVariableBody(const GlobalVariable *GV);
159 
160     void printFunctionUses(const Function *F);
161     void printFunctionHead(const Function *F);
162     void printFunctionBody(const Function *F);
163     void printInstruction(const Instruction *I, const std::string& bbname);
164     std::string getOpName(const Value*);
165 
166     void printModuleBody();
167   };
168 } // end anonymous namespace.
169 
nl(formatted_raw_ostream & Out,int delta)170 formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
171   Out << '\n';
172   if (delta >= 0 || indent_level >= unsigned(-delta))
173     indent_level += delta;
174   Out.indent(indent_level);
175   return Out;
176 }
177 
sanitize(std::string & str)178 static inline void sanitize(std::string &str) {
179   for (size_t i = 0; i < str.length(); ++i)
180     if (!isalnum(str[i]) && str[i] != '_')
181       str[i] = '_';
182 }
183 
getTypePrefix(Type * Ty)184 static std::string getTypePrefix(Type *Ty) {
185   switch (Ty->getTypeID()) {
186   case Type::VoidTyID:     return "void_";
187   case Type::IntegerTyID:
188     return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
189   case Type::FloatTyID:    return "float_";
190   case Type::DoubleTyID:   return "double_";
191   case Type::LabelTyID:    return "label_";
192   case Type::FunctionTyID: return "func_";
193   case Type::StructTyID:   return "struct_";
194   case Type::ArrayTyID:    return "array_";
195   case Type::PointerTyID:  return "ptr_";
196   case Type::VectorTyID:   return "packed_";
197   default:                 return "other_";
198   }
199 }
200 
error(const std::string & msg)201 void CppWriter::error(const std::string& msg) {
202   report_fatal_error(msg);
203 }
204 
ftostr(const APFloat & V)205 static inline std::string ftostr(const APFloat& V) {
206   std::string Buf;
207   if (&V.getSemantics() == &APFloat::IEEEdouble) {
208     raw_string_ostream(Buf) << V.convertToDouble();
209     return Buf;
210   } else if (&V.getSemantics() == &APFloat::IEEEsingle) {
211     raw_string_ostream(Buf) << (double)V.convertToFloat();
212     return Buf;
213   }
214   return "<unknown format in ftostr>"; // error
215 }
216 
217 // printCFP - Print a floating point constant .. very carefully :)
218 // This makes sure that conversion to/from floating yields the same binary
219 // result so that we don't lose precision.
printCFP(const ConstantFP * CFP)220 void CppWriter::printCFP(const ConstantFP *CFP) {
221   bool ignored;
222   APFloat APF = APFloat(CFP->getValueAPF());  // copy
223   if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
224     APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
225   Out << "ConstantFP::get(mod->getContext(), ";
226   Out << "APFloat(";
227 #if HAVE_PRINTF_A
228   char Buffer[100];
229   sprintf(Buffer, "%A", APF.convertToDouble());
230   if ((!strncmp(Buffer, "0x", 2) ||
231        !strncmp(Buffer, "-0x", 3) ||
232        !strncmp(Buffer, "+0x", 3)) &&
233       APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
234     if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
235       Out << "BitsToDouble(" << Buffer << ")";
236     else
237       Out << "BitsToFloat((float)" << Buffer << ")";
238     Out << ")";
239   } else {
240 #endif
241     std::string StrVal = ftostr(CFP->getValueAPF());
242 
243     while (StrVal[0] == ' ')
244       StrVal.erase(StrVal.begin());
245 
246     // Check to make sure that the stringized number is not some string like
247     // "Inf" or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
248     if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
249          ((StrVal[0] == '-' || StrVal[0] == '+') &&
250           (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
251         (CFP->isExactlyValue(atof(StrVal.c_str())))) {
252       if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
253         Out <<  StrVal;
254       else
255         Out << StrVal << "f";
256     } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
257       Out << "BitsToDouble(0x"
258           << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
259           << "ULL) /* " << StrVal << " */";
260     else
261       Out << "BitsToFloat(0x"
262           << utohexstr((uint32_t)CFP->getValueAPF().
263                                       bitcastToAPInt().getZExtValue())
264           << "U) /* " << StrVal << " */";
265     Out << ")";
266 #if HAVE_PRINTF_A
267   }
268 #endif
269   Out << ")";
270 }
271 
printCallingConv(CallingConv::ID cc)272 void CppWriter::printCallingConv(CallingConv::ID cc){
273   // Print the calling convention.
274   switch (cc) {
275   case CallingConv::C:     Out << "CallingConv::C"; break;
276   case CallingConv::Fast:  Out << "CallingConv::Fast"; break;
277   case CallingConv::Cold:  Out << "CallingConv::Cold"; break;
278   case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
279   default:                 Out << cc; break;
280   }
281 }
282 
printLinkageType(GlobalValue::LinkageTypes LT)283 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
284   switch (LT) {
285   case GlobalValue::InternalLinkage:
286     Out << "GlobalValue::InternalLinkage"; break;
287   case GlobalValue::PrivateLinkage:
288     Out << "GlobalValue::PrivateLinkage"; break;
289   case GlobalValue::AvailableExternallyLinkage:
290     Out << "GlobalValue::AvailableExternallyLinkage "; break;
291   case GlobalValue::LinkOnceAnyLinkage:
292     Out << "GlobalValue::LinkOnceAnyLinkage "; break;
293   case GlobalValue::LinkOnceODRLinkage:
294     Out << "GlobalValue::LinkOnceODRLinkage "; break;
295   case GlobalValue::WeakAnyLinkage:
296     Out << "GlobalValue::WeakAnyLinkage"; break;
297   case GlobalValue::WeakODRLinkage:
298     Out << "GlobalValue::WeakODRLinkage"; break;
299   case GlobalValue::AppendingLinkage:
300     Out << "GlobalValue::AppendingLinkage"; break;
301   case GlobalValue::ExternalLinkage:
302     Out << "GlobalValue::ExternalLinkage"; break;
303   case GlobalValue::ExternalWeakLinkage:
304     Out << "GlobalValue::ExternalWeakLinkage"; break;
305   case GlobalValue::CommonLinkage:
306     Out << "GlobalValue::CommonLinkage"; break;
307   }
308 }
309 
printVisibilityType(GlobalValue::VisibilityTypes VisType)310 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
311   switch (VisType) {
312   case GlobalValue::DefaultVisibility:
313     Out << "GlobalValue::DefaultVisibility";
314     break;
315   case GlobalValue::HiddenVisibility:
316     Out << "GlobalValue::HiddenVisibility";
317     break;
318   case GlobalValue::ProtectedVisibility:
319     Out << "GlobalValue::ProtectedVisibility";
320     break;
321   }
322 }
323 
printDLLStorageClassType(GlobalValue::DLLStorageClassTypes DSCType)324 void CppWriter::printDLLStorageClassType(
325                                     GlobalValue::DLLStorageClassTypes DSCType) {
326   switch (DSCType) {
327   case GlobalValue::DefaultStorageClass:
328     Out << "GlobalValue::DefaultStorageClass";
329     break;
330   case GlobalValue::DLLImportStorageClass:
331     Out << "GlobalValue::DLLImportStorageClass";
332     break;
333   case GlobalValue::DLLExportStorageClass:
334     Out << "GlobalValue::DLLExportStorageClass";
335     break;
336   }
337 }
338 
printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM)339 void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) {
340   switch (TLM) {
341     case GlobalVariable::NotThreadLocal:
342       Out << "GlobalVariable::NotThreadLocal";
343       break;
344     case GlobalVariable::GeneralDynamicTLSModel:
345       Out << "GlobalVariable::GeneralDynamicTLSModel";
346       break;
347     case GlobalVariable::LocalDynamicTLSModel:
348       Out << "GlobalVariable::LocalDynamicTLSModel";
349       break;
350     case GlobalVariable::InitialExecTLSModel:
351       Out << "GlobalVariable::InitialExecTLSModel";
352       break;
353     case GlobalVariable::LocalExecTLSModel:
354       Out << "GlobalVariable::LocalExecTLSModel";
355       break;
356   }
357 }
358 
359 // printEscapedString - Print each character of the specified string, escaping
360 // it if it is not printable or if it is an escape char.
printEscapedString(const std::string & Str)361 void CppWriter::printEscapedString(const std::string &Str) {
362   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
363     unsigned char C = Str[i];
364     if (isprint(C) && C != '"' && C != '\\') {
365       Out << C;
366     } else {
367       Out << "\\x"
368           << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
369           << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
370     }
371   }
372 }
373 
getCppName(Type * Ty)374 std::string CppWriter::getCppName(Type* Ty) {
375   switch (Ty->getTypeID()) {
376   default:
377     break;
378   case Type::VoidTyID:
379     return "Type::getVoidTy(mod->getContext())";
380   case Type::IntegerTyID: {
381     unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
382     return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
383   }
384   case Type::X86_FP80TyID:
385     return "Type::getX86_FP80Ty(mod->getContext())";
386   case Type::FloatTyID:
387     return "Type::getFloatTy(mod->getContext())";
388   case Type::DoubleTyID:
389     return "Type::getDoubleTy(mod->getContext())";
390   case Type::LabelTyID:
391     return "Type::getLabelTy(mod->getContext())";
392   case Type::X86_MMXTyID:
393     return "Type::getX86_MMXTy(mod->getContext())";
394   }
395 
396   // Now, see if we've seen the type before and return that
397   TypeMap::iterator I = TypeNames.find(Ty);
398   if (I != TypeNames.end())
399     return I->second;
400 
401   // Okay, let's build a new name for this type. Start with a prefix
402   const char* prefix = nullptr;
403   switch (Ty->getTypeID()) {
404   case Type::FunctionTyID:    prefix = "FuncTy_"; break;
405   case Type::StructTyID:      prefix = "StructTy_"; break;
406   case Type::ArrayTyID:       prefix = "ArrayTy_"; break;
407   case Type::PointerTyID:     prefix = "PointerTy_"; break;
408   case Type::VectorTyID:      prefix = "VectorTy_"; break;
409   default:                    prefix = "OtherTy_"; break; // prevent breakage
410   }
411 
412   // See if the type has a name in the symboltable and build accordingly
413   std::string name;
414   if (StructType *STy = dyn_cast<StructType>(Ty))
415     if (STy->hasName())
416       name = STy->getName();
417 
418   if (name.empty())
419     name = utostr(uniqueNum++);
420 
421   name = std::string(prefix) + name;
422   sanitize(name);
423 
424   // Save the name
425   return TypeNames[Ty] = name;
426 }
427 
printCppName(Type * Ty)428 void CppWriter::printCppName(Type* Ty) {
429   printEscapedString(getCppName(Ty));
430 }
431 
getCppName(const Value * val)432 std::string CppWriter::getCppName(const Value* val) {
433   std::string name;
434   ValueMap::iterator I = ValueNames.find(val);
435   if (I != ValueNames.end() && I->first == val)
436     return  I->second;
437 
438   if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
439     name = std::string("gvar_") +
440       getTypePrefix(GV->getType()->getElementType());
441   } else if (isa<Function>(val)) {
442     name = std::string("func_");
443   } else if (const Constant* C = dyn_cast<Constant>(val)) {
444     name = std::string("const_") + getTypePrefix(C->getType());
445   } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
446     if (is_inline) {
447       unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
448                                       Function::const_arg_iterator(Arg)) + 1;
449       name = std::string("arg_") + utostr(argNum);
450       NameSet::iterator NI = UsedNames.find(name);
451       if (NI != UsedNames.end())
452         name += std::string("_") + utostr(uniqueNum++);
453       UsedNames.insert(name);
454       return ValueNames[val] = name;
455     } else {
456       name = getTypePrefix(val->getType());
457     }
458   } else {
459     name = getTypePrefix(val->getType());
460   }
461   if (val->hasName())
462     name += val->getName();
463   else
464     name += utostr(uniqueNum++);
465   sanitize(name);
466   NameSet::iterator NI = UsedNames.find(name);
467   if (NI != UsedNames.end())
468     name += std::string("_") + utostr(uniqueNum++);
469   UsedNames.insert(name);
470   return ValueNames[val] = name;
471 }
472 
printCppName(const Value * val)473 void CppWriter::printCppName(const Value* val) {
474   printEscapedString(getCppName(val));
475 }
476 
printAttributes(const AttributeSet & PAL,const std::string & name)477 void CppWriter::printAttributes(const AttributeSet &PAL,
478                                 const std::string &name) {
479   Out << "AttributeSet " << name << "_PAL;";
480   nl(Out);
481   if (!PAL.isEmpty()) {
482     Out << '{'; in(); nl(Out);
483     Out << "SmallVector<AttributeSet, 4> Attrs;"; nl(Out);
484     Out << "AttributeSet PAS;"; in(); nl(Out);
485     for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
486       unsigned index = PAL.getSlotIndex(i);
487       AttrBuilder attrs(PAL.getSlotAttributes(i), index);
488       Out << "{"; in(); nl(Out);
489       Out << "AttrBuilder B;"; nl(Out);
490 
491 #define HANDLE_ATTR(X)                                                  \
492       if (attrs.contains(Attribute::X)) {                               \
493         Out << "B.addAttribute(Attribute::" #X ");"; nl(Out);           \
494         attrs.removeAttribute(Attribute::X);                            \
495       }
496 
497       HANDLE_ATTR(SExt);
498       HANDLE_ATTR(ZExt);
499       HANDLE_ATTR(NoReturn);
500       HANDLE_ATTR(InReg);
501       HANDLE_ATTR(StructRet);
502       HANDLE_ATTR(NoUnwind);
503       HANDLE_ATTR(NoAlias);
504       HANDLE_ATTR(ByVal);
505       HANDLE_ATTR(InAlloca);
506       HANDLE_ATTR(Nest);
507       HANDLE_ATTR(ReadNone);
508       HANDLE_ATTR(ReadOnly);
509       HANDLE_ATTR(NoInline);
510       HANDLE_ATTR(AlwaysInline);
511       HANDLE_ATTR(OptimizeNone);
512       HANDLE_ATTR(OptimizeForSize);
513       HANDLE_ATTR(StackProtect);
514       HANDLE_ATTR(StackProtectReq);
515       HANDLE_ATTR(StackProtectStrong);
516       HANDLE_ATTR(NoCapture);
517       HANDLE_ATTR(NoRedZone);
518       HANDLE_ATTR(NoImplicitFloat);
519       HANDLE_ATTR(Naked);
520       HANDLE_ATTR(InlineHint);
521       HANDLE_ATTR(ReturnsTwice);
522       HANDLE_ATTR(UWTable);
523       HANDLE_ATTR(NonLazyBind);
524       HANDLE_ATTR(MinSize);
525 #undef HANDLE_ATTR
526 
527       if (attrs.contains(Attribute::StackAlignment)) {
528         Out << "B.addStackAlignmentAttr(" << attrs.getStackAlignment()<<')';
529         nl(Out);
530         attrs.removeAttribute(Attribute::StackAlignment);
531       }
532 
533       Out << "PAS = AttributeSet::get(mod->getContext(), ";
534       if (index == ~0U)
535         Out << "~0U,";
536       else
537         Out << index << "U,";
538       Out << " B);"; out(); nl(Out);
539       Out << "}"; out(); nl(Out);
540       nl(Out);
541       Out << "Attrs.push_back(PAS);"; nl(Out);
542     }
543     Out << name << "_PAL = AttributeSet::get(mod->getContext(), Attrs);";
544     nl(Out);
545     out(); nl(Out);
546     Out << '}'; nl(Out);
547   }
548 }
549 
printType(Type * Ty)550 void CppWriter::printType(Type* Ty) {
551   // We don't print definitions for primitive types
552   if (Ty->isFloatingPointTy() || Ty->isX86_MMXTy() || Ty->isIntegerTy() ||
553       Ty->isLabelTy() || Ty->isMetadataTy() || Ty->isVoidTy())
554     return;
555 
556   // If we already defined this type, we don't need to define it again.
557   if (DefinedTypes.find(Ty) != DefinedTypes.end())
558     return;
559 
560   // Everything below needs the name for the type so get it now.
561   std::string typeName(getCppName(Ty));
562 
563   // Print the type definition
564   switch (Ty->getTypeID()) {
565   case Type::FunctionTyID:  {
566     FunctionType* FT = cast<FunctionType>(Ty);
567     Out << "std::vector<Type*>" << typeName << "_args;";
568     nl(Out);
569     FunctionType::param_iterator PI = FT->param_begin();
570     FunctionType::param_iterator PE = FT->param_end();
571     for (; PI != PE; ++PI) {
572       Type* argTy = static_cast<Type*>(*PI);
573       printType(argTy);
574       std::string argName(getCppName(argTy));
575       Out << typeName << "_args.push_back(" << argName;
576       Out << ");";
577       nl(Out);
578     }
579     printType(FT->getReturnType());
580     std::string retTypeName(getCppName(FT->getReturnType()));
581     Out << "FunctionType* " << typeName << " = FunctionType::get(";
582     in(); nl(Out) << "/*Result=*/" << retTypeName;
583     Out << ",";
584     nl(Out) << "/*Params=*/" << typeName << "_args,";
585     nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
586     out();
587     nl(Out);
588     break;
589   }
590   case Type::StructTyID: {
591     StructType* ST = cast<StructType>(Ty);
592     if (!ST->isLiteral()) {
593       Out << "StructType *" << typeName << " = mod->getTypeByName(\"";
594       printEscapedString(ST->getName());
595       Out << "\");";
596       nl(Out);
597       Out << "if (!" << typeName << ") {";
598       nl(Out);
599       Out << typeName << " = ";
600       Out << "StructType::create(mod->getContext(), \"";
601       printEscapedString(ST->getName());
602       Out << "\");";
603       nl(Out);
604       Out << "}";
605       nl(Out);
606       // Indicate that this type is now defined.
607       DefinedTypes.insert(Ty);
608     }
609 
610     Out << "std::vector<Type*>" << typeName << "_fields;";
611     nl(Out);
612     StructType::element_iterator EI = ST->element_begin();
613     StructType::element_iterator EE = ST->element_end();
614     for (; EI != EE; ++EI) {
615       Type* fieldTy = static_cast<Type*>(*EI);
616       printType(fieldTy);
617       std::string fieldName(getCppName(fieldTy));
618       Out << typeName << "_fields.push_back(" << fieldName;
619       Out << ");";
620       nl(Out);
621     }
622 
623     if (ST->isLiteral()) {
624       Out << "StructType *" << typeName << " = ";
625       Out << "StructType::get(" << "mod->getContext(), ";
626     } else {
627       Out << "if (" << typeName << "->isOpaque()) {";
628       nl(Out);
629       Out << typeName << "->setBody(";
630     }
631 
632     Out << typeName << "_fields, /*isPacked=*/"
633         << (ST->isPacked() ? "true" : "false") << ");";
634     nl(Out);
635     if (!ST->isLiteral()) {
636       Out << "}";
637       nl(Out);
638     }
639     break;
640   }
641   case Type::ArrayTyID: {
642     ArrayType* AT = cast<ArrayType>(Ty);
643     Type* ET = AT->getElementType();
644     printType(ET);
645     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
646       std::string elemName(getCppName(ET));
647       Out << "ArrayType* " << typeName << " = ArrayType::get("
648           << elemName
649           << ", " << utostr(AT->getNumElements()) << ");";
650       nl(Out);
651     }
652     break;
653   }
654   case Type::PointerTyID: {
655     PointerType* PT = cast<PointerType>(Ty);
656     Type* ET = PT->getElementType();
657     printType(ET);
658     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
659       std::string elemName(getCppName(ET));
660       Out << "PointerType* " << typeName << " = PointerType::get("
661           << elemName
662           << ", " << utostr(PT->getAddressSpace()) << ");";
663       nl(Out);
664     }
665     break;
666   }
667   case Type::VectorTyID: {
668     VectorType* PT = cast<VectorType>(Ty);
669     Type* ET = PT->getElementType();
670     printType(ET);
671     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
672       std::string elemName(getCppName(ET));
673       Out << "VectorType* " << typeName << " = VectorType::get("
674           << elemName
675           << ", " << utostr(PT->getNumElements()) << ");";
676       nl(Out);
677     }
678     break;
679   }
680   default:
681     error("Invalid TypeID");
682   }
683 
684   // Indicate that this type is now defined.
685   DefinedTypes.insert(Ty);
686 
687   // Finally, separate the type definition from other with a newline.
688   nl(Out);
689 }
690 
printTypes(const Module * M)691 void CppWriter::printTypes(const Module* M) {
692   // Add all of the global variables to the value table.
693   for (Module::const_global_iterator I = TheModule->global_begin(),
694          E = TheModule->global_end(); I != E; ++I) {
695     if (I->hasInitializer())
696       printType(I->getInitializer()->getType());
697     printType(I->getType());
698   }
699 
700   // Add all the functions to the table
701   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
702        FI != FE; ++FI) {
703     printType(FI->getReturnType());
704     printType(FI->getFunctionType());
705     // Add all the function arguments
706     for (Function::const_arg_iterator AI = FI->arg_begin(),
707            AE = FI->arg_end(); AI != AE; ++AI) {
708       printType(AI->getType());
709     }
710 
711     // Add all of the basic blocks and instructions
712     for (Function::const_iterator BB = FI->begin(),
713            E = FI->end(); BB != E; ++BB) {
714       printType(BB->getType());
715       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
716            ++I) {
717         printType(I->getType());
718         for (unsigned i = 0; i < I->getNumOperands(); ++i)
719           printType(I->getOperand(i)->getType());
720       }
721     }
722   }
723 }
724 
725 
726 // printConstant - Print out a constant pool entry...
printConstant(const Constant * CV)727 void CppWriter::printConstant(const Constant *CV) {
728   // First, if the constant is actually a GlobalValue (variable or function)
729   // or its already in the constant list then we've printed it already and we
730   // can just return.
731   if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
732     return;
733 
734   std::string constName(getCppName(CV));
735   std::string typeName(getCppName(CV->getType()));
736 
737   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
738     std::string constValue = CI->getValue().toString(10, true);
739     Out << "ConstantInt* " << constName
740         << " = ConstantInt::get(mod->getContext(), APInt("
741         << cast<IntegerType>(CI->getType())->getBitWidth()
742         << ", StringRef(\"" <<  constValue << "\"), 10));";
743   } else if (isa<ConstantAggregateZero>(CV)) {
744     Out << "ConstantAggregateZero* " << constName
745         << " = ConstantAggregateZero::get(" << typeName << ");";
746   } else if (isa<ConstantPointerNull>(CV)) {
747     Out << "ConstantPointerNull* " << constName
748         << " = ConstantPointerNull::get(" << typeName << ");";
749   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
750     Out << "ConstantFP* " << constName << " = ";
751     printCFP(CFP);
752     Out << ";";
753   } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
754     Out << "std::vector<Constant*> " << constName << "_elems;";
755     nl(Out);
756     unsigned N = CA->getNumOperands();
757     for (unsigned i = 0; i < N; ++i) {
758       printConstant(CA->getOperand(i)); // recurse to print operands
759       Out << constName << "_elems.push_back("
760           << getCppName(CA->getOperand(i)) << ");";
761       nl(Out);
762     }
763     Out << "Constant* " << constName << " = ConstantArray::get("
764         << typeName << ", " << constName << "_elems);";
765   } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
766     Out << "std::vector<Constant*> " << constName << "_fields;";
767     nl(Out);
768     unsigned N = CS->getNumOperands();
769     for (unsigned i = 0; i < N; i++) {
770       printConstant(CS->getOperand(i));
771       Out << constName << "_fields.push_back("
772           << getCppName(CS->getOperand(i)) << ");";
773       nl(Out);
774     }
775     Out << "Constant* " << constName << " = ConstantStruct::get("
776         << typeName << ", " << constName << "_fields);";
777   } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) {
778     Out << "std::vector<Constant*> " << constName << "_elems;";
779     nl(Out);
780     unsigned N = CVec->getNumOperands();
781     for (unsigned i = 0; i < N; ++i) {
782       printConstant(CVec->getOperand(i));
783       Out << constName << "_elems.push_back("
784           << getCppName(CVec->getOperand(i)) << ");";
785       nl(Out);
786     }
787     Out << "Constant* " << constName << " = ConstantVector::get("
788         << typeName << ", " << constName << "_elems);";
789   } else if (isa<UndefValue>(CV)) {
790     Out << "UndefValue* " << constName << " = UndefValue::get("
791         << typeName << ");";
792   } else if (const ConstantDataSequential *CDS =
793                dyn_cast<ConstantDataSequential>(CV)) {
794     if (CDS->isString()) {
795       Out << "Constant *" << constName <<
796       " = ConstantDataArray::getString(mod->getContext(), \"";
797       StringRef Str = CDS->getAsString();
798       bool nullTerminate = false;
799       if (Str.back() == 0) {
800         Str = Str.drop_back();
801         nullTerminate = true;
802       }
803       printEscapedString(Str);
804       // Determine if we want null termination or not.
805       if (nullTerminate)
806         Out << "\", true);";
807       else
808         Out << "\", false);";// No null terminator
809     } else {
810       // TODO: Could generate more efficient code generating CDS calls instead.
811       Out << "std::vector<Constant*> " << constName << "_elems;";
812       nl(Out);
813       for (unsigned i = 0; i != CDS->getNumElements(); ++i) {
814         Constant *Elt = CDS->getElementAsConstant(i);
815         printConstant(Elt);
816         Out << constName << "_elems.push_back(" << getCppName(Elt) << ");";
817         nl(Out);
818       }
819       Out << "Constant* " << constName;
820 
821       if (isa<ArrayType>(CDS->getType()))
822         Out << " = ConstantArray::get(";
823       else
824         Out << " = ConstantVector::get(";
825       Out << typeName << ", " << constName << "_elems);";
826     }
827   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
828     if (CE->getOpcode() == Instruction::GetElementPtr) {
829       Out << "std::vector<Constant*> " << constName << "_indices;";
830       nl(Out);
831       printConstant(CE->getOperand(0));
832       for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
833         printConstant(CE->getOperand(i));
834         Out << constName << "_indices.push_back("
835             << getCppName(CE->getOperand(i)) << ");";
836         nl(Out);
837       }
838       Out << "Constant* " << constName
839           << " = ConstantExpr::getGetElementPtr("
840           << getCppName(CE->getOperand(0)) << ", "
841           << constName << "_indices);";
842     } else if (CE->isCast()) {
843       printConstant(CE->getOperand(0));
844       Out << "Constant* " << constName << " = ConstantExpr::getCast(";
845       switch (CE->getOpcode()) {
846       default: llvm_unreachable("Invalid cast opcode");
847       case Instruction::Trunc: Out << "Instruction::Trunc"; break;
848       case Instruction::ZExt:  Out << "Instruction::ZExt"; break;
849       case Instruction::SExt:  Out << "Instruction::SExt"; break;
850       case Instruction::FPTrunc:  Out << "Instruction::FPTrunc"; break;
851       case Instruction::FPExt:  Out << "Instruction::FPExt"; break;
852       case Instruction::FPToUI:  Out << "Instruction::FPToUI"; break;
853       case Instruction::FPToSI:  Out << "Instruction::FPToSI"; break;
854       case Instruction::UIToFP:  Out << "Instruction::UIToFP"; break;
855       case Instruction::SIToFP:  Out << "Instruction::SIToFP"; break;
856       case Instruction::PtrToInt:  Out << "Instruction::PtrToInt"; break;
857       case Instruction::IntToPtr:  Out << "Instruction::IntToPtr"; break;
858       case Instruction::BitCast:  Out << "Instruction::BitCast"; break;
859       }
860       Out << ", " << getCppName(CE->getOperand(0)) << ", "
861           << getCppName(CE->getType()) << ");";
862     } else {
863       unsigned N = CE->getNumOperands();
864       for (unsigned i = 0; i < N; ++i ) {
865         printConstant(CE->getOperand(i));
866       }
867       Out << "Constant* " << constName << " = ConstantExpr::";
868       switch (CE->getOpcode()) {
869       case Instruction::Add:    Out << "getAdd(";  break;
870       case Instruction::FAdd:   Out << "getFAdd(";  break;
871       case Instruction::Sub:    Out << "getSub("; break;
872       case Instruction::FSub:   Out << "getFSub("; break;
873       case Instruction::Mul:    Out << "getMul("; break;
874       case Instruction::FMul:   Out << "getFMul("; break;
875       case Instruction::UDiv:   Out << "getUDiv("; break;
876       case Instruction::SDiv:   Out << "getSDiv("; break;
877       case Instruction::FDiv:   Out << "getFDiv("; break;
878       case Instruction::URem:   Out << "getURem("; break;
879       case Instruction::SRem:   Out << "getSRem("; break;
880       case Instruction::FRem:   Out << "getFRem("; break;
881       case Instruction::And:    Out << "getAnd("; break;
882       case Instruction::Or:     Out << "getOr("; break;
883       case Instruction::Xor:    Out << "getXor("; break;
884       case Instruction::ICmp:
885         Out << "getICmp(ICmpInst::ICMP_";
886         switch (CE->getPredicate()) {
887         case ICmpInst::ICMP_EQ:  Out << "EQ"; break;
888         case ICmpInst::ICMP_NE:  Out << "NE"; break;
889         case ICmpInst::ICMP_SLT: Out << "SLT"; break;
890         case ICmpInst::ICMP_ULT: Out << "ULT"; break;
891         case ICmpInst::ICMP_SGT: Out << "SGT"; break;
892         case ICmpInst::ICMP_UGT: Out << "UGT"; break;
893         case ICmpInst::ICMP_SLE: Out << "SLE"; break;
894         case ICmpInst::ICMP_ULE: Out << "ULE"; break;
895         case ICmpInst::ICMP_SGE: Out << "SGE"; break;
896         case ICmpInst::ICMP_UGE: Out << "UGE"; break;
897         default: error("Invalid ICmp Predicate");
898         }
899         break;
900       case Instruction::FCmp:
901         Out << "getFCmp(FCmpInst::FCMP_";
902         switch (CE->getPredicate()) {
903         case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
904         case FCmpInst::FCMP_ORD:   Out << "ORD"; break;
905         case FCmpInst::FCMP_UNO:   Out << "UNO"; break;
906         case FCmpInst::FCMP_OEQ:   Out << "OEQ"; break;
907         case FCmpInst::FCMP_UEQ:   Out << "UEQ"; break;
908         case FCmpInst::FCMP_ONE:   Out << "ONE"; break;
909         case FCmpInst::FCMP_UNE:   Out << "UNE"; break;
910         case FCmpInst::FCMP_OLT:   Out << "OLT"; break;
911         case FCmpInst::FCMP_ULT:   Out << "ULT"; break;
912         case FCmpInst::FCMP_OGT:   Out << "OGT"; break;
913         case FCmpInst::FCMP_UGT:   Out << "UGT"; break;
914         case FCmpInst::FCMP_OLE:   Out << "OLE"; break;
915         case FCmpInst::FCMP_ULE:   Out << "ULE"; break;
916         case FCmpInst::FCMP_OGE:   Out << "OGE"; break;
917         case FCmpInst::FCMP_UGE:   Out << "UGE"; break;
918         case FCmpInst::FCMP_TRUE:  Out << "TRUE"; break;
919         default: error("Invalid FCmp Predicate");
920         }
921         break;
922       case Instruction::Shl:     Out << "getShl("; break;
923       case Instruction::LShr:    Out << "getLShr("; break;
924       case Instruction::AShr:    Out << "getAShr("; break;
925       case Instruction::Select:  Out << "getSelect("; break;
926       case Instruction::ExtractElement: Out << "getExtractElement("; break;
927       case Instruction::InsertElement:  Out << "getInsertElement("; break;
928       case Instruction::ShuffleVector:  Out << "getShuffleVector("; break;
929       default:
930         error("Invalid constant expression");
931         break;
932       }
933       Out << getCppName(CE->getOperand(0));
934       for (unsigned i = 1; i < CE->getNumOperands(); ++i)
935         Out << ", " << getCppName(CE->getOperand(i));
936       Out << ");";
937     }
938   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
939     Out << "Constant* " << constName << " = ";
940     Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
941   } else {
942     error("Bad Constant");
943     Out << "Constant* " << constName << " = 0; ";
944   }
945   nl(Out);
946 }
947 
printConstants(const Module * M)948 void CppWriter::printConstants(const Module* M) {
949   // Traverse all the global variables looking for constant initializers
950   for (Module::const_global_iterator I = TheModule->global_begin(),
951          E = TheModule->global_end(); I != E; ++I)
952     if (I->hasInitializer())
953       printConstant(I->getInitializer());
954 
955   // Traverse the LLVM functions looking for constants
956   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
957        FI != FE; ++FI) {
958     // Add all of the basic blocks and instructions
959     for (Function::const_iterator BB = FI->begin(),
960            E = FI->end(); BB != E; ++BB) {
961       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
962            ++I) {
963         for (unsigned i = 0; i < I->getNumOperands(); ++i) {
964           if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
965             printConstant(C);
966           }
967         }
968       }
969     }
970   }
971 }
972 
printVariableUses(const GlobalVariable * GV)973 void CppWriter::printVariableUses(const GlobalVariable *GV) {
974   nl(Out) << "// Type Definitions";
975   nl(Out);
976   printType(GV->getType());
977   if (GV->hasInitializer()) {
978     const Constant *Init = GV->getInitializer();
979     printType(Init->getType());
980     if (const Function *F = dyn_cast<Function>(Init)) {
981       nl(Out)<< "/ Function Declarations"; nl(Out);
982       printFunctionHead(F);
983     } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
984       nl(Out) << "// Global Variable Declarations"; nl(Out);
985       printVariableHead(gv);
986 
987       nl(Out) << "// Global Variable Definitions"; nl(Out);
988       printVariableBody(gv);
989     } else  {
990       nl(Out) << "// Constant Definitions"; nl(Out);
991       printConstant(Init);
992     }
993   }
994 }
995 
printVariableHead(const GlobalVariable * GV)996 void CppWriter::printVariableHead(const GlobalVariable *GV) {
997   nl(Out) << "GlobalVariable* " << getCppName(GV);
998   if (is_inline) {
999     Out << " = mod->getGlobalVariable(mod->getContext(), ";
1000     printEscapedString(GV->getName());
1001     Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
1002     nl(Out) << "if (!" << getCppName(GV) << ") {";
1003     in(); nl(Out) << getCppName(GV);
1004   }
1005   Out << " = new GlobalVariable(/*Module=*/*mod, ";
1006   nl(Out) << "/*Type=*/";
1007   printCppName(GV->getType()->getElementType());
1008   Out << ",";
1009   nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
1010   Out << ",";
1011   nl(Out) << "/*Linkage=*/";
1012   printLinkageType(GV->getLinkage());
1013   Out << ",";
1014   nl(Out) << "/*Initializer=*/0, ";
1015   if (GV->hasInitializer()) {
1016     Out << "// has initializer, specified below";
1017   }
1018   nl(Out) << "/*Name=*/\"";
1019   printEscapedString(GV->getName());
1020   Out << "\");";
1021   nl(Out);
1022 
1023   if (GV->hasSection()) {
1024     printCppName(GV);
1025     Out << "->setSection(\"";
1026     printEscapedString(GV->getSection());
1027     Out << "\");";
1028     nl(Out);
1029   }
1030   if (GV->getAlignment()) {
1031     printCppName(GV);
1032     Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
1033     nl(Out);
1034   }
1035   if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
1036     printCppName(GV);
1037     Out << "->setVisibility(";
1038     printVisibilityType(GV->getVisibility());
1039     Out << ");";
1040     nl(Out);
1041   }
1042   if (GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
1043     printCppName(GV);
1044     Out << "->setDLLStorageClass(";
1045     printDLLStorageClassType(GV->getDLLStorageClass());
1046     Out << ");";
1047     nl(Out);
1048   }
1049   if (GV->isThreadLocal()) {
1050     printCppName(GV);
1051     Out << "->setThreadLocalMode(";
1052     printThreadLocalMode(GV->getThreadLocalMode());
1053     Out << ");";
1054     nl(Out);
1055   }
1056   if (is_inline) {
1057     out(); Out << "}"; nl(Out);
1058   }
1059 }
1060 
printVariableBody(const GlobalVariable * GV)1061 void CppWriter::printVariableBody(const GlobalVariable *GV) {
1062   if (GV->hasInitializer()) {
1063     printCppName(GV);
1064     Out << "->setInitializer(";
1065     Out << getCppName(GV->getInitializer()) << ");";
1066     nl(Out);
1067   }
1068 }
1069 
getOpName(const Value * V)1070 std::string CppWriter::getOpName(const Value* V) {
1071   if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
1072     return getCppName(V);
1073 
1074   // See if its alread in the map of forward references, if so just return the
1075   // name we already set up for it
1076   ForwardRefMap::const_iterator I = ForwardRefs.find(V);
1077   if (I != ForwardRefs.end())
1078     return I->second;
1079 
1080   // This is a new forward reference. Generate a unique name for it
1081   std::string result(std::string("fwdref_") + utostr(uniqueNum++));
1082 
1083   // Yes, this is a hack. An Argument is the smallest instantiable value that
1084   // we can make as a placeholder for the real value. We'll replace these
1085   // Argument instances later.
1086   Out << "Argument* " << result << " = new Argument("
1087       << getCppName(V->getType()) << ");";
1088   nl(Out);
1089   ForwardRefs[V] = result;
1090   return result;
1091 }
1092 
ConvertAtomicOrdering(AtomicOrdering Ordering)1093 static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) {
1094   switch (Ordering) {
1095     case NotAtomic: return "NotAtomic";
1096     case Unordered: return "Unordered";
1097     case Monotonic: return "Monotonic";
1098     case Acquire: return "Acquire";
1099     case Release: return "Release";
1100     case AcquireRelease: return "AcquireRelease";
1101     case SequentiallyConsistent: return "SequentiallyConsistent";
1102   }
1103   llvm_unreachable("Unknown ordering");
1104 }
1105 
ConvertAtomicSynchScope(SynchronizationScope SynchScope)1106 static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) {
1107   switch (SynchScope) {
1108     case SingleThread: return "SingleThread";
1109     case CrossThread: return "CrossThread";
1110   }
1111   llvm_unreachable("Unknown synch scope");
1112 }
1113 
1114 // printInstruction - This member is called for each Instruction in a function.
printInstruction(const Instruction * I,const std::string & bbname)1115 void CppWriter::printInstruction(const Instruction *I,
1116                                  const std::string& bbname) {
1117   std::string iName(getCppName(I));
1118 
1119   // Before we emit this instruction, we need to take care of generating any
1120   // forward references. So, we get the names of all the operands in advance
1121   const unsigned Ops(I->getNumOperands());
1122   std::string* opNames = new std::string[Ops];
1123   for (unsigned i = 0; i < Ops; i++)
1124     opNames[i] = getOpName(I->getOperand(i));
1125 
1126   switch (I->getOpcode()) {
1127   default:
1128     error("Invalid instruction");
1129     break;
1130 
1131   case Instruction::Ret: {
1132     const ReturnInst* ret =  cast<ReturnInst>(I);
1133     Out << "ReturnInst::Create(mod->getContext(), "
1134         << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
1135     break;
1136   }
1137   case Instruction::Br: {
1138     const BranchInst* br = cast<BranchInst>(I);
1139     Out << "BranchInst::Create(" ;
1140     if (br->getNumOperands() == 3) {
1141       Out << opNames[2] << ", "
1142           << opNames[1] << ", "
1143           << opNames[0] << ", ";
1144 
1145     } else if (br->getNumOperands() == 1) {
1146       Out << opNames[0] << ", ";
1147     } else {
1148       error("Branch with 2 operands?");
1149     }
1150     Out << bbname << ");";
1151     break;
1152   }
1153   case Instruction::Switch: {
1154     const SwitchInst *SI = cast<SwitchInst>(I);
1155     Out << "SwitchInst* " << iName << " = SwitchInst::Create("
1156         << getOpName(SI->getCondition()) << ", "
1157         << getOpName(SI->getDefaultDest()) << ", "
1158         << SI->getNumCases() << ", " << bbname << ");";
1159     nl(Out);
1160     for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end();
1161          i != e; ++i) {
1162       const ConstantInt* CaseVal = i.getCaseValue();
1163       const BasicBlock *BB = i.getCaseSuccessor();
1164       Out << iName << "->addCase("
1165           << getOpName(CaseVal) << ", "
1166           << getOpName(BB) << ");";
1167       nl(Out);
1168     }
1169     break;
1170   }
1171   case Instruction::IndirectBr: {
1172     const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
1173     Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
1174         << opNames[0] << ", " << IBI->getNumDestinations() << ");";
1175     nl(Out);
1176     for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
1177       Out << iName << "->addDestination(" << opNames[i] << ");";
1178       nl(Out);
1179     }
1180     break;
1181   }
1182   case Instruction::Resume: {
1183     Out << "ResumeInst::Create(" << opNames[0] << ", " << bbname << ");";
1184     break;
1185   }
1186   case Instruction::Invoke: {
1187     const InvokeInst* inv = cast<InvokeInst>(I);
1188     Out << "std::vector<Value*> " << iName << "_params;";
1189     nl(Out);
1190     for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
1191       Out << iName << "_params.push_back("
1192           << getOpName(inv->getArgOperand(i)) << ");";
1193       nl(Out);
1194     }
1195     // FIXME: This shouldn't use magic numbers -3, -2, and -1.
1196     Out << "InvokeInst *" << iName << " = InvokeInst::Create("
1197         << getOpName(inv->getCalledValue()) << ", "
1198         << getOpName(inv->getNormalDest()) << ", "
1199         << getOpName(inv->getUnwindDest()) << ", "
1200         << iName << "_params, \"";
1201     printEscapedString(inv->getName());
1202     Out << "\", " << bbname << ");";
1203     nl(Out) << iName << "->setCallingConv(";
1204     printCallingConv(inv->getCallingConv());
1205     Out << ");";
1206     printAttributes(inv->getAttributes(), iName);
1207     Out << iName << "->setAttributes(" << iName << "_PAL);";
1208     nl(Out);
1209     break;
1210   }
1211   case Instruction::Unreachable: {
1212     Out << "new UnreachableInst("
1213         << "mod->getContext(), "
1214         << bbname << ");";
1215     break;
1216   }
1217   case Instruction::Add:
1218   case Instruction::FAdd:
1219   case Instruction::Sub:
1220   case Instruction::FSub:
1221   case Instruction::Mul:
1222   case Instruction::FMul:
1223   case Instruction::UDiv:
1224   case Instruction::SDiv:
1225   case Instruction::FDiv:
1226   case Instruction::URem:
1227   case Instruction::SRem:
1228   case Instruction::FRem:
1229   case Instruction::And:
1230   case Instruction::Or:
1231   case Instruction::Xor:
1232   case Instruction::Shl:
1233   case Instruction::LShr:
1234   case Instruction::AShr:{
1235     Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
1236     switch (I->getOpcode()) {
1237     case Instruction::Add: Out << "Instruction::Add"; break;
1238     case Instruction::FAdd: Out << "Instruction::FAdd"; break;
1239     case Instruction::Sub: Out << "Instruction::Sub"; break;
1240     case Instruction::FSub: Out << "Instruction::FSub"; break;
1241     case Instruction::Mul: Out << "Instruction::Mul"; break;
1242     case Instruction::FMul: Out << "Instruction::FMul"; break;
1243     case Instruction::UDiv:Out << "Instruction::UDiv"; break;
1244     case Instruction::SDiv:Out << "Instruction::SDiv"; break;
1245     case Instruction::FDiv:Out << "Instruction::FDiv"; break;
1246     case Instruction::URem:Out << "Instruction::URem"; break;
1247     case Instruction::SRem:Out << "Instruction::SRem"; break;
1248     case Instruction::FRem:Out << "Instruction::FRem"; break;
1249     case Instruction::And: Out << "Instruction::And"; break;
1250     case Instruction::Or:  Out << "Instruction::Or";  break;
1251     case Instruction::Xor: Out << "Instruction::Xor"; break;
1252     case Instruction::Shl: Out << "Instruction::Shl"; break;
1253     case Instruction::LShr:Out << "Instruction::LShr"; break;
1254     case Instruction::AShr:Out << "Instruction::AShr"; break;
1255     default: Out << "Instruction::BadOpCode"; break;
1256     }
1257     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1258     printEscapedString(I->getName());
1259     Out << "\", " << bbname << ");";
1260     break;
1261   }
1262   case Instruction::FCmp: {
1263     Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
1264     switch (cast<FCmpInst>(I)->getPredicate()) {
1265     case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
1266     case FCmpInst::FCMP_OEQ  : Out << "FCmpInst::FCMP_OEQ"; break;
1267     case FCmpInst::FCMP_OGT  : Out << "FCmpInst::FCMP_OGT"; break;
1268     case FCmpInst::FCMP_OGE  : Out << "FCmpInst::FCMP_OGE"; break;
1269     case FCmpInst::FCMP_OLT  : Out << "FCmpInst::FCMP_OLT"; break;
1270     case FCmpInst::FCMP_OLE  : Out << "FCmpInst::FCMP_OLE"; break;
1271     case FCmpInst::FCMP_ONE  : Out << "FCmpInst::FCMP_ONE"; break;
1272     case FCmpInst::FCMP_ORD  : Out << "FCmpInst::FCMP_ORD"; break;
1273     case FCmpInst::FCMP_UNO  : Out << "FCmpInst::FCMP_UNO"; break;
1274     case FCmpInst::FCMP_UEQ  : Out << "FCmpInst::FCMP_UEQ"; break;
1275     case FCmpInst::FCMP_UGT  : Out << "FCmpInst::FCMP_UGT"; break;
1276     case FCmpInst::FCMP_UGE  : Out << "FCmpInst::FCMP_UGE"; break;
1277     case FCmpInst::FCMP_ULT  : Out << "FCmpInst::FCMP_ULT"; break;
1278     case FCmpInst::FCMP_ULE  : Out << "FCmpInst::FCMP_ULE"; break;
1279     case FCmpInst::FCMP_UNE  : Out << "FCmpInst::FCMP_UNE"; break;
1280     case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
1281     default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
1282     }
1283     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1284     printEscapedString(I->getName());
1285     Out << "\");";
1286     break;
1287   }
1288   case Instruction::ICmp: {
1289     Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
1290     switch (cast<ICmpInst>(I)->getPredicate()) {
1291     case ICmpInst::ICMP_EQ:  Out << "ICmpInst::ICMP_EQ";  break;
1292     case ICmpInst::ICMP_NE:  Out << "ICmpInst::ICMP_NE";  break;
1293     case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
1294     case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
1295     case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
1296     case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
1297     case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
1298     case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
1299     case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
1300     case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
1301     default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
1302     }
1303     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1304     printEscapedString(I->getName());
1305     Out << "\");";
1306     break;
1307   }
1308   case Instruction::Alloca: {
1309     const AllocaInst* allocaI = cast<AllocaInst>(I);
1310     Out << "AllocaInst* " << iName << " = new AllocaInst("
1311         << getCppName(allocaI->getAllocatedType()) << ", ";
1312     if (allocaI->isArrayAllocation())
1313       Out << opNames[0] << ", ";
1314     Out << "\"";
1315     printEscapedString(allocaI->getName());
1316     Out << "\", " << bbname << ");";
1317     if (allocaI->getAlignment())
1318       nl(Out) << iName << "->setAlignment("
1319           << allocaI->getAlignment() << ");";
1320     break;
1321   }
1322   case Instruction::Load: {
1323     const LoadInst* load = cast<LoadInst>(I);
1324     Out << "LoadInst* " << iName << " = new LoadInst("
1325         << opNames[0] << ", \"";
1326     printEscapedString(load->getName());
1327     Out << "\", " << (load->isVolatile() ? "true" : "false" )
1328         << ", " << bbname << ");";
1329     if (load->getAlignment())
1330       nl(Out) << iName << "->setAlignment("
1331               << load->getAlignment() << ");";
1332     if (load->isAtomic()) {
1333       StringRef Ordering = ConvertAtomicOrdering(load->getOrdering());
1334       StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope());
1335       nl(Out) << iName << "->setAtomic("
1336               << Ordering << ", " << CrossThread << ");";
1337     }
1338     break;
1339   }
1340   case Instruction::Store: {
1341     const StoreInst* store = cast<StoreInst>(I);
1342     Out << "StoreInst* " << iName << " = new StoreInst("
1343         << opNames[0] << ", "
1344         << opNames[1] << ", "
1345         << (store->isVolatile() ? "true" : "false")
1346         << ", " << bbname << ");";
1347     if (store->getAlignment())
1348       nl(Out) << iName << "->setAlignment("
1349               << store->getAlignment() << ");";
1350     if (store->isAtomic()) {
1351       StringRef Ordering = ConvertAtomicOrdering(store->getOrdering());
1352       StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope());
1353       nl(Out) << iName << "->setAtomic("
1354               << Ordering << ", " << CrossThread << ");";
1355     }
1356     break;
1357   }
1358   case Instruction::GetElementPtr: {
1359     const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
1360     if (gep->getNumOperands() <= 2) {
1361       Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
1362           << opNames[0];
1363       if (gep->getNumOperands() == 2)
1364         Out << ", " << opNames[1];
1365     } else {
1366       Out << "std::vector<Value*> " << iName << "_indices;";
1367       nl(Out);
1368       for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
1369         Out << iName << "_indices.push_back("
1370             << opNames[i] << ");";
1371         nl(Out);
1372       }
1373       Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
1374           << opNames[0] << ", " << iName << "_indices";
1375     }
1376     Out << ", \"";
1377     printEscapedString(gep->getName());
1378     Out << "\", " << bbname << ");";
1379     break;
1380   }
1381   case Instruction::PHI: {
1382     const PHINode* phi = cast<PHINode>(I);
1383 
1384     Out << "PHINode* " << iName << " = PHINode::Create("
1385         << getCppName(phi->getType()) << ", "
1386         << phi->getNumIncomingValues() << ", \"";
1387     printEscapedString(phi->getName());
1388     Out << "\", " << bbname << ");";
1389     nl(Out);
1390     for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
1391       Out << iName << "->addIncoming("
1392           << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
1393           << getOpName(phi->getIncomingBlock(i)) << ");";
1394       nl(Out);
1395     }
1396     break;
1397   }
1398   case Instruction::Trunc:
1399   case Instruction::ZExt:
1400   case Instruction::SExt:
1401   case Instruction::FPTrunc:
1402   case Instruction::FPExt:
1403   case Instruction::FPToUI:
1404   case Instruction::FPToSI:
1405   case Instruction::UIToFP:
1406   case Instruction::SIToFP:
1407   case Instruction::PtrToInt:
1408   case Instruction::IntToPtr:
1409   case Instruction::BitCast: {
1410     const CastInst* cst = cast<CastInst>(I);
1411     Out << "CastInst* " << iName << " = new ";
1412     switch (I->getOpcode()) {
1413     case Instruction::Trunc:    Out << "TruncInst"; break;
1414     case Instruction::ZExt:     Out << "ZExtInst"; break;
1415     case Instruction::SExt:     Out << "SExtInst"; break;
1416     case Instruction::FPTrunc:  Out << "FPTruncInst"; break;
1417     case Instruction::FPExt:    Out << "FPExtInst"; break;
1418     case Instruction::FPToUI:   Out << "FPToUIInst"; break;
1419     case Instruction::FPToSI:   Out << "FPToSIInst"; break;
1420     case Instruction::UIToFP:   Out << "UIToFPInst"; break;
1421     case Instruction::SIToFP:   Out << "SIToFPInst"; break;
1422     case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
1423     case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
1424     case Instruction::BitCast:  Out << "BitCastInst"; break;
1425     default: llvm_unreachable("Unreachable");
1426     }
1427     Out << "(" << opNames[0] << ", "
1428         << getCppName(cst->getType()) << ", \"";
1429     printEscapedString(cst->getName());
1430     Out << "\", " << bbname << ");";
1431     break;
1432   }
1433   case Instruction::Call: {
1434     const CallInst* call = cast<CallInst>(I);
1435     if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
1436       Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
1437           << getCppName(ila->getFunctionType()) << ", \""
1438           << ila->getAsmString() << "\", \""
1439           << ila->getConstraintString() << "\","
1440           << (ila->hasSideEffects() ? "true" : "false") << ");";
1441       nl(Out);
1442     }
1443     if (call->getNumArgOperands() > 1) {
1444       Out << "std::vector<Value*> " << iName << "_params;";
1445       nl(Out);
1446       for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
1447         Out << iName << "_params.push_back(" << opNames[i] << ");";
1448         nl(Out);
1449       }
1450       Out << "CallInst* " << iName << " = CallInst::Create("
1451           << opNames[call->getNumArgOperands()] << ", "
1452           << iName << "_params, \"";
1453     } else if (call->getNumArgOperands() == 1) {
1454       Out << "CallInst* " << iName << " = CallInst::Create("
1455           << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
1456     } else {
1457       Out << "CallInst* " << iName << " = CallInst::Create("
1458           << opNames[call->getNumArgOperands()] << ", \"";
1459     }
1460     printEscapedString(call->getName());
1461     Out << "\", " << bbname << ");";
1462     nl(Out) << iName << "->setCallingConv(";
1463     printCallingConv(call->getCallingConv());
1464     Out << ");";
1465     nl(Out) << iName << "->setTailCall("
1466         << (call->isTailCall() ? "true" : "false");
1467     Out << ");";
1468     nl(Out);
1469     printAttributes(call->getAttributes(), iName);
1470     Out << iName << "->setAttributes(" << iName << "_PAL);";
1471     nl(Out);
1472     break;
1473   }
1474   case Instruction::Select: {
1475     const SelectInst* sel = cast<SelectInst>(I);
1476     Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
1477     Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1478     printEscapedString(sel->getName());
1479     Out << "\", " << bbname << ");";
1480     break;
1481   }
1482   case Instruction::UserOp1:
1483     /// FALL THROUGH
1484   case Instruction::UserOp2: {
1485     /// FIXME: What should be done here?
1486     break;
1487   }
1488   case Instruction::VAArg: {
1489     const VAArgInst* va = cast<VAArgInst>(I);
1490     Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
1491         << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
1492     printEscapedString(va->getName());
1493     Out << "\", " << bbname << ");";
1494     break;
1495   }
1496   case Instruction::ExtractElement: {
1497     const ExtractElementInst* eei = cast<ExtractElementInst>(I);
1498     Out << "ExtractElementInst* " << getCppName(eei)
1499         << " = new ExtractElementInst(" << opNames[0]
1500         << ", " << opNames[1] << ", \"";
1501     printEscapedString(eei->getName());
1502     Out << "\", " << bbname << ");";
1503     break;
1504   }
1505   case Instruction::InsertElement: {
1506     const InsertElementInst* iei = cast<InsertElementInst>(I);
1507     Out << "InsertElementInst* " << getCppName(iei)
1508         << " = InsertElementInst::Create(" << opNames[0]
1509         << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1510     printEscapedString(iei->getName());
1511     Out << "\", " << bbname << ");";
1512     break;
1513   }
1514   case Instruction::ShuffleVector: {
1515     const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
1516     Out << "ShuffleVectorInst* " << getCppName(svi)
1517         << " = new ShuffleVectorInst(" << opNames[0]
1518         << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1519     printEscapedString(svi->getName());
1520     Out << "\", " << bbname << ");";
1521     break;
1522   }
1523   case Instruction::ExtractValue: {
1524     const ExtractValueInst *evi = cast<ExtractValueInst>(I);
1525     Out << "std::vector<unsigned> " << iName << "_indices;";
1526     nl(Out);
1527     for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
1528       Out << iName << "_indices.push_back("
1529           << evi->idx_begin()[i] << ");";
1530       nl(Out);
1531     }
1532     Out << "ExtractValueInst* " << getCppName(evi)
1533         << " = ExtractValueInst::Create(" << opNames[0]
1534         << ", "
1535         << iName << "_indices, \"";
1536     printEscapedString(evi->getName());
1537     Out << "\", " << bbname << ");";
1538     break;
1539   }
1540   case Instruction::InsertValue: {
1541     const InsertValueInst *ivi = cast<InsertValueInst>(I);
1542     Out << "std::vector<unsigned> " << iName << "_indices;";
1543     nl(Out);
1544     for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
1545       Out << iName << "_indices.push_back("
1546           << ivi->idx_begin()[i] << ");";
1547       nl(Out);
1548     }
1549     Out << "InsertValueInst* " << getCppName(ivi)
1550         << " = InsertValueInst::Create(" << opNames[0]
1551         << ", " << opNames[1] << ", "
1552         << iName << "_indices, \"";
1553     printEscapedString(ivi->getName());
1554     Out << "\", " << bbname << ");";
1555     break;
1556   }
1557   case Instruction::Fence: {
1558     const FenceInst *fi = cast<FenceInst>(I);
1559     StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering());
1560     StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope());
1561     Out << "FenceInst* " << iName
1562         << " = new FenceInst(mod->getContext(), "
1563         << Ordering << ", " << CrossThread << ", " << bbname
1564         << ");";
1565     break;
1566   }
1567   case Instruction::AtomicCmpXchg: {
1568     const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I);
1569     StringRef SuccessOrdering =
1570         ConvertAtomicOrdering(cxi->getSuccessOrdering());
1571     StringRef FailureOrdering =
1572         ConvertAtomicOrdering(cxi->getFailureOrdering());
1573     StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope());
1574     Out << "AtomicCmpXchgInst* " << iName
1575         << " = new AtomicCmpXchgInst("
1576         << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", "
1577         << SuccessOrdering << ", " << FailureOrdering << ", "
1578         << CrossThread << ", " << bbname
1579         << ");";
1580     nl(Out) << iName << "->setName(\"";
1581     printEscapedString(cxi->getName());
1582     Out << "\");";
1583     nl(Out) << iName << "->setVolatile("
1584             << (cxi->isVolatile() ? "true" : "false") << ");";
1585     nl(Out) << iName << "->setWeak("
1586             << (cxi->isWeak() ? "true" : "false") << ");";
1587     break;
1588   }
1589   case Instruction::AtomicRMW: {
1590     const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I);
1591     StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering());
1592     StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope());
1593     StringRef Operation;
1594     switch (rmwi->getOperation()) {
1595       case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break;
1596       case AtomicRMWInst::Add:  Operation = "AtomicRMWInst::Add"; break;
1597       case AtomicRMWInst::Sub:  Operation = "AtomicRMWInst::Sub"; break;
1598       case AtomicRMWInst::And:  Operation = "AtomicRMWInst::And"; break;
1599       case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break;
1600       case AtomicRMWInst::Or:   Operation = "AtomicRMWInst::Or"; break;
1601       case AtomicRMWInst::Xor:  Operation = "AtomicRMWInst::Xor"; break;
1602       case AtomicRMWInst::Max:  Operation = "AtomicRMWInst::Max"; break;
1603       case AtomicRMWInst::Min:  Operation = "AtomicRMWInst::Min"; break;
1604       case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break;
1605       case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break;
1606       case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation");
1607     }
1608     Out << "AtomicRMWInst* " << iName
1609         << " = new AtomicRMWInst("
1610         << Operation << ", "
1611         << opNames[0] << ", " << opNames[1] << ", "
1612         << Ordering << ", " << CrossThread << ", " << bbname
1613         << ");";
1614     nl(Out) << iName << "->setName(\"";
1615     printEscapedString(rmwi->getName());
1616     Out << "\");";
1617     nl(Out) << iName << "->setVolatile("
1618             << (rmwi->isVolatile() ? "true" : "false") << ");";
1619     break;
1620   }
1621   case Instruction::LandingPad: {
1622     const LandingPadInst *lpi = cast<LandingPadInst>(I);
1623     Out << "LandingPadInst* " << iName << " = LandingPadInst::Create(";
1624     printCppName(lpi->getType());
1625     Out << ", " << opNames[0] << ", " << lpi->getNumClauses() << ", \"";
1626     printEscapedString(lpi->getName());
1627     Out << "\", " << bbname << ");";
1628     nl(Out) << iName << "->setCleanup("
1629             << (lpi->isCleanup() ? "true" : "false")
1630             << ");";
1631     for (unsigned i = 0, e = lpi->getNumClauses(); i != e; ++i)
1632       nl(Out) << iName << "->addClause(" << opNames[i+1] << ");";
1633     break;
1634   }
1635   }
1636   DefinedValues.insert(I);
1637   nl(Out);
1638   delete [] opNames;
1639 }
1640 
1641 // Print out the types, constants and declarations needed by one function
printFunctionUses(const Function * F)1642 void CppWriter::printFunctionUses(const Function* F) {
1643   nl(Out) << "// Type Definitions"; nl(Out);
1644   if (!is_inline) {
1645     // Print the function's return type
1646     printType(F->getReturnType());
1647 
1648     // Print the function's function type
1649     printType(F->getFunctionType());
1650 
1651     // Print the types of each of the function's arguments
1652     for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1653          AI != AE; ++AI) {
1654       printType(AI->getType());
1655     }
1656   }
1657 
1658   // Print type definitions for every type referenced by an instruction and
1659   // make a note of any global values or constants that are referenced
1660   SmallPtrSet<GlobalValue*,64> gvs;
1661   SmallPtrSet<Constant*,64> consts;
1662   for (Function::const_iterator BB = F->begin(), BE = F->end();
1663        BB != BE; ++BB){
1664     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1665          I != E; ++I) {
1666       // Print the type of the instruction itself
1667       printType(I->getType());
1668 
1669       // Print the type of each of the instruction's operands
1670       for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1671         Value* operand = I->getOperand(i);
1672         printType(operand->getType());
1673 
1674         // If the operand references a GVal or Constant, make a note of it
1675         if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1676           gvs.insert(GV);
1677           if (GenerationType != GenFunction)
1678             if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1679               if (GVar->hasInitializer())
1680                 consts.insert(GVar->getInitializer());
1681         } else if (Constant* C = dyn_cast<Constant>(operand)) {
1682           consts.insert(C);
1683           for (unsigned j = 0; j < C->getNumOperands(); ++j) {
1684             // If the operand references a GVal or Constant, make a note of it
1685             Value* operand = C->getOperand(j);
1686             printType(operand->getType());
1687             if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1688               gvs.insert(GV);
1689               if (GenerationType != GenFunction)
1690                 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1691                   if (GVar->hasInitializer())
1692                     consts.insert(GVar->getInitializer());
1693             }
1694           }
1695         }
1696       }
1697     }
1698   }
1699 
1700   // Print the function declarations for any functions encountered
1701   nl(Out) << "// Function Declarations"; nl(Out);
1702   for (auto *GV : gvs) {
1703     if (Function *Fun = dyn_cast<Function>(GV)) {
1704       if (!is_inline || Fun != F)
1705         printFunctionHead(Fun);
1706     }
1707   }
1708 
1709   // Print the global variable declarations for any variables encountered
1710   nl(Out) << "// Global Variable Declarations"; nl(Out);
1711   for (auto *GV : gvs) {
1712     if (GlobalVariable *F = dyn_cast<GlobalVariable>(GV))
1713       printVariableHead(F);
1714   }
1715 
1716   // Print the constants found
1717   nl(Out) << "// Constant Definitions"; nl(Out);
1718   for (const auto *C : consts) {
1719     printConstant(C);
1720   }
1721 
1722   // Process the global variables definitions now that all the constants have
1723   // been emitted. These definitions just couple the gvars with their constant
1724   // initializers.
1725   if (GenerationType != GenFunction) {
1726     nl(Out) << "// Global Variable Definitions"; nl(Out);
1727     for (auto *GV : gvs) {
1728       if (GlobalVariable *Var = dyn_cast<GlobalVariable>(GV))
1729         printVariableBody(Var);
1730     }
1731   }
1732 }
1733 
printFunctionHead(const Function * F)1734 void CppWriter::printFunctionHead(const Function* F) {
1735   nl(Out) << "Function* " << getCppName(F);
1736   Out << " = mod->getFunction(\"";
1737   printEscapedString(F->getName());
1738   Out << "\");";
1739   nl(Out) << "if (!" << getCppName(F) << ") {";
1740   nl(Out) << getCppName(F);
1741 
1742   Out<< " = Function::Create(";
1743   nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
1744   nl(Out) << "/*Linkage=*/";
1745   printLinkageType(F->getLinkage());
1746   Out << ",";
1747   nl(Out) << "/*Name=*/\"";
1748   printEscapedString(F->getName());
1749   Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
1750   nl(Out,-1);
1751   printCppName(F);
1752   Out << "->setCallingConv(";
1753   printCallingConv(F->getCallingConv());
1754   Out << ");";
1755   nl(Out);
1756   if (F->hasSection()) {
1757     printCppName(F);
1758     Out << "->setSection(\"" << F->getSection() << "\");";
1759     nl(Out);
1760   }
1761   if (F->getAlignment()) {
1762     printCppName(F);
1763     Out << "->setAlignment(" << F->getAlignment() << ");";
1764     nl(Out);
1765   }
1766   if (F->getVisibility() != GlobalValue::DefaultVisibility) {
1767     printCppName(F);
1768     Out << "->setVisibility(";
1769     printVisibilityType(F->getVisibility());
1770     Out << ");";
1771     nl(Out);
1772   }
1773   if (F->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
1774     printCppName(F);
1775     Out << "->setDLLStorageClass(";
1776     printDLLStorageClassType(F->getDLLStorageClass());
1777     Out << ");";
1778     nl(Out);
1779   }
1780   if (F->hasGC()) {
1781     printCppName(F);
1782     Out << "->setGC(\"" << F->getGC() << "\");";
1783     nl(Out);
1784   }
1785   Out << "}";
1786   nl(Out);
1787   printAttributes(F->getAttributes(), getCppName(F));
1788   printCppName(F);
1789   Out << "->setAttributes(" << getCppName(F) << "_PAL);";
1790   nl(Out);
1791 }
1792 
printFunctionBody(const Function * F)1793 void CppWriter::printFunctionBody(const Function *F) {
1794   if (F->isDeclaration())
1795     return; // external functions have no bodies.
1796 
1797   // Clear the DefinedValues and ForwardRefs maps because we can't have
1798   // cross-function forward refs
1799   ForwardRefs.clear();
1800   DefinedValues.clear();
1801 
1802   // Create all the argument values
1803   if (!is_inline) {
1804     if (!F->arg_empty()) {
1805       Out << "Function::arg_iterator args = " << getCppName(F)
1806           << "->arg_begin();";
1807       nl(Out);
1808     }
1809     for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1810          AI != AE; ++AI) {
1811       Out << "Value* " << getCppName(AI) << " = args++;";
1812       nl(Out);
1813       if (AI->hasName()) {
1814         Out << getCppName(AI) << "->setName(\"";
1815         printEscapedString(AI->getName());
1816         Out << "\");";
1817         nl(Out);
1818       }
1819     }
1820   }
1821 
1822   // Create all the basic blocks
1823   nl(Out);
1824   for (Function::const_iterator BI = F->begin(), BE = F->end();
1825        BI != BE; ++BI) {
1826     std::string bbname(getCppName(BI));
1827     Out << "BasicBlock* " << bbname <<
1828            " = BasicBlock::Create(mod->getContext(), \"";
1829     if (BI->hasName())
1830       printEscapedString(BI->getName());
1831     Out << "\"," << getCppName(BI->getParent()) << ",0);";
1832     nl(Out);
1833   }
1834 
1835   // Output all of its basic blocks... for the function
1836   for (Function::const_iterator BI = F->begin(), BE = F->end();
1837        BI != BE; ++BI) {
1838     std::string bbname(getCppName(BI));
1839     nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
1840     nl(Out);
1841 
1842     // Output all of the instructions in the basic block...
1843     for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
1844          I != E; ++I) {
1845       printInstruction(I,bbname);
1846     }
1847   }
1848 
1849   // Loop over the ForwardRefs and resolve them now that all instructions
1850   // are generated.
1851   if (!ForwardRefs.empty()) {
1852     nl(Out) << "// Resolve Forward References";
1853     nl(Out);
1854   }
1855 
1856   while (!ForwardRefs.empty()) {
1857     ForwardRefMap::iterator I = ForwardRefs.begin();
1858     Out << I->second << "->replaceAllUsesWith("
1859         << getCppName(I->first) << "); delete " << I->second << ";";
1860     nl(Out);
1861     ForwardRefs.erase(I);
1862   }
1863 }
1864 
printInline(const std::string & fname,const std::string & func)1865 void CppWriter::printInline(const std::string& fname,
1866                             const std::string& func) {
1867   const Function* F = TheModule->getFunction(func);
1868   if (!F) {
1869     error(std::string("Function '") + func + "' not found in input module");
1870     return;
1871   }
1872   if (F->isDeclaration()) {
1873     error(std::string("Function '") + func + "' is external!");
1874     return;
1875   }
1876   nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
1877           << getCppName(F);
1878   unsigned arg_count = 1;
1879   for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1880        AI != AE; ++AI) {
1881     Out << ", Value* arg_" << arg_count++;
1882   }
1883   Out << ") {";
1884   nl(Out);
1885   is_inline = true;
1886   printFunctionUses(F);
1887   printFunctionBody(F);
1888   is_inline = false;
1889   Out << "return " << getCppName(F->begin()) << ";";
1890   nl(Out) << "}";
1891   nl(Out);
1892 }
1893 
printModuleBody()1894 void CppWriter::printModuleBody() {
1895   // Print out all the type definitions
1896   nl(Out) << "// Type Definitions"; nl(Out);
1897   printTypes(TheModule);
1898 
1899   // Functions can call each other and global variables can reference them so
1900   // define all the functions first before emitting their function bodies.
1901   nl(Out) << "// Function Declarations"; nl(Out);
1902   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1903        I != E; ++I)
1904     printFunctionHead(I);
1905 
1906   // Process the global variables declarations. We can't initialze them until
1907   // after the constants are printed so just print a header for each global
1908   nl(Out) << "// Global Variable Declarations\n"; nl(Out);
1909   for (Module::const_global_iterator I = TheModule->global_begin(),
1910          E = TheModule->global_end(); I != E; ++I) {
1911     printVariableHead(I);
1912   }
1913 
1914   // Print out all the constants definitions. Constants don't recurse except
1915   // through GlobalValues. All GlobalValues have been declared at this point
1916   // so we can proceed to generate the constants.
1917   nl(Out) << "// Constant Definitions"; nl(Out);
1918   printConstants(TheModule);
1919 
1920   // Process the global variables definitions now that all the constants have
1921   // been emitted. These definitions just couple the gvars with their constant
1922   // initializers.
1923   nl(Out) << "// Global Variable Definitions"; nl(Out);
1924   for (Module::const_global_iterator I = TheModule->global_begin(),
1925          E = TheModule->global_end(); I != E; ++I) {
1926     printVariableBody(I);
1927   }
1928 
1929   // Finally, we can safely put out all of the function bodies.
1930   nl(Out) << "// Function Definitions"; nl(Out);
1931   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1932        I != E; ++I) {
1933     if (!I->isDeclaration()) {
1934       nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
1935               << ")";
1936       nl(Out) << "{";
1937       nl(Out,1);
1938       printFunctionBody(I);
1939       nl(Out,-1) << "}";
1940       nl(Out);
1941     }
1942   }
1943 }
1944 
printProgram(const std::string & fname,const std::string & mName)1945 void CppWriter::printProgram(const std::string& fname,
1946                              const std::string& mName) {
1947   Out << "#include <llvm/Pass.h>\n";
1948 
1949   Out << "#include <llvm/ADT/SmallVector.h>\n";
1950   Out << "#include <llvm/Analysis/Verifier.h>\n";
1951   Out << "#include <llvm/IR/BasicBlock.h>\n";
1952   Out << "#include <llvm/IR/CallingConv.h>\n";
1953   Out << "#include <llvm/IR/Constants.h>\n";
1954   Out << "#include <llvm/IR/DerivedTypes.h>\n";
1955   Out << "#include <llvm/IR/Function.h>\n";
1956   Out << "#include <llvm/IR/GlobalVariable.h>\n";
1957   Out << "#include <llvm/IR/IRPrintingPasses.h>\n";
1958   Out << "#include <llvm/IR/InlineAsm.h>\n";
1959   Out << "#include <llvm/IR/Instructions.h>\n";
1960   Out << "#include <llvm/IR/LLVMContext.h>\n";
1961   Out << "#include <llvm/IR/LegacyPassManager.h>\n";
1962   Out << "#include <llvm/IR/Module.h>\n";
1963   Out << "#include <llvm/Support/FormattedStream.h>\n";
1964   Out << "#include <llvm/Support/MathExtras.h>\n";
1965   Out << "#include <algorithm>\n";
1966   Out << "using namespace llvm;\n\n";
1967   Out << "Module* " << fname << "();\n\n";
1968   Out << "int main(int argc, char**argv) {\n";
1969   Out << "  Module* Mod = " << fname << "();\n";
1970   Out << "  verifyModule(*Mod, PrintMessageAction);\n";
1971   Out << "  PassManager PM;\n";
1972   Out << "  PM.add(createPrintModulePass(&outs()));\n";
1973   Out << "  PM.run(*Mod);\n";
1974   Out << "  return 0;\n";
1975   Out << "}\n\n";
1976   printModule(fname,mName);
1977 }
1978 
printModule(const std::string & fname,const std::string & mName)1979 void CppWriter::printModule(const std::string& fname,
1980                             const std::string& mName) {
1981   nl(Out) << "Module* " << fname << "() {";
1982   nl(Out,1) << "// Module Construction";
1983   nl(Out) << "Module* mod = new Module(\"";
1984   printEscapedString(mName);
1985   Out << "\", getGlobalContext());";
1986   if (!TheModule->getTargetTriple().empty()) {
1987     nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayoutStr()
1988             << "\");";
1989   }
1990   if (!TheModule->getTargetTriple().empty()) {
1991     nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
1992             << "\");";
1993   }
1994 
1995   if (!TheModule->getModuleInlineAsm().empty()) {
1996     nl(Out) << "mod->setModuleInlineAsm(\"";
1997     printEscapedString(TheModule->getModuleInlineAsm());
1998     Out << "\");";
1999   }
2000   nl(Out);
2001 
2002   printModuleBody();
2003   nl(Out) << "return mod;";
2004   nl(Out,-1) << "}";
2005   nl(Out);
2006 }
2007 
printContents(const std::string & fname,const std::string & mName)2008 void CppWriter::printContents(const std::string& fname,
2009                               const std::string& mName) {
2010   Out << "\nModule* " << fname << "(Module *mod) {\n";
2011   Out << "\nmod->setModuleIdentifier(\"";
2012   printEscapedString(mName);
2013   Out << "\");\n";
2014   printModuleBody();
2015   Out << "\nreturn mod;\n";
2016   Out << "\n}\n";
2017 }
2018 
printFunction(const std::string & fname,const std::string & funcName)2019 void CppWriter::printFunction(const std::string& fname,
2020                               const std::string& funcName) {
2021   const Function* F = TheModule->getFunction(funcName);
2022   if (!F) {
2023     error(std::string("Function '") + funcName + "' not found in input module");
2024     return;
2025   }
2026   Out << "\nFunction* " << fname << "(Module *mod) {\n";
2027   printFunctionUses(F);
2028   printFunctionHead(F);
2029   printFunctionBody(F);
2030   Out << "return " << getCppName(F) << ";\n";
2031   Out << "}\n";
2032 }
2033 
printFunctions()2034 void CppWriter::printFunctions() {
2035   const Module::FunctionListType &funcs = TheModule->getFunctionList();
2036   Module::const_iterator I  = funcs.begin();
2037   Module::const_iterator IE = funcs.end();
2038 
2039   for (; I != IE; ++I) {
2040     const Function &func = *I;
2041     if (!func.isDeclaration()) {
2042       std::string name("define_");
2043       name += func.getName();
2044       printFunction(name, func.getName());
2045     }
2046   }
2047 }
2048 
printVariable(const std::string & fname,const std::string & varName)2049 void CppWriter::printVariable(const std::string& fname,
2050                               const std::string& varName) {
2051   const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
2052 
2053   if (!GV) {
2054     error(std::string("Variable '") + varName + "' not found in input module");
2055     return;
2056   }
2057   Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
2058   printVariableUses(GV);
2059   printVariableHead(GV);
2060   printVariableBody(GV);
2061   Out << "return " << getCppName(GV) << ";\n";
2062   Out << "}\n";
2063 }
2064 
printType(const std::string & fname,const std::string & typeName)2065 void CppWriter::printType(const std::string &fname,
2066                           const std::string &typeName) {
2067   Type* Ty = TheModule->getTypeByName(typeName);
2068   if (!Ty) {
2069     error(std::string("Type '") + typeName + "' not found in input module");
2070     return;
2071   }
2072   Out << "\nType* " << fname << "(Module *mod) {\n";
2073   printType(Ty);
2074   Out << "return " << getCppName(Ty) << ";\n";
2075   Out << "}\n";
2076 }
2077 
runOnModule(Module & M)2078 bool CppWriter::runOnModule(Module &M) {
2079   TheModule = &M;
2080 
2081   // Emit a header
2082   Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
2083 
2084   // Get the name of the function we're supposed to generate
2085   std::string fname = FuncName.getValue();
2086 
2087   // Get the name of the thing we are to generate
2088   std::string tgtname = NameToGenerate.getValue();
2089   if (GenerationType == GenModule ||
2090       GenerationType == GenContents ||
2091       GenerationType == GenProgram ||
2092       GenerationType == GenFunctions) {
2093     if (tgtname == "!bad!") {
2094       if (M.getModuleIdentifier() == "-")
2095         tgtname = "<stdin>";
2096       else
2097         tgtname = M.getModuleIdentifier();
2098     }
2099   } else if (tgtname == "!bad!")
2100     error("You must use the -for option with -gen-{function,variable,type}");
2101 
2102   switch (WhatToGenerate(GenerationType)) {
2103    case GenProgram:
2104     if (fname.empty())
2105       fname = "makeLLVMModule";
2106     printProgram(fname,tgtname);
2107     break;
2108    case GenModule:
2109     if (fname.empty())
2110       fname = "makeLLVMModule";
2111     printModule(fname,tgtname);
2112     break;
2113    case GenContents:
2114     if (fname.empty())
2115       fname = "makeLLVMModuleContents";
2116     printContents(fname,tgtname);
2117     break;
2118    case GenFunction:
2119     if (fname.empty())
2120       fname = "makeLLVMFunction";
2121     printFunction(fname,tgtname);
2122     break;
2123    case GenFunctions:
2124     printFunctions();
2125     break;
2126    case GenInline:
2127     if (fname.empty())
2128       fname = "makeLLVMInline";
2129     printInline(fname,tgtname);
2130     break;
2131    case GenVariable:
2132     if (fname.empty())
2133       fname = "makeLLVMVariable";
2134     printVariable(fname,tgtname);
2135     break;
2136    case GenType:
2137     if (fname.empty())
2138       fname = "makeLLVMType";
2139     printType(fname,tgtname);
2140     break;
2141   }
2142 
2143   return false;
2144 }
2145 
2146 char CppWriter::ID = 0;
2147 
2148 //===----------------------------------------------------------------------===//
2149 //                       External Interface declaration
2150 //===----------------------------------------------------------------------===//
2151 
addPassesToEmitFile(PassManagerBase & PM,raw_pwrite_stream & o,CodeGenFileType FileType,bool DisableVerify,AnalysisID StartAfter,AnalysisID StopAfter)2152 bool CPPTargetMachine::addPassesToEmitFile(
2153     PassManagerBase &PM, raw_pwrite_stream &o, CodeGenFileType FileType,
2154     bool DisableVerify, AnalysisID StartAfter, AnalysisID StopAfter) {
2155   if (FileType != TargetMachine::CGFT_AssemblyFile)
2156     return true;
2157   auto FOut = llvm::make_unique<formatted_raw_ostream>(o);
2158   PM.add(new CppWriter(std::move(FOut)));
2159   return false;
2160 }
2161