1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
11 // LLVM IR interface. The input module is assumed to be verified.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CPPTargetMachine.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Config/config.h"
20 #include "llvm/IR/CallingConv.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/InlineAsm.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LegacyPassManager.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCInstrInfo.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/FormattedStream.h"
35 #include "llvm/Support/TargetRegistry.h"
36 #include <algorithm>
37 #include <cctype>
38 #include <cstdio>
39 #include <map>
40 #include <set>
41 using namespace llvm;
42
43 static cl::opt<std::string>
44 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
45 cl::value_desc("function name"));
46
47 enum WhatToGenerate {
48 GenProgram,
49 GenModule,
50 GenContents,
51 GenFunction,
52 GenFunctions,
53 GenInline,
54 GenVariable,
55 GenType
56 };
57
58 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
59 cl::desc("Choose what kind of output to generate"),
60 cl::init(GenProgram),
61 cl::values(
62 clEnumValN(GenProgram, "program", "Generate a complete program"),
63 clEnumValN(GenModule, "module", "Generate a module definition"),
64 clEnumValN(GenContents, "contents", "Generate contents of a module"),
65 clEnumValN(GenFunction, "function", "Generate a function definition"),
66 clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
67 clEnumValN(GenInline, "inline", "Generate an inline function"),
68 clEnumValN(GenVariable, "variable", "Generate a variable definition"),
69 clEnumValN(GenType, "type", "Generate a type definition"),
70 clEnumValEnd
71 )
72 );
73
74 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
75 cl::desc("Specify the name of the thing to generate"),
76 cl::init("!bad!"));
77
LLVMInitializeCppBackendTarget()78 extern "C" void LLVMInitializeCppBackendTarget() {
79 // Register the target.
80 RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
81 }
82
83 namespace {
84 typedef std::vector<Type*> TypeList;
85 typedef std::map<Type*,std::string> TypeMap;
86 typedef std::map<const Value*,std::string> ValueMap;
87 typedef std::set<std::string> NameSet;
88 typedef std::set<Type*> TypeSet;
89 typedef std::set<const Value*> ValueSet;
90 typedef std::map<const Value*,std::string> ForwardRefMap;
91
92 /// CppWriter - This class is the main chunk of code that converts an LLVM
93 /// module to a C++ translation unit.
94 class CppWriter : public ModulePass {
95 std::unique_ptr<formatted_raw_ostream> OutOwner;
96 formatted_raw_ostream &Out;
97 const Module *TheModule;
98 uint64_t uniqueNum;
99 TypeMap TypeNames;
100 ValueMap ValueNames;
101 NameSet UsedNames;
102 TypeSet DefinedTypes;
103 ValueSet DefinedValues;
104 ForwardRefMap ForwardRefs;
105 bool is_inline;
106 unsigned indent_level;
107
108 public:
109 static char ID;
CppWriter(std::unique_ptr<formatted_raw_ostream> o)110 explicit CppWriter(std::unique_ptr<formatted_raw_ostream> o)
111 : ModulePass(ID), OutOwner(std::move(o)), Out(*OutOwner), uniqueNum(0),
112 is_inline(false), indent_level(0) {}
113
getPassName() const114 const char *getPassName() const override { return "C++ backend"; }
115
116 bool runOnModule(Module &M) override;
117
118 void printProgram(const std::string& fname, const std::string& modName );
119 void printModule(const std::string& fname, const std::string& modName );
120 void printContents(const std::string& fname, const std::string& modName );
121 void printFunction(const std::string& fname, const std::string& funcName );
122 void printFunctions();
123 void printInline(const std::string& fname, const std::string& funcName );
124 void printVariable(const std::string& fname, const std::string& varName );
125 void printType(const std::string& fname, const std::string& typeName );
126
127 void error(const std::string& msg);
128
129
130 formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
in()131 inline void in() { indent_level++; }
out()132 inline void out() { if (indent_level >0) indent_level--; }
133
134 private:
135 void printLinkageType(GlobalValue::LinkageTypes LT);
136 void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
137 void printDLLStorageClassType(GlobalValue::DLLStorageClassTypes DSCType);
138 void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM);
139 void printCallingConv(CallingConv::ID cc);
140 void printEscapedString(const std::string& str);
141 void printCFP(const ConstantFP* CFP);
142
143 std::string getCppName(Type* val);
144 inline void printCppName(Type* val);
145
146 std::string getCppName(const Value* val);
147 inline void printCppName(const Value* val);
148
149 void printAttributes(const AttributeSet &PAL, const std::string &name);
150 void printType(Type* Ty);
151 void printTypes(const Module* M);
152
153 void printConstant(const Constant *CPV);
154 void printConstants(const Module* M);
155
156 void printVariableUses(const GlobalVariable *GV);
157 void printVariableHead(const GlobalVariable *GV);
158 void printVariableBody(const GlobalVariable *GV);
159
160 void printFunctionUses(const Function *F);
161 void printFunctionHead(const Function *F);
162 void printFunctionBody(const Function *F);
163 void printInstruction(const Instruction *I, const std::string& bbname);
164 std::string getOpName(const Value*);
165
166 void printModuleBody();
167 };
168 } // end anonymous namespace.
169
nl(formatted_raw_ostream & Out,int delta)170 formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
171 Out << '\n';
172 if (delta >= 0 || indent_level >= unsigned(-delta))
173 indent_level += delta;
174 Out.indent(indent_level);
175 return Out;
176 }
177
sanitize(std::string & str)178 static inline void sanitize(std::string &str) {
179 for (size_t i = 0; i < str.length(); ++i)
180 if (!isalnum(str[i]) && str[i] != '_')
181 str[i] = '_';
182 }
183
getTypePrefix(Type * Ty)184 static std::string getTypePrefix(Type *Ty) {
185 switch (Ty->getTypeID()) {
186 case Type::VoidTyID: return "void_";
187 case Type::IntegerTyID:
188 return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
189 case Type::FloatTyID: return "float_";
190 case Type::DoubleTyID: return "double_";
191 case Type::LabelTyID: return "label_";
192 case Type::FunctionTyID: return "func_";
193 case Type::StructTyID: return "struct_";
194 case Type::ArrayTyID: return "array_";
195 case Type::PointerTyID: return "ptr_";
196 case Type::VectorTyID: return "packed_";
197 default: return "other_";
198 }
199 }
200
error(const std::string & msg)201 void CppWriter::error(const std::string& msg) {
202 report_fatal_error(msg);
203 }
204
ftostr(const APFloat & V)205 static inline std::string ftostr(const APFloat& V) {
206 std::string Buf;
207 if (&V.getSemantics() == &APFloat::IEEEdouble) {
208 raw_string_ostream(Buf) << V.convertToDouble();
209 return Buf;
210 } else if (&V.getSemantics() == &APFloat::IEEEsingle) {
211 raw_string_ostream(Buf) << (double)V.convertToFloat();
212 return Buf;
213 }
214 return "<unknown format in ftostr>"; // error
215 }
216
217 // printCFP - Print a floating point constant .. very carefully :)
218 // This makes sure that conversion to/from floating yields the same binary
219 // result so that we don't lose precision.
printCFP(const ConstantFP * CFP)220 void CppWriter::printCFP(const ConstantFP *CFP) {
221 bool ignored;
222 APFloat APF = APFloat(CFP->getValueAPF()); // copy
223 if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
224 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
225 Out << "ConstantFP::get(mod->getContext(), ";
226 Out << "APFloat(";
227 #if HAVE_PRINTF_A
228 char Buffer[100];
229 sprintf(Buffer, "%A", APF.convertToDouble());
230 if ((!strncmp(Buffer, "0x", 2) ||
231 !strncmp(Buffer, "-0x", 3) ||
232 !strncmp(Buffer, "+0x", 3)) &&
233 APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
234 if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
235 Out << "BitsToDouble(" << Buffer << ")";
236 else
237 Out << "BitsToFloat((float)" << Buffer << ")";
238 Out << ")";
239 } else {
240 #endif
241 std::string StrVal = ftostr(CFP->getValueAPF());
242
243 while (StrVal[0] == ' ')
244 StrVal.erase(StrVal.begin());
245
246 // Check to make sure that the stringized number is not some string like
247 // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex.
248 if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
249 ((StrVal[0] == '-' || StrVal[0] == '+') &&
250 (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
251 (CFP->isExactlyValue(atof(StrVal.c_str())))) {
252 if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
253 Out << StrVal;
254 else
255 Out << StrVal << "f";
256 } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
257 Out << "BitsToDouble(0x"
258 << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
259 << "ULL) /* " << StrVal << " */";
260 else
261 Out << "BitsToFloat(0x"
262 << utohexstr((uint32_t)CFP->getValueAPF().
263 bitcastToAPInt().getZExtValue())
264 << "U) /* " << StrVal << " */";
265 Out << ")";
266 #if HAVE_PRINTF_A
267 }
268 #endif
269 Out << ")";
270 }
271
printCallingConv(CallingConv::ID cc)272 void CppWriter::printCallingConv(CallingConv::ID cc){
273 // Print the calling convention.
274 switch (cc) {
275 case CallingConv::C: Out << "CallingConv::C"; break;
276 case CallingConv::Fast: Out << "CallingConv::Fast"; break;
277 case CallingConv::Cold: Out << "CallingConv::Cold"; break;
278 case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
279 default: Out << cc; break;
280 }
281 }
282
printLinkageType(GlobalValue::LinkageTypes LT)283 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
284 switch (LT) {
285 case GlobalValue::InternalLinkage:
286 Out << "GlobalValue::InternalLinkage"; break;
287 case GlobalValue::PrivateLinkage:
288 Out << "GlobalValue::PrivateLinkage"; break;
289 case GlobalValue::AvailableExternallyLinkage:
290 Out << "GlobalValue::AvailableExternallyLinkage "; break;
291 case GlobalValue::LinkOnceAnyLinkage:
292 Out << "GlobalValue::LinkOnceAnyLinkage "; break;
293 case GlobalValue::LinkOnceODRLinkage:
294 Out << "GlobalValue::LinkOnceODRLinkage "; break;
295 case GlobalValue::WeakAnyLinkage:
296 Out << "GlobalValue::WeakAnyLinkage"; break;
297 case GlobalValue::WeakODRLinkage:
298 Out << "GlobalValue::WeakODRLinkage"; break;
299 case GlobalValue::AppendingLinkage:
300 Out << "GlobalValue::AppendingLinkage"; break;
301 case GlobalValue::ExternalLinkage:
302 Out << "GlobalValue::ExternalLinkage"; break;
303 case GlobalValue::ExternalWeakLinkage:
304 Out << "GlobalValue::ExternalWeakLinkage"; break;
305 case GlobalValue::CommonLinkage:
306 Out << "GlobalValue::CommonLinkage"; break;
307 }
308 }
309
printVisibilityType(GlobalValue::VisibilityTypes VisType)310 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
311 switch (VisType) {
312 case GlobalValue::DefaultVisibility:
313 Out << "GlobalValue::DefaultVisibility";
314 break;
315 case GlobalValue::HiddenVisibility:
316 Out << "GlobalValue::HiddenVisibility";
317 break;
318 case GlobalValue::ProtectedVisibility:
319 Out << "GlobalValue::ProtectedVisibility";
320 break;
321 }
322 }
323
printDLLStorageClassType(GlobalValue::DLLStorageClassTypes DSCType)324 void CppWriter::printDLLStorageClassType(
325 GlobalValue::DLLStorageClassTypes DSCType) {
326 switch (DSCType) {
327 case GlobalValue::DefaultStorageClass:
328 Out << "GlobalValue::DefaultStorageClass";
329 break;
330 case GlobalValue::DLLImportStorageClass:
331 Out << "GlobalValue::DLLImportStorageClass";
332 break;
333 case GlobalValue::DLLExportStorageClass:
334 Out << "GlobalValue::DLLExportStorageClass";
335 break;
336 }
337 }
338
printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM)339 void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) {
340 switch (TLM) {
341 case GlobalVariable::NotThreadLocal:
342 Out << "GlobalVariable::NotThreadLocal";
343 break;
344 case GlobalVariable::GeneralDynamicTLSModel:
345 Out << "GlobalVariable::GeneralDynamicTLSModel";
346 break;
347 case GlobalVariable::LocalDynamicTLSModel:
348 Out << "GlobalVariable::LocalDynamicTLSModel";
349 break;
350 case GlobalVariable::InitialExecTLSModel:
351 Out << "GlobalVariable::InitialExecTLSModel";
352 break;
353 case GlobalVariable::LocalExecTLSModel:
354 Out << "GlobalVariable::LocalExecTLSModel";
355 break;
356 }
357 }
358
359 // printEscapedString - Print each character of the specified string, escaping
360 // it if it is not printable or if it is an escape char.
printEscapedString(const std::string & Str)361 void CppWriter::printEscapedString(const std::string &Str) {
362 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
363 unsigned char C = Str[i];
364 if (isprint(C) && C != '"' && C != '\\') {
365 Out << C;
366 } else {
367 Out << "\\x"
368 << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
369 << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
370 }
371 }
372 }
373
getCppName(Type * Ty)374 std::string CppWriter::getCppName(Type* Ty) {
375 switch (Ty->getTypeID()) {
376 default:
377 break;
378 case Type::VoidTyID:
379 return "Type::getVoidTy(mod->getContext())";
380 case Type::IntegerTyID: {
381 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
382 return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
383 }
384 case Type::X86_FP80TyID:
385 return "Type::getX86_FP80Ty(mod->getContext())";
386 case Type::FloatTyID:
387 return "Type::getFloatTy(mod->getContext())";
388 case Type::DoubleTyID:
389 return "Type::getDoubleTy(mod->getContext())";
390 case Type::LabelTyID:
391 return "Type::getLabelTy(mod->getContext())";
392 case Type::X86_MMXTyID:
393 return "Type::getX86_MMXTy(mod->getContext())";
394 }
395
396 // Now, see if we've seen the type before and return that
397 TypeMap::iterator I = TypeNames.find(Ty);
398 if (I != TypeNames.end())
399 return I->second;
400
401 // Okay, let's build a new name for this type. Start with a prefix
402 const char* prefix = nullptr;
403 switch (Ty->getTypeID()) {
404 case Type::FunctionTyID: prefix = "FuncTy_"; break;
405 case Type::StructTyID: prefix = "StructTy_"; break;
406 case Type::ArrayTyID: prefix = "ArrayTy_"; break;
407 case Type::PointerTyID: prefix = "PointerTy_"; break;
408 case Type::VectorTyID: prefix = "VectorTy_"; break;
409 default: prefix = "OtherTy_"; break; // prevent breakage
410 }
411
412 // See if the type has a name in the symboltable and build accordingly
413 std::string name;
414 if (StructType *STy = dyn_cast<StructType>(Ty))
415 if (STy->hasName())
416 name = STy->getName();
417
418 if (name.empty())
419 name = utostr(uniqueNum++);
420
421 name = std::string(prefix) + name;
422 sanitize(name);
423
424 // Save the name
425 return TypeNames[Ty] = name;
426 }
427
printCppName(Type * Ty)428 void CppWriter::printCppName(Type* Ty) {
429 printEscapedString(getCppName(Ty));
430 }
431
getCppName(const Value * val)432 std::string CppWriter::getCppName(const Value* val) {
433 std::string name;
434 ValueMap::iterator I = ValueNames.find(val);
435 if (I != ValueNames.end() && I->first == val)
436 return I->second;
437
438 if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
439 name = std::string("gvar_") +
440 getTypePrefix(GV->getType()->getElementType());
441 } else if (isa<Function>(val)) {
442 name = std::string("func_");
443 } else if (const Constant* C = dyn_cast<Constant>(val)) {
444 name = std::string("const_") + getTypePrefix(C->getType());
445 } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
446 if (is_inline) {
447 unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
448 Function::const_arg_iterator(Arg)) + 1;
449 name = std::string("arg_") + utostr(argNum);
450 NameSet::iterator NI = UsedNames.find(name);
451 if (NI != UsedNames.end())
452 name += std::string("_") + utostr(uniqueNum++);
453 UsedNames.insert(name);
454 return ValueNames[val] = name;
455 } else {
456 name = getTypePrefix(val->getType());
457 }
458 } else {
459 name = getTypePrefix(val->getType());
460 }
461 if (val->hasName())
462 name += val->getName();
463 else
464 name += utostr(uniqueNum++);
465 sanitize(name);
466 NameSet::iterator NI = UsedNames.find(name);
467 if (NI != UsedNames.end())
468 name += std::string("_") + utostr(uniqueNum++);
469 UsedNames.insert(name);
470 return ValueNames[val] = name;
471 }
472
printCppName(const Value * val)473 void CppWriter::printCppName(const Value* val) {
474 printEscapedString(getCppName(val));
475 }
476
printAttributes(const AttributeSet & PAL,const std::string & name)477 void CppWriter::printAttributes(const AttributeSet &PAL,
478 const std::string &name) {
479 Out << "AttributeSet " << name << "_PAL;";
480 nl(Out);
481 if (!PAL.isEmpty()) {
482 Out << '{'; in(); nl(Out);
483 Out << "SmallVector<AttributeSet, 4> Attrs;"; nl(Out);
484 Out << "AttributeSet PAS;"; in(); nl(Out);
485 for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
486 unsigned index = PAL.getSlotIndex(i);
487 AttrBuilder attrs(PAL.getSlotAttributes(i), index);
488 Out << "{"; in(); nl(Out);
489 Out << "AttrBuilder B;"; nl(Out);
490
491 #define HANDLE_ATTR(X) \
492 if (attrs.contains(Attribute::X)) { \
493 Out << "B.addAttribute(Attribute::" #X ");"; nl(Out); \
494 attrs.removeAttribute(Attribute::X); \
495 }
496
497 HANDLE_ATTR(SExt);
498 HANDLE_ATTR(ZExt);
499 HANDLE_ATTR(NoReturn);
500 HANDLE_ATTR(InReg);
501 HANDLE_ATTR(StructRet);
502 HANDLE_ATTR(NoUnwind);
503 HANDLE_ATTR(NoAlias);
504 HANDLE_ATTR(ByVal);
505 HANDLE_ATTR(InAlloca);
506 HANDLE_ATTR(Nest);
507 HANDLE_ATTR(ReadNone);
508 HANDLE_ATTR(ReadOnly);
509 HANDLE_ATTR(NoInline);
510 HANDLE_ATTR(AlwaysInline);
511 HANDLE_ATTR(OptimizeNone);
512 HANDLE_ATTR(OptimizeForSize);
513 HANDLE_ATTR(StackProtect);
514 HANDLE_ATTR(StackProtectReq);
515 HANDLE_ATTR(StackProtectStrong);
516 HANDLE_ATTR(NoCapture);
517 HANDLE_ATTR(NoRedZone);
518 HANDLE_ATTR(NoImplicitFloat);
519 HANDLE_ATTR(Naked);
520 HANDLE_ATTR(InlineHint);
521 HANDLE_ATTR(ReturnsTwice);
522 HANDLE_ATTR(UWTable);
523 HANDLE_ATTR(NonLazyBind);
524 HANDLE_ATTR(MinSize);
525 #undef HANDLE_ATTR
526
527 if (attrs.contains(Attribute::StackAlignment)) {
528 Out << "B.addStackAlignmentAttr(" << attrs.getStackAlignment()<<')';
529 nl(Out);
530 attrs.removeAttribute(Attribute::StackAlignment);
531 }
532
533 Out << "PAS = AttributeSet::get(mod->getContext(), ";
534 if (index == ~0U)
535 Out << "~0U,";
536 else
537 Out << index << "U,";
538 Out << " B);"; out(); nl(Out);
539 Out << "}"; out(); nl(Out);
540 nl(Out);
541 Out << "Attrs.push_back(PAS);"; nl(Out);
542 }
543 Out << name << "_PAL = AttributeSet::get(mod->getContext(), Attrs);";
544 nl(Out);
545 out(); nl(Out);
546 Out << '}'; nl(Out);
547 }
548 }
549
printType(Type * Ty)550 void CppWriter::printType(Type* Ty) {
551 // We don't print definitions for primitive types
552 if (Ty->isFloatingPointTy() || Ty->isX86_MMXTy() || Ty->isIntegerTy() ||
553 Ty->isLabelTy() || Ty->isMetadataTy() || Ty->isVoidTy())
554 return;
555
556 // If we already defined this type, we don't need to define it again.
557 if (DefinedTypes.find(Ty) != DefinedTypes.end())
558 return;
559
560 // Everything below needs the name for the type so get it now.
561 std::string typeName(getCppName(Ty));
562
563 // Print the type definition
564 switch (Ty->getTypeID()) {
565 case Type::FunctionTyID: {
566 FunctionType* FT = cast<FunctionType>(Ty);
567 Out << "std::vector<Type*>" << typeName << "_args;";
568 nl(Out);
569 FunctionType::param_iterator PI = FT->param_begin();
570 FunctionType::param_iterator PE = FT->param_end();
571 for (; PI != PE; ++PI) {
572 Type* argTy = static_cast<Type*>(*PI);
573 printType(argTy);
574 std::string argName(getCppName(argTy));
575 Out << typeName << "_args.push_back(" << argName;
576 Out << ");";
577 nl(Out);
578 }
579 printType(FT->getReturnType());
580 std::string retTypeName(getCppName(FT->getReturnType()));
581 Out << "FunctionType* " << typeName << " = FunctionType::get(";
582 in(); nl(Out) << "/*Result=*/" << retTypeName;
583 Out << ",";
584 nl(Out) << "/*Params=*/" << typeName << "_args,";
585 nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
586 out();
587 nl(Out);
588 break;
589 }
590 case Type::StructTyID: {
591 StructType* ST = cast<StructType>(Ty);
592 if (!ST->isLiteral()) {
593 Out << "StructType *" << typeName << " = mod->getTypeByName(\"";
594 printEscapedString(ST->getName());
595 Out << "\");";
596 nl(Out);
597 Out << "if (!" << typeName << ") {";
598 nl(Out);
599 Out << typeName << " = ";
600 Out << "StructType::create(mod->getContext(), \"";
601 printEscapedString(ST->getName());
602 Out << "\");";
603 nl(Out);
604 Out << "}";
605 nl(Out);
606 // Indicate that this type is now defined.
607 DefinedTypes.insert(Ty);
608 }
609
610 Out << "std::vector<Type*>" << typeName << "_fields;";
611 nl(Out);
612 StructType::element_iterator EI = ST->element_begin();
613 StructType::element_iterator EE = ST->element_end();
614 for (; EI != EE; ++EI) {
615 Type* fieldTy = static_cast<Type*>(*EI);
616 printType(fieldTy);
617 std::string fieldName(getCppName(fieldTy));
618 Out << typeName << "_fields.push_back(" << fieldName;
619 Out << ");";
620 nl(Out);
621 }
622
623 if (ST->isLiteral()) {
624 Out << "StructType *" << typeName << " = ";
625 Out << "StructType::get(" << "mod->getContext(), ";
626 } else {
627 Out << "if (" << typeName << "->isOpaque()) {";
628 nl(Out);
629 Out << typeName << "->setBody(";
630 }
631
632 Out << typeName << "_fields, /*isPacked=*/"
633 << (ST->isPacked() ? "true" : "false") << ");";
634 nl(Out);
635 if (!ST->isLiteral()) {
636 Out << "}";
637 nl(Out);
638 }
639 break;
640 }
641 case Type::ArrayTyID: {
642 ArrayType* AT = cast<ArrayType>(Ty);
643 Type* ET = AT->getElementType();
644 printType(ET);
645 if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
646 std::string elemName(getCppName(ET));
647 Out << "ArrayType* " << typeName << " = ArrayType::get("
648 << elemName
649 << ", " << utostr(AT->getNumElements()) << ");";
650 nl(Out);
651 }
652 break;
653 }
654 case Type::PointerTyID: {
655 PointerType* PT = cast<PointerType>(Ty);
656 Type* ET = PT->getElementType();
657 printType(ET);
658 if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
659 std::string elemName(getCppName(ET));
660 Out << "PointerType* " << typeName << " = PointerType::get("
661 << elemName
662 << ", " << utostr(PT->getAddressSpace()) << ");";
663 nl(Out);
664 }
665 break;
666 }
667 case Type::VectorTyID: {
668 VectorType* PT = cast<VectorType>(Ty);
669 Type* ET = PT->getElementType();
670 printType(ET);
671 if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
672 std::string elemName(getCppName(ET));
673 Out << "VectorType* " << typeName << " = VectorType::get("
674 << elemName
675 << ", " << utostr(PT->getNumElements()) << ");";
676 nl(Out);
677 }
678 break;
679 }
680 default:
681 error("Invalid TypeID");
682 }
683
684 // Indicate that this type is now defined.
685 DefinedTypes.insert(Ty);
686
687 // Finally, separate the type definition from other with a newline.
688 nl(Out);
689 }
690
printTypes(const Module * M)691 void CppWriter::printTypes(const Module* M) {
692 // Add all of the global variables to the value table.
693 for (Module::const_global_iterator I = TheModule->global_begin(),
694 E = TheModule->global_end(); I != E; ++I) {
695 if (I->hasInitializer())
696 printType(I->getInitializer()->getType());
697 printType(I->getType());
698 }
699
700 // Add all the functions to the table
701 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
702 FI != FE; ++FI) {
703 printType(FI->getReturnType());
704 printType(FI->getFunctionType());
705 // Add all the function arguments
706 for (Function::const_arg_iterator AI = FI->arg_begin(),
707 AE = FI->arg_end(); AI != AE; ++AI) {
708 printType(AI->getType());
709 }
710
711 // Add all of the basic blocks and instructions
712 for (Function::const_iterator BB = FI->begin(),
713 E = FI->end(); BB != E; ++BB) {
714 printType(BB->getType());
715 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
716 ++I) {
717 printType(I->getType());
718 for (unsigned i = 0; i < I->getNumOperands(); ++i)
719 printType(I->getOperand(i)->getType());
720 }
721 }
722 }
723 }
724
725
726 // printConstant - Print out a constant pool entry...
printConstant(const Constant * CV)727 void CppWriter::printConstant(const Constant *CV) {
728 // First, if the constant is actually a GlobalValue (variable or function)
729 // or its already in the constant list then we've printed it already and we
730 // can just return.
731 if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
732 return;
733
734 std::string constName(getCppName(CV));
735 std::string typeName(getCppName(CV->getType()));
736
737 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
738 std::string constValue = CI->getValue().toString(10, true);
739 Out << "ConstantInt* " << constName
740 << " = ConstantInt::get(mod->getContext(), APInt("
741 << cast<IntegerType>(CI->getType())->getBitWidth()
742 << ", StringRef(\"" << constValue << "\"), 10));";
743 } else if (isa<ConstantAggregateZero>(CV)) {
744 Out << "ConstantAggregateZero* " << constName
745 << " = ConstantAggregateZero::get(" << typeName << ");";
746 } else if (isa<ConstantPointerNull>(CV)) {
747 Out << "ConstantPointerNull* " << constName
748 << " = ConstantPointerNull::get(" << typeName << ");";
749 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
750 Out << "ConstantFP* " << constName << " = ";
751 printCFP(CFP);
752 Out << ";";
753 } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
754 Out << "std::vector<Constant*> " << constName << "_elems;";
755 nl(Out);
756 unsigned N = CA->getNumOperands();
757 for (unsigned i = 0; i < N; ++i) {
758 printConstant(CA->getOperand(i)); // recurse to print operands
759 Out << constName << "_elems.push_back("
760 << getCppName(CA->getOperand(i)) << ");";
761 nl(Out);
762 }
763 Out << "Constant* " << constName << " = ConstantArray::get("
764 << typeName << ", " << constName << "_elems);";
765 } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
766 Out << "std::vector<Constant*> " << constName << "_fields;";
767 nl(Out);
768 unsigned N = CS->getNumOperands();
769 for (unsigned i = 0; i < N; i++) {
770 printConstant(CS->getOperand(i));
771 Out << constName << "_fields.push_back("
772 << getCppName(CS->getOperand(i)) << ");";
773 nl(Out);
774 }
775 Out << "Constant* " << constName << " = ConstantStruct::get("
776 << typeName << ", " << constName << "_fields);";
777 } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) {
778 Out << "std::vector<Constant*> " << constName << "_elems;";
779 nl(Out);
780 unsigned N = CVec->getNumOperands();
781 for (unsigned i = 0; i < N; ++i) {
782 printConstant(CVec->getOperand(i));
783 Out << constName << "_elems.push_back("
784 << getCppName(CVec->getOperand(i)) << ");";
785 nl(Out);
786 }
787 Out << "Constant* " << constName << " = ConstantVector::get("
788 << typeName << ", " << constName << "_elems);";
789 } else if (isa<UndefValue>(CV)) {
790 Out << "UndefValue* " << constName << " = UndefValue::get("
791 << typeName << ");";
792 } else if (const ConstantDataSequential *CDS =
793 dyn_cast<ConstantDataSequential>(CV)) {
794 if (CDS->isString()) {
795 Out << "Constant *" << constName <<
796 " = ConstantDataArray::getString(mod->getContext(), \"";
797 StringRef Str = CDS->getAsString();
798 bool nullTerminate = false;
799 if (Str.back() == 0) {
800 Str = Str.drop_back();
801 nullTerminate = true;
802 }
803 printEscapedString(Str);
804 // Determine if we want null termination or not.
805 if (nullTerminate)
806 Out << "\", true);";
807 else
808 Out << "\", false);";// No null terminator
809 } else {
810 // TODO: Could generate more efficient code generating CDS calls instead.
811 Out << "std::vector<Constant*> " << constName << "_elems;";
812 nl(Out);
813 for (unsigned i = 0; i != CDS->getNumElements(); ++i) {
814 Constant *Elt = CDS->getElementAsConstant(i);
815 printConstant(Elt);
816 Out << constName << "_elems.push_back(" << getCppName(Elt) << ");";
817 nl(Out);
818 }
819 Out << "Constant* " << constName;
820
821 if (isa<ArrayType>(CDS->getType()))
822 Out << " = ConstantArray::get(";
823 else
824 Out << " = ConstantVector::get(";
825 Out << typeName << ", " << constName << "_elems);";
826 }
827 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
828 if (CE->getOpcode() == Instruction::GetElementPtr) {
829 Out << "std::vector<Constant*> " << constName << "_indices;";
830 nl(Out);
831 printConstant(CE->getOperand(0));
832 for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
833 printConstant(CE->getOperand(i));
834 Out << constName << "_indices.push_back("
835 << getCppName(CE->getOperand(i)) << ");";
836 nl(Out);
837 }
838 Out << "Constant* " << constName
839 << " = ConstantExpr::getGetElementPtr("
840 << getCppName(CE->getOperand(0)) << ", "
841 << constName << "_indices);";
842 } else if (CE->isCast()) {
843 printConstant(CE->getOperand(0));
844 Out << "Constant* " << constName << " = ConstantExpr::getCast(";
845 switch (CE->getOpcode()) {
846 default: llvm_unreachable("Invalid cast opcode");
847 case Instruction::Trunc: Out << "Instruction::Trunc"; break;
848 case Instruction::ZExt: Out << "Instruction::ZExt"; break;
849 case Instruction::SExt: Out << "Instruction::SExt"; break;
850 case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break;
851 case Instruction::FPExt: Out << "Instruction::FPExt"; break;
852 case Instruction::FPToUI: Out << "Instruction::FPToUI"; break;
853 case Instruction::FPToSI: Out << "Instruction::FPToSI"; break;
854 case Instruction::UIToFP: Out << "Instruction::UIToFP"; break;
855 case Instruction::SIToFP: Out << "Instruction::SIToFP"; break;
856 case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break;
857 case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break;
858 case Instruction::BitCast: Out << "Instruction::BitCast"; break;
859 }
860 Out << ", " << getCppName(CE->getOperand(0)) << ", "
861 << getCppName(CE->getType()) << ");";
862 } else {
863 unsigned N = CE->getNumOperands();
864 for (unsigned i = 0; i < N; ++i ) {
865 printConstant(CE->getOperand(i));
866 }
867 Out << "Constant* " << constName << " = ConstantExpr::";
868 switch (CE->getOpcode()) {
869 case Instruction::Add: Out << "getAdd("; break;
870 case Instruction::FAdd: Out << "getFAdd("; break;
871 case Instruction::Sub: Out << "getSub("; break;
872 case Instruction::FSub: Out << "getFSub("; break;
873 case Instruction::Mul: Out << "getMul("; break;
874 case Instruction::FMul: Out << "getFMul("; break;
875 case Instruction::UDiv: Out << "getUDiv("; break;
876 case Instruction::SDiv: Out << "getSDiv("; break;
877 case Instruction::FDiv: Out << "getFDiv("; break;
878 case Instruction::URem: Out << "getURem("; break;
879 case Instruction::SRem: Out << "getSRem("; break;
880 case Instruction::FRem: Out << "getFRem("; break;
881 case Instruction::And: Out << "getAnd("; break;
882 case Instruction::Or: Out << "getOr("; break;
883 case Instruction::Xor: Out << "getXor("; break;
884 case Instruction::ICmp:
885 Out << "getICmp(ICmpInst::ICMP_";
886 switch (CE->getPredicate()) {
887 case ICmpInst::ICMP_EQ: Out << "EQ"; break;
888 case ICmpInst::ICMP_NE: Out << "NE"; break;
889 case ICmpInst::ICMP_SLT: Out << "SLT"; break;
890 case ICmpInst::ICMP_ULT: Out << "ULT"; break;
891 case ICmpInst::ICMP_SGT: Out << "SGT"; break;
892 case ICmpInst::ICMP_UGT: Out << "UGT"; break;
893 case ICmpInst::ICMP_SLE: Out << "SLE"; break;
894 case ICmpInst::ICMP_ULE: Out << "ULE"; break;
895 case ICmpInst::ICMP_SGE: Out << "SGE"; break;
896 case ICmpInst::ICMP_UGE: Out << "UGE"; break;
897 default: error("Invalid ICmp Predicate");
898 }
899 break;
900 case Instruction::FCmp:
901 Out << "getFCmp(FCmpInst::FCMP_";
902 switch (CE->getPredicate()) {
903 case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
904 case FCmpInst::FCMP_ORD: Out << "ORD"; break;
905 case FCmpInst::FCMP_UNO: Out << "UNO"; break;
906 case FCmpInst::FCMP_OEQ: Out << "OEQ"; break;
907 case FCmpInst::FCMP_UEQ: Out << "UEQ"; break;
908 case FCmpInst::FCMP_ONE: Out << "ONE"; break;
909 case FCmpInst::FCMP_UNE: Out << "UNE"; break;
910 case FCmpInst::FCMP_OLT: Out << "OLT"; break;
911 case FCmpInst::FCMP_ULT: Out << "ULT"; break;
912 case FCmpInst::FCMP_OGT: Out << "OGT"; break;
913 case FCmpInst::FCMP_UGT: Out << "UGT"; break;
914 case FCmpInst::FCMP_OLE: Out << "OLE"; break;
915 case FCmpInst::FCMP_ULE: Out << "ULE"; break;
916 case FCmpInst::FCMP_OGE: Out << "OGE"; break;
917 case FCmpInst::FCMP_UGE: Out << "UGE"; break;
918 case FCmpInst::FCMP_TRUE: Out << "TRUE"; break;
919 default: error("Invalid FCmp Predicate");
920 }
921 break;
922 case Instruction::Shl: Out << "getShl("; break;
923 case Instruction::LShr: Out << "getLShr("; break;
924 case Instruction::AShr: Out << "getAShr("; break;
925 case Instruction::Select: Out << "getSelect("; break;
926 case Instruction::ExtractElement: Out << "getExtractElement("; break;
927 case Instruction::InsertElement: Out << "getInsertElement("; break;
928 case Instruction::ShuffleVector: Out << "getShuffleVector("; break;
929 default:
930 error("Invalid constant expression");
931 break;
932 }
933 Out << getCppName(CE->getOperand(0));
934 for (unsigned i = 1; i < CE->getNumOperands(); ++i)
935 Out << ", " << getCppName(CE->getOperand(i));
936 Out << ");";
937 }
938 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
939 Out << "Constant* " << constName << " = ";
940 Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
941 } else {
942 error("Bad Constant");
943 Out << "Constant* " << constName << " = 0; ";
944 }
945 nl(Out);
946 }
947
printConstants(const Module * M)948 void CppWriter::printConstants(const Module* M) {
949 // Traverse all the global variables looking for constant initializers
950 for (Module::const_global_iterator I = TheModule->global_begin(),
951 E = TheModule->global_end(); I != E; ++I)
952 if (I->hasInitializer())
953 printConstant(I->getInitializer());
954
955 // Traverse the LLVM functions looking for constants
956 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
957 FI != FE; ++FI) {
958 // Add all of the basic blocks and instructions
959 for (Function::const_iterator BB = FI->begin(),
960 E = FI->end(); BB != E; ++BB) {
961 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
962 ++I) {
963 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
964 if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
965 printConstant(C);
966 }
967 }
968 }
969 }
970 }
971 }
972
printVariableUses(const GlobalVariable * GV)973 void CppWriter::printVariableUses(const GlobalVariable *GV) {
974 nl(Out) << "// Type Definitions";
975 nl(Out);
976 printType(GV->getType());
977 if (GV->hasInitializer()) {
978 const Constant *Init = GV->getInitializer();
979 printType(Init->getType());
980 if (const Function *F = dyn_cast<Function>(Init)) {
981 nl(Out)<< "/ Function Declarations"; nl(Out);
982 printFunctionHead(F);
983 } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
984 nl(Out) << "// Global Variable Declarations"; nl(Out);
985 printVariableHead(gv);
986
987 nl(Out) << "// Global Variable Definitions"; nl(Out);
988 printVariableBody(gv);
989 } else {
990 nl(Out) << "// Constant Definitions"; nl(Out);
991 printConstant(Init);
992 }
993 }
994 }
995
printVariableHead(const GlobalVariable * GV)996 void CppWriter::printVariableHead(const GlobalVariable *GV) {
997 nl(Out) << "GlobalVariable* " << getCppName(GV);
998 if (is_inline) {
999 Out << " = mod->getGlobalVariable(mod->getContext(), ";
1000 printEscapedString(GV->getName());
1001 Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
1002 nl(Out) << "if (!" << getCppName(GV) << ") {";
1003 in(); nl(Out) << getCppName(GV);
1004 }
1005 Out << " = new GlobalVariable(/*Module=*/*mod, ";
1006 nl(Out) << "/*Type=*/";
1007 printCppName(GV->getType()->getElementType());
1008 Out << ",";
1009 nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
1010 Out << ",";
1011 nl(Out) << "/*Linkage=*/";
1012 printLinkageType(GV->getLinkage());
1013 Out << ",";
1014 nl(Out) << "/*Initializer=*/0, ";
1015 if (GV->hasInitializer()) {
1016 Out << "// has initializer, specified below";
1017 }
1018 nl(Out) << "/*Name=*/\"";
1019 printEscapedString(GV->getName());
1020 Out << "\");";
1021 nl(Out);
1022
1023 if (GV->hasSection()) {
1024 printCppName(GV);
1025 Out << "->setSection(\"";
1026 printEscapedString(GV->getSection());
1027 Out << "\");";
1028 nl(Out);
1029 }
1030 if (GV->getAlignment()) {
1031 printCppName(GV);
1032 Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
1033 nl(Out);
1034 }
1035 if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
1036 printCppName(GV);
1037 Out << "->setVisibility(";
1038 printVisibilityType(GV->getVisibility());
1039 Out << ");";
1040 nl(Out);
1041 }
1042 if (GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
1043 printCppName(GV);
1044 Out << "->setDLLStorageClass(";
1045 printDLLStorageClassType(GV->getDLLStorageClass());
1046 Out << ");";
1047 nl(Out);
1048 }
1049 if (GV->isThreadLocal()) {
1050 printCppName(GV);
1051 Out << "->setThreadLocalMode(";
1052 printThreadLocalMode(GV->getThreadLocalMode());
1053 Out << ");";
1054 nl(Out);
1055 }
1056 if (is_inline) {
1057 out(); Out << "}"; nl(Out);
1058 }
1059 }
1060
printVariableBody(const GlobalVariable * GV)1061 void CppWriter::printVariableBody(const GlobalVariable *GV) {
1062 if (GV->hasInitializer()) {
1063 printCppName(GV);
1064 Out << "->setInitializer(";
1065 Out << getCppName(GV->getInitializer()) << ");";
1066 nl(Out);
1067 }
1068 }
1069
getOpName(const Value * V)1070 std::string CppWriter::getOpName(const Value* V) {
1071 if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
1072 return getCppName(V);
1073
1074 // See if its alread in the map of forward references, if so just return the
1075 // name we already set up for it
1076 ForwardRefMap::const_iterator I = ForwardRefs.find(V);
1077 if (I != ForwardRefs.end())
1078 return I->second;
1079
1080 // This is a new forward reference. Generate a unique name for it
1081 std::string result(std::string("fwdref_") + utostr(uniqueNum++));
1082
1083 // Yes, this is a hack. An Argument is the smallest instantiable value that
1084 // we can make as a placeholder for the real value. We'll replace these
1085 // Argument instances later.
1086 Out << "Argument* " << result << " = new Argument("
1087 << getCppName(V->getType()) << ");";
1088 nl(Out);
1089 ForwardRefs[V] = result;
1090 return result;
1091 }
1092
ConvertAtomicOrdering(AtomicOrdering Ordering)1093 static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) {
1094 switch (Ordering) {
1095 case NotAtomic: return "NotAtomic";
1096 case Unordered: return "Unordered";
1097 case Monotonic: return "Monotonic";
1098 case Acquire: return "Acquire";
1099 case Release: return "Release";
1100 case AcquireRelease: return "AcquireRelease";
1101 case SequentiallyConsistent: return "SequentiallyConsistent";
1102 }
1103 llvm_unreachable("Unknown ordering");
1104 }
1105
ConvertAtomicSynchScope(SynchronizationScope SynchScope)1106 static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) {
1107 switch (SynchScope) {
1108 case SingleThread: return "SingleThread";
1109 case CrossThread: return "CrossThread";
1110 }
1111 llvm_unreachable("Unknown synch scope");
1112 }
1113
1114 // printInstruction - This member is called for each Instruction in a function.
printInstruction(const Instruction * I,const std::string & bbname)1115 void CppWriter::printInstruction(const Instruction *I,
1116 const std::string& bbname) {
1117 std::string iName(getCppName(I));
1118
1119 // Before we emit this instruction, we need to take care of generating any
1120 // forward references. So, we get the names of all the operands in advance
1121 const unsigned Ops(I->getNumOperands());
1122 std::string* opNames = new std::string[Ops];
1123 for (unsigned i = 0; i < Ops; i++)
1124 opNames[i] = getOpName(I->getOperand(i));
1125
1126 switch (I->getOpcode()) {
1127 default:
1128 error("Invalid instruction");
1129 break;
1130
1131 case Instruction::Ret: {
1132 const ReturnInst* ret = cast<ReturnInst>(I);
1133 Out << "ReturnInst::Create(mod->getContext(), "
1134 << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
1135 break;
1136 }
1137 case Instruction::Br: {
1138 const BranchInst* br = cast<BranchInst>(I);
1139 Out << "BranchInst::Create(" ;
1140 if (br->getNumOperands() == 3) {
1141 Out << opNames[2] << ", "
1142 << opNames[1] << ", "
1143 << opNames[0] << ", ";
1144
1145 } else if (br->getNumOperands() == 1) {
1146 Out << opNames[0] << ", ";
1147 } else {
1148 error("Branch with 2 operands?");
1149 }
1150 Out << bbname << ");";
1151 break;
1152 }
1153 case Instruction::Switch: {
1154 const SwitchInst *SI = cast<SwitchInst>(I);
1155 Out << "SwitchInst* " << iName << " = SwitchInst::Create("
1156 << getOpName(SI->getCondition()) << ", "
1157 << getOpName(SI->getDefaultDest()) << ", "
1158 << SI->getNumCases() << ", " << bbname << ");";
1159 nl(Out);
1160 for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end();
1161 i != e; ++i) {
1162 const ConstantInt* CaseVal = i.getCaseValue();
1163 const BasicBlock *BB = i.getCaseSuccessor();
1164 Out << iName << "->addCase("
1165 << getOpName(CaseVal) << ", "
1166 << getOpName(BB) << ");";
1167 nl(Out);
1168 }
1169 break;
1170 }
1171 case Instruction::IndirectBr: {
1172 const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
1173 Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
1174 << opNames[0] << ", " << IBI->getNumDestinations() << ");";
1175 nl(Out);
1176 for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
1177 Out << iName << "->addDestination(" << opNames[i] << ");";
1178 nl(Out);
1179 }
1180 break;
1181 }
1182 case Instruction::Resume: {
1183 Out << "ResumeInst::Create(" << opNames[0] << ", " << bbname << ");";
1184 break;
1185 }
1186 case Instruction::Invoke: {
1187 const InvokeInst* inv = cast<InvokeInst>(I);
1188 Out << "std::vector<Value*> " << iName << "_params;";
1189 nl(Out);
1190 for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
1191 Out << iName << "_params.push_back("
1192 << getOpName(inv->getArgOperand(i)) << ");";
1193 nl(Out);
1194 }
1195 // FIXME: This shouldn't use magic numbers -3, -2, and -1.
1196 Out << "InvokeInst *" << iName << " = InvokeInst::Create("
1197 << getOpName(inv->getCalledValue()) << ", "
1198 << getOpName(inv->getNormalDest()) << ", "
1199 << getOpName(inv->getUnwindDest()) << ", "
1200 << iName << "_params, \"";
1201 printEscapedString(inv->getName());
1202 Out << "\", " << bbname << ");";
1203 nl(Out) << iName << "->setCallingConv(";
1204 printCallingConv(inv->getCallingConv());
1205 Out << ");";
1206 printAttributes(inv->getAttributes(), iName);
1207 Out << iName << "->setAttributes(" << iName << "_PAL);";
1208 nl(Out);
1209 break;
1210 }
1211 case Instruction::Unreachable: {
1212 Out << "new UnreachableInst("
1213 << "mod->getContext(), "
1214 << bbname << ");";
1215 break;
1216 }
1217 case Instruction::Add:
1218 case Instruction::FAdd:
1219 case Instruction::Sub:
1220 case Instruction::FSub:
1221 case Instruction::Mul:
1222 case Instruction::FMul:
1223 case Instruction::UDiv:
1224 case Instruction::SDiv:
1225 case Instruction::FDiv:
1226 case Instruction::URem:
1227 case Instruction::SRem:
1228 case Instruction::FRem:
1229 case Instruction::And:
1230 case Instruction::Or:
1231 case Instruction::Xor:
1232 case Instruction::Shl:
1233 case Instruction::LShr:
1234 case Instruction::AShr:{
1235 Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
1236 switch (I->getOpcode()) {
1237 case Instruction::Add: Out << "Instruction::Add"; break;
1238 case Instruction::FAdd: Out << "Instruction::FAdd"; break;
1239 case Instruction::Sub: Out << "Instruction::Sub"; break;
1240 case Instruction::FSub: Out << "Instruction::FSub"; break;
1241 case Instruction::Mul: Out << "Instruction::Mul"; break;
1242 case Instruction::FMul: Out << "Instruction::FMul"; break;
1243 case Instruction::UDiv:Out << "Instruction::UDiv"; break;
1244 case Instruction::SDiv:Out << "Instruction::SDiv"; break;
1245 case Instruction::FDiv:Out << "Instruction::FDiv"; break;
1246 case Instruction::URem:Out << "Instruction::URem"; break;
1247 case Instruction::SRem:Out << "Instruction::SRem"; break;
1248 case Instruction::FRem:Out << "Instruction::FRem"; break;
1249 case Instruction::And: Out << "Instruction::And"; break;
1250 case Instruction::Or: Out << "Instruction::Or"; break;
1251 case Instruction::Xor: Out << "Instruction::Xor"; break;
1252 case Instruction::Shl: Out << "Instruction::Shl"; break;
1253 case Instruction::LShr:Out << "Instruction::LShr"; break;
1254 case Instruction::AShr:Out << "Instruction::AShr"; break;
1255 default: Out << "Instruction::BadOpCode"; break;
1256 }
1257 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1258 printEscapedString(I->getName());
1259 Out << "\", " << bbname << ");";
1260 break;
1261 }
1262 case Instruction::FCmp: {
1263 Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
1264 switch (cast<FCmpInst>(I)->getPredicate()) {
1265 case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
1266 case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break;
1267 case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break;
1268 case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break;
1269 case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break;
1270 case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break;
1271 case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break;
1272 case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break;
1273 case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break;
1274 case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break;
1275 case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break;
1276 case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break;
1277 case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break;
1278 case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break;
1279 case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break;
1280 case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
1281 default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
1282 }
1283 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1284 printEscapedString(I->getName());
1285 Out << "\");";
1286 break;
1287 }
1288 case Instruction::ICmp: {
1289 Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
1290 switch (cast<ICmpInst>(I)->getPredicate()) {
1291 case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break;
1292 case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break;
1293 case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
1294 case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
1295 case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
1296 case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
1297 case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
1298 case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
1299 case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
1300 case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
1301 default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
1302 }
1303 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1304 printEscapedString(I->getName());
1305 Out << "\");";
1306 break;
1307 }
1308 case Instruction::Alloca: {
1309 const AllocaInst* allocaI = cast<AllocaInst>(I);
1310 Out << "AllocaInst* " << iName << " = new AllocaInst("
1311 << getCppName(allocaI->getAllocatedType()) << ", ";
1312 if (allocaI->isArrayAllocation())
1313 Out << opNames[0] << ", ";
1314 Out << "\"";
1315 printEscapedString(allocaI->getName());
1316 Out << "\", " << bbname << ");";
1317 if (allocaI->getAlignment())
1318 nl(Out) << iName << "->setAlignment("
1319 << allocaI->getAlignment() << ");";
1320 break;
1321 }
1322 case Instruction::Load: {
1323 const LoadInst* load = cast<LoadInst>(I);
1324 Out << "LoadInst* " << iName << " = new LoadInst("
1325 << opNames[0] << ", \"";
1326 printEscapedString(load->getName());
1327 Out << "\", " << (load->isVolatile() ? "true" : "false" )
1328 << ", " << bbname << ");";
1329 if (load->getAlignment())
1330 nl(Out) << iName << "->setAlignment("
1331 << load->getAlignment() << ");";
1332 if (load->isAtomic()) {
1333 StringRef Ordering = ConvertAtomicOrdering(load->getOrdering());
1334 StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope());
1335 nl(Out) << iName << "->setAtomic("
1336 << Ordering << ", " << CrossThread << ");";
1337 }
1338 break;
1339 }
1340 case Instruction::Store: {
1341 const StoreInst* store = cast<StoreInst>(I);
1342 Out << "StoreInst* " << iName << " = new StoreInst("
1343 << opNames[0] << ", "
1344 << opNames[1] << ", "
1345 << (store->isVolatile() ? "true" : "false")
1346 << ", " << bbname << ");";
1347 if (store->getAlignment())
1348 nl(Out) << iName << "->setAlignment("
1349 << store->getAlignment() << ");";
1350 if (store->isAtomic()) {
1351 StringRef Ordering = ConvertAtomicOrdering(store->getOrdering());
1352 StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope());
1353 nl(Out) << iName << "->setAtomic("
1354 << Ordering << ", " << CrossThread << ");";
1355 }
1356 break;
1357 }
1358 case Instruction::GetElementPtr: {
1359 const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
1360 if (gep->getNumOperands() <= 2) {
1361 Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
1362 << opNames[0];
1363 if (gep->getNumOperands() == 2)
1364 Out << ", " << opNames[1];
1365 } else {
1366 Out << "std::vector<Value*> " << iName << "_indices;";
1367 nl(Out);
1368 for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
1369 Out << iName << "_indices.push_back("
1370 << opNames[i] << ");";
1371 nl(Out);
1372 }
1373 Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
1374 << opNames[0] << ", " << iName << "_indices";
1375 }
1376 Out << ", \"";
1377 printEscapedString(gep->getName());
1378 Out << "\", " << bbname << ");";
1379 break;
1380 }
1381 case Instruction::PHI: {
1382 const PHINode* phi = cast<PHINode>(I);
1383
1384 Out << "PHINode* " << iName << " = PHINode::Create("
1385 << getCppName(phi->getType()) << ", "
1386 << phi->getNumIncomingValues() << ", \"";
1387 printEscapedString(phi->getName());
1388 Out << "\", " << bbname << ");";
1389 nl(Out);
1390 for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
1391 Out << iName << "->addIncoming("
1392 << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
1393 << getOpName(phi->getIncomingBlock(i)) << ");";
1394 nl(Out);
1395 }
1396 break;
1397 }
1398 case Instruction::Trunc:
1399 case Instruction::ZExt:
1400 case Instruction::SExt:
1401 case Instruction::FPTrunc:
1402 case Instruction::FPExt:
1403 case Instruction::FPToUI:
1404 case Instruction::FPToSI:
1405 case Instruction::UIToFP:
1406 case Instruction::SIToFP:
1407 case Instruction::PtrToInt:
1408 case Instruction::IntToPtr:
1409 case Instruction::BitCast: {
1410 const CastInst* cst = cast<CastInst>(I);
1411 Out << "CastInst* " << iName << " = new ";
1412 switch (I->getOpcode()) {
1413 case Instruction::Trunc: Out << "TruncInst"; break;
1414 case Instruction::ZExt: Out << "ZExtInst"; break;
1415 case Instruction::SExt: Out << "SExtInst"; break;
1416 case Instruction::FPTrunc: Out << "FPTruncInst"; break;
1417 case Instruction::FPExt: Out << "FPExtInst"; break;
1418 case Instruction::FPToUI: Out << "FPToUIInst"; break;
1419 case Instruction::FPToSI: Out << "FPToSIInst"; break;
1420 case Instruction::UIToFP: Out << "UIToFPInst"; break;
1421 case Instruction::SIToFP: Out << "SIToFPInst"; break;
1422 case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
1423 case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
1424 case Instruction::BitCast: Out << "BitCastInst"; break;
1425 default: llvm_unreachable("Unreachable");
1426 }
1427 Out << "(" << opNames[0] << ", "
1428 << getCppName(cst->getType()) << ", \"";
1429 printEscapedString(cst->getName());
1430 Out << "\", " << bbname << ");";
1431 break;
1432 }
1433 case Instruction::Call: {
1434 const CallInst* call = cast<CallInst>(I);
1435 if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
1436 Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
1437 << getCppName(ila->getFunctionType()) << ", \""
1438 << ila->getAsmString() << "\", \""
1439 << ila->getConstraintString() << "\","
1440 << (ila->hasSideEffects() ? "true" : "false") << ");";
1441 nl(Out);
1442 }
1443 if (call->getNumArgOperands() > 1) {
1444 Out << "std::vector<Value*> " << iName << "_params;";
1445 nl(Out);
1446 for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
1447 Out << iName << "_params.push_back(" << opNames[i] << ");";
1448 nl(Out);
1449 }
1450 Out << "CallInst* " << iName << " = CallInst::Create("
1451 << opNames[call->getNumArgOperands()] << ", "
1452 << iName << "_params, \"";
1453 } else if (call->getNumArgOperands() == 1) {
1454 Out << "CallInst* " << iName << " = CallInst::Create("
1455 << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
1456 } else {
1457 Out << "CallInst* " << iName << " = CallInst::Create("
1458 << opNames[call->getNumArgOperands()] << ", \"";
1459 }
1460 printEscapedString(call->getName());
1461 Out << "\", " << bbname << ");";
1462 nl(Out) << iName << "->setCallingConv(";
1463 printCallingConv(call->getCallingConv());
1464 Out << ");";
1465 nl(Out) << iName << "->setTailCall("
1466 << (call->isTailCall() ? "true" : "false");
1467 Out << ");";
1468 nl(Out);
1469 printAttributes(call->getAttributes(), iName);
1470 Out << iName << "->setAttributes(" << iName << "_PAL);";
1471 nl(Out);
1472 break;
1473 }
1474 case Instruction::Select: {
1475 const SelectInst* sel = cast<SelectInst>(I);
1476 Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
1477 Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1478 printEscapedString(sel->getName());
1479 Out << "\", " << bbname << ");";
1480 break;
1481 }
1482 case Instruction::UserOp1:
1483 /// FALL THROUGH
1484 case Instruction::UserOp2: {
1485 /// FIXME: What should be done here?
1486 break;
1487 }
1488 case Instruction::VAArg: {
1489 const VAArgInst* va = cast<VAArgInst>(I);
1490 Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
1491 << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
1492 printEscapedString(va->getName());
1493 Out << "\", " << bbname << ");";
1494 break;
1495 }
1496 case Instruction::ExtractElement: {
1497 const ExtractElementInst* eei = cast<ExtractElementInst>(I);
1498 Out << "ExtractElementInst* " << getCppName(eei)
1499 << " = new ExtractElementInst(" << opNames[0]
1500 << ", " << opNames[1] << ", \"";
1501 printEscapedString(eei->getName());
1502 Out << "\", " << bbname << ");";
1503 break;
1504 }
1505 case Instruction::InsertElement: {
1506 const InsertElementInst* iei = cast<InsertElementInst>(I);
1507 Out << "InsertElementInst* " << getCppName(iei)
1508 << " = InsertElementInst::Create(" << opNames[0]
1509 << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1510 printEscapedString(iei->getName());
1511 Out << "\", " << bbname << ");";
1512 break;
1513 }
1514 case Instruction::ShuffleVector: {
1515 const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
1516 Out << "ShuffleVectorInst* " << getCppName(svi)
1517 << " = new ShuffleVectorInst(" << opNames[0]
1518 << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1519 printEscapedString(svi->getName());
1520 Out << "\", " << bbname << ");";
1521 break;
1522 }
1523 case Instruction::ExtractValue: {
1524 const ExtractValueInst *evi = cast<ExtractValueInst>(I);
1525 Out << "std::vector<unsigned> " << iName << "_indices;";
1526 nl(Out);
1527 for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
1528 Out << iName << "_indices.push_back("
1529 << evi->idx_begin()[i] << ");";
1530 nl(Out);
1531 }
1532 Out << "ExtractValueInst* " << getCppName(evi)
1533 << " = ExtractValueInst::Create(" << opNames[0]
1534 << ", "
1535 << iName << "_indices, \"";
1536 printEscapedString(evi->getName());
1537 Out << "\", " << bbname << ");";
1538 break;
1539 }
1540 case Instruction::InsertValue: {
1541 const InsertValueInst *ivi = cast<InsertValueInst>(I);
1542 Out << "std::vector<unsigned> " << iName << "_indices;";
1543 nl(Out);
1544 for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
1545 Out << iName << "_indices.push_back("
1546 << ivi->idx_begin()[i] << ");";
1547 nl(Out);
1548 }
1549 Out << "InsertValueInst* " << getCppName(ivi)
1550 << " = InsertValueInst::Create(" << opNames[0]
1551 << ", " << opNames[1] << ", "
1552 << iName << "_indices, \"";
1553 printEscapedString(ivi->getName());
1554 Out << "\", " << bbname << ");";
1555 break;
1556 }
1557 case Instruction::Fence: {
1558 const FenceInst *fi = cast<FenceInst>(I);
1559 StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering());
1560 StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope());
1561 Out << "FenceInst* " << iName
1562 << " = new FenceInst(mod->getContext(), "
1563 << Ordering << ", " << CrossThread << ", " << bbname
1564 << ");";
1565 break;
1566 }
1567 case Instruction::AtomicCmpXchg: {
1568 const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I);
1569 StringRef SuccessOrdering =
1570 ConvertAtomicOrdering(cxi->getSuccessOrdering());
1571 StringRef FailureOrdering =
1572 ConvertAtomicOrdering(cxi->getFailureOrdering());
1573 StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope());
1574 Out << "AtomicCmpXchgInst* " << iName
1575 << " = new AtomicCmpXchgInst("
1576 << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", "
1577 << SuccessOrdering << ", " << FailureOrdering << ", "
1578 << CrossThread << ", " << bbname
1579 << ");";
1580 nl(Out) << iName << "->setName(\"";
1581 printEscapedString(cxi->getName());
1582 Out << "\");";
1583 nl(Out) << iName << "->setVolatile("
1584 << (cxi->isVolatile() ? "true" : "false") << ");";
1585 nl(Out) << iName << "->setWeak("
1586 << (cxi->isWeak() ? "true" : "false") << ");";
1587 break;
1588 }
1589 case Instruction::AtomicRMW: {
1590 const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I);
1591 StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering());
1592 StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope());
1593 StringRef Operation;
1594 switch (rmwi->getOperation()) {
1595 case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break;
1596 case AtomicRMWInst::Add: Operation = "AtomicRMWInst::Add"; break;
1597 case AtomicRMWInst::Sub: Operation = "AtomicRMWInst::Sub"; break;
1598 case AtomicRMWInst::And: Operation = "AtomicRMWInst::And"; break;
1599 case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break;
1600 case AtomicRMWInst::Or: Operation = "AtomicRMWInst::Or"; break;
1601 case AtomicRMWInst::Xor: Operation = "AtomicRMWInst::Xor"; break;
1602 case AtomicRMWInst::Max: Operation = "AtomicRMWInst::Max"; break;
1603 case AtomicRMWInst::Min: Operation = "AtomicRMWInst::Min"; break;
1604 case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break;
1605 case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break;
1606 case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation");
1607 }
1608 Out << "AtomicRMWInst* " << iName
1609 << " = new AtomicRMWInst("
1610 << Operation << ", "
1611 << opNames[0] << ", " << opNames[1] << ", "
1612 << Ordering << ", " << CrossThread << ", " << bbname
1613 << ");";
1614 nl(Out) << iName << "->setName(\"";
1615 printEscapedString(rmwi->getName());
1616 Out << "\");";
1617 nl(Out) << iName << "->setVolatile("
1618 << (rmwi->isVolatile() ? "true" : "false") << ");";
1619 break;
1620 }
1621 case Instruction::LandingPad: {
1622 const LandingPadInst *lpi = cast<LandingPadInst>(I);
1623 Out << "LandingPadInst* " << iName << " = LandingPadInst::Create(";
1624 printCppName(lpi->getType());
1625 Out << ", " << opNames[0] << ", " << lpi->getNumClauses() << ", \"";
1626 printEscapedString(lpi->getName());
1627 Out << "\", " << bbname << ");";
1628 nl(Out) << iName << "->setCleanup("
1629 << (lpi->isCleanup() ? "true" : "false")
1630 << ");";
1631 for (unsigned i = 0, e = lpi->getNumClauses(); i != e; ++i)
1632 nl(Out) << iName << "->addClause(" << opNames[i+1] << ");";
1633 break;
1634 }
1635 }
1636 DefinedValues.insert(I);
1637 nl(Out);
1638 delete [] opNames;
1639 }
1640
1641 // Print out the types, constants and declarations needed by one function
printFunctionUses(const Function * F)1642 void CppWriter::printFunctionUses(const Function* F) {
1643 nl(Out) << "// Type Definitions"; nl(Out);
1644 if (!is_inline) {
1645 // Print the function's return type
1646 printType(F->getReturnType());
1647
1648 // Print the function's function type
1649 printType(F->getFunctionType());
1650
1651 // Print the types of each of the function's arguments
1652 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1653 AI != AE; ++AI) {
1654 printType(AI->getType());
1655 }
1656 }
1657
1658 // Print type definitions for every type referenced by an instruction and
1659 // make a note of any global values or constants that are referenced
1660 SmallPtrSet<GlobalValue*,64> gvs;
1661 SmallPtrSet<Constant*,64> consts;
1662 for (Function::const_iterator BB = F->begin(), BE = F->end();
1663 BB != BE; ++BB){
1664 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1665 I != E; ++I) {
1666 // Print the type of the instruction itself
1667 printType(I->getType());
1668
1669 // Print the type of each of the instruction's operands
1670 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1671 Value* operand = I->getOperand(i);
1672 printType(operand->getType());
1673
1674 // If the operand references a GVal or Constant, make a note of it
1675 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1676 gvs.insert(GV);
1677 if (GenerationType != GenFunction)
1678 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1679 if (GVar->hasInitializer())
1680 consts.insert(GVar->getInitializer());
1681 } else if (Constant* C = dyn_cast<Constant>(operand)) {
1682 consts.insert(C);
1683 for (unsigned j = 0; j < C->getNumOperands(); ++j) {
1684 // If the operand references a GVal or Constant, make a note of it
1685 Value* operand = C->getOperand(j);
1686 printType(operand->getType());
1687 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1688 gvs.insert(GV);
1689 if (GenerationType != GenFunction)
1690 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1691 if (GVar->hasInitializer())
1692 consts.insert(GVar->getInitializer());
1693 }
1694 }
1695 }
1696 }
1697 }
1698 }
1699
1700 // Print the function declarations for any functions encountered
1701 nl(Out) << "// Function Declarations"; nl(Out);
1702 for (auto *GV : gvs) {
1703 if (Function *Fun = dyn_cast<Function>(GV)) {
1704 if (!is_inline || Fun != F)
1705 printFunctionHead(Fun);
1706 }
1707 }
1708
1709 // Print the global variable declarations for any variables encountered
1710 nl(Out) << "// Global Variable Declarations"; nl(Out);
1711 for (auto *GV : gvs) {
1712 if (GlobalVariable *F = dyn_cast<GlobalVariable>(GV))
1713 printVariableHead(F);
1714 }
1715
1716 // Print the constants found
1717 nl(Out) << "// Constant Definitions"; nl(Out);
1718 for (const auto *C : consts) {
1719 printConstant(C);
1720 }
1721
1722 // Process the global variables definitions now that all the constants have
1723 // been emitted. These definitions just couple the gvars with their constant
1724 // initializers.
1725 if (GenerationType != GenFunction) {
1726 nl(Out) << "// Global Variable Definitions"; nl(Out);
1727 for (auto *GV : gvs) {
1728 if (GlobalVariable *Var = dyn_cast<GlobalVariable>(GV))
1729 printVariableBody(Var);
1730 }
1731 }
1732 }
1733
printFunctionHead(const Function * F)1734 void CppWriter::printFunctionHead(const Function* F) {
1735 nl(Out) << "Function* " << getCppName(F);
1736 Out << " = mod->getFunction(\"";
1737 printEscapedString(F->getName());
1738 Out << "\");";
1739 nl(Out) << "if (!" << getCppName(F) << ") {";
1740 nl(Out) << getCppName(F);
1741
1742 Out<< " = Function::Create(";
1743 nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
1744 nl(Out) << "/*Linkage=*/";
1745 printLinkageType(F->getLinkage());
1746 Out << ",";
1747 nl(Out) << "/*Name=*/\"";
1748 printEscapedString(F->getName());
1749 Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
1750 nl(Out,-1);
1751 printCppName(F);
1752 Out << "->setCallingConv(";
1753 printCallingConv(F->getCallingConv());
1754 Out << ");";
1755 nl(Out);
1756 if (F->hasSection()) {
1757 printCppName(F);
1758 Out << "->setSection(\"" << F->getSection() << "\");";
1759 nl(Out);
1760 }
1761 if (F->getAlignment()) {
1762 printCppName(F);
1763 Out << "->setAlignment(" << F->getAlignment() << ");";
1764 nl(Out);
1765 }
1766 if (F->getVisibility() != GlobalValue::DefaultVisibility) {
1767 printCppName(F);
1768 Out << "->setVisibility(";
1769 printVisibilityType(F->getVisibility());
1770 Out << ");";
1771 nl(Out);
1772 }
1773 if (F->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
1774 printCppName(F);
1775 Out << "->setDLLStorageClass(";
1776 printDLLStorageClassType(F->getDLLStorageClass());
1777 Out << ");";
1778 nl(Out);
1779 }
1780 if (F->hasGC()) {
1781 printCppName(F);
1782 Out << "->setGC(\"" << F->getGC() << "\");";
1783 nl(Out);
1784 }
1785 Out << "}";
1786 nl(Out);
1787 printAttributes(F->getAttributes(), getCppName(F));
1788 printCppName(F);
1789 Out << "->setAttributes(" << getCppName(F) << "_PAL);";
1790 nl(Out);
1791 }
1792
printFunctionBody(const Function * F)1793 void CppWriter::printFunctionBody(const Function *F) {
1794 if (F->isDeclaration())
1795 return; // external functions have no bodies.
1796
1797 // Clear the DefinedValues and ForwardRefs maps because we can't have
1798 // cross-function forward refs
1799 ForwardRefs.clear();
1800 DefinedValues.clear();
1801
1802 // Create all the argument values
1803 if (!is_inline) {
1804 if (!F->arg_empty()) {
1805 Out << "Function::arg_iterator args = " << getCppName(F)
1806 << "->arg_begin();";
1807 nl(Out);
1808 }
1809 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1810 AI != AE; ++AI) {
1811 Out << "Value* " << getCppName(AI) << " = args++;";
1812 nl(Out);
1813 if (AI->hasName()) {
1814 Out << getCppName(AI) << "->setName(\"";
1815 printEscapedString(AI->getName());
1816 Out << "\");";
1817 nl(Out);
1818 }
1819 }
1820 }
1821
1822 // Create all the basic blocks
1823 nl(Out);
1824 for (Function::const_iterator BI = F->begin(), BE = F->end();
1825 BI != BE; ++BI) {
1826 std::string bbname(getCppName(BI));
1827 Out << "BasicBlock* " << bbname <<
1828 " = BasicBlock::Create(mod->getContext(), \"";
1829 if (BI->hasName())
1830 printEscapedString(BI->getName());
1831 Out << "\"," << getCppName(BI->getParent()) << ",0);";
1832 nl(Out);
1833 }
1834
1835 // Output all of its basic blocks... for the function
1836 for (Function::const_iterator BI = F->begin(), BE = F->end();
1837 BI != BE; ++BI) {
1838 std::string bbname(getCppName(BI));
1839 nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
1840 nl(Out);
1841
1842 // Output all of the instructions in the basic block...
1843 for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
1844 I != E; ++I) {
1845 printInstruction(I,bbname);
1846 }
1847 }
1848
1849 // Loop over the ForwardRefs and resolve them now that all instructions
1850 // are generated.
1851 if (!ForwardRefs.empty()) {
1852 nl(Out) << "// Resolve Forward References";
1853 nl(Out);
1854 }
1855
1856 while (!ForwardRefs.empty()) {
1857 ForwardRefMap::iterator I = ForwardRefs.begin();
1858 Out << I->second << "->replaceAllUsesWith("
1859 << getCppName(I->first) << "); delete " << I->second << ";";
1860 nl(Out);
1861 ForwardRefs.erase(I);
1862 }
1863 }
1864
printInline(const std::string & fname,const std::string & func)1865 void CppWriter::printInline(const std::string& fname,
1866 const std::string& func) {
1867 const Function* F = TheModule->getFunction(func);
1868 if (!F) {
1869 error(std::string("Function '") + func + "' not found in input module");
1870 return;
1871 }
1872 if (F->isDeclaration()) {
1873 error(std::string("Function '") + func + "' is external!");
1874 return;
1875 }
1876 nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
1877 << getCppName(F);
1878 unsigned arg_count = 1;
1879 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1880 AI != AE; ++AI) {
1881 Out << ", Value* arg_" << arg_count++;
1882 }
1883 Out << ") {";
1884 nl(Out);
1885 is_inline = true;
1886 printFunctionUses(F);
1887 printFunctionBody(F);
1888 is_inline = false;
1889 Out << "return " << getCppName(F->begin()) << ";";
1890 nl(Out) << "}";
1891 nl(Out);
1892 }
1893
printModuleBody()1894 void CppWriter::printModuleBody() {
1895 // Print out all the type definitions
1896 nl(Out) << "// Type Definitions"; nl(Out);
1897 printTypes(TheModule);
1898
1899 // Functions can call each other and global variables can reference them so
1900 // define all the functions first before emitting their function bodies.
1901 nl(Out) << "// Function Declarations"; nl(Out);
1902 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1903 I != E; ++I)
1904 printFunctionHead(I);
1905
1906 // Process the global variables declarations. We can't initialze them until
1907 // after the constants are printed so just print a header for each global
1908 nl(Out) << "// Global Variable Declarations\n"; nl(Out);
1909 for (Module::const_global_iterator I = TheModule->global_begin(),
1910 E = TheModule->global_end(); I != E; ++I) {
1911 printVariableHead(I);
1912 }
1913
1914 // Print out all the constants definitions. Constants don't recurse except
1915 // through GlobalValues. All GlobalValues have been declared at this point
1916 // so we can proceed to generate the constants.
1917 nl(Out) << "// Constant Definitions"; nl(Out);
1918 printConstants(TheModule);
1919
1920 // Process the global variables definitions now that all the constants have
1921 // been emitted. These definitions just couple the gvars with their constant
1922 // initializers.
1923 nl(Out) << "// Global Variable Definitions"; nl(Out);
1924 for (Module::const_global_iterator I = TheModule->global_begin(),
1925 E = TheModule->global_end(); I != E; ++I) {
1926 printVariableBody(I);
1927 }
1928
1929 // Finally, we can safely put out all of the function bodies.
1930 nl(Out) << "// Function Definitions"; nl(Out);
1931 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1932 I != E; ++I) {
1933 if (!I->isDeclaration()) {
1934 nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
1935 << ")";
1936 nl(Out) << "{";
1937 nl(Out,1);
1938 printFunctionBody(I);
1939 nl(Out,-1) << "}";
1940 nl(Out);
1941 }
1942 }
1943 }
1944
printProgram(const std::string & fname,const std::string & mName)1945 void CppWriter::printProgram(const std::string& fname,
1946 const std::string& mName) {
1947 Out << "#include <llvm/Pass.h>\n";
1948
1949 Out << "#include <llvm/ADT/SmallVector.h>\n";
1950 Out << "#include <llvm/Analysis/Verifier.h>\n";
1951 Out << "#include <llvm/IR/BasicBlock.h>\n";
1952 Out << "#include <llvm/IR/CallingConv.h>\n";
1953 Out << "#include <llvm/IR/Constants.h>\n";
1954 Out << "#include <llvm/IR/DerivedTypes.h>\n";
1955 Out << "#include <llvm/IR/Function.h>\n";
1956 Out << "#include <llvm/IR/GlobalVariable.h>\n";
1957 Out << "#include <llvm/IR/IRPrintingPasses.h>\n";
1958 Out << "#include <llvm/IR/InlineAsm.h>\n";
1959 Out << "#include <llvm/IR/Instructions.h>\n";
1960 Out << "#include <llvm/IR/LLVMContext.h>\n";
1961 Out << "#include <llvm/IR/LegacyPassManager.h>\n";
1962 Out << "#include <llvm/IR/Module.h>\n";
1963 Out << "#include <llvm/Support/FormattedStream.h>\n";
1964 Out << "#include <llvm/Support/MathExtras.h>\n";
1965 Out << "#include <algorithm>\n";
1966 Out << "using namespace llvm;\n\n";
1967 Out << "Module* " << fname << "();\n\n";
1968 Out << "int main(int argc, char**argv) {\n";
1969 Out << " Module* Mod = " << fname << "();\n";
1970 Out << " verifyModule(*Mod, PrintMessageAction);\n";
1971 Out << " PassManager PM;\n";
1972 Out << " PM.add(createPrintModulePass(&outs()));\n";
1973 Out << " PM.run(*Mod);\n";
1974 Out << " return 0;\n";
1975 Out << "}\n\n";
1976 printModule(fname,mName);
1977 }
1978
printModule(const std::string & fname,const std::string & mName)1979 void CppWriter::printModule(const std::string& fname,
1980 const std::string& mName) {
1981 nl(Out) << "Module* " << fname << "() {";
1982 nl(Out,1) << "// Module Construction";
1983 nl(Out) << "Module* mod = new Module(\"";
1984 printEscapedString(mName);
1985 Out << "\", getGlobalContext());";
1986 if (!TheModule->getTargetTriple().empty()) {
1987 nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayoutStr()
1988 << "\");";
1989 }
1990 if (!TheModule->getTargetTriple().empty()) {
1991 nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
1992 << "\");";
1993 }
1994
1995 if (!TheModule->getModuleInlineAsm().empty()) {
1996 nl(Out) << "mod->setModuleInlineAsm(\"";
1997 printEscapedString(TheModule->getModuleInlineAsm());
1998 Out << "\");";
1999 }
2000 nl(Out);
2001
2002 printModuleBody();
2003 nl(Out) << "return mod;";
2004 nl(Out,-1) << "}";
2005 nl(Out);
2006 }
2007
printContents(const std::string & fname,const std::string & mName)2008 void CppWriter::printContents(const std::string& fname,
2009 const std::string& mName) {
2010 Out << "\nModule* " << fname << "(Module *mod) {\n";
2011 Out << "\nmod->setModuleIdentifier(\"";
2012 printEscapedString(mName);
2013 Out << "\");\n";
2014 printModuleBody();
2015 Out << "\nreturn mod;\n";
2016 Out << "\n}\n";
2017 }
2018
printFunction(const std::string & fname,const std::string & funcName)2019 void CppWriter::printFunction(const std::string& fname,
2020 const std::string& funcName) {
2021 const Function* F = TheModule->getFunction(funcName);
2022 if (!F) {
2023 error(std::string("Function '") + funcName + "' not found in input module");
2024 return;
2025 }
2026 Out << "\nFunction* " << fname << "(Module *mod) {\n";
2027 printFunctionUses(F);
2028 printFunctionHead(F);
2029 printFunctionBody(F);
2030 Out << "return " << getCppName(F) << ";\n";
2031 Out << "}\n";
2032 }
2033
printFunctions()2034 void CppWriter::printFunctions() {
2035 const Module::FunctionListType &funcs = TheModule->getFunctionList();
2036 Module::const_iterator I = funcs.begin();
2037 Module::const_iterator IE = funcs.end();
2038
2039 for (; I != IE; ++I) {
2040 const Function &func = *I;
2041 if (!func.isDeclaration()) {
2042 std::string name("define_");
2043 name += func.getName();
2044 printFunction(name, func.getName());
2045 }
2046 }
2047 }
2048
printVariable(const std::string & fname,const std::string & varName)2049 void CppWriter::printVariable(const std::string& fname,
2050 const std::string& varName) {
2051 const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
2052
2053 if (!GV) {
2054 error(std::string("Variable '") + varName + "' not found in input module");
2055 return;
2056 }
2057 Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
2058 printVariableUses(GV);
2059 printVariableHead(GV);
2060 printVariableBody(GV);
2061 Out << "return " << getCppName(GV) << ";\n";
2062 Out << "}\n";
2063 }
2064
printType(const std::string & fname,const std::string & typeName)2065 void CppWriter::printType(const std::string &fname,
2066 const std::string &typeName) {
2067 Type* Ty = TheModule->getTypeByName(typeName);
2068 if (!Ty) {
2069 error(std::string("Type '") + typeName + "' not found in input module");
2070 return;
2071 }
2072 Out << "\nType* " << fname << "(Module *mod) {\n";
2073 printType(Ty);
2074 Out << "return " << getCppName(Ty) << ";\n";
2075 Out << "}\n";
2076 }
2077
runOnModule(Module & M)2078 bool CppWriter::runOnModule(Module &M) {
2079 TheModule = &M;
2080
2081 // Emit a header
2082 Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
2083
2084 // Get the name of the function we're supposed to generate
2085 std::string fname = FuncName.getValue();
2086
2087 // Get the name of the thing we are to generate
2088 std::string tgtname = NameToGenerate.getValue();
2089 if (GenerationType == GenModule ||
2090 GenerationType == GenContents ||
2091 GenerationType == GenProgram ||
2092 GenerationType == GenFunctions) {
2093 if (tgtname == "!bad!") {
2094 if (M.getModuleIdentifier() == "-")
2095 tgtname = "<stdin>";
2096 else
2097 tgtname = M.getModuleIdentifier();
2098 }
2099 } else if (tgtname == "!bad!")
2100 error("You must use the -for option with -gen-{function,variable,type}");
2101
2102 switch (WhatToGenerate(GenerationType)) {
2103 case GenProgram:
2104 if (fname.empty())
2105 fname = "makeLLVMModule";
2106 printProgram(fname,tgtname);
2107 break;
2108 case GenModule:
2109 if (fname.empty())
2110 fname = "makeLLVMModule";
2111 printModule(fname,tgtname);
2112 break;
2113 case GenContents:
2114 if (fname.empty())
2115 fname = "makeLLVMModuleContents";
2116 printContents(fname,tgtname);
2117 break;
2118 case GenFunction:
2119 if (fname.empty())
2120 fname = "makeLLVMFunction";
2121 printFunction(fname,tgtname);
2122 break;
2123 case GenFunctions:
2124 printFunctions();
2125 break;
2126 case GenInline:
2127 if (fname.empty())
2128 fname = "makeLLVMInline";
2129 printInline(fname,tgtname);
2130 break;
2131 case GenVariable:
2132 if (fname.empty())
2133 fname = "makeLLVMVariable";
2134 printVariable(fname,tgtname);
2135 break;
2136 case GenType:
2137 if (fname.empty())
2138 fname = "makeLLVMType";
2139 printType(fname,tgtname);
2140 break;
2141 }
2142
2143 return false;
2144 }
2145
2146 char CppWriter::ID = 0;
2147
2148 //===----------------------------------------------------------------------===//
2149 // External Interface declaration
2150 //===----------------------------------------------------------------------===//
2151
addPassesToEmitFile(PassManagerBase & PM,raw_pwrite_stream & o,CodeGenFileType FileType,bool DisableVerify,AnalysisID StartAfter,AnalysisID StopAfter)2152 bool CPPTargetMachine::addPassesToEmitFile(
2153 PassManagerBase &PM, raw_pwrite_stream &o, CodeGenFileType FileType,
2154 bool DisableVerify, AnalysisID StartAfter, AnalysisID StopAfter) {
2155 if (FileType != TargetMachine::CGFT_AssemblyFile)
2156 return true;
2157 auto FOut = llvm::make_unique<formatted_raw_ostream>(o);
2158 PM.add(new CppWriter(std::move(FOut)));
2159 return false;
2160 }
2161