1 /*
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 **     http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17 
18 
19 #define LOG_TAG "AudioFlinger"
20 //#define LOG_NDEBUG 0
21 #define ATRACE_TAG ATRACE_TAG_AUDIO
22 
23 #include "Configuration.h"
24 #include <math.h>
25 #include <fcntl.h>
26 #include <linux/futex.h>
27 #include <sys/stat.h>
28 #include <sys/syscall.h>
29 #include <cutils/properties.h>
30 #include <media/AudioParameter.h>
31 #include <media/AudioResamplerPublic.h>
32 #include <utils/Log.h>
33 #include <utils/Trace.h>
34 
35 #include <private/media/AudioTrackShared.h>
36 #include <hardware/audio.h>
37 #include <audio_effects/effect_ns.h>
38 #include <audio_effects/effect_aec.h>
39 #include <audio_utils/primitives.h>
40 #include <audio_utils/format.h>
41 #include <audio_utils/minifloat.h>
42 
43 // NBAIO implementations
44 #include <media/nbaio/AudioStreamInSource.h>
45 #include <media/nbaio/AudioStreamOutSink.h>
46 #include <media/nbaio/MonoPipe.h>
47 #include <media/nbaio/MonoPipeReader.h>
48 #include <media/nbaio/Pipe.h>
49 #include <media/nbaio/PipeReader.h>
50 #include <media/nbaio/SourceAudioBufferProvider.h>
51 
52 #include <powermanager/PowerManager.h>
53 
54 #include <common_time/cc_helper.h>
55 #include <common_time/local_clock.h>
56 
57 #include "AudioFlinger.h"
58 #include "AudioMixer.h"
59 #include "BufferProviders.h"
60 #include "FastMixer.h"
61 #include "FastCapture.h"
62 #include "ServiceUtilities.h"
63 #include "SchedulingPolicyService.h"
64 
65 #ifdef ADD_BATTERY_DATA
66 #include <media/IMediaPlayerService.h>
67 #include <media/IMediaDeathNotifier.h>
68 #endif
69 
70 #ifdef DEBUG_CPU_USAGE
71 #include <cpustats/CentralTendencyStatistics.h>
72 #include <cpustats/ThreadCpuUsage.h>
73 #endif
74 
75 // ----------------------------------------------------------------------------
76 
77 // Note: the following macro is used for extremely verbose logging message.  In
78 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
79 // 0; but one side effect of this is to turn all LOGV's as well.  Some messages
80 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
81 // turned on.  Do not uncomment the #def below unless you really know what you
82 // are doing and want to see all of the extremely verbose messages.
83 //#define VERY_VERY_VERBOSE_LOGGING
84 #ifdef VERY_VERY_VERBOSE_LOGGING
85 #define ALOGVV ALOGV
86 #else
87 #define ALOGVV(a...) do { } while(0)
88 #endif
89 
90 // TODO: Move these macro/inlines to a header file.
91 #define max(a, b) ((a) > (b) ? (a) : (b))
92 template <typename T>
min(const T & a,const T & b)93 static inline T min(const T& a, const T& b)
94 {
95     return a < b ? a : b;
96 }
97 
98 #ifndef ARRAY_SIZE
99 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
100 #endif
101 
102 namespace android {
103 
104 // retry counts for buffer fill timeout
105 // 50 * ~20msecs = 1 second
106 static const int8_t kMaxTrackRetries = 50;
107 static const int8_t kMaxTrackStartupRetries = 50;
108 // allow less retry attempts on direct output thread.
109 // direct outputs can be a scarce resource in audio hardware and should
110 // be released as quickly as possible.
111 static const int8_t kMaxTrackRetriesDirect = 2;
112 
113 // don't warn about blocked writes or record buffer overflows more often than this
114 static const nsecs_t kWarningThrottleNs = seconds(5);
115 
116 // RecordThread loop sleep time upon application overrun or audio HAL read error
117 static const int kRecordThreadSleepUs = 5000;
118 
119 // maximum time to wait in sendConfigEvent_l() for a status to be received
120 static const nsecs_t kConfigEventTimeoutNs = seconds(2);
121 
122 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
123 static const uint32_t kMinThreadSleepTimeUs = 5000;
124 // maximum divider applied to the active sleep time in the mixer thread loop
125 static const uint32_t kMaxThreadSleepTimeShift = 2;
126 
127 // minimum normal sink buffer size, expressed in milliseconds rather than frames
128 // FIXME This should be based on experimentally observed scheduling jitter
129 static const uint32_t kMinNormalSinkBufferSizeMs = 20;
130 // maximum normal sink buffer size
131 static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
132 
133 // minimum capture buffer size in milliseconds to _not_ need a fast capture thread
134 // FIXME This should be based on experimentally observed scheduling jitter
135 static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
136 
137 // Offloaded output thread standby delay: allows track transition without going to standby
138 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
139 
140 // Whether to use fast mixer
141 static const enum {
142     FastMixer_Never,    // never initialize or use: for debugging only
143     FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
144                         // normal mixer multiplier is 1
145     FastMixer_Static,   // initialize if needed, then use all the time if initialized,
146                         // multiplier is calculated based on min & max normal mixer buffer size
147     FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
148                         // multiplier is calculated based on min & max normal mixer buffer size
149     // FIXME for FastMixer_Dynamic:
150     //  Supporting this option will require fixing HALs that can't handle large writes.
151     //  For example, one HAL implementation returns an error from a large write,
152     //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
153     //  We could either fix the HAL implementations, or provide a wrapper that breaks
154     //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
155 } kUseFastMixer = FastMixer_Static;
156 
157 // Whether to use fast capture
158 static const enum {
159     FastCapture_Never,  // never initialize or use: for debugging only
160     FastCapture_Always, // always initialize and use, even if not needed: for debugging only
161     FastCapture_Static, // initialize if needed, then use all the time if initialized
162 } kUseFastCapture = FastCapture_Static;
163 
164 // Priorities for requestPriority
165 static const int kPriorityAudioApp = 2;
166 static const int kPriorityFastMixer = 3;
167 static const int kPriorityFastCapture = 3;
168 
169 // IAudioFlinger::createTrack() reports back to client the total size of shared memory area
170 // for the track.  The client then sub-divides this into smaller buffers for its use.
171 // Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
172 // So for now we just assume that client is double-buffered for fast tracks.
173 // FIXME It would be better for client to tell AudioFlinger the value of N,
174 // so AudioFlinger could allocate the right amount of memory.
175 // See the client's minBufCount and mNotificationFramesAct calculations for details.
176 
177 // This is the default value, if not specified by property.
178 static const int kFastTrackMultiplier = 2;
179 
180 // The minimum and maximum allowed values
181 static const int kFastTrackMultiplierMin = 1;
182 static const int kFastTrackMultiplierMax = 2;
183 
184 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
185 static int sFastTrackMultiplier = kFastTrackMultiplier;
186 
187 // See Thread::readOnlyHeap().
188 // Initially this heap is used to allocate client buffers for "fast" AudioRecord.
189 // Eventually it will be the single buffer that FastCapture writes into via HAL read(),
190 // and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
191 static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
192 
193 // ----------------------------------------------------------------------------
194 
195 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
196 
sFastTrackMultiplierInit()197 static void sFastTrackMultiplierInit()
198 {
199     char value[PROPERTY_VALUE_MAX];
200     if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
201         char *endptr;
202         unsigned long ul = strtoul(value, &endptr, 0);
203         if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
204             sFastTrackMultiplier = (int) ul;
205         }
206     }
207 }
208 
209 // ----------------------------------------------------------------------------
210 
211 #ifdef ADD_BATTERY_DATA
212 // To collect the amplifier usage
addBatteryData(uint32_t params)213 static void addBatteryData(uint32_t params) {
214     sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
215     if (service == NULL) {
216         // it already logged
217         return;
218     }
219 
220     service->addBatteryData(params);
221 }
222 #endif
223 
224 
225 // ----------------------------------------------------------------------------
226 //      CPU Stats
227 // ----------------------------------------------------------------------------
228 
229 class CpuStats {
230 public:
231     CpuStats();
232     void sample(const String8 &title);
233 #ifdef DEBUG_CPU_USAGE
234 private:
235     ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
236     CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
237 
238     CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
239 
240     int mCpuNum;                        // thread's current CPU number
241     int mCpukHz;                        // frequency of thread's current CPU in kHz
242 #endif
243 };
244 
CpuStats()245 CpuStats::CpuStats()
246 #ifdef DEBUG_CPU_USAGE
247     : mCpuNum(-1), mCpukHz(-1)
248 #endif
249 {
250 }
251 
sample(const String8 & title __unused)252 void CpuStats::sample(const String8 &title
253 #ifndef DEBUG_CPU_USAGE
254                 __unused
255 #endif
256         ) {
257 #ifdef DEBUG_CPU_USAGE
258     // get current thread's delta CPU time in wall clock ns
259     double wcNs;
260     bool valid = mCpuUsage.sampleAndEnable(wcNs);
261 
262     // record sample for wall clock statistics
263     if (valid) {
264         mWcStats.sample(wcNs);
265     }
266 
267     // get the current CPU number
268     int cpuNum = sched_getcpu();
269 
270     // get the current CPU frequency in kHz
271     int cpukHz = mCpuUsage.getCpukHz(cpuNum);
272 
273     // check if either CPU number or frequency changed
274     if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
275         mCpuNum = cpuNum;
276         mCpukHz = cpukHz;
277         // ignore sample for purposes of cycles
278         valid = false;
279     }
280 
281     // if no change in CPU number or frequency, then record sample for cycle statistics
282     if (valid && mCpukHz > 0) {
283         double cycles = wcNs * cpukHz * 0.000001;
284         mHzStats.sample(cycles);
285     }
286 
287     unsigned n = mWcStats.n();
288     // mCpuUsage.elapsed() is expensive, so don't call it every loop
289     if ((n & 127) == 1) {
290         long long elapsed = mCpuUsage.elapsed();
291         if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
292             double perLoop = elapsed / (double) n;
293             double perLoop100 = perLoop * 0.01;
294             double perLoop1k = perLoop * 0.001;
295             double mean = mWcStats.mean();
296             double stddev = mWcStats.stddev();
297             double minimum = mWcStats.minimum();
298             double maximum = mWcStats.maximum();
299             double meanCycles = mHzStats.mean();
300             double stddevCycles = mHzStats.stddev();
301             double minCycles = mHzStats.minimum();
302             double maxCycles = mHzStats.maximum();
303             mCpuUsage.resetElapsed();
304             mWcStats.reset();
305             mHzStats.reset();
306             ALOGD("CPU usage for %s over past %.1f secs\n"
307                 "  (%u mixer loops at %.1f mean ms per loop):\n"
308                 "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
309                 "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
310                 "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
311                     title.string(),
312                     elapsed * .000000001, n, perLoop * .000001,
313                     mean * .001,
314                     stddev * .001,
315                     minimum * .001,
316                     maximum * .001,
317                     mean / perLoop100,
318                     stddev / perLoop100,
319                     minimum / perLoop100,
320                     maximum / perLoop100,
321                     meanCycles / perLoop1k,
322                     stddevCycles / perLoop1k,
323                     minCycles / perLoop1k,
324                     maxCycles / perLoop1k);
325 
326         }
327     }
328 #endif
329 };
330 
331 // ----------------------------------------------------------------------------
332 //      ThreadBase
333 // ----------------------------------------------------------------------------
334 
335 // static
threadTypeToString(AudioFlinger::ThreadBase::type_t type)336 const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
337 {
338     switch (type) {
339     case MIXER:
340         return "MIXER";
341     case DIRECT:
342         return "DIRECT";
343     case DUPLICATING:
344         return "DUPLICATING";
345     case RECORD:
346         return "RECORD";
347     case OFFLOAD:
348         return "OFFLOAD";
349     default:
350         return "unknown";
351     }
352 }
353 
devicesToString(audio_devices_t devices)354 String8 devicesToString(audio_devices_t devices)
355 {
356     static const struct mapping {
357         audio_devices_t mDevices;
358         const char *    mString;
359     } mappingsOut[] = {
360         AUDIO_DEVICE_OUT_EARPIECE,          "EARPIECE",
361         AUDIO_DEVICE_OUT_SPEAKER,           "SPEAKER",
362         AUDIO_DEVICE_OUT_WIRED_HEADSET,     "WIRED_HEADSET",
363         AUDIO_DEVICE_OUT_WIRED_HEADPHONE,   "WIRED_HEADPHONE",
364         AUDIO_DEVICE_OUT_BLUETOOTH_SCO,     "BLUETOOTH_SCO",
365         AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET,     "BLUETOOTH_SCO_HEADSET",
366         AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT,      "BLUETOOTH_SCO_CARKIT",
367         AUDIO_DEVICE_OUT_BLUETOOTH_A2DP,            "BLUETOOTH_A2DP",
368         AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES, "BLUETOOTH_A2DP_HEADPHONES",
369         AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER,    "BLUETOOTH_A2DP_SPEAKER",
370         AUDIO_DEVICE_OUT_AUX_DIGITAL,       "AUX_DIGITAL",
371         AUDIO_DEVICE_OUT_HDMI,              "HDMI",
372         AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET",
373         AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET",
374         AUDIO_DEVICE_OUT_USB_ACCESSORY,     "USB_ACCESSORY",
375         AUDIO_DEVICE_OUT_USB_DEVICE,        "USB_DEVICE",
376         AUDIO_DEVICE_OUT_TELEPHONY_TX,      "TELEPHONY_TX",
377         AUDIO_DEVICE_OUT_LINE,              "LINE",
378         AUDIO_DEVICE_OUT_HDMI_ARC,          "HDMI_ARC",
379         AUDIO_DEVICE_OUT_SPDIF,             "SPDIF",
380         AUDIO_DEVICE_OUT_FM,                "FM",
381         AUDIO_DEVICE_OUT_AUX_LINE,          "AUX_LINE",
382         AUDIO_DEVICE_OUT_SPEAKER_SAFE,      "SPEAKER_SAFE",
383         AUDIO_DEVICE_OUT_IP,                "IP",
384         AUDIO_DEVICE_NONE,                  "NONE",         // must be last
385     }, mappingsIn[] = {
386         AUDIO_DEVICE_IN_COMMUNICATION,      "COMMUNICATION",
387         AUDIO_DEVICE_IN_AMBIENT,            "AMBIENT",
388         AUDIO_DEVICE_IN_BUILTIN_MIC,        "BUILTIN_MIC",
389         AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET,  "BLUETOOTH_SCO_HEADSET",
390         AUDIO_DEVICE_IN_WIRED_HEADSET,      "WIRED_HEADSET",
391         AUDIO_DEVICE_IN_AUX_DIGITAL,        "AUX_DIGITAL",
392         AUDIO_DEVICE_IN_VOICE_CALL,         "VOICE_CALL",
393         AUDIO_DEVICE_IN_TELEPHONY_RX,       "TELEPHONY_RX",
394         AUDIO_DEVICE_IN_BACK_MIC,           "BACK_MIC",
395         AUDIO_DEVICE_IN_REMOTE_SUBMIX,      "REMOTE_SUBMIX",
396         AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET,  "ANLG_DOCK_HEADSET",
397         AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET,  "DGTL_DOCK_HEADSET",
398         AUDIO_DEVICE_IN_USB_ACCESSORY,      "USB_ACCESSORY",
399         AUDIO_DEVICE_IN_USB_DEVICE,         "USB_DEVICE",
400         AUDIO_DEVICE_IN_FM_TUNER,           "FM_TUNER",
401         AUDIO_DEVICE_IN_TV_TUNER,           "TV_TUNER",
402         AUDIO_DEVICE_IN_LINE,               "LINE",
403         AUDIO_DEVICE_IN_SPDIF,              "SPDIF",
404         AUDIO_DEVICE_IN_BLUETOOTH_A2DP,     "BLUETOOTH_A2DP",
405         AUDIO_DEVICE_IN_LOOPBACK,           "LOOPBACK",
406         AUDIO_DEVICE_IN_IP,                 "IP",
407         AUDIO_DEVICE_NONE,                  "NONE",         // must be last
408     };
409     String8 result;
410     audio_devices_t allDevices = AUDIO_DEVICE_NONE;
411     const mapping *entry;
412     if (devices & AUDIO_DEVICE_BIT_IN) {
413         devices &= ~AUDIO_DEVICE_BIT_IN;
414         entry = mappingsIn;
415     } else {
416         entry = mappingsOut;
417     }
418     for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
419         allDevices = (audio_devices_t) (allDevices | entry->mDevices);
420         if (devices & entry->mDevices) {
421             if (!result.isEmpty()) {
422                 result.append("|");
423             }
424             result.append(entry->mString);
425         }
426     }
427     if (devices & ~allDevices) {
428         if (!result.isEmpty()) {
429             result.append("|");
430         }
431         result.appendFormat("0x%X", devices & ~allDevices);
432     }
433     if (result.isEmpty()) {
434         result.append(entry->mString);
435     }
436     return result;
437 }
438 
inputFlagsToString(audio_input_flags_t flags)439 String8 inputFlagsToString(audio_input_flags_t flags)
440 {
441     static const struct mapping {
442         audio_input_flags_t     mFlag;
443         const char *            mString;
444     } mappings[] = {
445         AUDIO_INPUT_FLAG_FAST,              "FAST",
446         AUDIO_INPUT_FLAG_HW_HOTWORD,        "HW_HOTWORD",
447         AUDIO_INPUT_FLAG_NONE,              "NONE",         // must be last
448     };
449     String8 result;
450     audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
451     const mapping *entry;
452     for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
453         allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
454         if (flags & entry->mFlag) {
455             if (!result.isEmpty()) {
456                 result.append("|");
457             }
458             result.append(entry->mString);
459         }
460     }
461     if (flags & ~allFlags) {
462         if (!result.isEmpty()) {
463             result.append("|");
464         }
465         result.appendFormat("0x%X", flags & ~allFlags);
466     }
467     if (result.isEmpty()) {
468         result.append(entry->mString);
469     }
470     return result;
471 }
472 
outputFlagsToString(audio_output_flags_t flags)473 String8 outputFlagsToString(audio_output_flags_t flags)
474 {
475     static const struct mapping {
476         audio_output_flags_t    mFlag;
477         const char *            mString;
478     } mappings[] = {
479         AUDIO_OUTPUT_FLAG_DIRECT,           "DIRECT",
480         AUDIO_OUTPUT_FLAG_PRIMARY,          "PRIMARY",
481         AUDIO_OUTPUT_FLAG_FAST,             "FAST",
482         AUDIO_OUTPUT_FLAG_DEEP_BUFFER,      "DEEP_BUFFER",
483         AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD, "COMPRESS_OFFLOAD",
484         AUDIO_OUTPUT_FLAG_NON_BLOCKING,     "NON_BLOCKING",
485         AUDIO_OUTPUT_FLAG_HW_AV_SYNC,       "HW_AV_SYNC",
486         AUDIO_OUTPUT_FLAG_NONE,             "NONE",         // must be last
487     };
488     String8 result;
489     audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
490     const mapping *entry;
491     for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
492         allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
493         if (flags & entry->mFlag) {
494             if (!result.isEmpty()) {
495                 result.append("|");
496             }
497             result.append(entry->mString);
498         }
499     }
500     if (flags & ~allFlags) {
501         if (!result.isEmpty()) {
502             result.append("|");
503         }
504         result.appendFormat("0x%X", flags & ~allFlags);
505     }
506     if (result.isEmpty()) {
507         result.append(entry->mString);
508     }
509     return result;
510 }
511 
sourceToString(audio_source_t source)512 const char *sourceToString(audio_source_t source)
513 {
514     switch (source) {
515     case AUDIO_SOURCE_DEFAULT:              return "default";
516     case AUDIO_SOURCE_MIC:                  return "mic";
517     case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
518     case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
519     case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
520     case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
521     case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
522     case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
523     case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
524     case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
525     case AUDIO_SOURCE_HOTWORD:              return "hotword";
526     default:                                return "unknown";
527     }
528 }
529 
ThreadBase(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,type_t type,bool systemReady)530 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
531         audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
532     :   Thread(false /*canCallJava*/),
533         mType(type),
534         mAudioFlinger(audioFlinger),
535         // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
536         // are set by PlaybackThread::readOutputParameters_l() or
537         // RecordThread::readInputParameters_l()
538         //FIXME: mStandby should be true here. Is this some kind of hack?
539         mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
540         mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
541         mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
542         // mName will be set by concrete (non-virtual) subclass
543         mDeathRecipient(new PMDeathRecipient(this)),
544         mSystemReady(systemReady)
545 {
546     memset(&mPatch, 0, sizeof(struct audio_patch));
547 }
548 
~ThreadBase()549 AudioFlinger::ThreadBase::~ThreadBase()
550 {
551     // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
552     mConfigEvents.clear();
553 
554     // do not lock the mutex in destructor
555     releaseWakeLock_l();
556     if (mPowerManager != 0) {
557         sp<IBinder> binder = IInterface::asBinder(mPowerManager);
558         binder->unlinkToDeath(mDeathRecipient);
559     }
560 }
561 
readyToRun()562 status_t AudioFlinger::ThreadBase::readyToRun()
563 {
564     status_t status = initCheck();
565     if (status == NO_ERROR) {
566         ALOGI("AudioFlinger's thread %p ready to run", this);
567     } else {
568         ALOGE("No working audio driver found.");
569     }
570     return status;
571 }
572 
exit()573 void AudioFlinger::ThreadBase::exit()
574 {
575     ALOGV("ThreadBase::exit");
576     // do any cleanup required for exit to succeed
577     preExit();
578     {
579         // This lock prevents the following race in thread (uniprocessor for illustration):
580         //  if (!exitPending()) {
581         //      // context switch from here to exit()
582         //      // exit() calls requestExit(), what exitPending() observes
583         //      // exit() calls signal(), which is dropped since no waiters
584         //      // context switch back from exit() to here
585         //      mWaitWorkCV.wait(...);
586         //      // now thread is hung
587         //  }
588         AutoMutex lock(mLock);
589         requestExit();
590         mWaitWorkCV.broadcast();
591     }
592     // When Thread::requestExitAndWait is made virtual and this method is renamed to
593     // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
594     requestExitAndWait();
595 }
596 
setParameters(const String8 & keyValuePairs)597 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
598 {
599     status_t status;
600 
601     ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
602     Mutex::Autolock _l(mLock);
603 
604     return sendSetParameterConfigEvent_l(keyValuePairs);
605 }
606 
607 // sendConfigEvent_l() must be called with ThreadBase::mLock held
608 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
sendConfigEvent_l(sp<ConfigEvent> & event)609 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
610 {
611     status_t status = NO_ERROR;
612 
613     if (event->mRequiresSystemReady && !mSystemReady) {
614         event->mWaitStatus = false;
615         mPendingConfigEvents.add(event);
616         return status;
617     }
618     mConfigEvents.add(event);
619     ALOGV("sendConfigEvent_l() num events %d event %d", mConfigEvents.size(), event->mType);
620     mWaitWorkCV.signal();
621     mLock.unlock();
622     {
623         Mutex::Autolock _l(event->mLock);
624         while (event->mWaitStatus) {
625             if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
626                 event->mStatus = TIMED_OUT;
627                 event->mWaitStatus = false;
628             }
629         }
630         status = event->mStatus;
631     }
632     mLock.lock();
633     return status;
634 }
635 
sendIoConfigEvent(audio_io_config_event event,pid_t pid)636 void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
637 {
638     Mutex::Autolock _l(mLock);
639     sendIoConfigEvent_l(event, pid);
640 }
641 
642 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
sendIoConfigEvent_l(audio_io_config_event event,pid_t pid)643 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
644 {
645     sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
646     sendConfigEvent_l(configEvent);
647 }
648 
sendPrioConfigEvent(pid_t pid,pid_t tid,int32_t prio)649 void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
650 {
651     Mutex::Autolock _l(mLock);
652     sendPrioConfigEvent_l(pid, tid, prio);
653 }
654 
655 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
sendPrioConfigEvent_l(pid_t pid,pid_t tid,int32_t prio)656 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
657 {
658     sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
659     sendConfigEvent_l(configEvent);
660 }
661 
662 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
sendSetParameterConfigEvent_l(const String8 & keyValuePair)663 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
664 {
665     sp<ConfigEvent> configEvent = (ConfigEvent *)new SetParameterConfigEvent(keyValuePair);
666     return sendConfigEvent_l(configEvent);
667 }
668 
sendCreateAudioPatchConfigEvent(const struct audio_patch * patch,audio_patch_handle_t * handle)669 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
670                                                         const struct audio_patch *patch,
671                                                         audio_patch_handle_t *handle)
672 {
673     Mutex::Autolock _l(mLock);
674     sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
675     status_t status = sendConfigEvent_l(configEvent);
676     if (status == NO_ERROR) {
677         CreateAudioPatchConfigEventData *data =
678                                         (CreateAudioPatchConfigEventData *)configEvent->mData.get();
679         *handle = data->mHandle;
680     }
681     return status;
682 }
683 
sendReleaseAudioPatchConfigEvent(const audio_patch_handle_t handle)684 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
685                                                                 const audio_patch_handle_t handle)
686 {
687     Mutex::Autolock _l(mLock);
688     sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
689     return sendConfigEvent_l(configEvent);
690 }
691 
692 
693 // post condition: mConfigEvents.isEmpty()
processConfigEvents_l()694 void AudioFlinger::ThreadBase::processConfigEvents_l()
695 {
696     bool configChanged = false;
697 
698     while (!mConfigEvents.isEmpty()) {
699         ALOGV("processConfigEvents_l() remaining events %d", mConfigEvents.size());
700         sp<ConfigEvent> event = mConfigEvents[0];
701         mConfigEvents.removeAt(0);
702         switch (event->mType) {
703         case CFG_EVENT_PRIO: {
704             PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
705             // FIXME Need to understand why this has to be done asynchronously
706             int err = requestPriority(data->mPid, data->mTid, data->mPrio,
707                     true /*asynchronous*/);
708             if (err != 0) {
709                 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
710                       data->mPrio, data->mPid, data->mTid, err);
711             }
712         } break;
713         case CFG_EVENT_IO: {
714             IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
715             ioConfigChanged(data->mEvent, data->mPid);
716         } break;
717         case CFG_EVENT_SET_PARAMETER: {
718             SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
719             if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
720                 configChanged = true;
721             }
722         } break;
723         case CFG_EVENT_CREATE_AUDIO_PATCH: {
724             CreateAudioPatchConfigEventData *data =
725                                             (CreateAudioPatchConfigEventData *)event->mData.get();
726             event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
727         } break;
728         case CFG_EVENT_RELEASE_AUDIO_PATCH: {
729             ReleaseAudioPatchConfigEventData *data =
730                                             (ReleaseAudioPatchConfigEventData *)event->mData.get();
731             event->mStatus = releaseAudioPatch_l(data->mHandle);
732         } break;
733         default:
734             ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
735             break;
736         }
737         {
738             Mutex::Autolock _l(event->mLock);
739             if (event->mWaitStatus) {
740                 event->mWaitStatus = false;
741                 event->mCond.signal();
742             }
743         }
744         ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
745     }
746 
747     if (configChanged) {
748         cacheParameters_l();
749     }
750 }
751 
channelMaskToString(audio_channel_mask_t mask,bool output)752 String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
753     String8 s;
754     const audio_channel_representation_t representation =
755             audio_channel_mask_get_representation(mask);
756 
757     switch (representation) {
758     case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
759         if (output) {
760             if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
761             if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
762             if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
763             if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
764             if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
765             if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
766             if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
767             if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
768             if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
769             if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
770             if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
771             if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
772             if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
773             if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
774             if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
775             if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
776             if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
777             if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
778             if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
779         } else {
780             if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
781             if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
782             if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
783             if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
784             if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
785             if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
786             if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
787             if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
788             if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
789             if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
790             if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
791             if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
792             if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
793             if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
794             if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
795         }
796         const int len = s.length();
797         if (len > 2) {
798             char *str = s.lockBuffer(len); // needed?
799             s.unlockBuffer(len - 2);       // remove trailing ", "
800         }
801         return s;
802     }
803     case AUDIO_CHANNEL_REPRESENTATION_INDEX:
804         s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
805         return s;
806     default:
807         s.appendFormat("unknown mask, representation:%d  bits:%#x",
808                 representation, audio_channel_mask_get_bits(mask));
809         return s;
810     }
811 }
812 
dumpBase(int fd,const Vector<String16> & args __unused)813 void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
814 {
815     const size_t SIZE = 256;
816     char buffer[SIZE];
817     String8 result;
818 
819     bool locked = AudioFlinger::dumpTryLock(mLock);
820     if (!locked) {
821         dprintf(fd, "thread %p may be deadlocked\n", this);
822     }
823 
824     dprintf(fd, "  Thread name: %s\n", mThreadName);
825     dprintf(fd, "  I/O handle: %d\n", mId);
826     dprintf(fd, "  TID: %d\n", getTid());
827     dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
828     dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
829     dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
830     dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
831     dprintf(fd, "  HAL buffer size: %u bytes\n", mBufferSize);
832     dprintf(fd, "  Channel count: %u\n", mChannelCount);
833     dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
834             channelMaskToString(mChannelMask, mType != RECORD).string());
835     dprintf(fd, "  Format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
836     dprintf(fd, "  Frame size: %zu bytes\n", mFrameSize);
837     dprintf(fd, "  Pending config events:");
838     size_t numConfig = mConfigEvents.size();
839     if (numConfig) {
840         for (size_t i = 0; i < numConfig; i++) {
841             mConfigEvents[i]->dump(buffer, SIZE);
842             dprintf(fd, "\n    %s", buffer);
843         }
844         dprintf(fd, "\n");
845     } else {
846         dprintf(fd, " none\n");
847     }
848     dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
849     dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
850     dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
851 
852     if (locked) {
853         mLock.unlock();
854     }
855 }
856 
dumpEffectChains(int fd,const Vector<String16> & args)857 void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
858 {
859     const size_t SIZE = 256;
860     char buffer[SIZE];
861     String8 result;
862 
863     size_t numEffectChains = mEffectChains.size();
864     snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
865     write(fd, buffer, strlen(buffer));
866 
867     for (size_t i = 0; i < numEffectChains; ++i) {
868         sp<EffectChain> chain = mEffectChains[i];
869         if (chain != 0) {
870             chain->dump(fd, args);
871         }
872     }
873 }
874 
acquireWakeLock(int uid)875 void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
876 {
877     Mutex::Autolock _l(mLock);
878     acquireWakeLock_l(uid);
879 }
880 
getWakeLockTag()881 String16 AudioFlinger::ThreadBase::getWakeLockTag()
882 {
883     switch (mType) {
884     case MIXER:
885         return String16("AudioMix");
886     case DIRECT:
887         return String16("AudioDirectOut");
888     case DUPLICATING:
889         return String16("AudioDup");
890     case RECORD:
891         return String16("AudioIn");
892     case OFFLOAD:
893         return String16("AudioOffload");
894     default:
895         ALOG_ASSERT(false);
896         return String16("AudioUnknown");
897     }
898 }
899 
acquireWakeLock_l(int uid)900 void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
901 {
902     getPowerManager_l();
903     if (mPowerManager != 0) {
904         sp<IBinder> binder = new BBinder();
905         status_t status;
906         if (uid >= 0) {
907             status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
908                     binder,
909                     getWakeLockTag(),
910                     String16("media"),
911                     uid,
912                     true /* FIXME force oneway contrary to .aidl */);
913         } else {
914             status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
915                     binder,
916                     getWakeLockTag(),
917                     String16("media"),
918                     true /* FIXME force oneway contrary to .aidl */);
919         }
920         if (status == NO_ERROR) {
921             mWakeLockToken = binder;
922         }
923         ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
924     }
925 }
926 
releaseWakeLock()927 void AudioFlinger::ThreadBase::releaseWakeLock()
928 {
929     Mutex::Autolock _l(mLock);
930     releaseWakeLock_l();
931 }
932 
releaseWakeLock_l()933 void AudioFlinger::ThreadBase::releaseWakeLock_l()
934 {
935     if (mWakeLockToken != 0) {
936         ALOGV("releaseWakeLock_l() %s", mThreadName);
937         if (mPowerManager != 0) {
938             mPowerManager->releaseWakeLock(mWakeLockToken, 0,
939                     true /* FIXME force oneway contrary to .aidl */);
940         }
941         mWakeLockToken.clear();
942     }
943 }
944 
updateWakeLockUids(const SortedVector<int> & uids)945 void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
946     Mutex::Autolock _l(mLock);
947     updateWakeLockUids_l(uids);
948 }
949 
getPowerManager_l()950 void AudioFlinger::ThreadBase::getPowerManager_l() {
951     if (mSystemReady && mPowerManager == 0) {
952         // use checkService() to avoid blocking if power service is not up yet
953         sp<IBinder> binder =
954             defaultServiceManager()->checkService(String16("power"));
955         if (binder == 0) {
956             ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
957         } else {
958             mPowerManager = interface_cast<IPowerManager>(binder);
959             binder->linkToDeath(mDeathRecipient);
960         }
961     }
962 }
963 
updateWakeLockUids_l(const SortedVector<int> & uids)964 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
965     getPowerManager_l();
966     if (mWakeLockToken == NULL) {
967         ALOGE("no wake lock to update!");
968         return;
969     }
970     if (mPowerManager != 0) {
971         sp<IBinder> binder = new BBinder();
972         status_t status;
973         status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
974                     true /* FIXME force oneway contrary to .aidl */);
975         ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
976     }
977 }
978 
clearPowerManager()979 void AudioFlinger::ThreadBase::clearPowerManager()
980 {
981     Mutex::Autolock _l(mLock);
982     releaseWakeLock_l();
983     mPowerManager.clear();
984 }
985 
binderDied(const wp<IBinder> & who __unused)986 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
987 {
988     sp<ThreadBase> thread = mThread.promote();
989     if (thread != 0) {
990         thread->clearPowerManager();
991     }
992     ALOGW("power manager service died !!!");
993 }
994 
setEffectSuspended(const effect_uuid_t * type,bool suspend,int sessionId)995 void AudioFlinger::ThreadBase::setEffectSuspended(
996         const effect_uuid_t *type, bool suspend, int sessionId)
997 {
998     Mutex::Autolock _l(mLock);
999     setEffectSuspended_l(type, suspend, sessionId);
1000 }
1001 
setEffectSuspended_l(const effect_uuid_t * type,bool suspend,int sessionId)1002 void AudioFlinger::ThreadBase::setEffectSuspended_l(
1003         const effect_uuid_t *type, bool suspend, int sessionId)
1004 {
1005     sp<EffectChain> chain = getEffectChain_l(sessionId);
1006     if (chain != 0) {
1007         if (type != NULL) {
1008             chain->setEffectSuspended_l(type, suspend);
1009         } else {
1010             chain->setEffectSuspendedAll_l(suspend);
1011         }
1012     }
1013 
1014     updateSuspendedSessions_l(type, suspend, sessionId);
1015 }
1016 
checkSuspendOnAddEffectChain_l(const sp<EffectChain> & chain)1017 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1018 {
1019     ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1020     if (index < 0) {
1021         return;
1022     }
1023 
1024     const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1025             mSuspendedSessions.valueAt(index);
1026 
1027     for (size_t i = 0; i < sessionEffects.size(); i++) {
1028         sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
1029         for (int j = 0; j < desc->mRefCount; j++) {
1030             if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1031                 chain->setEffectSuspendedAll_l(true);
1032             } else {
1033                 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1034                     desc->mType.timeLow);
1035                 chain->setEffectSuspended_l(&desc->mType, true);
1036             }
1037         }
1038     }
1039 }
1040 
updateSuspendedSessions_l(const effect_uuid_t * type,bool suspend,int sessionId)1041 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1042                                                          bool suspend,
1043                                                          int sessionId)
1044 {
1045     ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1046 
1047     KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1048 
1049     if (suspend) {
1050         if (index >= 0) {
1051             sessionEffects = mSuspendedSessions.valueAt(index);
1052         } else {
1053             mSuspendedSessions.add(sessionId, sessionEffects);
1054         }
1055     } else {
1056         if (index < 0) {
1057             return;
1058         }
1059         sessionEffects = mSuspendedSessions.valueAt(index);
1060     }
1061 
1062 
1063     int key = EffectChain::kKeyForSuspendAll;
1064     if (type != NULL) {
1065         key = type->timeLow;
1066     }
1067     index = sessionEffects.indexOfKey(key);
1068 
1069     sp<SuspendedSessionDesc> desc;
1070     if (suspend) {
1071         if (index >= 0) {
1072             desc = sessionEffects.valueAt(index);
1073         } else {
1074             desc = new SuspendedSessionDesc();
1075             if (type != NULL) {
1076                 desc->mType = *type;
1077             }
1078             sessionEffects.add(key, desc);
1079             ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1080         }
1081         desc->mRefCount++;
1082     } else {
1083         if (index < 0) {
1084             return;
1085         }
1086         desc = sessionEffects.valueAt(index);
1087         if (--desc->mRefCount == 0) {
1088             ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1089             sessionEffects.removeItemsAt(index);
1090             if (sessionEffects.isEmpty()) {
1091                 ALOGV("updateSuspendedSessions_l() restore removing session %d",
1092                                  sessionId);
1093                 mSuspendedSessions.removeItem(sessionId);
1094             }
1095         }
1096     }
1097     if (!sessionEffects.isEmpty()) {
1098         mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1099     }
1100 }
1101 
checkSuspendOnEffectEnabled(const sp<EffectModule> & effect,bool enabled,int sessionId)1102 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1103                                                             bool enabled,
1104                                                             int sessionId)
1105 {
1106     Mutex::Autolock _l(mLock);
1107     checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1108 }
1109 
checkSuspendOnEffectEnabled_l(const sp<EffectModule> & effect,bool enabled,int sessionId)1110 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1111                                                             bool enabled,
1112                                                             int sessionId)
1113 {
1114     if (mType != RECORD) {
1115         // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1116         // another session. This gives the priority to well behaved effect control panels
1117         // and applications not using global effects.
1118         // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1119         // global effects
1120         if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1121             setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1122         }
1123     }
1124 
1125     sp<EffectChain> chain = getEffectChain_l(sessionId);
1126     if (chain != 0) {
1127         chain->checkSuspendOnEffectEnabled(effect, enabled);
1128     }
1129 }
1130 
1131 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
createEffect_l(const sp<AudioFlinger::Client> & client,const sp<IEffectClient> & effectClient,int32_t priority,int sessionId,effect_descriptor_t * desc,int * enabled,status_t * status)1132 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1133         const sp<AudioFlinger::Client>& client,
1134         const sp<IEffectClient>& effectClient,
1135         int32_t priority,
1136         int sessionId,
1137         effect_descriptor_t *desc,
1138         int *enabled,
1139         status_t *status)
1140 {
1141     sp<EffectModule> effect;
1142     sp<EffectHandle> handle;
1143     status_t lStatus;
1144     sp<EffectChain> chain;
1145     bool chainCreated = false;
1146     bool effectCreated = false;
1147     bool effectRegistered = false;
1148 
1149     lStatus = initCheck();
1150     if (lStatus != NO_ERROR) {
1151         ALOGW("createEffect_l() Audio driver not initialized.");
1152         goto Exit;
1153     }
1154 
1155     // Reject any effect on Direct output threads for now, since the format of
1156     // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1157     if (mType == DIRECT) {
1158         ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
1159                 desc->name, mThreadName);
1160         lStatus = BAD_VALUE;
1161         goto Exit;
1162     }
1163 
1164     // Reject any effect on mixer or duplicating multichannel sinks.
1165     // TODO: fix both format and multichannel issues with effects.
1166     if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
1167         ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
1168                 desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
1169         lStatus = BAD_VALUE;
1170         goto Exit;
1171     }
1172 
1173     // Allow global effects only on offloaded and mixer threads
1174     if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1175         switch (mType) {
1176         case MIXER:
1177         case OFFLOAD:
1178             break;
1179         case DIRECT:
1180         case DUPLICATING:
1181         case RECORD:
1182         default:
1183             ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
1184                     desc->name, mThreadName);
1185             lStatus = BAD_VALUE;
1186             goto Exit;
1187         }
1188     }
1189 
1190     // Only Pre processor effects are allowed on input threads and only on input threads
1191     if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
1192         ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
1193                 desc->name, desc->flags, mType);
1194         lStatus = BAD_VALUE;
1195         goto Exit;
1196     }
1197 
1198     ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1199 
1200     { // scope for mLock
1201         Mutex::Autolock _l(mLock);
1202 
1203         // check for existing effect chain with the requested audio session
1204         chain = getEffectChain_l(sessionId);
1205         if (chain == 0) {
1206             // create a new chain for this session
1207             ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1208             chain = new EffectChain(this, sessionId);
1209             addEffectChain_l(chain);
1210             chain->setStrategy(getStrategyForSession_l(sessionId));
1211             chainCreated = true;
1212         } else {
1213             effect = chain->getEffectFromDesc_l(desc);
1214         }
1215 
1216         ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1217 
1218         if (effect == 0) {
1219             int id = mAudioFlinger->nextUniqueId();
1220             // Check CPU and memory usage
1221             lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1222             if (lStatus != NO_ERROR) {
1223                 goto Exit;
1224             }
1225             effectRegistered = true;
1226             // create a new effect module if none present in the chain
1227             effect = new EffectModule(this, chain, desc, id, sessionId);
1228             lStatus = effect->status();
1229             if (lStatus != NO_ERROR) {
1230                 goto Exit;
1231             }
1232             effect->setOffloaded(mType == OFFLOAD, mId);
1233 
1234             lStatus = chain->addEffect_l(effect);
1235             if (lStatus != NO_ERROR) {
1236                 goto Exit;
1237             }
1238             effectCreated = true;
1239 
1240             effect->setDevice(mOutDevice);
1241             effect->setDevice(mInDevice);
1242             effect->setMode(mAudioFlinger->getMode());
1243             effect->setAudioSource(mAudioSource);
1244         }
1245         // create effect handle and connect it to effect module
1246         handle = new EffectHandle(effect, client, effectClient, priority);
1247         lStatus = handle->initCheck();
1248         if (lStatus == OK) {
1249             lStatus = effect->addHandle(handle.get());
1250         }
1251         if (enabled != NULL) {
1252             *enabled = (int)effect->isEnabled();
1253         }
1254     }
1255 
1256 Exit:
1257     if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1258         Mutex::Autolock _l(mLock);
1259         if (effectCreated) {
1260             chain->removeEffect_l(effect);
1261         }
1262         if (effectRegistered) {
1263             AudioSystem::unregisterEffect(effect->id());
1264         }
1265         if (chainCreated) {
1266             removeEffectChain_l(chain);
1267         }
1268         handle.clear();
1269     }
1270 
1271     *status = lStatus;
1272     return handle;
1273 }
1274 
getEffect(int sessionId,int effectId)1275 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
1276 {
1277     Mutex::Autolock _l(mLock);
1278     return getEffect_l(sessionId, effectId);
1279 }
1280 
getEffect_l(int sessionId,int effectId)1281 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
1282 {
1283     sp<EffectChain> chain = getEffectChain_l(sessionId);
1284     return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1285 }
1286 
1287 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1288 // PlaybackThread::mLock held
addEffect_l(const sp<EffectModule> & effect)1289 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1290 {
1291     // check for existing effect chain with the requested audio session
1292     int sessionId = effect->sessionId();
1293     sp<EffectChain> chain = getEffectChain_l(sessionId);
1294     bool chainCreated = false;
1295 
1296     ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1297              "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1298                     this, effect->desc().name, effect->desc().flags);
1299 
1300     if (chain == 0) {
1301         // create a new chain for this session
1302         ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1303         chain = new EffectChain(this, sessionId);
1304         addEffectChain_l(chain);
1305         chain->setStrategy(getStrategyForSession_l(sessionId));
1306         chainCreated = true;
1307     }
1308     ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1309 
1310     if (chain->getEffectFromId_l(effect->id()) != 0) {
1311         ALOGW("addEffect_l() %p effect %s already present in chain %p",
1312                 this, effect->desc().name, chain.get());
1313         return BAD_VALUE;
1314     }
1315 
1316     effect->setOffloaded(mType == OFFLOAD, mId);
1317 
1318     status_t status = chain->addEffect_l(effect);
1319     if (status != NO_ERROR) {
1320         if (chainCreated) {
1321             removeEffectChain_l(chain);
1322         }
1323         return status;
1324     }
1325 
1326     effect->setDevice(mOutDevice);
1327     effect->setDevice(mInDevice);
1328     effect->setMode(mAudioFlinger->getMode());
1329     effect->setAudioSource(mAudioSource);
1330     return NO_ERROR;
1331 }
1332 
removeEffect_l(const sp<EffectModule> & effect)1333 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1334 
1335     ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1336     effect_descriptor_t desc = effect->desc();
1337     if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1338         detachAuxEffect_l(effect->id());
1339     }
1340 
1341     sp<EffectChain> chain = effect->chain().promote();
1342     if (chain != 0) {
1343         // remove effect chain if removing last effect
1344         if (chain->removeEffect_l(effect) == 0) {
1345             removeEffectChain_l(chain);
1346         }
1347     } else {
1348         ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1349     }
1350 }
1351 
lockEffectChains_l(Vector<sp<AudioFlinger::EffectChain>> & effectChains)1352 void AudioFlinger::ThreadBase::lockEffectChains_l(
1353         Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1354 {
1355     effectChains = mEffectChains;
1356     for (size_t i = 0; i < mEffectChains.size(); i++) {
1357         mEffectChains[i]->lock();
1358     }
1359 }
1360 
unlockEffectChains(const Vector<sp<AudioFlinger::EffectChain>> & effectChains)1361 void AudioFlinger::ThreadBase::unlockEffectChains(
1362         const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1363 {
1364     for (size_t i = 0; i < effectChains.size(); i++) {
1365         effectChains[i]->unlock();
1366     }
1367 }
1368 
getEffectChain(int sessionId)1369 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
1370 {
1371     Mutex::Autolock _l(mLock);
1372     return getEffectChain_l(sessionId);
1373 }
1374 
getEffectChain_l(int sessionId) const1375 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
1376 {
1377     size_t size = mEffectChains.size();
1378     for (size_t i = 0; i < size; i++) {
1379         if (mEffectChains[i]->sessionId() == sessionId) {
1380             return mEffectChains[i];
1381         }
1382     }
1383     return 0;
1384 }
1385 
setMode(audio_mode_t mode)1386 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1387 {
1388     Mutex::Autolock _l(mLock);
1389     size_t size = mEffectChains.size();
1390     for (size_t i = 0; i < size; i++) {
1391         mEffectChains[i]->setMode_l(mode);
1392     }
1393 }
1394 
getAudioPortConfig(struct audio_port_config * config)1395 void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1396 {
1397     config->type = AUDIO_PORT_TYPE_MIX;
1398     config->ext.mix.handle = mId;
1399     config->sample_rate = mSampleRate;
1400     config->format = mFormat;
1401     config->channel_mask = mChannelMask;
1402     config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1403                             AUDIO_PORT_CONFIG_FORMAT;
1404 }
1405 
systemReady()1406 void AudioFlinger::ThreadBase::systemReady()
1407 {
1408     Mutex::Autolock _l(mLock);
1409     if (mSystemReady) {
1410         return;
1411     }
1412     mSystemReady = true;
1413 
1414     for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1415         sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1416     }
1417     mPendingConfigEvents.clear();
1418 }
1419 
1420 
1421 // ----------------------------------------------------------------------------
1422 //      Playback
1423 // ----------------------------------------------------------------------------
1424 
PlaybackThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,type_t type,bool systemReady)1425 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1426                                              AudioStreamOut* output,
1427                                              audio_io_handle_t id,
1428                                              audio_devices_t device,
1429                                              type_t type,
1430                                              bool systemReady)
1431     :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1432         mNormalFrameCount(0), mSinkBuffer(NULL),
1433         mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1434         mMixerBuffer(NULL),
1435         mMixerBufferSize(0),
1436         mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1437         mMixerBufferValid(false),
1438         mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1439         mEffectBuffer(NULL),
1440         mEffectBufferSize(0),
1441         mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1442         mEffectBufferValid(false),
1443         mSuspended(0), mBytesWritten(0),
1444         mActiveTracksGeneration(0),
1445         // mStreamTypes[] initialized in constructor body
1446         mOutput(output),
1447         mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1448         mMixerStatus(MIXER_IDLE),
1449         mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1450         mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1451         mBytesRemaining(0),
1452         mCurrentWriteLength(0),
1453         mUseAsyncWrite(false),
1454         mWriteAckSequence(0),
1455         mDrainSequence(0),
1456         mSignalPending(false),
1457         mScreenState(AudioFlinger::mScreenState),
1458         // index 0 is reserved for normal mixer's submix
1459         mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1460         mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1461         // mLatchD, mLatchQ,
1462         mLatchDValid(false), mLatchQValid(false)
1463 {
1464     snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1465     mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1466 
1467     // Assumes constructor is called by AudioFlinger with it's mLock held, but
1468     // it would be safer to explicitly pass initial masterVolume/masterMute as
1469     // parameter.
1470     //
1471     // If the HAL we are using has support for master volume or master mute,
1472     // then do not attenuate or mute during mixing (just leave the volume at 1.0
1473     // and the mute set to false).
1474     mMasterVolume = audioFlinger->masterVolume_l();
1475     mMasterMute = audioFlinger->masterMute_l();
1476     if (mOutput && mOutput->audioHwDev) {
1477         if (mOutput->audioHwDev->canSetMasterVolume()) {
1478             mMasterVolume = 1.0;
1479         }
1480 
1481         if (mOutput->audioHwDev->canSetMasterMute()) {
1482             mMasterMute = false;
1483         }
1484     }
1485 
1486     readOutputParameters_l();
1487 
1488     // ++ operator does not compile
1489     for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1490             stream = (audio_stream_type_t) (stream + 1)) {
1491         mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1492         mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1493     }
1494 }
1495 
~PlaybackThread()1496 AudioFlinger::PlaybackThread::~PlaybackThread()
1497 {
1498     mAudioFlinger->unregisterWriter(mNBLogWriter);
1499     free(mSinkBuffer);
1500     free(mMixerBuffer);
1501     free(mEffectBuffer);
1502 }
1503 
dump(int fd,const Vector<String16> & args)1504 void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1505 {
1506     dumpInternals(fd, args);
1507     dumpTracks(fd, args);
1508     dumpEffectChains(fd, args);
1509 }
1510 
dumpTracks(int fd,const Vector<String16> & args __unused)1511 void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1512 {
1513     const size_t SIZE = 256;
1514     char buffer[SIZE];
1515     String8 result;
1516 
1517     result.appendFormat("  Stream volumes in dB: ");
1518     for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1519         const stream_type_t *st = &mStreamTypes[i];
1520         if (i > 0) {
1521             result.appendFormat(", ");
1522         }
1523         result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1524         if (st->mute) {
1525             result.append("M");
1526         }
1527     }
1528     result.append("\n");
1529     write(fd, result.string(), result.length());
1530     result.clear();
1531 
1532     // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1533     FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1534     dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1535             underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1536 
1537     size_t numtracks = mTracks.size();
1538     size_t numactive = mActiveTracks.size();
1539     dprintf(fd, "  %d Tracks", numtracks);
1540     size_t numactiveseen = 0;
1541     if (numtracks) {
1542         dprintf(fd, " of which %d are active\n", numactive);
1543         Track::appendDumpHeader(result);
1544         for (size_t i = 0; i < numtracks; ++i) {
1545             sp<Track> track = mTracks[i];
1546             if (track != 0) {
1547                 bool active = mActiveTracks.indexOf(track) >= 0;
1548                 if (active) {
1549                     numactiveseen++;
1550                 }
1551                 track->dump(buffer, SIZE, active);
1552                 result.append(buffer);
1553             }
1554         }
1555     } else {
1556         result.append("\n");
1557     }
1558     if (numactiveseen != numactive) {
1559         // some tracks in the active list were not in the tracks list
1560         snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1561                 " not in the track list\n");
1562         result.append(buffer);
1563         Track::appendDumpHeader(result);
1564         for (size_t i = 0; i < numactive; ++i) {
1565             sp<Track> track = mActiveTracks[i].promote();
1566             if (track != 0 && mTracks.indexOf(track) < 0) {
1567                 track->dump(buffer, SIZE, true);
1568                 result.append(buffer);
1569             }
1570         }
1571     }
1572 
1573     write(fd, result.string(), result.size());
1574 }
1575 
dumpInternals(int fd,const Vector<String16> & args)1576 void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1577 {
1578     dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1579 
1580     dumpBase(fd, args);
1581 
1582     dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1583     dprintf(fd, "  Last write occurred (msecs): %llu\n", ns2ms(systemTime() - mLastWriteTime));
1584     dprintf(fd, "  Total writes: %d\n", mNumWrites);
1585     dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1586     dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1587     dprintf(fd, "  Suspend count: %d\n", mSuspended);
1588     dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1589     dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1590     dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1591     dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1592     AudioStreamOut *output = mOutput;
1593     audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1594     String8 flagsAsString = outputFlagsToString(flags);
1595     dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1596 }
1597 
1598 // Thread virtuals
1599 
onFirstRef()1600 void AudioFlinger::PlaybackThread::onFirstRef()
1601 {
1602     run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1603 }
1604 
1605 // ThreadBase virtuals
preExit()1606 void AudioFlinger::PlaybackThread::preExit()
1607 {
1608     ALOGV("  preExit()");
1609     // FIXME this is using hard-coded strings but in the future, this functionality will be
1610     //       converted to use audio HAL extensions required to support tunneling
1611     mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1612 }
1613 
1614 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
createTrack_l(const sp<AudioFlinger::Client> & client,audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,const sp<IMemory> & sharedBuffer,int sessionId,IAudioFlinger::track_flags_t * flags,pid_t tid,int uid,status_t * status)1615 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1616         const sp<AudioFlinger::Client>& client,
1617         audio_stream_type_t streamType,
1618         uint32_t sampleRate,
1619         audio_format_t format,
1620         audio_channel_mask_t channelMask,
1621         size_t *pFrameCount,
1622         const sp<IMemory>& sharedBuffer,
1623         int sessionId,
1624         IAudioFlinger::track_flags_t *flags,
1625         pid_t tid,
1626         int uid,
1627         status_t *status)
1628 {
1629     size_t frameCount = *pFrameCount;
1630     sp<Track> track;
1631     status_t lStatus;
1632 
1633     bool isTimed = (*flags & IAudioFlinger::TRACK_TIMED) != 0;
1634 
1635     // client expresses a preference for FAST, but we get the final say
1636     if (*flags & IAudioFlinger::TRACK_FAST) {
1637       if (
1638             // not timed
1639             (!isTimed) &&
1640             // either of these use cases:
1641             (
1642               // use case 1: shared buffer with any frame count
1643               (
1644                 (sharedBuffer != 0)
1645               ) ||
1646               // use case 2: frame count is default or at least as large as HAL
1647               (
1648                 // we formerly checked for a callback handler (non-0 tid),
1649                 // but that is no longer required for TRANSFER_OBTAIN mode
1650                 ((frameCount == 0) ||
1651                 (frameCount >= mFrameCount))
1652               )
1653             ) &&
1654             // PCM data
1655             audio_is_linear_pcm(format) &&
1656             // TODO: extract as a data library function that checks that a computationally
1657             // expensive downmixer is not required: isFastOutputChannelConversion()
1658             (channelMask == mChannelMask ||
1659                     mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1660                     (channelMask == AUDIO_CHANNEL_OUT_MONO
1661                             /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1662             // hardware sample rate
1663             (sampleRate == mSampleRate) &&
1664             // normal mixer has an associated fast mixer
1665             hasFastMixer() &&
1666             // there are sufficient fast track slots available
1667             (mFastTrackAvailMask != 0)
1668             // FIXME test that MixerThread for this fast track has a capable output HAL
1669             // FIXME add a permission test also?
1670         ) {
1671         // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
1672         if (frameCount == 0) {
1673             // read the fast track multiplier property the first time it is needed
1674             int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1675             if (ok != 0) {
1676                 ALOGE("%s pthread_once failed: %d", __func__, ok);
1677             }
1678             frameCount = mFrameCount * sFastTrackMultiplier;
1679         }
1680         ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
1681                 frameCount, mFrameCount);
1682       } else {
1683         ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: isTimed=%d sharedBuffer=%p frameCount=%d "
1684                 "mFrameCount=%d format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1685                 "sampleRate=%u mSampleRate=%u "
1686                 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1687                 isTimed, sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1688                 audio_is_linear_pcm(format),
1689                 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1690         *flags &= ~IAudioFlinger::TRACK_FAST;
1691       }
1692     }
1693     // For normal PCM streaming tracks, update minimum frame count.
1694     // For compatibility with AudioTrack calculation, buffer depth is forced
1695     // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1696     // This is probably too conservative, but legacy application code may depend on it.
1697     // If you change this calculation, also review the start threshold which is related.
1698     if (!(*flags & IAudioFlinger::TRACK_FAST)
1699             && audio_is_linear_pcm(format) && sharedBuffer == 0) {
1700         // this must match AudioTrack.cpp calculateMinFrameCount().
1701         // TODO: Move to a common library
1702         uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1703         uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1704         if (minBufCount < 2) {
1705             minBufCount = 2;
1706         }
1707         // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1708         // or the client should compute and pass in a larger buffer request.
1709         size_t minFrameCount =
1710                 minBufCount * sourceFramesNeededWithTimestretch(
1711                         sampleRate, mNormalFrameCount,
1712                         mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1713         if (frameCount < minFrameCount) { // including frameCount == 0
1714             frameCount = minFrameCount;
1715         }
1716     }
1717     *pFrameCount = frameCount;
1718 
1719     switch (mType) {
1720 
1721     case DIRECT:
1722         if (audio_is_linear_pcm(format)) {
1723             if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1724                 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1725                         "for output %p with format %#x",
1726                         sampleRate, format, channelMask, mOutput, mFormat);
1727                 lStatus = BAD_VALUE;
1728                 goto Exit;
1729             }
1730         }
1731         break;
1732 
1733     case OFFLOAD:
1734         if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1735             ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1736                     "for output %p with format %#x",
1737                     sampleRate, format, channelMask, mOutput, mFormat);
1738             lStatus = BAD_VALUE;
1739             goto Exit;
1740         }
1741         break;
1742 
1743     default:
1744         if (!audio_is_linear_pcm(format)) {
1745                 ALOGE("createTrack_l() Bad parameter: format %#x \""
1746                         "for output %p with format %#x",
1747                         format, mOutput, mFormat);
1748                 lStatus = BAD_VALUE;
1749                 goto Exit;
1750         }
1751         if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1752             ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1753             lStatus = BAD_VALUE;
1754             goto Exit;
1755         }
1756         break;
1757 
1758     }
1759 
1760     lStatus = initCheck();
1761     if (lStatus != NO_ERROR) {
1762         ALOGE("createTrack_l() audio driver not initialized");
1763         goto Exit;
1764     }
1765 
1766     { // scope for mLock
1767         Mutex::Autolock _l(mLock);
1768 
1769         // all tracks in same audio session must share the same routing strategy otherwise
1770         // conflicts will happen when tracks are moved from one output to another by audio policy
1771         // manager
1772         uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1773         for (size_t i = 0; i < mTracks.size(); ++i) {
1774             sp<Track> t = mTracks[i];
1775             if (t != 0 && t->isExternalTrack()) {
1776                 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1777                 if (sessionId == t->sessionId() && strategy != actual) {
1778                     ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1779                             strategy, actual);
1780                     lStatus = BAD_VALUE;
1781                     goto Exit;
1782                 }
1783             }
1784         }
1785 
1786         if (!isTimed) {
1787             track = new Track(this, client, streamType, sampleRate, format,
1788                               channelMask, frameCount, NULL, sharedBuffer,
1789                               sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1790         } else {
1791             track = TimedTrack::create(this, client, streamType, sampleRate, format,
1792                     channelMask, frameCount, sharedBuffer, sessionId, uid);
1793         }
1794 
1795         // new Track always returns non-NULL,
1796         // but TimedTrack::create() is a factory that could fail by returning NULL
1797         lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1798         if (lStatus != NO_ERROR) {
1799             ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1800             // track must be cleared from the caller as the caller has the AF lock
1801             goto Exit;
1802         }
1803         mTracks.add(track);
1804 
1805         sp<EffectChain> chain = getEffectChain_l(sessionId);
1806         if (chain != 0) {
1807             ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1808             track->setMainBuffer(chain->inBuffer());
1809             chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1810             chain->incTrackCnt();
1811         }
1812 
1813         if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1814             pid_t callingPid = IPCThreadState::self()->getCallingPid();
1815             // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1816             // so ask activity manager to do this on our behalf
1817             sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1818         }
1819     }
1820 
1821     lStatus = NO_ERROR;
1822 
1823 Exit:
1824     *status = lStatus;
1825     return track;
1826 }
1827 
correctLatency_l(uint32_t latency) const1828 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1829 {
1830     return latency;
1831 }
1832 
latency() const1833 uint32_t AudioFlinger::PlaybackThread::latency() const
1834 {
1835     Mutex::Autolock _l(mLock);
1836     return latency_l();
1837 }
latency_l() const1838 uint32_t AudioFlinger::PlaybackThread::latency_l() const
1839 {
1840     if (initCheck() == NO_ERROR) {
1841         return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1842     } else {
1843         return 0;
1844     }
1845 }
1846 
setMasterVolume(float value)1847 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1848 {
1849     Mutex::Autolock _l(mLock);
1850     // Don't apply master volume in SW if our HAL can do it for us.
1851     if (mOutput && mOutput->audioHwDev &&
1852         mOutput->audioHwDev->canSetMasterVolume()) {
1853         mMasterVolume = 1.0;
1854     } else {
1855         mMasterVolume = value;
1856     }
1857 }
1858 
setMasterMute(bool muted)1859 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
1860 {
1861     Mutex::Autolock _l(mLock);
1862     // Don't apply master mute in SW if our HAL can do it for us.
1863     if (mOutput && mOutput->audioHwDev &&
1864         mOutput->audioHwDev->canSetMasterMute()) {
1865         mMasterMute = false;
1866     } else {
1867         mMasterMute = muted;
1868     }
1869 }
1870 
setStreamVolume(audio_stream_type_t stream,float value)1871 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
1872 {
1873     Mutex::Autolock _l(mLock);
1874     mStreamTypes[stream].volume = value;
1875     broadcast_l();
1876 }
1877 
setStreamMute(audio_stream_type_t stream,bool muted)1878 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
1879 {
1880     Mutex::Autolock _l(mLock);
1881     mStreamTypes[stream].mute = muted;
1882     broadcast_l();
1883 }
1884 
streamVolume(audio_stream_type_t stream) const1885 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
1886 {
1887     Mutex::Autolock _l(mLock);
1888     return mStreamTypes[stream].volume;
1889 }
1890 
1891 // addTrack_l() must be called with ThreadBase::mLock held
addTrack_l(const sp<Track> & track)1892 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
1893 {
1894     status_t status = ALREADY_EXISTS;
1895 
1896     // set retry count for buffer fill
1897     track->mRetryCount = kMaxTrackStartupRetries;
1898     if (mActiveTracks.indexOf(track) < 0) {
1899         // the track is newly added, make sure it fills up all its
1900         // buffers before playing. This is to ensure the client will
1901         // effectively get the latency it requested.
1902         if (track->isExternalTrack()) {
1903             TrackBase::track_state state = track->mState;
1904             mLock.unlock();
1905             status = AudioSystem::startOutput(mId, track->streamType(),
1906                                               (audio_session_t)track->sessionId());
1907             mLock.lock();
1908             // abort track was stopped/paused while we released the lock
1909             if (state != track->mState) {
1910                 if (status == NO_ERROR) {
1911                     mLock.unlock();
1912                     AudioSystem::stopOutput(mId, track->streamType(),
1913                                             (audio_session_t)track->sessionId());
1914                     mLock.lock();
1915                 }
1916                 return INVALID_OPERATION;
1917             }
1918             // abort if start is rejected by audio policy manager
1919             if (status != NO_ERROR) {
1920                 return PERMISSION_DENIED;
1921             }
1922 #ifdef ADD_BATTERY_DATA
1923             // to track the speaker usage
1924             addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
1925 #endif
1926         }
1927 
1928         track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
1929         track->mResetDone = false;
1930         track->mPresentationCompleteFrames = 0;
1931         mActiveTracks.add(track);
1932         mWakeLockUids.add(track->uid());
1933         mActiveTracksGeneration++;
1934         mLatestActiveTrack = track;
1935         sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1936         if (chain != 0) {
1937             ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
1938                     track->sessionId());
1939             chain->incActiveTrackCnt();
1940         }
1941 
1942         status = NO_ERROR;
1943     }
1944 
1945     onAddNewTrack_l();
1946     return status;
1947 }
1948 
destroyTrack_l(const sp<Track> & track)1949 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
1950 {
1951     track->terminate();
1952     // active tracks are removed by threadLoop()
1953     bool trackActive = (mActiveTracks.indexOf(track) >= 0);
1954     track->mState = TrackBase::STOPPED;
1955     if (!trackActive) {
1956         removeTrack_l(track);
1957     } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
1958         track->mState = TrackBase::STOPPING_1;
1959     }
1960 
1961     return trackActive;
1962 }
1963 
removeTrack_l(const sp<Track> & track)1964 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
1965 {
1966     track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
1967     mTracks.remove(track);
1968     deleteTrackName_l(track->name());
1969     // redundant as track is about to be destroyed, for dumpsys only
1970     track->mName = -1;
1971     if (track->isFastTrack()) {
1972         int index = track->mFastIndex;
1973         ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
1974         ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
1975         mFastTrackAvailMask |= 1 << index;
1976         // redundant as track is about to be destroyed, for dumpsys only
1977         track->mFastIndex = -1;
1978     }
1979     sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1980     if (chain != 0) {
1981         chain->decTrackCnt();
1982     }
1983 }
1984 
broadcast_l()1985 void AudioFlinger::PlaybackThread::broadcast_l()
1986 {
1987     // Thread could be blocked waiting for async
1988     // so signal it to handle state changes immediately
1989     // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1990     // be lost so we also flag to prevent it blocking on mWaitWorkCV
1991     mSignalPending = true;
1992     mWaitWorkCV.broadcast();
1993 }
1994 
getParameters(const String8 & keys)1995 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
1996 {
1997     Mutex::Autolock _l(mLock);
1998     if (initCheck() != NO_ERROR) {
1999         return String8();
2000     }
2001 
2002     char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
2003     const String8 out_s8(s);
2004     free(s);
2005     return out_s8;
2006 }
2007 
ioConfigChanged(audio_io_config_event event,pid_t pid)2008 void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2009     sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2010     ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2011 
2012     desc->mIoHandle = mId;
2013 
2014     switch (event) {
2015     case AUDIO_OUTPUT_OPENED:
2016     case AUDIO_OUTPUT_CONFIG_CHANGED:
2017         desc->mPatch = mPatch;
2018         desc->mChannelMask = mChannelMask;
2019         desc->mSamplingRate = mSampleRate;
2020         desc->mFormat = mFormat;
2021         desc->mFrameCount = mNormalFrameCount; // FIXME see
2022                                              // AudioFlinger::frameCount(audio_io_handle_t)
2023         desc->mLatency = latency_l();
2024         break;
2025 
2026     case AUDIO_OUTPUT_CLOSED:
2027     default:
2028         break;
2029     }
2030     mAudioFlinger->ioConfigChanged(event, desc, pid);
2031 }
2032 
writeCallback()2033 void AudioFlinger::PlaybackThread::writeCallback()
2034 {
2035     ALOG_ASSERT(mCallbackThread != 0);
2036     mCallbackThread->resetWriteBlocked();
2037 }
2038 
drainCallback()2039 void AudioFlinger::PlaybackThread::drainCallback()
2040 {
2041     ALOG_ASSERT(mCallbackThread != 0);
2042     mCallbackThread->resetDraining();
2043 }
2044 
resetWriteBlocked(uint32_t sequence)2045 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2046 {
2047     Mutex::Autolock _l(mLock);
2048     // reject out of sequence requests
2049     if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2050         mWriteAckSequence &= ~1;
2051         mWaitWorkCV.signal();
2052     }
2053 }
2054 
resetDraining(uint32_t sequence)2055 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2056 {
2057     Mutex::Autolock _l(mLock);
2058     // reject out of sequence requests
2059     if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2060         mDrainSequence &= ~1;
2061         mWaitWorkCV.signal();
2062     }
2063 }
2064 
2065 // static
asyncCallback(stream_callback_event_t event,void * param __unused,void * cookie)2066 int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
2067                                                 void *param __unused,
2068                                                 void *cookie)
2069 {
2070     AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
2071     ALOGV("asyncCallback() event %d", event);
2072     switch (event) {
2073     case STREAM_CBK_EVENT_WRITE_READY:
2074         me->writeCallback();
2075         break;
2076     case STREAM_CBK_EVENT_DRAIN_READY:
2077         me->drainCallback();
2078         break;
2079     default:
2080         ALOGW("asyncCallback() unknown event %d", event);
2081         break;
2082     }
2083     return 0;
2084 }
2085 
readOutputParameters_l()2086 void AudioFlinger::PlaybackThread::readOutputParameters_l()
2087 {
2088     // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2089     mSampleRate = mOutput->getSampleRate();
2090     mChannelMask = mOutput->getChannelMask();
2091     if (!audio_is_output_channel(mChannelMask)) {
2092         LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2093     }
2094     if ((mType == MIXER || mType == DUPLICATING)
2095             && !isValidPcmSinkChannelMask(mChannelMask)) {
2096         LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2097                 mChannelMask);
2098     }
2099     mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2100 
2101     // Get actual HAL format.
2102     mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2103     // Get format from the shim, which will be different than the HAL format
2104     // if playing compressed audio over HDMI passthrough.
2105     mFormat = mOutput->getFormat();
2106     if (!audio_is_valid_format(mFormat)) {
2107         LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2108     }
2109     if ((mType == MIXER || mType == DUPLICATING)
2110             && !isValidPcmSinkFormat(mFormat)) {
2111         LOG_FATAL("HAL format %#x not supported for mixed output",
2112                 mFormat);
2113     }
2114     mFrameSize = mOutput->getFrameSize();
2115     mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2116     mFrameCount = mBufferSize / mFrameSize;
2117     if (mFrameCount & 15) {
2118         ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
2119                 mFrameCount);
2120     }
2121 
2122     if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2123             (mOutput->stream->set_callback != NULL)) {
2124         if (mOutput->stream->set_callback(mOutput->stream,
2125                                       AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2126             mUseAsyncWrite = true;
2127             mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2128         }
2129     }
2130 
2131     mHwSupportsPause = false;
2132     if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2133         if (mOutput->stream->pause != NULL) {
2134             if (mOutput->stream->resume != NULL) {
2135                 mHwSupportsPause = true;
2136             } else {
2137                 ALOGW("direct output implements pause but not resume");
2138             }
2139         } else if (mOutput->stream->resume != NULL) {
2140             ALOGW("direct output implements resume but not pause");
2141         }
2142     }
2143     if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2144         LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2145     }
2146 
2147     if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2148         // For best precision, we use float instead of the associated output
2149         // device format (typically PCM 16 bit).
2150 
2151         mFormat = AUDIO_FORMAT_PCM_FLOAT;
2152         mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2153         mBufferSize = mFrameSize * mFrameCount;
2154 
2155         // TODO: We currently use the associated output device channel mask and sample rate.
2156         // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2157         // (if a valid mask) to avoid premature downmix.
2158         // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2159         // instead of the output device sample rate to avoid loss of high frequency information.
2160         // This may need to be updated as MixerThread/OutputTracks are added and not here.
2161     }
2162 
2163     // Calculate size of normal sink buffer relative to the HAL output buffer size
2164     double multiplier = 1.0;
2165     if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2166             kUseFastMixer == FastMixer_Dynamic)) {
2167         size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2168         size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2169         // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2170         minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2171         maxNormalFrameCount = maxNormalFrameCount & ~15;
2172         if (maxNormalFrameCount < minNormalFrameCount) {
2173             maxNormalFrameCount = minNormalFrameCount;
2174         }
2175         multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2176         if (multiplier <= 1.0) {
2177             multiplier = 1.0;
2178         } else if (multiplier <= 2.0) {
2179             if (2 * mFrameCount <= maxNormalFrameCount) {
2180                 multiplier = 2.0;
2181             } else {
2182                 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2183             }
2184         } else {
2185             // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
2186             // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
2187             // track, but we sometimes have to do this to satisfy the maximum frame count
2188             // constraint)
2189             // FIXME this rounding up should not be done if no HAL SRC
2190             uint32_t truncMult = (uint32_t) multiplier;
2191             if ((truncMult & 1)) {
2192                 if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
2193                     ++truncMult;
2194                 }
2195             }
2196             multiplier = (double) truncMult;
2197         }
2198     }
2199     mNormalFrameCount = multiplier * mFrameCount;
2200     // round up to nearest 16 frames to satisfy AudioMixer
2201     if (mType == MIXER || mType == DUPLICATING) {
2202         mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2203     }
2204     ALOGI("HAL output buffer size %u frames, normal sink buffer size %u frames", mFrameCount,
2205             mNormalFrameCount);
2206 
2207     // Check if we want to throttle the processing to no more than 2x normal rate
2208     mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2209     mThreadThrottleTimeMs = 0;
2210     mThreadThrottleEndMs = 0;
2211     mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2212 
2213     // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2214     // Originally this was int16_t[] array, need to remove legacy implications.
2215     free(mSinkBuffer);
2216     mSinkBuffer = NULL;
2217     // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2218     // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2219     const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2220     (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2221 
2222     // We resize the mMixerBuffer according to the requirements of the sink buffer which
2223     // drives the output.
2224     free(mMixerBuffer);
2225     mMixerBuffer = NULL;
2226     if (mMixerBufferEnabled) {
2227         mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2228         mMixerBufferSize = mNormalFrameCount * mChannelCount
2229                 * audio_bytes_per_sample(mMixerBufferFormat);
2230         (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2231     }
2232     free(mEffectBuffer);
2233     mEffectBuffer = NULL;
2234     if (mEffectBufferEnabled) {
2235         mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2236         mEffectBufferSize = mNormalFrameCount * mChannelCount
2237                 * audio_bytes_per_sample(mEffectBufferFormat);
2238         (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2239     }
2240 
2241     // force reconfiguration of effect chains and engines to take new buffer size and audio
2242     // parameters into account
2243     // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2244     // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2245     // matter.
2246     // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2247     Vector< sp<EffectChain> > effectChains = mEffectChains;
2248     for (size_t i = 0; i < effectChains.size(); i ++) {
2249         mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2250     }
2251 }
2252 
2253 
getRenderPosition(uint32_t * halFrames,uint32_t * dspFrames)2254 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2255 {
2256     if (halFrames == NULL || dspFrames == NULL) {
2257         return BAD_VALUE;
2258     }
2259     Mutex::Autolock _l(mLock);
2260     if (initCheck() != NO_ERROR) {
2261         return INVALID_OPERATION;
2262     }
2263     size_t framesWritten = mBytesWritten / mFrameSize;
2264     *halFrames = framesWritten;
2265 
2266     if (isSuspended()) {
2267         // return an estimation of rendered frames when the output is suspended
2268         size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2269         *dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0;
2270         return NO_ERROR;
2271     } else {
2272         status_t status;
2273         uint32_t frames;
2274         status = mOutput->getRenderPosition(&frames);
2275         *dspFrames = (size_t)frames;
2276         return status;
2277     }
2278 }
2279 
hasAudioSession(int sessionId) const2280 uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
2281 {
2282     Mutex::Autolock _l(mLock);
2283     uint32_t result = 0;
2284     if (getEffectChain_l(sessionId) != 0) {
2285         result = EFFECT_SESSION;
2286     }
2287 
2288     for (size_t i = 0; i < mTracks.size(); ++i) {
2289         sp<Track> track = mTracks[i];
2290         if (sessionId == track->sessionId() && !track->isInvalid()) {
2291             result |= TRACK_SESSION;
2292             break;
2293         }
2294     }
2295 
2296     return result;
2297 }
2298 
getStrategyForSession_l(int sessionId)2299 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
2300 {
2301     // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2302     // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2303     if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2304         return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2305     }
2306     for (size_t i = 0; i < mTracks.size(); i++) {
2307         sp<Track> track = mTracks[i];
2308         if (sessionId == track->sessionId() && !track->isInvalid()) {
2309             return AudioSystem::getStrategyForStream(track->streamType());
2310         }
2311     }
2312     return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2313 }
2314 
2315 
getOutput() const2316 AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2317 {
2318     Mutex::Autolock _l(mLock);
2319     return mOutput;
2320 }
2321 
clearOutput()2322 AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2323 {
2324     Mutex::Autolock _l(mLock);
2325     AudioStreamOut *output = mOutput;
2326     mOutput = NULL;
2327     // FIXME FastMixer might also have a raw ptr to mOutputSink;
2328     //       must push a NULL and wait for ack
2329     mOutputSink.clear();
2330     mPipeSink.clear();
2331     mNormalSink.clear();
2332     return output;
2333 }
2334 
2335 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const2336 audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2337 {
2338     if (mOutput == NULL) {
2339         return NULL;
2340     }
2341     return &mOutput->stream->common;
2342 }
2343 
activeSleepTimeUs() const2344 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2345 {
2346     return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2347 }
2348 
setSyncEvent(const sp<SyncEvent> & event)2349 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2350 {
2351     if (!isValidSyncEvent(event)) {
2352         return BAD_VALUE;
2353     }
2354 
2355     Mutex::Autolock _l(mLock);
2356 
2357     for (size_t i = 0; i < mTracks.size(); ++i) {
2358         sp<Track> track = mTracks[i];
2359         if (event->triggerSession() == track->sessionId()) {
2360             (void) track->setSyncEvent(event);
2361             return NO_ERROR;
2362         }
2363     }
2364 
2365     return NAME_NOT_FOUND;
2366 }
2367 
isValidSyncEvent(const sp<SyncEvent> & event) const2368 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2369 {
2370     return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2371 }
2372 
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)2373 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2374         const Vector< sp<Track> >& tracksToRemove)
2375 {
2376     size_t count = tracksToRemove.size();
2377     if (count > 0) {
2378         for (size_t i = 0 ; i < count ; i++) {
2379             const sp<Track>& track = tracksToRemove.itemAt(i);
2380             if (track->isExternalTrack()) {
2381                 AudioSystem::stopOutput(mId, track->streamType(),
2382                                         (audio_session_t)track->sessionId());
2383 #ifdef ADD_BATTERY_DATA
2384                 // to track the speaker usage
2385                 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2386 #endif
2387                 if (track->isTerminated()) {
2388                     AudioSystem::releaseOutput(mId, track->streamType(),
2389                                                (audio_session_t)track->sessionId());
2390                 }
2391             }
2392         }
2393     }
2394 }
2395 
checkSilentMode_l()2396 void AudioFlinger::PlaybackThread::checkSilentMode_l()
2397 {
2398     if (!mMasterMute) {
2399         char value[PROPERTY_VALUE_MAX];
2400         if (property_get("ro.audio.silent", value, "0") > 0) {
2401             char *endptr;
2402             unsigned long ul = strtoul(value, &endptr, 0);
2403             if (*endptr == '\0' && ul != 0) {
2404                 ALOGD("Silence is golden");
2405                 // The setprop command will not allow a property to be changed after
2406                 // the first time it is set, so we don't have to worry about un-muting.
2407                 setMasterMute_l(true);
2408             }
2409         }
2410     }
2411 }
2412 
2413 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_write()2414 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2415 {
2416     // FIXME rewrite to reduce number of system calls
2417     mLastWriteTime = systemTime();
2418     mInWrite = true;
2419     ssize_t bytesWritten;
2420     const size_t offset = mCurrentWriteLength - mBytesRemaining;
2421 
2422     // If an NBAIO sink is present, use it to write the normal mixer's submix
2423     if (mNormalSink != 0) {
2424 
2425         const size_t count = mBytesRemaining / mFrameSize;
2426 
2427         ATRACE_BEGIN("write");
2428         // update the setpoint when AudioFlinger::mScreenState changes
2429         uint32_t screenState = AudioFlinger::mScreenState;
2430         if (screenState != mScreenState) {
2431             mScreenState = screenState;
2432             MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2433             if (pipe != NULL) {
2434                 pipe->setAvgFrames((mScreenState & 1) ?
2435                         (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2436             }
2437         }
2438         ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2439         ATRACE_END();
2440         if (framesWritten > 0) {
2441             bytesWritten = framesWritten * mFrameSize;
2442         } else {
2443             bytesWritten = framesWritten;
2444         }
2445         mLatchDValid = false;
2446         status_t status = mNormalSink->getTimestamp(mLatchD.mTimestamp);
2447         if (status == NO_ERROR) {
2448             size_t totalFramesWritten = mNormalSink->framesWritten();
2449             if (totalFramesWritten >= mLatchD.mTimestamp.mPosition) {
2450                 mLatchD.mUnpresentedFrames = totalFramesWritten - mLatchD.mTimestamp.mPosition;
2451                 // mLatchD.mFramesReleased is set immediately before D is clocked into Q
2452                 mLatchDValid = true;
2453             }
2454         }
2455     // otherwise use the HAL / AudioStreamOut directly
2456     } else {
2457         // Direct output and offload threads
2458 
2459         if (mUseAsyncWrite) {
2460             ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2461             mWriteAckSequence += 2;
2462             mWriteAckSequence |= 1;
2463             ALOG_ASSERT(mCallbackThread != 0);
2464             mCallbackThread->setWriteBlocked(mWriteAckSequence);
2465         }
2466         // FIXME We should have an implementation of timestamps for direct output threads.
2467         // They are used e.g for multichannel PCM playback over HDMI.
2468         bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2469         if (mUseAsyncWrite &&
2470                 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2471             // do not wait for async callback in case of error of full write
2472             mWriteAckSequence &= ~1;
2473             ALOG_ASSERT(mCallbackThread != 0);
2474             mCallbackThread->setWriteBlocked(mWriteAckSequence);
2475         }
2476     }
2477 
2478     mNumWrites++;
2479     mInWrite = false;
2480     mStandby = false;
2481     return bytesWritten;
2482 }
2483 
threadLoop_drain()2484 void AudioFlinger::PlaybackThread::threadLoop_drain()
2485 {
2486     if (mOutput->stream->drain) {
2487         ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2488         if (mUseAsyncWrite) {
2489             ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2490             mDrainSequence |= 1;
2491             ALOG_ASSERT(mCallbackThread != 0);
2492             mCallbackThread->setDraining(mDrainSequence);
2493         }
2494         mOutput->stream->drain(mOutput->stream,
2495             (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2496                                                 : AUDIO_DRAIN_ALL);
2497     }
2498 }
2499 
threadLoop_exit()2500 void AudioFlinger::PlaybackThread::threadLoop_exit()
2501 {
2502     {
2503         Mutex::Autolock _l(mLock);
2504         for (size_t i = 0; i < mTracks.size(); i++) {
2505             sp<Track> track = mTracks[i];
2506             track->invalidate();
2507         }
2508     }
2509 }
2510 
2511 /*
2512 The derived values that are cached:
2513  - mSinkBufferSize from frame count * frame size
2514  - mActiveSleepTimeUs from activeSleepTimeUs()
2515  - mIdleSleepTimeUs from idleSleepTimeUs()
2516  - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only)
2517  - maxPeriod from frame count and sample rate (MIXER only)
2518 
2519 The parameters that affect these derived values are:
2520  - frame count
2521  - frame size
2522  - sample rate
2523  - device type: A2DP or not
2524  - device latency
2525  - format: PCM or not
2526  - active sleep time
2527  - idle sleep time
2528 */
2529 
cacheParameters_l()2530 void AudioFlinger::PlaybackThread::cacheParameters_l()
2531 {
2532     mSinkBufferSize = mNormalFrameCount * mFrameSize;
2533     mActiveSleepTimeUs = activeSleepTimeUs();
2534     mIdleSleepTimeUs = idleSleepTimeUs();
2535 }
2536 
invalidateTracks(audio_stream_type_t streamType)2537 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2538 {
2539     ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
2540             this,  streamType, mTracks.size());
2541     Mutex::Autolock _l(mLock);
2542 
2543     size_t size = mTracks.size();
2544     for (size_t i = 0; i < size; i++) {
2545         sp<Track> t = mTracks[i];
2546         if (t->streamType() == streamType) {
2547             t->invalidate();
2548         }
2549     }
2550 }
2551 
addEffectChain_l(const sp<EffectChain> & chain)2552 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2553 {
2554     int session = chain->sessionId();
2555     int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2556             ? mEffectBuffer : mSinkBuffer);
2557     bool ownsBuffer = false;
2558 
2559     ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2560     if (session > 0) {
2561         // Only one effect chain can be present in direct output thread and it uses
2562         // the sink buffer as input
2563         if (mType != DIRECT) {
2564             size_t numSamples = mNormalFrameCount * mChannelCount;
2565             buffer = new int16_t[numSamples];
2566             memset(buffer, 0, numSamples * sizeof(int16_t));
2567             ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2568             ownsBuffer = true;
2569         }
2570 
2571         // Attach all tracks with same session ID to this chain.
2572         for (size_t i = 0; i < mTracks.size(); ++i) {
2573             sp<Track> track = mTracks[i];
2574             if (session == track->sessionId()) {
2575                 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2576                         buffer);
2577                 track->setMainBuffer(buffer);
2578                 chain->incTrackCnt();
2579             }
2580         }
2581 
2582         // indicate all active tracks in the chain
2583         for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2584             sp<Track> track = mActiveTracks[i].promote();
2585             if (track == 0) {
2586                 continue;
2587             }
2588             if (session == track->sessionId()) {
2589                 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2590                 chain->incActiveTrackCnt();
2591             }
2592         }
2593     }
2594     chain->setThread(this);
2595     chain->setInBuffer(buffer, ownsBuffer);
2596     chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2597             ? mEffectBuffer : mSinkBuffer));
2598     // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2599     // chains list in order to be processed last as it contains output stage effects
2600     // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2601     // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2602     // after track specific effects and before output stage
2603     // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2604     // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
2605     // Effect chain for other sessions are inserted at beginning of effect
2606     // chains list to be processed before output mix effects. Relative order between other
2607     // sessions is not important
2608     size_t size = mEffectChains.size();
2609     size_t i = 0;
2610     for (i = 0; i < size; i++) {
2611         if (mEffectChains[i]->sessionId() < session) {
2612             break;
2613         }
2614     }
2615     mEffectChains.insertAt(chain, i);
2616     checkSuspendOnAddEffectChain_l(chain);
2617 
2618     return NO_ERROR;
2619 }
2620 
removeEffectChain_l(const sp<EffectChain> & chain)2621 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2622 {
2623     int session = chain->sessionId();
2624 
2625     ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2626 
2627     for (size_t i = 0; i < mEffectChains.size(); i++) {
2628         if (chain == mEffectChains[i]) {
2629             mEffectChains.removeAt(i);
2630             // detach all active tracks from the chain
2631             for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2632                 sp<Track> track = mActiveTracks[i].promote();
2633                 if (track == 0) {
2634                     continue;
2635                 }
2636                 if (session == track->sessionId()) {
2637                     ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2638                             chain.get(), session);
2639                     chain->decActiveTrackCnt();
2640                 }
2641             }
2642 
2643             // detach all tracks with same session ID from this chain
2644             for (size_t i = 0; i < mTracks.size(); ++i) {
2645                 sp<Track> track = mTracks[i];
2646                 if (session == track->sessionId()) {
2647                     track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2648                     chain->decTrackCnt();
2649                 }
2650             }
2651             break;
2652         }
2653     }
2654     return mEffectChains.size();
2655 }
2656 
attachAuxEffect(const sp<AudioFlinger::PlaybackThread::Track> track,int EffectId)2657 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2658         const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2659 {
2660     Mutex::Autolock _l(mLock);
2661     return attachAuxEffect_l(track, EffectId);
2662 }
2663 
attachAuxEffect_l(const sp<AudioFlinger::PlaybackThread::Track> track,int EffectId)2664 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2665         const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2666 {
2667     status_t status = NO_ERROR;
2668 
2669     if (EffectId == 0) {
2670         track->setAuxBuffer(0, NULL);
2671     } else {
2672         // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2673         sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2674         if (effect != 0) {
2675             if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2676                 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2677             } else {
2678                 status = INVALID_OPERATION;
2679             }
2680         } else {
2681             status = BAD_VALUE;
2682         }
2683     }
2684     return status;
2685 }
2686 
detachAuxEffect_l(int effectId)2687 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2688 {
2689     for (size_t i = 0; i < mTracks.size(); ++i) {
2690         sp<Track> track = mTracks[i];
2691         if (track->auxEffectId() == effectId) {
2692             attachAuxEffect_l(track, 0);
2693         }
2694     }
2695 }
2696 
threadLoop()2697 bool AudioFlinger::PlaybackThread::threadLoop()
2698 {
2699     Vector< sp<Track> > tracksToRemove;
2700 
2701     mStandbyTimeNs = systemTime();
2702 
2703     // MIXER
2704     nsecs_t lastWarning = 0;
2705 
2706     // DUPLICATING
2707     // FIXME could this be made local to while loop?
2708     writeFrames = 0;
2709 
2710     int lastGeneration = 0;
2711 
2712     cacheParameters_l();
2713     mSleepTimeUs = mIdleSleepTimeUs;
2714 
2715     if (mType == MIXER) {
2716         sleepTimeShift = 0;
2717     }
2718 
2719     CpuStats cpuStats;
2720     const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2721 
2722     acquireWakeLock();
2723 
2724     // mNBLogWriter->log can only be called while thread mutex mLock is held.
2725     // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2726     // and then that string will be logged at the next convenient opportunity.
2727     const char *logString = NULL;
2728 
2729     checkSilentMode_l();
2730 
2731     while (!exitPending())
2732     {
2733         cpuStats.sample(myName);
2734 
2735         Vector< sp<EffectChain> > effectChains;
2736 
2737         { // scope for mLock
2738 
2739             Mutex::Autolock _l(mLock);
2740 
2741             processConfigEvents_l();
2742 
2743             if (logString != NULL) {
2744                 mNBLogWriter->logTimestamp();
2745                 mNBLogWriter->log(logString);
2746                 logString = NULL;
2747             }
2748 
2749             // Gather the framesReleased counters for all active tracks,
2750             // and latch them atomically with the timestamp.
2751             // FIXME We're using raw pointers as indices. A unique track ID would be a better index.
2752             mLatchD.mFramesReleased.clear();
2753             size_t size = mActiveTracks.size();
2754             for (size_t i = 0; i < size; i++) {
2755                 sp<Track> t = mActiveTracks[i].promote();
2756                 if (t != 0) {
2757                     mLatchD.mFramesReleased.add(t.get(),
2758                             t->mAudioTrackServerProxy->framesReleased());
2759                 }
2760             }
2761             if (mLatchDValid) {
2762                 mLatchQ = mLatchD;
2763                 mLatchDValid = false;
2764                 mLatchQValid = true;
2765             }
2766 
2767             saveOutputTracks();
2768             if (mSignalPending) {
2769                 // A signal was raised while we were unlocked
2770                 mSignalPending = false;
2771             } else if (waitingAsyncCallback_l()) {
2772                 if (exitPending()) {
2773                     break;
2774                 }
2775                 bool released = false;
2776                 // The following works around a bug in the offload driver. Ideally we would release
2777                 // the wake lock every time, but that causes the last offload buffer(s) to be
2778                 // dropped while the device is on battery, so we need to hold a wake lock during
2779                 // the drain phase.
2780                 if (mBytesRemaining && !(mDrainSequence & 1)) {
2781                     releaseWakeLock_l();
2782                     released = true;
2783                 }
2784                 mWakeLockUids.clear();
2785                 mActiveTracksGeneration++;
2786                 ALOGV("wait async completion");
2787                 mWaitWorkCV.wait(mLock);
2788                 ALOGV("async completion/wake");
2789                 if (released) {
2790                     acquireWakeLock_l();
2791                 }
2792                 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2793                 mSleepTimeUs = 0;
2794 
2795                 continue;
2796             }
2797             if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
2798                                    isSuspended()) {
2799                 // put audio hardware into standby after short delay
2800                 if (shouldStandby_l()) {
2801 
2802                     threadLoop_standby();
2803 
2804                     mStandby = true;
2805                 }
2806 
2807                 if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2808                     // we're about to wait, flush the binder command buffer
2809                     IPCThreadState::self()->flushCommands();
2810 
2811                     clearOutputTracks();
2812 
2813                     if (exitPending()) {
2814                         break;
2815                     }
2816 
2817                     releaseWakeLock_l();
2818                     mWakeLockUids.clear();
2819                     mActiveTracksGeneration++;
2820                     // wait until we have something to do...
2821                     ALOGV("%s going to sleep", myName.string());
2822                     mWaitWorkCV.wait(mLock);
2823                     ALOGV("%s waking up", myName.string());
2824                     acquireWakeLock_l();
2825 
2826                     mMixerStatus = MIXER_IDLE;
2827                     mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2828                     mBytesWritten = 0;
2829                     mBytesRemaining = 0;
2830                     checkSilentMode_l();
2831 
2832                     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2833                     mSleepTimeUs = mIdleSleepTimeUs;
2834                     if (mType == MIXER) {
2835                         sleepTimeShift = 0;
2836                     }
2837 
2838                     continue;
2839                 }
2840             }
2841             // mMixerStatusIgnoringFastTracks is also updated internally
2842             mMixerStatus = prepareTracks_l(&tracksToRemove);
2843 
2844             // compare with previously applied list
2845             if (lastGeneration != mActiveTracksGeneration) {
2846                 // update wakelock
2847                 updateWakeLockUids_l(mWakeLockUids);
2848                 lastGeneration = mActiveTracksGeneration;
2849             }
2850 
2851             // prevent any changes in effect chain list and in each effect chain
2852             // during mixing and effect process as the audio buffers could be deleted
2853             // or modified if an effect is created or deleted
2854             lockEffectChains_l(effectChains);
2855         } // mLock scope ends
2856 
2857         if (mBytesRemaining == 0) {
2858             mCurrentWriteLength = 0;
2859             if (mMixerStatus == MIXER_TRACKS_READY) {
2860                 // threadLoop_mix() sets mCurrentWriteLength
2861                 threadLoop_mix();
2862             } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
2863                         && (mMixerStatus != MIXER_DRAIN_ALL)) {
2864                 // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
2865                 // must be written to HAL
2866                 threadLoop_sleepTime();
2867                 if (mSleepTimeUs == 0) {
2868                     mCurrentWriteLength = mSinkBufferSize;
2869                 }
2870             }
2871             // Either threadLoop_mix() or threadLoop_sleepTime() should have set
2872             // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
2873             // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
2874             // or mSinkBuffer (if there are no effects).
2875             //
2876             // This is done pre-effects computation; if effects change to
2877             // support higher precision, this needs to move.
2878             //
2879             // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
2880             // TODO use mSleepTimeUs == 0 as an additional condition.
2881             if (mMixerBufferValid) {
2882                 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
2883                 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
2884 
2885                 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
2886                         mNormalFrameCount * mChannelCount);
2887             }
2888 
2889             mBytesRemaining = mCurrentWriteLength;
2890             if (isSuspended()) {
2891                 mSleepTimeUs = suspendSleepTimeUs();
2892                 // simulate write to HAL when suspended
2893                 mBytesWritten += mSinkBufferSize;
2894                 mBytesRemaining = 0;
2895             }
2896 
2897             // only process effects if we're going to write
2898             if (mSleepTimeUs == 0 && mType != OFFLOAD) {
2899                 for (size_t i = 0; i < effectChains.size(); i ++) {
2900                     effectChains[i]->process_l();
2901                 }
2902             }
2903         }
2904         // Process effect chains for offloaded thread even if no audio
2905         // was read from audio track: process only updates effect state
2906         // and thus does have to be synchronized with audio writes but may have
2907         // to be called while waiting for async write callback
2908         if (mType == OFFLOAD) {
2909             for (size_t i = 0; i < effectChains.size(); i ++) {
2910                 effectChains[i]->process_l();
2911             }
2912         }
2913 
2914         // Only if the Effects buffer is enabled and there is data in the
2915         // Effects buffer (buffer valid), we need to
2916         // copy into the sink buffer.
2917         // TODO use mSleepTimeUs == 0 as an additional condition.
2918         if (mEffectBufferValid) {
2919             //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
2920             memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
2921                     mNormalFrameCount * mChannelCount);
2922         }
2923 
2924         // enable changes in effect chain
2925         unlockEffectChains(effectChains);
2926 
2927         if (!waitingAsyncCallback()) {
2928             // mSleepTimeUs == 0 means we must write to audio hardware
2929             if (mSleepTimeUs == 0) {
2930                 ssize_t ret = 0;
2931                 if (mBytesRemaining) {
2932                     ret = threadLoop_write();
2933                     if (ret < 0) {
2934                         mBytesRemaining = 0;
2935                     } else {
2936                         mBytesWritten += ret;
2937                         mBytesRemaining -= ret;
2938                     }
2939                 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
2940                         (mMixerStatus == MIXER_DRAIN_ALL)) {
2941                     threadLoop_drain();
2942                 }
2943                 if (mType == MIXER && !mStandby) {
2944                     // write blocked detection
2945                     nsecs_t now = systemTime();
2946                     nsecs_t delta = now - mLastWriteTime;
2947                     if (delta > maxPeriod) {
2948                         mNumDelayedWrites++;
2949                         if ((now - lastWarning) > kWarningThrottleNs) {
2950                             ATRACE_NAME("underrun");
2951                             ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
2952                                     ns2ms(delta), mNumDelayedWrites, this);
2953                             lastWarning = now;
2954                         }
2955                     }
2956 
2957                     if (mThreadThrottle
2958                             && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
2959                             && ret > 0) {                         // we wrote something
2960                         // Limit MixerThread data processing to no more than twice the
2961                         // expected processing rate.
2962                         //
2963                         // This helps prevent underruns with NuPlayer and other applications
2964                         // which may set up buffers that are close to the minimum size, or use
2965                         // deep buffers, and rely on a double-buffering sleep strategy to fill.
2966                         //
2967                         // The throttle smooths out sudden large data drains from the device,
2968                         // e.g. when it comes out of standby, which often causes problems with
2969                         // (1) mixer threads without a fast mixer (which has its own warm-up)
2970                         // (2) minimum buffer sized tracks (even if the track is full,
2971                         //     the app won't fill fast enough to handle the sudden draw).
2972 
2973                         const int32_t deltaMs = delta / 1000000;
2974                         const int32_t throttleMs = mHalfBufferMs - deltaMs;
2975                         if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
2976                             usleep(throttleMs * 1000);
2977                             // notify of throttle start on verbose log
2978                             ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
2979                                     "mixer(%p) throttle begin:"
2980                                     " ret(%zd) deltaMs(%d) requires sleep %d ms",
2981                                     this, ret, deltaMs, throttleMs);
2982                             mThreadThrottleTimeMs += throttleMs;
2983                         } else {
2984                             uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
2985                             if (diff > 0) {
2986                                 // notify of throttle end on debug log
2987                                 ALOGD("mixer(%p) throttle end: throttle time(%u)", this, diff);
2988                                 mThreadThrottleEndMs = mThreadThrottleTimeMs;
2989                             }
2990                         }
2991                     }
2992                 }
2993 
2994             } else {
2995                 ATRACE_BEGIN("sleep");
2996                 usleep(mSleepTimeUs);
2997                 ATRACE_END();
2998             }
2999         }
3000 
3001         // Finally let go of removed track(s), without the lock held
3002         // since we can't guarantee the destructors won't acquire that
3003         // same lock.  This will also mutate and push a new fast mixer state.
3004         threadLoop_removeTracks(tracksToRemove);
3005         tracksToRemove.clear();
3006 
3007         // FIXME I don't understand the need for this here;
3008         //       it was in the original code but maybe the
3009         //       assignment in saveOutputTracks() makes this unnecessary?
3010         clearOutputTracks();
3011 
3012         // Effect chains will be actually deleted here if they were removed from
3013         // mEffectChains list during mixing or effects processing
3014         effectChains.clear();
3015 
3016         // FIXME Note that the above .clear() is no longer necessary since effectChains
3017         // is now local to this block, but will keep it for now (at least until merge done).
3018     }
3019 
3020     threadLoop_exit();
3021 
3022     if (!mStandby) {
3023         threadLoop_standby();
3024         mStandby = true;
3025     }
3026 
3027     releaseWakeLock();
3028     mWakeLockUids.clear();
3029     mActiveTracksGeneration++;
3030 
3031     ALOGV("Thread %p type %d exiting", this, mType);
3032     return false;
3033 }
3034 
3035 // removeTracks_l() must be called with ThreadBase::mLock held
removeTracks_l(const Vector<sp<Track>> & tracksToRemove)3036 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3037 {
3038     size_t count = tracksToRemove.size();
3039     if (count > 0) {
3040         for (size_t i=0 ; i<count ; i++) {
3041             const sp<Track>& track = tracksToRemove.itemAt(i);
3042             mActiveTracks.remove(track);
3043             mWakeLockUids.remove(track->uid());
3044             mActiveTracksGeneration++;
3045             ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3046             sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3047             if (chain != 0) {
3048                 ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3049                         track->sessionId());
3050                 chain->decActiveTrackCnt();
3051             }
3052             if (track->isTerminated()) {
3053                 removeTrack_l(track);
3054             }
3055         }
3056     }
3057 
3058 }
3059 
getTimestamp_l(AudioTimestamp & timestamp)3060 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3061 {
3062     if (mNormalSink != 0) {
3063         return mNormalSink->getTimestamp(timestamp);
3064     }
3065     if ((mType == OFFLOAD || mType == DIRECT)
3066             && mOutput != NULL && mOutput->stream->get_presentation_position) {
3067         uint64_t position64;
3068         int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
3069         if (ret == 0) {
3070             timestamp.mPosition = (uint32_t)position64;
3071             return NO_ERROR;
3072         }
3073     }
3074     return INVALID_OPERATION;
3075 }
3076 
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)3077 status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3078                                                           audio_patch_handle_t *handle)
3079 {
3080     // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3081     FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3082     if (mFastMixer != 0) {
3083         FastMixerStateQueue *sq = mFastMixer->sq();
3084         FastMixerState *state = sq->begin();
3085         if (!(state->mCommand & FastMixerState::IDLE)) {
3086             previousCommand = state->mCommand;
3087             state->mCommand = FastMixerState::HOT_IDLE;
3088             sq->end();
3089             sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3090         } else {
3091             sq->end(false /*didModify*/);
3092         }
3093     }
3094     status_t status = PlaybackThread::createAudioPatch_l(patch, handle);
3095 
3096     if (!(previousCommand & FastMixerState::IDLE)) {
3097         ALOG_ASSERT(mFastMixer != 0);
3098         FastMixerStateQueue *sq = mFastMixer->sq();
3099         FastMixerState *state = sq->begin();
3100         ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3101         state->mCommand = previousCommand;
3102         sq->end();
3103         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3104     }
3105 
3106     return status;
3107 }
3108 
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)3109 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3110                                                           audio_patch_handle_t *handle)
3111 {
3112     status_t status = NO_ERROR;
3113 
3114     // store new device and send to effects
3115     audio_devices_t type = AUDIO_DEVICE_NONE;
3116     for (unsigned int i = 0; i < patch->num_sinks; i++) {
3117         type |= patch->sinks[i].ext.device.type;
3118     }
3119 
3120 #ifdef ADD_BATTERY_DATA
3121     // when changing the audio output device, call addBatteryData to notify
3122     // the change
3123     if (mOutDevice != type) {
3124         uint32_t params = 0;
3125         // check whether speaker is on
3126         if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3127             params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3128         }
3129 
3130         audio_devices_t deviceWithoutSpeaker
3131             = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3132         // check if any other device (except speaker) is on
3133         if (type & deviceWithoutSpeaker) {
3134             params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3135         }
3136 
3137         if (params != 0) {
3138             addBatteryData(params);
3139         }
3140     }
3141 #endif
3142 
3143     for (size_t i = 0; i < mEffectChains.size(); i++) {
3144         mEffectChains[i]->setDevice_l(type);
3145     }
3146 
3147     // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3148     // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3149     bool configChanged = mPrevOutDevice != type;
3150     mOutDevice = type;
3151     mPatch = *patch;
3152 
3153     if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3154         audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3155         status = hwDevice->create_audio_patch(hwDevice,
3156                                                patch->num_sources,
3157                                                patch->sources,
3158                                                patch->num_sinks,
3159                                                patch->sinks,
3160                                                handle);
3161     } else {
3162         char *address;
3163         if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3164             //FIXME: we only support address on first sink with HAL version < 3.0
3165             address = audio_device_address_to_parameter(
3166                                                         patch->sinks[0].ext.device.type,
3167                                                         patch->sinks[0].ext.device.address);
3168         } else {
3169             address = (char *)calloc(1, 1);
3170         }
3171         AudioParameter param = AudioParameter(String8(address));
3172         free(address);
3173         param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
3174         status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3175                 param.toString().string());
3176         *handle = AUDIO_PATCH_HANDLE_NONE;
3177     }
3178     if (configChanged) {
3179         mPrevOutDevice = type;
3180         sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3181     }
3182     return status;
3183 }
3184 
releaseAudioPatch_l(const audio_patch_handle_t handle)3185 status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3186 {
3187     // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3188     FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3189     if (mFastMixer != 0) {
3190         FastMixerStateQueue *sq = mFastMixer->sq();
3191         FastMixerState *state = sq->begin();
3192         if (!(state->mCommand & FastMixerState::IDLE)) {
3193             previousCommand = state->mCommand;
3194             state->mCommand = FastMixerState::HOT_IDLE;
3195             sq->end();
3196             sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3197         } else {
3198             sq->end(false /*didModify*/);
3199         }
3200     }
3201 
3202     status_t status = PlaybackThread::releaseAudioPatch_l(handle);
3203 
3204     if (!(previousCommand & FastMixerState::IDLE)) {
3205         ALOG_ASSERT(mFastMixer != 0);
3206         FastMixerStateQueue *sq = mFastMixer->sq();
3207         FastMixerState *state = sq->begin();
3208         ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3209         state->mCommand = previousCommand;
3210         sq->end();
3211         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3212     }
3213 
3214     return status;
3215 }
3216 
releaseAudioPatch_l(const audio_patch_handle_t handle)3217 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3218 {
3219     status_t status = NO_ERROR;
3220 
3221     mOutDevice = AUDIO_DEVICE_NONE;
3222 
3223     if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3224         audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3225         status = hwDevice->release_audio_patch(hwDevice, handle);
3226     } else {
3227         AudioParameter param;
3228         param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
3229         status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3230                 param.toString().string());
3231     }
3232     return status;
3233 }
3234 
addPatchTrack(const sp<PatchTrack> & track)3235 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3236 {
3237     Mutex::Autolock _l(mLock);
3238     mTracks.add(track);
3239 }
3240 
deletePatchTrack(const sp<PatchTrack> & track)3241 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3242 {
3243     Mutex::Autolock _l(mLock);
3244     destroyTrack_l(track);
3245 }
3246 
getAudioPortConfig(struct audio_port_config * config)3247 void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3248 {
3249     ThreadBase::getAudioPortConfig(config);
3250     config->role = AUDIO_PORT_ROLE_SOURCE;
3251     config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3252     config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3253 }
3254 
3255 // ----------------------------------------------------------------------------
3256 
MixerThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,bool systemReady,type_t type)3257 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3258         audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3259     :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3260         // mAudioMixer below
3261         // mFastMixer below
3262         mFastMixerFutex(0)
3263         // mOutputSink below
3264         // mPipeSink below
3265         // mNormalSink below
3266 {
3267     ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3268     ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
3269             "mFrameCount=%d, mNormalFrameCount=%d",
3270             mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3271             mNormalFrameCount);
3272     mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3273 
3274     if (type == DUPLICATING) {
3275         // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3276         // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3277         // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3278         return;
3279     }
3280     // create an NBAIO sink for the HAL output stream, and negotiate
3281     mOutputSink = new AudioStreamOutSink(output->stream);
3282     size_t numCounterOffers = 0;
3283     const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3284     ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3285     ALOG_ASSERT(index == 0);
3286 
3287     // initialize fast mixer depending on configuration
3288     bool initFastMixer;
3289     switch (kUseFastMixer) {
3290     case FastMixer_Never:
3291         initFastMixer = false;
3292         break;
3293     case FastMixer_Always:
3294         initFastMixer = true;
3295         break;
3296     case FastMixer_Static:
3297     case FastMixer_Dynamic:
3298         initFastMixer = mFrameCount < mNormalFrameCount;
3299         break;
3300     }
3301     if (initFastMixer) {
3302         audio_format_t fastMixerFormat;
3303         if (mMixerBufferEnabled && mEffectBufferEnabled) {
3304             fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3305         } else {
3306             fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3307         }
3308         if (mFormat != fastMixerFormat) {
3309             // change our Sink format to accept our intermediate precision
3310             mFormat = fastMixerFormat;
3311             free(mSinkBuffer);
3312             mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3313             const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3314             (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3315         }
3316 
3317         // create a MonoPipe to connect our submix to FastMixer
3318         NBAIO_Format format = mOutputSink->format();
3319         NBAIO_Format origformat = format;
3320         // adjust format to match that of the Fast Mixer
3321         ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3322         format.mFormat = fastMixerFormat;
3323         format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3324 
3325         // This pipe depth compensates for scheduling latency of the normal mixer thread.
3326         // When it wakes up after a maximum latency, it runs a few cycles quickly before
3327         // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3328         MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3329         const NBAIO_Format offers[1] = {format};
3330         size_t numCounterOffers = 0;
3331         ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3332         ALOG_ASSERT(index == 0);
3333         monoPipe->setAvgFrames((mScreenState & 1) ?
3334                 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3335         mPipeSink = monoPipe;
3336 
3337 #ifdef TEE_SINK
3338         if (mTeeSinkOutputEnabled) {
3339             // create a Pipe to archive a copy of FastMixer's output for dumpsys
3340             Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3341             const NBAIO_Format offers2[1] = {origformat};
3342             numCounterOffers = 0;
3343             index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3344             ALOG_ASSERT(index == 0);
3345             mTeeSink = teeSink;
3346             PipeReader *teeSource = new PipeReader(*teeSink);
3347             numCounterOffers = 0;
3348             index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3349             ALOG_ASSERT(index == 0);
3350             mTeeSource = teeSource;
3351         }
3352 #endif
3353 
3354         // create fast mixer and configure it initially with just one fast track for our submix
3355         mFastMixer = new FastMixer();
3356         FastMixerStateQueue *sq = mFastMixer->sq();
3357 #ifdef STATE_QUEUE_DUMP
3358         sq->setObserverDump(&mStateQueueObserverDump);
3359         sq->setMutatorDump(&mStateQueueMutatorDump);
3360 #endif
3361         FastMixerState *state = sq->begin();
3362         FastTrack *fastTrack = &state->mFastTracks[0];
3363         // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3364         fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3365         fastTrack->mVolumeProvider = NULL;
3366         fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3367         fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3368         fastTrack->mGeneration++;
3369         state->mFastTracksGen++;
3370         state->mTrackMask = 1;
3371         // fast mixer will use the HAL output sink
3372         state->mOutputSink = mOutputSink.get();
3373         state->mOutputSinkGen++;
3374         state->mFrameCount = mFrameCount;
3375         state->mCommand = FastMixerState::COLD_IDLE;
3376         // already done in constructor initialization list
3377         //mFastMixerFutex = 0;
3378         state->mColdFutexAddr = &mFastMixerFutex;
3379         state->mColdGen++;
3380         state->mDumpState = &mFastMixerDumpState;
3381 #ifdef TEE_SINK
3382         state->mTeeSink = mTeeSink.get();
3383 #endif
3384         mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3385         state->mNBLogWriter = mFastMixerNBLogWriter.get();
3386         sq->end();
3387         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3388 
3389         // start the fast mixer
3390         mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3391         pid_t tid = mFastMixer->getTid();
3392         sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3393 
3394 #ifdef AUDIO_WATCHDOG
3395         // create and start the watchdog
3396         mAudioWatchdog = new AudioWatchdog();
3397         mAudioWatchdog->setDump(&mAudioWatchdogDump);
3398         mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3399         tid = mAudioWatchdog->getTid();
3400         sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3401 #endif
3402 
3403     }
3404 
3405     switch (kUseFastMixer) {
3406     case FastMixer_Never:
3407     case FastMixer_Dynamic:
3408         mNormalSink = mOutputSink;
3409         break;
3410     case FastMixer_Always:
3411         mNormalSink = mPipeSink;
3412         break;
3413     case FastMixer_Static:
3414         mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3415         break;
3416     }
3417 }
3418 
~MixerThread()3419 AudioFlinger::MixerThread::~MixerThread()
3420 {
3421     if (mFastMixer != 0) {
3422         FastMixerStateQueue *sq = mFastMixer->sq();
3423         FastMixerState *state = sq->begin();
3424         if (state->mCommand == FastMixerState::COLD_IDLE) {
3425             int32_t old = android_atomic_inc(&mFastMixerFutex);
3426             if (old == -1) {
3427                 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3428             }
3429         }
3430         state->mCommand = FastMixerState::EXIT;
3431         sq->end();
3432         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3433         mFastMixer->join();
3434         // Though the fast mixer thread has exited, it's state queue is still valid.
3435         // We'll use that extract the final state which contains one remaining fast track
3436         // corresponding to our sub-mix.
3437         state = sq->begin();
3438         ALOG_ASSERT(state->mTrackMask == 1);
3439         FastTrack *fastTrack = &state->mFastTracks[0];
3440         ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3441         delete fastTrack->mBufferProvider;
3442         sq->end(false /*didModify*/);
3443         mFastMixer.clear();
3444 #ifdef AUDIO_WATCHDOG
3445         if (mAudioWatchdog != 0) {
3446             mAudioWatchdog->requestExit();
3447             mAudioWatchdog->requestExitAndWait();
3448             mAudioWatchdog.clear();
3449         }
3450 #endif
3451     }
3452     mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3453     delete mAudioMixer;
3454 }
3455 
3456 
correctLatency_l(uint32_t latency) const3457 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3458 {
3459     if (mFastMixer != 0) {
3460         MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3461         latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3462     }
3463     return latency;
3464 }
3465 
3466 
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)3467 void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3468 {
3469     PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3470 }
3471 
threadLoop_write()3472 ssize_t AudioFlinger::MixerThread::threadLoop_write()
3473 {
3474     // FIXME we should only do one push per cycle; confirm this is true
3475     // Start the fast mixer if it's not already running
3476     if (mFastMixer != 0) {
3477         FastMixerStateQueue *sq = mFastMixer->sq();
3478         FastMixerState *state = sq->begin();
3479         if (state->mCommand != FastMixerState::MIX_WRITE &&
3480                 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3481             if (state->mCommand == FastMixerState::COLD_IDLE) {
3482                 int32_t old = android_atomic_inc(&mFastMixerFutex);
3483                 if (old == -1) {
3484                     (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3485                 }
3486 #ifdef AUDIO_WATCHDOG
3487                 if (mAudioWatchdog != 0) {
3488                     mAudioWatchdog->resume();
3489                 }
3490 #endif
3491             }
3492             state->mCommand = FastMixerState::MIX_WRITE;
3493 #ifdef FAST_THREAD_STATISTICS
3494             mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3495                 FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3496 #endif
3497             sq->end();
3498             sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3499             if (kUseFastMixer == FastMixer_Dynamic) {
3500                 mNormalSink = mPipeSink;
3501             }
3502         } else {
3503             sq->end(false /*didModify*/);
3504         }
3505     }
3506     return PlaybackThread::threadLoop_write();
3507 }
3508 
threadLoop_standby()3509 void AudioFlinger::MixerThread::threadLoop_standby()
3510 {
3511     // Idle the fast mixer if it's currently running
3512     if (mFastMixer != 0) {
3513         FastMixerStateQueue *sq = mFastMixer->sq();
3514         FastMixerState *state = sq->begin();
3515         if (!(state->mCommand & FastMixerState::IDLE)) {
3516             state->mCommand = FastMixerState::COLD_IDLE;
3517             state->mColdFutexAddr = &mFastMixerFutex;
3518             state->mColdGen++;
3519             mFastMixerFutex = 0;
3520             sq->end();
3521             // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3522             sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3523             if (kUseFastMixer == FastMixer_Dynamic) {
3524                 mNormalSink = mOutputSink;
3525             }
3526 #ifdef AUDIO_WATCHDOG
3527             if (mAudioWatchdog != 0) {
3528                 mAudioWatchdog->pause();
3529             }
3530 #endif
3531         } else {
3532             sq->end(false /*didModify*/);
3533         }
3534     }
3535     PlaybackThread::threadLoop_standby();
3536 }
3537 
waitingAsyncCallback_l()3538 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3539 {
3540     return false;
3541 }
3542 
shouldStandby_l()3543 bool AudioFlinger::PlaybackThread::shouldStandby_l()
3544 {
3545     return !mStandby;
3546 }
3547 
waitingAsyncCallback()3548 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3549 {
3550     Mutex::Autolock _l(mLock);
3551     return waitingAsyncCallback_l();
3552 }
3553 
3554 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_standby()3555 void AudioFlinger::PlaybackThread::threadLoop_standby()
3556 {
3557     ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3558     mOutput->standby();
3559     if (mUseAsyncWrite != 0) {
3560         // discard any pending drain or write ack by incrementing sequence
3561         mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3562         mDrainSequence = (mDrainSequence + 2) & ~1;
3563         ALOG_ASSERT(mCallbackThread != 0);
3564         mCallbackThread->setWriteBlocked(mWriteAckSequence);
3565         mCallbackThread->setDraining(mDrainSequence);
3566     }
3567     mHwPaused = false;
3568 }
3569 
onAddNewTrack_l()3570 void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3571 {
3572     ALOGV("signal playback thread");
3573     broadcast_l();
3574 }
3575 
threadLoop_mix()3576 void AudioFlinger::MixerThread::threadLoop_mix()
3577 {
3578     // obtain the presentation timestamp of the next output buffer
3579     int64_t pts;
3580     status_t status = INVALID_OPERATION;
3581 
3582     if (mNormalSink != 0) {
3583         status = mNormalSink->getNextWriteTimestamp(&pts);
3584     } else {
3585         status = mOutputSink->getNextWriteTimestamp(&pts);
3586     }
3587 
3588     if (status != NO_ERROR) {
3589         pts = AudioBufferProvider::kInvalidPTS;
3590     }
3591 
3592     // mix buffers...
3593     mAudioMixer->process(pts);
3594     mCurrentWriteLength = mSinkBufferSize;
3595     // increase sleep time progressively when application underrun condition clears.
3596     // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3597     // that a steady state of alternating ready/not ready conditions keeps the sleep time
3598     // such that we would underrun the audio HAL.
3599     if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3600         sleepTimeShift--;
3601     }
3602     mSleepTimeUs = 0;
3603     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3604     //TODO: delay standby when effects have a tail
3605 
3606 }
3607 
threadLoop_sleepTime()3608 void AudioFlinger::MixerThread::threadLoop_sleepTime()
3609 {
3610     // If no tracks are ready, sleep once for the duration of an output
3611     // buffer size, then write 0s to the output
3612     if (mSleepTimeUs == 0) {
3613         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3614             mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3615             if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3616                 mSleepTimeUs = kMinThreadSleepTimeUs;
3617             }
3618             // reduce sleep time in case of consecutive application underruns to avoid
3619             // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3620             // duration we would end up writing less data than needed by the audio HAL if
3621             // the condition persists.
3622             if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3623                 sleepTimeShift++;
3624             }
3625         } else {
3626             mSleepTimeUs = mIdleSleepTimeUs;
3627         }
3628     } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3629         // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3630         // before effects processing or output.
3631         if (mMixerBufferValid) {
3632             memset(mMixerBuffer, 0, mMixerBufferSize);
3633         } else {
3634             memset(mSinkBuffer, 0, mSinkBufferSize);
3635         }
3636         mSleepTimeUs = 0;
3637         ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3638                 "anticipated start");
3639     }
3640     // TODO add standby time extension fct of effect tail
3641 }
3642 
3643 // prepareTracks_l() must be called with ThreadBase::mLock held
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)3644 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3645         Vector< sp<Track> > *tracksToRemove)
3646 {
3647 
3648     mixer_state mixerStatus = MIXER_IDLE;
3649     // find out which tracks need to be processed
3650     size_t count = mActiveTracks.size();
3651     size_t mixedTracks = 0;
3652     size_t tracksWithEffect = 0;
3653     // counts only _active_ fast tracks
3654     size_t fastTracks = 0;
3655     uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3656 
3657     float masterVolume = mMasterVolume;
3658     bool masterMute = mMasterMute;
3659 
3660     if (masterMute) {
3661         masterVolume = 0;
3662     }
3663     // Delegate master volume control to effect in output mix effect chain if needed
3664     sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3665     if (chain != 0) {
3666         uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3667         chain->setVolume_l(&v, &v);
3668         masterVolume = (float)((v + (1 << 23)) >> 24);
3669         chain.clear();
3670     }
3671 
3672     // prepare a new state to push
3673     FastMixerStateQueue *sq = NULL;
3674     FastMixerState *state = NULL;
3675     bool didModify = false;
3676     FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3677     if (mFastMixer != 0) {
3678         sq = mFastMixer->sq();
3679         state = sq->begin();
3680     }
3681 
3682     mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
3683     mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3684 
3685     for (size_t i=0 ; i<count ; i++) {
3686         const sp<Track> t = mActiveTracks[i].promote();
3687         if (t == 0) {
3688             continue;
3689         }
3690 
3691         // this const just means the local variable doesn't change
3692         Track* const track = t.get();
3693 
3694         // process fast tracks
3695         if (track->isFastTrack()) {
3696 
3697             // It's theoretically possible (though unlikely) for a fast track to be created
3698             // and then removed within the same normal mix cycle.  This is not a problem, as
3699             // the track never becomes active so it's fast mixer slot is never touched.
3700             // The converse, of removing an (active) track and then creating a new track
3701             // at the identical fast mixer slot within the same normal mix cycle,
3702             // is impossible because the slot isn't marked available until the end of each cycle.
3703             int j = track->mFastIndex;
3704             ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
3705             ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3706             FastTrack *fastTrack = &state->mFastTracks[j];
3707 
3708             // Determine whether the track is currently in underrun condition,
3709             // and whether it had a recent underrun.
3710             FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3711             FastTrackUnderruns underruns = ftDump->mUnderruns;
3712             uint32_t recentFull = (underruns.mBitFields.mFull -
3713                     track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3714             uint32_t recentPartial = (underruns.mBitFields.mPartial -
3715                     track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3716             uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3717                     track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3718             uint32_t recentUnderruns = recentPartial + recentEmpty;
3719             track->mObservedUnderruns = underruns;
3720             // don't count underruns that occur while stopping or pausing
3721             // or stopped which can occur when flush() is called while active
3722             if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3723                     recentUnderruns > 0) {
3724                 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3725                 track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3726             }
3727 
3728             // This is similar to the state machine for normal tracks,
3729             // with a few modifications for fast tracks.
3730             bool isActive = true;
3731             switch (track->mState) {
3732             case TrackBase::STOPPING_1:
3733                 // track stays active in STOPPING_1 state until first underrun
3734                 if (recentUnderruns > 0 || track->isTerminated()) {
3735                     track->mState = TrackBase::STOPPING_2;
3736                 }
3737                 break;
3738             case TrackBase::PAUSING:
3739                 // ramp down is not yet implemented
3740                 track->setPaused();
3741                 break;
3742             case TrackBase::RESUMING:
3743                 // ramp up is not yet implemented
3744                 track->mState = TrackBase::ACTIVE;
3745                 break;
3746             case TrackBase::ACTIVE:
3747                 if (recentFull > 0 || recentPartial > 0) {
3748                     // track has provided at least some frames recently: reset retry count
3749                     track->mRetryCount = kMaxTrackRetries;
3750                 }
3751                 if (recentUnderruns == 0) {
3752                     // no recent underruns: stay active
3753                     break;
3754                 }
3755                 // there has recently been an underrun of some kind
3756                 if (track->sharedBuffer() == 0) {
3757                     // were any of the recent underruns "empty" (no frames available)?
3758                     if (recentEmpty == 0) {
3759                         // no, then ignore the partial underruns as they are allowed indefinitely
3760                         break;
3761                     }
3762                     // there has recently been an "empty" underrun: decrement the retry counter
3763                     if (--(track->mRetryCount) > 0) {
3764                         break;
3765                     }
3766                     // indicate to client process that the track was disabled because of underrun;
3767                     // it will then automatically call start() when data is available
3768                     android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags);
3769                     // remove from active list, but state remains ACTIVE [confusing but true]
3770                     isActive = false;
3771                     break;
3772                 }
3773                 // fall through
3774             case TrackBase::STOPPING_2:
3775             case TrackBase::PAUSED:
3776             case TrackBase::STOPPED:
3777             case TrackBase::FLUSHED:   // flush() while active
3778                 // Check for presentation complete if track is inactive
3779                 // We have consumed all the buffers of this track.
3780                 // This would be incomplete if we auto-paused on underrun
3781                 {
3782                     size_t audioHALFrames =
3783                             (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3784                     size_t framesWritten = mBytesWritten / mFrameSize;
3785                     if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3786                         // track stays in active list until presentation is complete
3787                         break;
3788                     }
3789                 }
3790                 if (track->isStopping_2()) {
3791                     track->mState = TrackBase::STOPPED;
3792                 }
3793                 if (track->isStopped()) {
3794                     // Can't reset directly, as fast mixer is still polling this track
3795                     //   track->reset();
3796                     // So instead mark this track as needing to be reset after push with ack
3797                     resetMask |= 1 << i;
3798                 }
3799                 isActive = false;
3800                 break;
3801             case TrackBase::IDLE:
3802             default:
3803                 LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
3804             }
3805 
3806             if (isActive) {
3807                 // was it previously inactive?
3808                 if (!(state->mTrackMask & (1 << j))) {
3809                     ExtendedAudioBufferProvider *eabp = track;
3810                     VolumeProvider *vp = track;
3811                     fastTrack->mBufferProvider = eabp;
3812                     fastTrack->mVolumeProvider = vp;
3813                     fastTrack->mChannelMask = track->mChannelMask;
3814                     fastTrack->mFormat = track->mFormat;
3815                     fastTrack->mGeneration++;
3816                     state->mTrackMask |= 1 << j;
3817                     didModify = true;
3818                     // no acknowledgement required for newly active tracks
3819                 }
3820                 // cache the combined master volume and stream type volume for fast mixer; this
3821                 // lacks any synchronization or barrier so VolumeProvider may read a stale value
3822                 track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
3823                 ++fastTracks;
3824             } else {
3825                 // was it previously active?
3826                 if (state->mTrackMask & (1 << j)) {
3827                     fastTrack->mBufferProvider = NULL;
3828                     fastTrack->mGeneration++;
3829                     state->mTrackMask &= ~(1 << j);
3830                     didModify = true;
3831                     // If any fast tracks were removed, we must wait for acknowledgement
3832                     // because we're about to decrement the last sp<> on those tracks.
3833                     block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3834                 } else {
3835                     LOG_ALWAYS_FATAL("fast track %d should have been active", j);
3836                 }
3837                 tracksToRemove->add(track);
3838                 // Avoids a misleading display in dumpsys
3839                 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
3840             }
3841             continue;
3842         }
3843 
3844         {   // local variable scope to avoid goto warning
3845 
3846         audio_track_cblk_t* cblk = track->cblk();
3847 
3848         // The first time a track is added we wait
3849         // for all its buffers to be filled before processing it
3850         int name = track->name();
3851         // make sure that we have enough frames to mix one full buffer.
3852         // enforce this condition only once to enable draining the buffer in case the client
3853         // app does not call stop() and relies on underrun to stop:
3854         // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
3855         // during last round
3856         size_t desiredFrames;
3857         const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
3858         AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
3859 
3860         desiredFrames = sourceFramesNeededWithTimestretch(
3861                 sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
3862         // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
3863         // add frames already consumed but not yet released by the resampler
3864         // because mAudioTrackServerProxy->framesReady() will include these frames
3865         desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
3866 
3867         uint32_t minFrames = 1;
3868         if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
3869                 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
3870             minFrames = desiredFrames;
3871         }
3872 
3873         size_t framesReady = track->framesReady();
3874         if (ATRACE_ENABLED()) {
3875             // I wish we had formatted trace names
3876             char traceName[16];
3877             strcpy(traceName, "nRdy");
3878             int name = track->name();
3879             if (AudioMixer::TRACK0 <= name &&
3880                     name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
3881                 name -= AudioMixer::TRACK0;
3882                 traceName[4] = (name / 10) + '0';
3883                 traceName[5] = (name % 10) + '0';
3884             } else {
3885                 traceName[4] = '?';
3886                 traceName[5] = '?';
3887             }
3888             traceName[6] = '\0';
3889             ATRACE_INT(traceName, framesReady);
3890         }
3891         if ((framesReady >= minFrames) && track->isReady() &&
3892                 !track->isPaused() && !track->isTerminated())
3893         {
3894             ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
3895 
3896             mixedTracks++;
3897 
3898             // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
3899             // there is an effect chain connected to the track
3900             chain.clear();
3901             if (track->mainBuffer() != mSinkBuffer &&
3902                     track->mainBuffer() != mMixerBuffer) {
3903                 if (mEffectBufferEnabled) {
3904                     mEffectBufferValid = true; // Later can set directly.
3905                 }
3906                 chain = getEffectChain_l(track->sessionId());
3907                 // Delegate volume control to effect in track effect chain if needed
3908                 if (chain != 0) {
3909                     tracksWithEffect++;
3910                 } else {
3911                     ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
3912                             "session %d",
3913                             name, track->sessionId());
3914                 }
3915             }
3916 
3917 
3918             int param = AudioMixer::VOLUME;
3919             if (track->mFillingUpStatus == Track::FS_FILLED) {
3920                 // no ramp for the first volume setting
3921                 track->mFillingUpStatus = Track::FS_ACTIVE;
3922                 if (track->mState == TrackBase::RESUMING) {
3923                     track->mState = TrackBase::ACTIVE;
3924                     param = AudioMixer::RAMP_VOLUME;
3925                 }
3926                 mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
3927             // FIXME should not make a decision based on mServer
3928             } else if (cblk->mServer != 0) {
3929                 // If the track is stopped before the first frame was mixed,
3930                 // do not apply ramp
3931                 param = AudioMixer::RAMP_VOLUME;
3932             }
3933 
3934             // compute volume for this track
3935             uint32_t vl, vr;       // in U8.24 integer format
3936             float vlf, vrf, vaf;   // in [0.0, 1.0] float format
3937             if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
3938                 vl = vr = 0;
3939                 vlf = vrf = vaf = 0.;
3940                 if (track->isPausing()) {
3941                     track->setPaused();
3942                 }
3943             } else {
3944 
3945                 // read original volumes with volume control
3946                 float typeVolume = mStreamTypes[track->streamType()].volume;
3947                 float v = masterVolume * typeVolume;
3948                 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
3949                 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
3950                 vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
3951                 vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
3952                 // track volumes come from shared memory, so can't be trusted and must be clamped
3953                 if (vlf > GAIN_FLOAT_UNITY) {
3954                     ALOGV("Track left volume out of range: %.3g", vlf);
3955                     vlf = GAIN_FLOAT_UNITY;
3956                 }
3957                 if (vrf > GAIN_FLOAT_UNITY) {
3958                     ALOGV("Track right volume out of range: %.3g", vrf);
3959                     vrf = GAIN_FLOAT_UNITY;
3960                 }
3961                 // now apply the master volume and stream type volume
3962                 vlf *= v;
3963                 vrf *= v;
3964                 // assuming master volume and stream type volume each go up to 1.0,
3965                 // then derive vl and vr as U8.24 versions for the effect chain
3966                 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
3967                 vl = (uint32_t) (scaleto8_24 * vlf);
3968                 vr = (uint32_t) (scaleto8_24 * vrf);
3969                 // vl and vr are now in U8.24 format
3970                 uint16_t sendLevel = proxy->getSendLevel_U4_12();
3971                 // send level comes from shared memory and so may be corrupt
3972                 if (sendLevel > MAX_GAIN_INT) {
3973                     ALOGV("Track send level out of range: %04X", sendLevel);
3974                     sendLevel = MAX_GAIN_INT;
3975                 }
3976                 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
3977                 vaf = v * sendLevel * (1. / MAX_GAIN_INT);
3978             }
3979 
3980             // Delegate volume control to effect in track effect chain if needed
3981             if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
3982                 // Do not ramp volume if volume is controlled by effect
3983                 param = AudioMixer::VOLUME;
3984                 // Update remaining floating point volume levels
3985                 vlf = (float)vl / (1 << 24);
3986                 vrf = (float)vr / (1 << 24);
3987                 track->mHasVolumeController = true;
3988             } else {
3989                 // force no volume ramp when volume controller was just disabled or removed
3990                 // from effect chain to avoid volume spike
3991                 if (track->mHasVolumeController) {
3992                     param = AudioMixer::VOLUME;
3993                 }
3994                 track->mHasVolumeController = false;
3995             }
3996 
3997             // XXX: these things DON'T need to be done each time
3998             mAudioMixer->setBufferProvider(name, track);
3999             mAudioMixer->enable(name);
4000 
4001             mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4002             mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4003             mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4004             mAudioMixer->setParameter(
4005                 name,
4006                 AudioMixer::TRACK,
4007                 AudioMixer::FORMAT, (void *)track->format());
4008             mAudioMixer->setParameter(
4009                 name,
4010                 AudioMixer::TRACK,
4011                 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4012             mAudioMixer->setParameter(
4013                 name,
4014                 AudioMixer::TRACK,
4015                 AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4016             // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4017             uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4018             uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4019             if (reqSampleRate == 0) {
4020                 reqSampleRate = mSampleRate;
4021             } else if (reqSampleRate > maxSampleRate) {
4022                 reqSampleRate = maxSampleRate;
4023             }
4024             mAudioMixer->setParameter(
4025                 name,
4026                 AudioMixer::RESAMPLE,
4027                 AudioMixer::SAMPLE_RATE,
4028                 (void *)(uintptr_t)reqSampleRate);
4029 
4030             AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4031             mAudioMixer->setParameter(
4032                 name,
4033                 AudioMixer::TIMESTRETCH,
4034                 AudioMixer::PLAYBACK_RATE,
4035                 &playbackRate);
4036 
4037             /*
4038              * Select the appropriate output buffer for the track.
4039              *
4040              * Tracks with effects go into their own effects chain buffer
4041              * and from there into either mEffectBuffer or mSinkBuffer.
4042              *
4043              * Other tracks can use mMixerBuffer for higher precision
4044              * channel accumulation.  If this buffer is enabled
4045              * (mMixerBufferEnabled true), then selected tracks will accumulate
4046              * into it.
4047              *
4048              */
4049             if (mMixerBufferEnabled
4050                     && (track->mainBuffer() == mSinkBuffer
4051                             || track->mainBuffer() == mMixerBuffer)) {
4052                 mAudioMixer->setParameter(
4053                         name,
4054                         AudioMixer::TRACK,
4055                         AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4056                 mAudioMixer->setParameter(
4057                         name,
4058                         AudioMixer::TRACK,
4059                         AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4060                 // TODO: override track->mainBuffer()?
4061                 mMixerBufferValid = true;
4062             } else {
4063                 mAudioMixer->setParameter(
4064                         name,
4065                         AudioMixer::TRACK,
4066                         AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4067                 mAudioMixer->setParameter(
4068                         name,
4069                         AudioMixer::TRACK,
4070                         AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4071             }
4072             mAudioMixer->setParameter(
4073                 name,
4074                 AudioMixer::TRACK,
4075                 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4076 
4077             // reset retry count
4078             track->mRetryCount = kMaxTrackRetries;
4079 
4080             // If one track is ready, set the mixer ready if:
4081             //  - the mixer was not ready during previous round OR
4082             //  - no other track is not ready
4083             if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4084                     mixerStatus != MIXER_TRACKS_ENABLED) {
4085                 mixerStatus = MIXER_TRACKS_READY;
4086             }
4087         } else {
4088             if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4089                 ALOGV("track(%p) underrun,  framesReady(%zu) < framesDesired(%zd)",
4090                         track, framesReady, desiredFrames);
4091                 track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4092             }
4093             // clear effect chain input buffer if an active track underruns to avoid sending
4094             // previous audio buffer again to effects
4095             chain = getEffectChain_l(track->sessionId());
4096             if (chain != 0) {
4097                 chain->clearInputBuffer();
4098             }
4099 
4100             ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4101             if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4102                     track->isStopped() || track->isPaused()) {
4103                 // We have consumed all the buffers of this track.
4104                 // Remove it from the list of active tracks.
4105                 // TODO: use actual buffer filling status instead of latency when available from
4106                 // audio HAL
4107                 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4108                 size_t framesWritten = mBytesWritten / mFrameSize;
4109                 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4110                     if (track->isStopped()) {
4111                         track->reset();
4112                     }
4113                     tracksToRemove->add(track);
4114                 }
4115             } else {
4116                 // No buffers for this track. Give it a few chances to
4117                 // fill a buffer, then remove it from active list.
4118                 if (--(track->mRetryCount) <= 0) {
4119                     ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4120                     tracksToRemove->add(track);
4121                     // indicate to client process that the track was disabled because of underrun;
4122                     // it will then automatically call start() when data is available
4123                     android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4124                 // If one track is not ready, mark the mixer also not ready if:
4125                 //  - the mixer was ready during previous round OR
4126                 //  - no other track is ready
4127                 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4128                                 mixerStatus != MIXER_TRACKS_READY) {
4129                     mixerStatus = MIXER_TRACKS_ENABLED;
4130                 }
4131             }
4132             mAudioMixer->disable(name);
4133         }
4134 
4135         }   // local variable scope to avoid goto warning
4136 track_is_ready: ;
4137 
4138     }
4139 
4140     // Push the new FastMixer state if necessary
4141     bool pauseAudioWatchdog = false;
4142     if (didModify) {
4143         state->mFastTracksGen++;
4144         // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4145         if (kUseFastMixer == FastMixer_Dynamic &&
4146                 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4147             state->mCommand = FastMixerState::COLD_IDLE;
4148             state->mColdFutexAddr = &mFastMixerFutex;
4149             state->mColdGen++;
4150             mFastMixerFutex = 0;
4151             if (kUseFastMixer == FastMixer_Dynamic) {
4152                 mNormalSink = mOutputSink;
4153             }
4154             // If we go into cold idle, need to wait for acknowledgement
4155             // so that fast mixer stops doing I/O.
4156             block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4157             pauseAudioWatchdog = true;
4158         }
4159     }
4160     if (sq != NULL) {
4161         sq->end(didModify);
4162         sq->push(block);
4163     }
4164 #ifdef AUDIO_WATCHDOG
4165     if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4166         mAudioWatchdog->pause();
4167     }
4168 #endif
4169 
4170     // Now perform the deferred reset on fast tracks that have stopped
4171     while (resetMask != 0) {
4172         size_t i = __builtin_ctz(resetMask);
4173         ALOG_ASSERT(i < count);
4174         resetMask &= ~(1 << i);
4175         sp<Track> t = mActiveTracks[i].promote();
4176         if (t == 0) {
4177             continue;
4178         }
4179         Track* track = t.get();
4180         ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4181         track->reset();
4182     }
4183 
4184     // remove all the tracks that need to be...
4185     removeTracks_l(*tracksToRemove);
4186 
4187     if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4188         mEffectBufferValid = true;
4189     }
4190 
4191     if (mEffectBufferValid) {
4192         // as long as there are effects we should clear the effects buffer, to avoid
4193         // passing a non-clean buffer to the effect chain
4194         memset(mEffectBuffer, 0, mEffectBufferSize);
4195     }
4196     // sink or mix buffer must be cleared if all tracks are connected to an
4197     // effect chain as in this case the mixer will not write to the sink or mix buffer
4198     // and track effects will accumulate into it
4199     if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4200             (mixedTracks == 0 && fastTracks > 0))) {
4201         // FIXME as a performance optimization, should remember previous zero status
4202         if (mMixerBufferValid) {
4203             memset(mMixerBuffer, 0, mMixerBufferSize);
4204             // TODO: In testing, mSinkBuffer below need not be cleared because
4205             // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4206             // after mixing.
4207             //
4208             // To enforce this guarantee:
4209             // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4210             // (mixedTracks == 0 && fastTracks > 0))
4211             // must imply MIXER_TRACKS_READY.
4212             // Later, we may clear buffers regardless, and skip much of this logic.
4213         }
4214         // FIXME as a performance optimization, should remember previous zero status
4215         memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4216     }
4217 
4218     // if any fast tracks, then status is ready
4219     mMixerStatusIgnoringFastTracks = mixerStatus;
4220     if (fastTracks > 0) {
4221         mixerStatus = MIXER_TRACKS_READY;
4222     }
4223     return mixerStatus;
4224 }
4225 
4226 // getTrackName_l() must be called with ThreadBase::mLock held
getTrackName_l(audio_channel_mask_t channelMask,audio_format_t format,int sessionId)4227 int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4228         audio_format_t format, int sessionId)
4229 {
4230     return mAudioMixer->getTrackName(channelMask, format, sessionId);
4231 }
4232 
4233 // deleteTrackName_l() must be called with ThreadBase::mLock held
deleteTrackName_l(int name)4234 void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4235 {
4236     ALOGV("remove track (%d) and delete from mixer", name);
4237     mAudioMixer->deleteTrackName(name);
4238 }
4239 
4240 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)4241 bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4242                                                        status_t& status)
4243 {
4244     bool reconfig = false;
4245 
4246     status = NO_ERROR;
4247 
4248     // if !&IDLE, holds the FastMixer state to restore after new parameters processed
4249     FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
4250     if (mFastMixer != 0) {
4251         FastMixerStateQueue *sq = mFastMixer->sq();
4252         FastMixerState *state = sq->begin();
4253         if (!(state->mCommand & FastMixerState::IDLE)) {
4254             previousCommand = state->mCommand;
4255             state->mCommand = FastMixerState::HOT_IDLE;
4256             sq->end();
4257             sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4258         } else {
4259             sq->end(false /*didModify*/);
4260         }
4261     }
4262 
4263     AudioParameter param = AudioParameter(keyValuePair);
4264     int value;
4265     if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4266         reconfig = true;
4267     }
4268     if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4269         if (!isValidPcmSinkFormat((audio_format_t) value)) {
4270             status = BAD_VALUE;
4271         } else {
4272             // no need to save value, since it's constant
4273             reconfig = true;
4274         }
4275     }
4276     if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4277         if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4278             status = BAD_VALUE;
4279         } else {
4280             // no need to save value, since it's constant
4281             reconfig = true;
4282         }
4283     }
4284     if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4285         // do not accept frame count changes if tracks are open as the track buffer
4286         // size depends on frame count and correct behavior would not be guaranteed
4287         // if frame count is changed after track creation
4288         if (!mTracks.isEmpty()) {
4289             status = INVALID_OPERATION;
4290         } else {
4291             reconfig = true;
4292         }
4293     }
4294     if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4295 #ifdef ADD_BATTERY_DATA
4296         // when changing the audio output device, call addBatteryData to notify
4297         // the change
4298         if (mOutDevice != value) {
4299             uint32_t params = 0;
4300             // check whether speaker is on
4301             if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4302                 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4303             }
4304 
4305             audio_devices_t deviceWithoutSpeaker
4306                 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4307             // check if any other device (except speaker) is on
4308             if (value & deviceWithoutSpeaker) {
4309                 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4310             }
4311 
4312             if (params != 0) {
4313                 addBatteryData(params);
4314             }
4315         }
4316 #endif
4317 
4318         // forward device change to effects that have requested to be
4319         // aware of attached audio device.
4320         if (value != AUDIO_DEVICE_NONE) {
4321             mOutDevice = value;
4322             for (size_t i = 0; i < mEffectChains.size(); i++) {
4323                 mEffectChains[i]->setDevice_l(mOutDevice);
4324             }
4325         }
4326     }
4327 
4328     if (status == NO_ERROR) {
4329         status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4330                                                 keyValuePair.string());
4331         if (!mStandby && status == INVALID_OPERATION) {
4332             mOutput->standby();
4333             mStandby = true;
4334             mBytesWritten = 0;
4335             status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4336                                                    keyValuePair.string());
4337         }
4338         if (status == NO_ERROR && reconfig) {
4339             readOutputParameters_l();
4340             delete mAudioMixer;
4341             mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4342             for (size_t i = 0; i < mTracks.size() ; i++) {
4343                 int name = getTrackName_l(mTracks[i]->mChannelMask,
4344                         mTracks[i]->mFormat, mTracks[i]->mSessionId);
4345                 if (name < 0) {
4346                     break;
4347                 }
4348                 mTracks[i]->mName = name;
4349             }
4350             sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4351         }
4352     }
4353 
4354     if (!(previousCommand & FastMixerState::IDLE)) {
4355         ALOG_ASSERT(mFastMixer != 0);
4356         FastMixerStateQueue *sq = mFastMixer->sq();
4357         FastMixerState *state = sq->begin();
4358         ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
4359         state->mCommand = previousCommand;
4360         sq->end();
4361         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4362     }
4363 
4364     return reconfig;
4365 }
4366 
4367 
dumpInternals(int fd,const Vector<String16> & args)4368 void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4369 {
4370     const size_t SIZE = 256;
4371     char buffer[SIZE];
4372     String8 result;
4373 
4374     PlaybackThread::dumpInternals(fd, args);
4375     dprintf(fd, "  Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4376     dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4377 
4378     // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4379     const FastMixerDumpState copy(mFastMixerDumpState);
4380     copy.dump(fd);
4381 
4382 #ifdef STATE_QUEUE_DUMP
4383     // Similar for state queue
4384     StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4385     observerCopy.dump(fd);
4386     StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4387     mutatorCopy.dump(fd);
4388 #endif
4389 
4390 #ifdef TEE_SINK
4391     // Write the tee output to a .wav file
4392     dumpTee(fd, mTeeSource, mId);
4393 #endif
4394 
4395 #ifdef AUDIO_WATCHDOG
4396     if (mAudioWatchdog != 0) {
4397         // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4398         AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4399         wdCopy.dump(fd);
4400     }
4401 #endif
4402 }
4403 
idleSleepTimeUs() const4404 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4405 {
4406     return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4407 }
4408 
suspendSleepTimeUs() const4409 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4410 {
4411     return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4412 }
4413 
cacheParameters_l()4414 void AudioFlinger::MixerThread::cacheParameters_l()
4415 {
4416     PlaybackThread::cacheParameters_l();
4417 
4418     // FIXME: Relaxed timing because of a certain device that can't meet latency
4419     // Should be reduced to 2x after the vendor fixes the driver issue
4420     // increase threshold again due to low power audio mode. The way this warning
4421     // threshold is calculated and its usefulness should be reconsidered anyway.
4422     maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4423 }
4424 
4425 // ----------------------------------------------------------------------------
4426 
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,bool systemReady)4427 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4428         AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
4429     :   PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
4430         // mLeftVolFloat, mRightVolFloat
4431 {
4432 }
4433 
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device,ThreadBase::type_t type,bool systemReady)4434 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4435         AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4436         ThreadBase::type_t type, bool systemReady)
4437     :   PlaybackThread(audioFlinger, output, id, device, type, systemReady)
4438         // mLeftVolFloat, mRightVolFloat
4439 {
4440 }
4441 
~DirectOutputThread()4442 AudioFlinger::DirectOutputThread::~DirectOutputThread()
4443 {
4444 }
4445 
processVolume_l(Track * track,bool lastTrack)4446 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4447 {
4448     audio_track_cblk_t* cblk = track->cblk();
4449     float left, right;
4450 
4451     if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4452         left = right = 0;
4453     } else {
4454         float typeVolume = mStreamTypes[track->streamType()].volume;
4455         float v = mMasterVolume * typeVolume;
4456         AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4457         gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4458         left = float_from_gain(gain_minifloat_unpack_left(vlr));
4459         if (left > GAIN_FLOAT_UNITY) {
4460             left = GAIN_FLOAT_UNITY;
4461         }
4462         left *= v;
4463         right = float_from_gain(gain_minifloat_unpack_right(vlr));
4464         if (right > GAIN_FLOAT_UNITY) {
4465             right = GAIN_FLOAT_UNITY;
4466         }
4467         right *= v;
4468     }
4469 
4470     if (lastTrack) {
4471         if (left != mLeftVolFloat || right != mRightVolFloat) {
4472             mLeftVolFloat = left;
4473             mRightVolFloat = right;
4474 
4475             // Convert volumes from float to 8.24
4476             uint32_t vl = (uint32_t)(left * (1 << 24));
4477             uint32_t vr = (uint32_t)(right * (1 << 24));
4478 
4479             // Delegate volume control to effect in track effect chain if needed
4480             // only one effect chain can be present on DirectOutputThread, so if
4481             // there is one, the track is connected to it
4482             if (!mEffectChains.isEmpty()) {
4483                 mEffectChains[0]->setVolume_l(&vl, &vr);
4484                 left = (float)vl / (1 << 24);
4485                 right = (float)vr / (1 << 24);
4486             }
4487             if (mOutput->stream->set_volume) {
4488                 mOutput->stream->set_volume(mOutput->stream, left, right);
4489             }
4490         }
4491     }
4492 }
4493 
onAddNewTrack_l()4494 void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4495 {
4496     sp<Track> previousTrack = mPreviousTrack.promote();
4497     sp<Track> latestTrack = mLatestActiveTrack.promote();
4498 
4499     if (previousTrack != 0 && latestTrack != 0) {
4500         if (mType == DIRECT) {
4501             if (previousTrack.get() != latestTrack.get()) {
4502                 mFlushPending = true;
4503             }
4504         } else /* mType == OFFLOAD */ {
4505             if (previousTrack->sessionId() != latestTrack->sessionId()) {
4506                 mFlushPending = true;
4507             }
4508         }
4509     }
4510     PlaybackThread::onAddNewTrack_l();
4511 }
4512 
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)4513 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4514     Vector< sp<Track> > *tracksToRemove
4515 )
4516 {
4517     size_t count = mActiveTracks.size();
4518     mixer_state mixerStatus = MIXER_IDLE;
4519     bool doHwPause = false;
4520     bool doHwResume = false;
4521 
4522     // find out which tracks need to be processed
4523     for (size_t i = 0; i < count; i++) {
4524         sp<Track> t = mActiveTracks[i].promote();
4525         // The track died recently
4526         if (t == 0) {
4527             continue;
4528         }
4529 
4530         if (t->isInvalid()) {
4531             ALOGW("An invalidated track shouldn't be in active list");
4532             tracksToRemove->add(t);
4533             continue;
4534         }
4535 
4536         Track* const track = t.get();
4537         audio_track_cblk_t* cblk = track->cblk();
4538         // Only consider last track started for volume and mixer state control.
4539         // In theory an older track could underrun and restart after the new one starts
4540         // but as we only care about the transition phase between two tracks on a
4541         // direct output, it is not a problem to ignore the underrun case.
4542         sp<Track> l = mLatestActiveTrack.promote();
4543         bool last = l.get() == track;
4544 
4545         if (track->isPausing()) {
4546             track->setPaused();
4547             if (mHwSupportsPause && last && !mHwPaused) {
4548                 doHwPause = true;
4549                 mHwPaused = true;
4550             }
4551             tracksToRemove->add(track);
4552         } else if (track->isFlushPending()) {
4553             track->flushAck();
4554             if (last) {
4555                 mFlushPending = true;
4556             }
4557         } else if (track->isResumePending()) {
4558             track->resumeAck();
4559             if (last && mHwPaused) {
4560                 doHwResume = true;
4561                 mHwPaused = false;
4562             }
4563         }
4564 
4565         // The first time a track is added we wait
4566         // for all its buffers to be filled before processing it.
4567         // Allow draining the buffer in case the client
4568         // app does not call stop() and relies on underrun to stop:
4569         // hence the test on (track->mRetryCount > 1).
4570         // If retryCount<=1 then track is about to underrun and be removed.
4571         // Do not use a high threshold for compressed audio.
4572         uint32_t minFrames;
4573         if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4574             && (track->mRetryCount > 1) && audio_is_linear_pcm(mFormat)) {
4575             minFrames = mNormalFrameCount;
4576         } else {
4577             minFrames = 1;
4578         }
4579 
4580         if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4581                 !track->isStopping_2() && !track->isStopped())
4582         {
4583             ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4584 
4585             if (track->mFillingUpStatus == Track::FS_FILLED) {
4586                 track->mFillingUpStatus = Track::FS_ACTIVE;
4587                 // make sure processVolume_l() will apply new volume even if 0
4588                 mLeftVolFloat = mRightVolFloat = -1.0;
4589                 if (!mHwSupportsPause) {
4590                     track->resumeAck();
4591                 }
4592             }
4593 
4594             // compute volume for this track
4595             processVolume_l(track, last);
4596             if (last) {
4597                 sp<Track> previousTrack = mPreviousTrack.promote();
4598                 if (previousTrack != 0) {
4599                     if (track != previousTrack.get()) {
4600                         // Flush any data still being written from last track
4601                         mBytesRemaining = 0;
4602                         // Invalidate previous track to force a seek when resuming.
4603                         previousTrack->invalidate();
4604                     }
4605                 }
4606                 mPreviousTrack = track;
4607 
4608                 // reset retry count
4609                 track->mRetryCount = kMaxTrackRetriesDirect;
4610                 mActiveTrack = t;
4611                 mixerStatus = MIXER_TRACKS_READY;
4612                 if (mHwPaused) {
4613                     doHwResume = true;
4614                     mHwPaused = false;
4615                 }
4616             }
4617         } else {
4618             // clear effect chain input buffer if the last active track started underruns
4619             // to avoid sending previous audio buffer again to effects
4620             if (!mEffectChains.isEmpty() && last) {
4621                 mEffectChains[0]->clearInputBuffer();
4622             }
4623             if (track->isStopping_1()) {
4624                 track->mState = TrackBase::STOPPING_2;
4625                 if (last && mHwPaused) {
4626                      doHwResume = true;
4627                      mHwPaused = false;
4628                  }
4629             }
4630             if ((track->sharedBuffer() != 0) || track->isStopped() ||
4631                     track->isStopping_2() || track->isPaused()) {
4632                 // We have consumed all the buffers of this track.
4633                 // Remove it from the list of active tracks.
4634                 size_t audioHALFrames;
4635                 if (audio_is_linear_pcm(mFormat)) {
4636                     audioHALFrames = (latency_l() * mSampleRate) / 1000;
4637                 } else {
4638                     audioHALFrames = 0;
4639                 }
4640 
4641                 size_t framesWritten = mBytesWritten / mFrameSize;
4642                 if (mStandby || !last ||
4643                         track->presentationComplete(framesWritten, audioHALFrames)) {
4644                     if (track->isStopping_2()) {
4645                         track->mState = TrackBase::STOPPED;
4646                     }
4647                     if (track->isStopped()) {
4648                         track->reset();
4649                     }
4650                     tracksToRemove->add(track);
4651                 }
4652             } else {
4653                 // No buffers for this track. Give it a few chances to
4654                 // fill a buffer, then remove it from active list.
4655                 // Only consider last track started for mixer state control
4656                 if (--(track->mRetryCount) <= 0) {
4657                     ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4658                     tracksToRemove->add(track);
4659                     // indicate to client process that the track was disabled because of underrun;
4660                     // it will then automatically call start() when data is available
4661                     android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4662                 } else if (last) {
4663                     ALOGW("pause because of UNDERRUN, framesReady = %zu,"
4664                             "minFrames = %u, mFormat = %#x",
4665                             track->framesReady(), minFrames, mFormat);
4666                     mixerStatus = MIXER_TRACKS_ENABLED;
4667                     if (mHwSupportsPause && !mHwPaused && !mStandby) {
4668                         doHwPause = true;
4669                         mHwPaused = true;
4670                     }
4671                 }
4672             }
4673         }
4674     }
4675 
4676     // if an active track did not command a flush, check for pending flush on stopped tracks
4677     if (!mFlushPending) {
4678         for (size_t i = 0; i < mTracks.size(); i++) {
4679             if (mTracks[i]->isFlushPending()) {
4680                 mTracks[i]->flushAck();
4681                 mFlushPending = true;
4682             }
4683         }
4684     }
4685 
4686     // make sure the pause/flush/resume sequence is executed in the right order.
4687     // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4688     // before flush and then resume HW. This can happen in case of pause/flush/resume
4689     // if resume is received before pause is executed.
4690     if (mHwSupportsPause && !mStandby &&
4691             (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4692         mOutput->stream->pause(mOutput->stream);
4693     }
4694     if (mFlushPending) {
4695         flushHw_l();
4696     }
4697     if (mHwSupportsPause && !mStandby && doHwResume) {
4698         mOutput->stream->resume(mOutput->stream);
4699     }
4700     // remove all the tracks that need to be...
4701     removeTracks_l(*tracksToRemove);
4702 
4703     return mixerStatus;
4704 }
4705 
threadLoop_mix()4706 void AudioFlinger::DirectOutputThread::threadLoop_mix()
4707 {
4708     size_t frameCount = mFrameCount;
4709     int8_t *curBuf = (int8_t *)mSinkBuffer;
4710     // output audio to hardware
4711     while (frameCount) {
4712         AudioBufferProvider::Buffer buffer;
4713         buffer.frameCount = frameCount;
4714         status_t status = mActiveTrack->getNextBuffer(&buffer);
4715         if (status != NO_ERROR || buffer.raw == NULL) {
4716             memset(curBuf, 0, frameCount * mFrameSize);
4717             break;
4718         }
4719         memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4720         frameCount -= buffer.frameCount;
4721         curBuf += buffer.frameCount * mFrameSize;
4722         mActiveTrack->releaseBuffer(&buffer);
4723     }
4724     mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4725     mSleepTimeUs = 0;
4726     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4727     mActiveTrack.clear();
4728 }
4729 
threadLoop_sleepTime()4730 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4731 {
4732     // do not write to HAL when paused
4733     if (mHwPaused || (usesHwAvSync() && mStandby)) {
4734         mSleepTimeUs = mIdleSleepTimeUs;
4735         return;
4736     }
4737     if (mSleepTimeUs == 0) {
4738         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4739             mSleepTimeUs = mActiveSleepTimeUs;
4740         } else {
4741             mSleepTimeUs = mIdleSleepTimeUs;
4742         }
4743     } else if (mBytesWritten != 0 && audio_is_linear_pcm(mFormat)) {
4744         memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4745         mSleepTimeUs = 0;
4746     }
4747 }
4748 
threadLoop_exit()4749 void AudioFlinger::DirectOutputThread::threadLoop_exit()
4750 {
4751     {
4752         Mutex::Autolock _l(mLock);
4753         for (size_t i = 0; i < mTracks.size(); i++) {
4754             if (mTracks[i]->isFlushPending()) {
4755                 mTracks[i]->flushAck();
4756                 mFlushPending = true;
4757             }
4758         }
4759         if (mFlushPending) {
4760             flushHw_l();
4761         }
4762     }
4763     PlaybackThread::threadLoop_exit();
4764 }
4765 
4766 // must be called with thread mutex locked
shouldStandby_l()4767 bool AudioFlinger::DirectOutputThread::shouldStandby_l()
4768 {
4769     bool trackPaused = false;
4770     bool trackStopped = false;
4771 
4772     // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
4773     // after a timeout and we will enter standby then.
4774     if (mTracks.size() > 0) {
4775         trackPaused = mTracks[mTracks.size() - 1]->isPaused();
4776         trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
4777                            mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
4778     }
4779 
4780     return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
4781 }
4782 
4783 // getTrackName_l() must be called with ThreadBase::mLock held
getTrackName_l(audio_channel_mask_t channelMask __unused,audio_format_t format __unused,int sessionId __unused)4784 int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
4785         audio_format_t format __unused, int sessionId __unused)
4786 {
4787     return 0;
4788 }
4789 
4790 // deleteTrackName_l() must be called with ThreadBase::mLock held
deleteTrackName_l(int name __unused)4791 void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
4792 {
4793 }
4794 
4795 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)4796 bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
4797                                                               status_t& status)
4798 {
4799     bool reconfig = false;
4800 
4801     status = NO_ERROR;
4802 
4803     AudioParameter param = AudioParameter(keyValuePair);
4804     int value;
4805     if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4806         // forward device change to effects that have requested to be
4807         // aware of attached audio device.
4808         if (value != AUDIO_DEVICE_NONE) {
4809             mOutDevice = value;
4810             for (size_t i = 0; i < mEffectChains.size(); i++) {
4811                 mEffectChains[i]->setDevice_l(mOutDevice);
4812             }
4813         }
4814     }
4815     if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4816         // do not accept frame count changes if tracks are open as the track buffer
4817         // size depends on frame count and correct behavior would not be garantied
4818         // if frame count is changed after track creation
4819         if (!mTracks.isEmpty()) {
4820             status = INVALID_OPERATION;
4821         } else {
4822             reconfig = true;
4823         }
4824     }
4825     if (status == NO_ERROR) {
4826         status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4827                                                 keyValuePair.string());
4828         if (!mStandby && status == INVALID_OPERATION) {
4829             mOutput->standby();
4830             mStandby = true;
4831             mBytesWritten = 0;
4832             status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4833                                                    keyValuePair.string());
4834         }
4835         if (status == NO_ERROR && reconfig) {
4836             readOutputParameters_l();
4837             sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4838         }
4839     }
4840 
4841     return reconfig;
4842 }
4843 
activeSleepTimeUs() const4844 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
4845 {
4846     uint32_t time;
4847     if (audio_is_linear_pcm(mFormat)) {
4848         time = PlaybackThread::activeSleepTimeUs();
4849     } else {
4850         time = 10000;
4851     }
4852     return time;
4853 }
4854 
idleSleepTimeUs() const4855 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
4856 {
4857     uint32_t time;
4858     if (audio_is_linear_pcm(mFormat)) {
4859         time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
4860     } else {
4861         time = 10000;
4862     }
4863     return time;
4864 }
4865 
suspendSleepTimeUs() const4866 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
4867 {
4868     uint32_t time;
4869     if (audio_is_linear_pcm(mFormat)) {
4870         time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
4871     } else {
4872         time = 10000;
4873     }
4874     return time;
4875 }
4876 
cacheParameters_l()4877 void AudioFlinger::DirectOutputThread::cacheParameters_l()
4878 {
4879     PlaybackThread::cacheParameters_l();
4880 
4881     // use shorter standby delay as on normal output to release
4882     // hardware resources as soon as possible
4883     // no delay on outputs with HW A/V sync
4884     if (usesHwAvSync()) {
4885         mStandbyDelayNs = 0;
4886     } else if ((mType == OFFLOAD) && !audio_is_linear_pcm(mFormat)) {
4887         mStandbyDelayNs = kOffloadStandbyDelayNs;
4888     } else {
4889         mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
4890     }
4891 }
4892 
flushHw_l()4893 void AudioFlinger::DirectOutputThread::flushHw_l()
4894 {
4895     mOutput->flush();
4896     mHwPaused = false;
4897     mFlushPending = false;
4898 }
4899 
4900 // ----------------------------------------------------------------------------
4901 
AsyncCallbackThread(const wp<AudioFlinger::PlaybackThread> & playbackThread)4902 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
4903         const wp<AudioFlinger::PlaybackThread>& playbackThread)
4904     :   Thread(false /*canCallJava*/),
4905         mPlaybackThread(playbackThread),
4906         mWriteAckSequence(0),
4907         mDrainSequence(0)
4908 {
4909 }
4910 
~AsyncCallbackThread()4911 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
4912 {
4913 }
4914 
onFirstRef()4915 void AudioFlinger::AsyncCallbackThread::onFirstRef()
4916 {
4917     run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
4918 }
4919 
threadLoop()4920 bool AudioFlinger::AsyncCallbackThread::threadLoop()
4921 {
4922     while (!exitPending()) {
4923         uint32_t writeAckSequence;
4924         uint32_t drainSequence;
4925 
4926         {
4927             Mutex::Autolock _l(mLock);
4928             while (!((mWriteAckSequence & 1) ||
4929                      (mDrainSequence & 1) ||
4930                      exitPending())) {
4931                 mWaitWorkCV.wait(mLock);
4932             }
4933 
4934             if (exitPending()) {
4935                 break;
4936             }
4937             ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
4938                   mWriteAckSequence, mDrainSequence);
4939             writeAckSequence = mWriteAckSequence;
4940             mWriteAckSequence &= ~1;
4941             drainSequence = mDrainSequence;
4942             mDrainSequence &= ~1;
4943         }
4944         {
4945             sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
4946             if (playbackThread != 0) {
4947                 if (writeAckSequence & 1) {
4948                     playbackThread->resetWriteBlocked(writeAckSequence >> 1);
4949                 }
4950                 if (drainSequence & 1) {
4951                     playbackThread->resetDraining(drainSequence >> 1);
4952                 }
4953             }
4954         }
4955     }
4956     return false;
4957 }
4958 
exit()4959 void AudioFlinger::AsyncCallbackThread::exit()
4960 {
4961     ALOGV("AsyncCallbackThread::exit");
4962     Mutex::Autolock _l(mLock);
4963     requestExit();
4964     mWaitWorkCV.broadcast();
4965 }
4966 
setWriteBlocked(uint32_t sequence)4967 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
4968 {
4969     Mutex::Autolock _l(mLock);
4970     // bit 0 is cleared
4971     mWriteAckSequence = sequence << 1;
4972 }
4973 
resetWriteBlocked()4974 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
4975 {
4976     Mutex::Autolock _l(mLock);
4977     // ignore unexpected callbacks
4978     if (mWriteAckSequence & 2) {
4979         mWriteAckSequence |= 1;
4980         mWaitWorkCV.signal();
4981     }
4982 }
4983 
setDraining(uint32_t sequence)4984 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
4985 {
4986     Mutex::Autolock _l(mLock);
4987     // bit 0 is cleared
4988     mDrainSequence = sequence << 1;
4989 }
4990 
resetDraining()4991 void AudioFlinger::AsyncCallbackThread::resetDraining()
4992 {
4993     Mutex::Autolock _l(mLock);
4994     // ignore unexpected callbacks
4995     if (mDrainSequence & 2) {
4996         mDrainSequence |= 1;
4997         mWaitWorkCV.signal();
4998     }
4999 }
5000 
5001 
5002 // ----------------------------------------------------------------------------
OffloadThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device,bool systemReady)5003 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5004         AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
5005     :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
5006         mPausedBytesRemaining(0)
5007 {
5008     //FIXME: mStandby should be set to true by ThreadBase constructor
5009     mStandby = true;
5010 }
5011 
threadLoop_exit()5012 void AudioFlinger::OffloadThread::threadLoop_exit()
5013 {
5014     if (mFlushPending || mHwPaused) {
5015         // If a flush is pending or track was paused, just discard buffered data
5016         flushHw_l();
5017     } else {
5018         mMixerStatus = MIXER_DRAIN_ALL;
5019         threadLoop_drain();
5020     }
5021     if (mUseAsyncWrite) {
5022         ALOG_ASSERT(mCallbackThread != 0);
5023         mCallbackThread->exit();
5024     }
5025     PlaybackThread::threadLoop_exit();
5026 }
5027 
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)5028 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5029     Vector< sp<Track> > *tracksToRemove
5030 )
5031 {
5032     size_t count = mActiveTracks.size();
5033 
5034     mixer_state mixerStatus = MIXER_IDLE;
5035     bool doHwPause = false;
5036     bool doHwResume = false;
5037 
5038     ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
5039 
5040     // find out which tracks need to be processed
5041     for (size_t i = 0; i < count; i++) {
5042         sp<Track> t = mActiveTracks[i].promote();
5043         // The track died recently
5044         if (t == 0) {
5045             continue;
5046         }
5047         Track* const track = t.get();
5048         audio_track_cblk_t* cblk = track->cblk();
5049         // Only consider last track started for volume and mixer state control.
5050         // In theory an older track could underrun and restart after the new one starts
5051         // but as we only care about the transition phase between two tracks on a
5052         // direct output, it is not a problem to ignore the underrun case.
5053         sp<Track> l = mLatestActiveTrack.promote();
5054         bool last = l.get() == track;
5055 
5056         if (track->isInvalid()) {
5057             ALOGW("An invalidated track shouldn't be in active list");
5058             tracksToRemove->add(track);
5059             continue;
5060         }
5061 
5062         if (track->mState == TrackBase::IDLE) {
5063             ALOGW("An idle track shouldn't be in active list");
5064             continue;
5065         }
5066 
5067         if (track->isPausing()) {
5068             track->setPaused();
5069             if (last) {
5070                 if (mHwSupportsPause && !mHwPaused) {
5071                     doHwPause = true;
5072                     mHwPaused = true;
5073                 }
5074                 // If we were part way through writing the mixbuffer to
5075                 // the HAL we must save this until we resume
5076                 // BUG - this will be wrong if a different track is made active,
5077                 // in that case we want to discard the pending data in the
5078                 // mixbuffer and tell the client to present it again when the
5079                 // track is resumed
5080                 mPausedWriteLength = mCurrentWriteLength;
5081                 mPausedBytesRemaining = mBytesRemaining;
5082                 mBytesRemaining = 0;    // stop writing
5083             }
5084             tracksToRemove->add(track);
5085         } else if (track->isFlushPending()) {
5086             track->flushAck();
5087             if (last) {
5088                 mFlushPending = true;
5089             }
5090         } else if (track->isResumePending()){
5091             track->resumeAck();
5092             if (last) {
5093                 if (mPausedBytesRemaining) {
5094                     // Need to continue write that was interrupted
5095                     mCurrentWriteLength = mPausedWriteLength;
5096                     mBytesRemaining = mPausedBytesRemaining;
5097                     mPausedBytesRemaining = 0;
5098                 }
5099                 if (mHwPaused) {
5100                     doHwResume = true;
5101                     mHwPaused = false;
5102                     // threadLoop_mix() will handle the case that we need to
5103                     // resume an interrupted write
5104                 }
5105                 // enable write to audio HAL
5106                 mSleepTimeUs = 0;
5107 
5108                 // Do not handle new data in this iteration even if track->framesReady()
5109                 mixerStatus = MIXER_TRACKS_ENABLED;
5110             }
5111         }  else if (track->framesReady() && track->isReady() &&
5112                 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5113             ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5114             if (track->mFillingUpStatus == Track::FS_FILLED) {
5115                 track->mFillingUpStatus = Track::FS_ACTIVE;
5116                 // make sure processVolume_l() will apply new volume even if 0
5117                 mLeftVolFloat = mRightVolFloat = -1.0;
5118             }
5119 
5120             if (last) {
5121                 sp<Track> previousTrack = mPreviousTrack.promote();
5122                 if (previousTrack != 0) {
5123                     if (track != previousTrack.get()) {
5124                         // Flush any data still being written from last track
5125                         mBytesRemaining = 0;
5126                         if (mPausedBytesRemaining) {
5127                             // Last track was paused so we also need to flush saved
5128                             // mixbuffer state and invalidate track so that it will
5129                             // re-submit that unwritten data when it is next resumed
5130                             mPausedBytesRemaining = 0;
5131                             // Invalidate is a bit drastic - would be more efficient
5132                             // to have a flag to tell client that some of the
5133                             // previously written data was lost
5134                             previousTrack->invalidate();
5135                         }
5136                         // flush data already sent to the DSP if changing audio session as audio
5137                         // comes from a different source. Also invalidate previous track to force a
5138                         // seek when resuming.
5139                         if (previousTrack->sessionId() != track->sessionId()) {
5140                             previousTrack->invalidate();
5141                         }
5142                     }
5143                 }
5144                 mPreviousTrack = track;
5145                 // reset retry count
5146                 track->mRetryCount = kMaxTrackRetriesOffload;
5147                 mActiveTrack = t;
5148                 mixerStatus = MIXER_TRACKS_READY;
5149             }
5150         } else {
5151             ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5152             if (track->isStopping_1()) {
5153                 // Hardware buffer can hold a large amount of audio so we must
5154                 // wait for all current track's data to drain before we say
5155                 // that the track is stopped.
5156                 if (mBytesRemaining == 0) {
5157                     // Only start draining when all data in mixbuffer
5158                     // has been written
5159                     ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5160                     track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
5161                     // do not drain if no data was ever sent to HAL (mStandby == true)
5162                     if (last && !mStandby) {
5163                         // do not modify drain sequence if we are already draining. This happens
5164                         // when resuming from pause after drain.
5165                         if ((mDrainSequence & 1) == 0) {
5166                             mSleepTimeUs = 0;
5167                             mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5168                             mixerStatus = MIXER_DRAIN_TRACK;
5169                             mDrainSequence += 2;
5170                         }
5171                         if (mHwPaused) {
5172                             // It is possible to move from PAUSED to STOPPING_1 without
5173                             // a resume so we must ensure hardware is running
5174                             doHwResume = true;
5175                             mHwPaused = false;
5176                         }
5177                     }
5178                 }
5179             } else if (track->isStopping_2()) {
5180                 // Drain has completed or we are in standby, signal presentation complete
5181                 if (!(mDrainSequence & 1) || !last || mStandby) {
5182                     track->mState = TrackBase::STOPPED;
5183                     size_t audioHALFrames =
5184                             (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
5185                     size_t framesWritten =
5186                             mBytesWritten / mOutput->getFrameSize();
5187                     track->presentationComplete(framesWritten, audioHALFrames);
5188                     track->reset();
5189                     tracksToRemove->add(track);
5190                 }
5191             } else {
5192                 // No buffers for this track. Give it a few chances to
5193                 // fill a buffer, then remove it from active list.
5194                 if (--(track->mRetryCount) <= 0) {
5195                     ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5196                           track->name());
5197                     tracksToRemove->add(track);
5198                     // indicate to client process that the track was disabled because of underrun;
5199                     // it will then automatically call start() when data is available
5200                     android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
5201                 } else if (last){
5202                     mixerStatus = MIXER_TRACKS_ENABLED;
5203                 }
5204             }
5205         }
5206         // compute volume for this track
5207         processVolume_l(track, last);
5208     }
5209 
5210     // make sure the pause/flush/resume sequence is executed in the right order.
5211     // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5212     // before flush and then resume HW. This can happen in case of pause/flush/resume
5213     // if resume is received before pause is executed.
5214     if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5215         mOutput->stream->pause(mOutput->stream);
5216     }
5217     if (mFlushPending) {
5218         flushHw_l();
5219     }
5220     if (!mStandby && doHwResume) {
5221         mOutput->stream->resume(mOutput->stream);
5222     }
5223 
5224     // remove all the tracks that need to be...
5225     removeTracks_l(*tracksToRemove);
5226 
5227     return mixerStatus;
5228 }
5229 
5230 // must be called with thread mutex locked
waitingAsyncCallback_l()5231 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5232 {
5233     ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5234           mWriteAckSequence, mDrainSequence);
5235     if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5236         return true;
5237     }
5238     return false;
5239 }
5240 
waitingAsyncCallback()5241 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5242 {
5243     Mutex::Autolock _l(mLock);
5244     return waitingAsyncCallback_l();
5245 }
5246 
flushHw_l()5247 void AudioFlinger::OffloadThread::flushHw_l()
5248 {
5249     DirectOutputThread::flushHw_l();
5250     // Flush anything still waiting in the mixbuffer
5251     mCurrentWriteLength = 0;
5252     mBytesRemaining = 0;
5253     mPausedWriteLength = 0;
5254     mPausedBytesRemaining = 0;
5255 
5256     if (mUseAsyncWrite) {
5257         // discard any pending drain or write ack by incrementing sequence
5258         mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5259         mDrainSequence = (mDrainSequence + 2) & ~1;
5260         ALOG_ASSERT(mCallbackThread != 0);
5261         mCallbackThread->setWriteBlocked(mWriteAckSequence);
5262         mCallbackThread->setDraining(mDrainSequence);
5263     }
5264 }
5265 
5266 // ----------------------------------------------------------------------------
5267 
DuplicatingThread(const sp<AudioFlinger> & audioFlinger,AudioFlinger::MixerThread * mainThread,audio_io_handle_t id,bool systemReady)5268 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5269         AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5270     :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5271                     systemReady, DUPLICATING),
5272         mWaitTimeMs(UINT_MAX)
5273 {
5274     addOutputTrack(mainThread);
5275 }
5276 
~DuplicatingThread()5277 AudioFlinger::DuplicatingThread::~DuplicatingThread()
5278 {
5279     for (size_t i = 0; i < mOutputTracks.size(); i++) {
5280         mOutputTracks[i]->destroy();
5281     }
5282 }
5283 
threadLoop_mix()5284 void AudioFlinger::DuplicatingThread::threadLoop_mix()
5285 {
5286     // mix buffers...
5287     if (outputsReady(outputTracks)) {
5288         mAudioMixer->process(AudioBufferProvider::kInvalidPTS);
5289     } else {
5290         if (mMixerBufferValid) {
5291             memset(mMixerBuffer, 0, mMixerBufferSize);
5292         } else {
5293             memset(mSinkBuffer, 0, mSinkBufferSize);
5294         }
5295     }
5296     mSleepTimeUs = 0;
5297     writeFrames = mNormalFrameCount;
5298     mCurrentWriteLength = mSinkBufferSize;
5299     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5300 }
5301 
threadLoop_sleepTime()5302 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5303 {
5304     if (mSleepTimeUs == 0) {
5305         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5306             mSleepTimeUs = mActiveSleepTimeUs;
5307         } else {
5308             mSleepTimeUs = mIdleSleepTimeUs;
5309         }
5310     } else if (mBytesWritten != 0) {
5311         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5312             writeFrames = mNormalFrameCount;
5313             memset(mSinkBuffer, 0, mSinkBufferSize);
5314         } else {
5315             // flush remaining overflow buffers in output tracks
5316             writeFrames = 0;
5317         }
5318         mSleepTimeUs = 0;
5319     }
5320 }
5321 
threadLoop_write()5322 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5323 {
5324     for (size_t i = 0; i < outputTracks.size(); i++) {
5325         outputTracks[i]->write(mSinkBuffer, writeFrames);
5326     }
5327     mStandby = false;
5328     return (ssize_t)mSinkBufferSize;
5329 }
5330 
threadLoop_standby()5331 void AudioFlinger::DuplicatingThread::threadLoop_standby()
5332 {
5333     // DuplicatingThread implements standby by stopping all tracks
5334     for (size_t i = 0; i < outputTracks.size(); i++) {
5335         outputTracks[i]->stop();
5336     }
5337 }
5338 
saveOutputTracks()5339 void AudioFlinger::DuplicatingThread::saveOutputTracks()
5340 {
5341     outputTracks = mOutputTracks;
5342 }
5343 
clearOutputTracks()5344 void AudioFlinger::DuplicatingThread::clearOutputTracks()
5345 {
5346     outputTracks.clear();
5347 }
5348 
addOutputTrack(MixerThread * thread)5349 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5350 {
5351     Mutex::Autolock _l(mLock);
5352     // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5353     // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5354     // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5355     const size_t frameCount =
5356             3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5357     // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5358     // from different OutputTracks and their associated MixerThreads (e.g. one may
5359     // nearly empty and the other may be dropping data).
5360 
5361     sp<OutputTrack> outputTrack = new OutputTrack(thread,
5362                                             this,
5363                                             mSampleRate,
5364                                             mFormat,
5365                                             mChannelMask,
5366                                             frameCount,
5367                                             IPCThreadState::self()->getCallingUid());
5368     if (outputTrack->cblk() != NULL) {
5369         thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5370         mOutputTracks.add(outputTrack);
5371         ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5372         updateWaitTime_l();
5373     }
5374 }
5375 
removeOutputTrack(MixerThread * thread)5376 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5377 {
5378     Mutex::Autolock _l(mLock);
5379     for (size_t i = 0; i < mOutputTracks.size(); i++) {
5380         if (mOutputTracks[i]->thread() == thread) {
5381             mOutputTracks[i]->destroy();
5382             mOutputTracks.removeAt(i);
5383             updateWaitTime_l();
5384             if (thread->getOutput() == mOutput) {
5385                 mOutput = NULL;
5386             }
5387             return;
5388         }
5389     }
5390     ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5391 }
5392 
5393 // caller must hold mLock
updateWaitTime_l()5394 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5395 {
5396     mWaitTimeMs = UINT_MAX;
5397     for (size_t i = 0; i < mOutputTracks.size(); i++) {
5398         sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5399         if (strong != 0) {
5400             uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5401             if (waitTimeMs < mWaitTimeMs) {
5402                 mWaitTimeMs = waitTimeMs;
5403             }
5404         }
5405     }
5406 }
5407 
5408 
outputsReady(const SortedVector<sp<OutputTrack>> & outputTracks)5409 bool AudioFlinger::DuplicatingThread::outputsReady(
5410         const SortedVector< sp<OutputTrack> > &outputTracks)
5411 {
5412     for (size_t i = 0; i < outputTracks.size(); i++) {
5413         sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5414         if (thread == 0) {
5415             ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5416                     outputTracks[i].get());
5417             return false;
5418         }
5419         PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5420         // see note at standby() declaration
5421         if (playbackThread->standby() && !playbackThread->isSuspended()) {
5422             ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5423                     thread.get());
5424             return false;
5425         }
5426     }
5427     return true;
5428 }
5429 
activeSleepTimeUs() const5430 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5431 {
5432     return (mWaitTimeMs * 1000) / 2;
5433 }
5434 
cacheParameters_l()5435 void AudioFlinger::DuplicatingThread::cacheParameters_l()
5436 {
5437     // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5438     updateWaitTime_l();
5439 
5440     MixerThread::cacheParameters_l();
5441 }
5442 
5443 // ----------------------------------------------------------------------------
5444 //      Record
5445 // ----------------------------------------------------------------------------
5446 
RecordThread(const sp<AudioFlinger> & audioFlinger,AudioStreamIn * input,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady,const sp<NBAIO_Sink> & teeSink)5447 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5448                                          AudioStreamIn *input,
5449                                          audio_io_handle_t id,
5450                                          audio_devices_t outDevice,
5451                                          audio_devices_t inDevice,
5452                                          bool systemReady
5453 #ifdef TEE_SINK
5454                                          , const sp<NBAIO_Sink>& teeSink
5455 #endif
5456                                          ) :
5457     ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5458     mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5459     // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5460     mRsmpInRear(0)
5461 #ifdef TEE_SINK
5462     , mTeeSink(teeSink)
5463 #endif
5464     , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5465             "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5466     // mFastCapture below
5467     , mFastCaptureFutex(0)
5468     // mInputSource
5469     // mPipeSink
5470     // mPipeSource
5471     , mPipeFramesP2(0)
5472     // mPipeMemory
5473     // mFastCaptureNBLogWriter
5474     , mFastTrackAvail(false)
5475 {
5476     snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5477     mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5478 
5479     readInputParameters_l();
5480 
5481     // create an NBAIO source for the HAL input stream, and negotiate
5482     mInputSource = new AudioStreamInSource(input->stream);
5483     size_t numCounterOffers = 0;
5484     const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5485     ssize_t index = mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5486     ALOG_ASSERT(index == 0);
5487 
5488     // initialize fast capture depending on configuration
5489     bool initFastCapture;
5490     switch (kUseFastCapture) {
5491     case FastCapture_Never:
5492         initFastCapture = false;
5493         break;
5494     case FastCapture_Always:
5495         initFastCapture = true;
5496         break;
5497     case FastCapture_Static:
5498         initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5499         break;
5500     // case FastCapture_Dynamic:
5501     }
5502 
5503     if (initFastCapture) {
5504         // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5505         NBAIO_Format format = mInputSource->format();
5506         size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5507         size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5508         void *pipeBuffer;
5509         const sp<MemoryDealer> roHeap(readOnlyHeap());
5510         sp<IMemory> pipeMemory;
5511         if ((roHeap == 0) ||
5512                 (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5513                 (pipeBuffer = pipeMemory->pointer()) == NULL) {
5514             ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5515             goto failed;
5516         }
5517         // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5518         memset(pipeBuffer, 0, pipeSize);
5519         Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5520         const NBAIO_Format offers[1] = {format};
5521         size_t numCounterOffers = 0;
5522         ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5523         ALOG_ASSERT(index == 0);
5524         mPipeSink = pipe;
5525         PipeReader *pipeReader = new PipeReader(*pipe);
5526         numCounterOffers = 0;
5527         index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5528         ALOG_ASSERT(index == 0);
5529         mPipeSource = pipeReader;
5530         mPipeFramesP2 = pipeFramesP2;
5531         mPipeMemory = pipeMemory;
5532 
5533         // create fast capture
5534         mFastCapture = new FastCapture();
5535         FastCaptureStateQueue *sq = mFastCapture->sq();
5536 #ifdef STATE_QUEUE_DUMP
5537         // FIXME
5538 #endif
5539         FastCaptureState *state = sq->begin();
5540         state->mCblk = NULL;
5541         state->mInputSource = mInputSource.get();
5542         state->mInputSourceGen++;
5543         state->mPipeSink = pipe;
5544         state->mPipeSinkGen++;
5545         state->mFrameCount = mFrameCount;
5546         state->mCommand = FastCaptureState::COLD_IDLE;
5547         // already done in constructor initialization list
5548         //mFastCaptureFutex = 0;
5549         state->mColdFutexAddr = &mFastCaptureFutex;
5550         state->mColdGen++;
5551         state->mDumpState = &mFastCaptureDumpState;
5552 #ifdef TEE_SINK
5553         // FIXME
5554 #endif
5555         mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5556         state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5557         sq->end();
5558         sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5559 
5560         // start the fast capture
5561         mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5562         pid_t tid = mFastCapture->getTid();
5563         sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
5564 #ifdef AUDIO_WATCHDOG
5565         // FIXME
5566 #endif
5567 
5568         mFastTrackAvail = true;
5569     }
5570 failed: ;
5571 
5572     // FIXME mNormalSource
5573 }
5574 
~RecordThread()5575 AudioFlinger::RecordThread::~RecordThread()
5576 {
5577     if (mFastCapture != 0) {
5578         FastCaptureStateQueue *sq = mFastCapture->sq();
5579         FastCaptureState *state = sq->begin();
5580         if (state->mCommand == FastCaptureState::COLD_IDLE) {
5581             int32_t old = android_atomic_inc(&mFastCaptureFutex);
5582             if (old == -1) {
5583                 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5584             }
5585         }
5586         state->mCommand = FastCaptureState::EXIT;
5587         sq->end();
5588         sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5589         mFastCapture->join();
5590         mFastCapture.clear();
5591     }
5592     mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5593     mAudioFlinger->unregisterWriter(mNBLogWriter);
5594     free(mRsmpInBuffer);
5595 }
5596 
onFirstRef()5597 void AudioFlinger::RecordThread::onFirstRef()
5598 {
5599     run(mThreadName, PRIORITY_URGENT_AUDIO);
5600 }
5601 
threadLoop()5602 bool AudioFlinger::RecordThread::threadLoop()
5603 {
5604     nsecs_t lastWarning = 0;
5605 
5606     inputStandBy();
5607 
5608 reacquire_wakelock:
5609     sp<RecordTrack> activeTrack;
5610     int activeTracksGen;
5611     {
5612         Mutex::Autolock _l(mLock);
5613         size_t size = mActiveTracks.size();
5614         activeTracksGen = mActiveTracksGen;
5615         if (size > 0) {
5616             // FIXME an arbitrary choice
5617             activeTrack = mActiveTracks[0];
5618             acquireWakeLock_l(activeTrack->uid());
5619             if (size > 1) {
5620                 SortedVector<int> tmp;
5621                 for (size_t i = 0; i < size; i++) {
5622                     tmp.add(mActiveTracks[i]->uid());
5623                 }
5624                 updateWakeLockUids_l(tmp);
5625             }
5626         } else {
5627             acquireWakeLock_l(-1);
5628         }
5629     }
5630 
5631     // used to request a deferred sleep, to be executed later while mutex is unlocked
5632     uint32_t sleepUs = 0;
5633 
5634     // loop while there is work to do
5635     for (;;) {
5636         Vector< sp<EffectChain> > effectChains;
5637 
5638         // sleep with mutex unlocked
5639         if (sleepUs > 0) {
5640             ATRACE_BEGIN("sleep");
5641             usleep(sleepUs);
5642             ATRACE_END();
5643             sleepUs = 0;
5644         }
5645 
5646         // activeTracks accumulates a copy of a subset of mActiveTracks
5647         Vector< sp<RecordTrack> > activeTracks;
5648 
5649         // reference to the (first and only) active fast track
5650         sp<RecordTrack> fastTrack;
5651 
5652         // reference to a fast track which is about to be removed
5653         sp<RecordTrack> fastTrackToRemove;
5654 
5655         { // scope for mLock
5656             Mutex::Autolock _l(mLock);
5657 
5658             processConfigEvents_l();
5659 
5660             // check exitPending here because checkForNewParameters_l() and
5661             // checkForNewParameters_l() can temporarily release mLock
5662             if (exitPending()) {
5663                 break;
5664             }
5665 
5666             // if no active track(s), then standby and release wakelock
5667             size_t size = mActiveTracks.size();
5668             if (size == 0) {
5669                 standbyIfNotAlreadyInStandby();
5670                 // exitPending() can't become true here
5671                 releaseWakeLock_l();
5672                 ALOGV("RecordThread: loop stopping");
5673                 // go to sleep
5674                 mWaitWorkCV.wait(mLock);
5675                 ALOGV("RecordThread: loop starting");
5676                 goto reacquire_wakelock;
5677             }
5678 
5679             if (mActiveTracksGen != activeTracksGen) {
5680                 activeTracksGen = mActiveTracksGen;
5681                 SortedVector<int> tmp;
5682                 for (size_t i = 0; i < size; i++) {
5683                     tmp.add(mActiveTracks[i]->uid());
5684                 }
5685                 updateWakeLockUids_l(tmp);
5686             }
5687 
5688             bool doBroadcast = false;
5689             for (size_t i = 0; i < size; ) {
5690 
5691                 activeTrack = mActiveTracks[i];
5692                 if (activeTrack->isTerminated()) {
5693                     if (activeTrack->isFastTrack()) {
5694                         ALOG_ASSERT(fastTrackToRemove == 0);
5695                         fastTrackToRemove = activeTrack;
5696                     }
5697                     removeTrack_l(activeTrack);
5698                     mActiveTracks.remove(activeTrack);
5699                     mActiveTracksGen++;
5700                     size--;
5701                     continue;
5702                 }
5703 
5704                 TrackBase::track_state activeTrackState = activeTrack->mState;
5705                 switch (activeTrackState) {
5706 
5707                 case TrackBase::PAUSING:
5708                     mActiveTracks.remove(activeTrack);
5709                     mActiveTracksGen++;
5710                     doBroadcast = true;
5711                     size--;
5712                     continue;
5713 
5714                 case TrackBase::STARTING_1:
5715                     sleepUs = 10000;
5716                     i++;
5717                     continue;
5718 
5719                 case TrackBase::STARTING_2:
5720                     doBroadcast = true;
5721                     mStandby = false;
5722                     activeTrack->mState = TrackBase::ACTIVE;
5723                     break;
5724 
5725                 case TrackBase::ACTIVE:
5726                     break;
5727 
5728                 case TrackBase::IDLE:
5729                     i++;
5730                     continue;
5731 
5732                 default:
5733                     LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5734                 }
5735 
5736                 activeTracks.add(activeTrack);
5737                 i++;
5738 
5739                 if (activeTrack->isFastTrack()) {
5740                     ALOG_ASSERT(!mFastTrackAvail);
5741                     ALOG_ASSERT(fastTrack == 0);
5742                     fastTrack = activeTrack;
5743                 }
5744             }
5745             if (doBroadcast) {
5746                 mStartStopCond.broadcast();
5747             }
5748 
5749             // sleep if there are no active tracks to process
5750             if (activeTracks.size() == 0) {
5751                 if (sleepUs == 0) {
5752                     sleepUs = kRecordThreadSleepUs;
5753                 }
5754                 continue;
5755             }
5756             sleepUs = 0;
5757 
5758             lockEffectChains_l(effectChains);
5759         }
5760 
5761         // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
5762 
5763         size_t size = effectChains.size();
5764         for (size_t i = 0; i < size; i++) {
5765             // thread mutex is not locked, but effect chain is locked
5766             effectChains[i]->process_l();
5767         }
5768 
5769         // Push a new fast capture state if fast capture is not already running, or cblk change
5770         if (mFastCapture != 0) {
5771             FastCaptureStateQueue *sq = mFastCapture->sq();
5772             FastCaptureState *state = sq->begin();
5773             bool didModify = false;
5774             FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
5775             if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
5776                     (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
5777                 if (state->mCommand == FastCaptureState::COLD_IDLE) {
5778                     int32_t old = android_atomic_inc(&mFastCaptureFutex);
5779                     if (old == -1) {
5780                         (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5781                     }
5782                 }
5783                 state->mCommand = FastCaptureState::READ_WRITE;
5784 #if 0   // FIXME
5785                 mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
5786                         FastThreadDumpState::kSamplingNforLowRamDevice :
5787                         FastThreadDumpState::kSamplingN);
5788 #endif
5789                 didModify = true;
5790             }
5791             audio_track_cblk_t *cblkOld = state->mCblk;
5792             audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
5793             if (cblkNew != cblkOld) {
5794                 state->mCblk = cblkNew;
5795                 // block until acked if removing a fast track
5796                 if (cblkOld != NULL) {
5797                     block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
5798                 }
5799                 didModify = true;
5800             }
5801             sq->end(didModify);
5802             if (didModify) {
5803                 sq->push(block);
5804 #if 0
5805                 if (kUseFastCapture == FastCapture_Dynamic) {
5806                     mNormalSource = mPipeSource;
5807                 }
5808 #endif
5809             }
5810         }
5811 
5812         // now run the fast track destructor with thread mutex unlocked
5813         fastTrackToRemove.clear();
5814 
5815         // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
5816         // Only the client(s) that are too slow will overrun. But if even the fastest client is too
5817         // slow, then this RecordThread will overrun by not calling HAL read often enough.
5818         // If destination is non-contiguous, first read past the nominal end of buffer, then
5819         // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
5820 
5821         int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
5822         ssize_t framesRead;
5823 
5824         // If an NBAIO source is present, use it to read the normal capture's data
5825         if (mPipeSource != 0) {
5826             size_t framesToRead = mBufferSize / mFrameSize;
5827             framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
5828                     framesToRead, AudioBufferProvider::kInvalidPTS);
5829             if (framesRead == 0) {
5830                 // since pipe is non-blocking, simulate blocking input
5831                 sleepUs = (framesToRead * 1000000LL) / mSampleRate;
5832             }
5833         // otherwise use the HAL / AudioStreamIn directly
5834         } else {
5835             ssize_t bytesRead = mInput->stream->read(mInput->stream,
5836                     (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
5837             if (bytesRead < 0) {
5838                 framesRead = bytesRead;
5839             } else {
5840                 framesRead = bytesRead / mFrameSize;
5841             }
5842         }
5843 
5844         if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
5845             ALOGE("read failed: framesRead=%d", framesRead);
5846             // Force input into standby so that it tries to recover at next read attempt
5847             inputStandBy();
5848             sleepUs = kRecordThreadSleepUs;
5849         }
5850         if (framesRead <= 0) {
5851             goto unlock;
5852         }
5853         ALOG_ASSERT(framesRead > 0);
5854 
5855         if (mTeeSink != 0) {
5856             (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
5857         }
5858         // If destination is non-contiguous, we now correct for reading past end of buffer.
5859         {
5860             size_t part1 = mRsmpInFramesP2 - rear;
5861             if ((size_t) framesRead > part1) {
5862                 memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
5863                         (framesRead - part1) * mFrameSize);
5864             }
5865         }
5866         rear = mRsmpInRear += framesRead;
5867 
5868         size = activeTracks.size();
5869         // loop over each active track
5870         for (size_t i = 0; i < size; i++) {
5871             activeTrack = activeTracks[i];
5872 
5873             // skip fast tracks, as those are handled directly by FastCapture
5874             if (activeTrack->isFastTrack()) {
5875                 continue;
5876             }
5877 
5878             // TODO: This code probably should be moved to RecordTrack.
5879             // TODO: Update the activeTrack buffer converter in case of reconfigure.
5880 
5881             enum {
5882                 OVERRUN_UNKNOWN,
5883                 OVERRUN_TRUE,
5884                 OVERRUN_FALSE
5885             } overrun = OVERRUN_UNKNOWN;
5886 
5887             // loop over getNextBuffer to handle circular sink
5888             for (;;) {
5889 
5890                 activeTrack->mSink.frameCount = ~0;
5891                 status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
5892                 size_t framesOut = activeTrack->mSink.frameCount;
5893                 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
5894 
5895                 // check available frames and handle overrun conditions
5896                 // if the record track isn't draining fast enough.
5897                 bool hasOverrun;
5898                 size_t framesIn;
5899                 activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
5900                 if (hasOverrun) {
5901                     overrun = OVERRUN_TRUE;
5902                 }
5903                 if (framesOut == 0 || framesIn == 0) {
5904                     break;
5905                 }
5906 
5907                 // Don't allow framesOut to be larger than what is possible with resampling
5908                 // from framesIn.
5909                 // This isn't strictly necessary but helps limit buffer resizing in
5910                 // RecordBufferConverter.  TODO: remove when no longer needed.
5911                 framesOut = min(framesOut,
5912                         destinationFramesPossible(
5913                                 framesIn, mSampleRate, activeTrack->mSampleRate));
5914                 // process frames from the RecordThread buffer provider to the RecordTrack buffer
5915                 framesOut = activeTrack->mRecordBufferConverter->convert(
5916                         activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
5917 
5918                 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
5919                     overrun = OVERRUN_FALSE;
5920                 }
5921 
5922                 if (activeTrack->mFramesToDrop == 0) {
5923                     if (framesOut > 0) {
5924                         activeTrack->mSink.frameCount = framesOut;
5925                         activeTrack->releaseBuffer(&activeTrack->mSink);
5926                     }
5927                 } else {
5928                     // FIXME could do a partial drop of framesOut
5929                     if (activeTrack->mFramesToDrop > 0) {
5930                         activeTrack->mFramesToDrop -= framesOut;
5931                         if (activeTrack->mFramesToDrop <= 0) {
5932                             activeTrack->clearSyncStartEvent();
5933                         }
5934                     } else {
5935                         activeTrack->mFramesToDrop += framesOut;
5936                         if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
5937                                 activeTrack->mSyncStartEvent->isCancelled()) {
5938                             ALOGW("Synced record %s, session %d, trigger session %d",
5939                                   (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
5940                                   activeTrack->sessionId(),
5941                                   (activeTrack->mSyncStartEvent != 0) ?
5942                                           activeTrack->mSyncStartEvent->triggerSession() : 0);
5943                             activeTrack->clearSyncStartEvent();
5944                         }
5945                     }
5946                 }
5947 
5948                 if (framesOut == 0) {
5949                     break;
5950                 }
5951             }
5952 
5953             switch (overrun) {
5954             case OVERRUN_TRUE:
5955                 // client isn't retrieving buffers fast enough
5956                 if (!activeTrack->setOverflow()) {
5957                     nsecs_t now = systemTime();
5958                     // FIXME should lastWarning per track?
5959                     if ((now - lastWarning) > kWarningThrottleNs) {
5960                         ALOGW("RecordThread: buffer overflow");
5961                         lastWarning = now;
5962                     }
5963                 }
5964                 break;
5965             case OVERRUN_FALSE:
5966                 activeTrack->clearOverflow();
5967                 break;
5968             case OVERRUN_UNKNOWN:
5969                 break;
5970             }
5971 
5972         }
5973 
5974 unlock:
5975         // enable changes in effect chain
5976         unlockEffectChains(effectChains);
5977         // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
5978     }
5979 
5980     standbyIfNotAlreadyInStandby();
5981 
5982     {
5983         Mutex::Autolock _l(mLock);
5984         for (size_t i = 0; i < mTracks.size(); i++) {
5985             sp<RecordTrack> track = mTracks[i];
5986             track->invalidate();
5987         }
5988         mActiveTracks.clear();
5989         mActiveTracksGen++;
5990         mStartStopCond.broadcast();
5991     }
5992 
5993     releaseWakeLock();
5994 
5995     ALOGV("RecordThread %p exiting", this);
5996     return false;
5997 }
5998 
standbyIfNotAlreadyInStandby()5999 void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6000 {
6001     if (!mStandby) {
6002         inputStandBy();
6003         mStandby = true;
6004     }
6005 }
6006 
inputStandBy()6007 void AudioFlinger::RecordThread::inputStandBy()
6008 {
6009     // Idle the fast capture if it's currently running
6010     if (mFastCapture != 0) {
6011         FastCaptureStateQueue *sq = mFastCapture->sq();
6012         FastCaptureState *state = sq->begin();
6013         if (!(state->mCommand & FastCaptureState::IDLE)) {
6014             state->mCommand = FastCaptureState::COLD_IDLE;
6015             state->mColdFutexAddr = &mFastCaptureFutex;
6016             state->mColdGen++;
6017             mFastCaptureFutex = 0;
6018             sq->end();
6019             // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6020             sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6021 #if 0
6022             if (kUseFastCapture == FastCapture_Dynamic) {
6023                 // FIXME
6024             }
6025 #endif
6026 #ifdef AUDIO_WATCHDOG
6027             // FIXME
6028 #endif
6029         } else {
6030             sq->end(false /*didModify*/);
6031         }
6032     }
6033     mInput->stream->common.standby(&mInput->stream->common);
6034 }
6035 
6036 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
createRecordTrack_l(const sp<AudioFlinger::Client> & client,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,int sessionId,size_t * notificationFrames,int uid,IAudioFlinger::track_flags_t * flags,pid_t tid,status_t * status)6037 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6038         const sp<AudioFlinger::Client>& client,
6039         uint32_t sampleRate,
6040         audio_format_t format,
6041         audio_channel_mask_t channelMask,
6042         size_t *pFrameCount,
6043         int sessionId,
6044         size_t *notificationFrames,
6045         int uid,
6046         IAudioFlinger::track_flags_t *flags,
6047         pid_t tid,
6048         status_t *status)
6049 {
6050     size_t frameCount = *pFrameCount;
6051     sp<RecordTrack> track;
6052     status_t lStatus;
6053 
6054     // client expresses a preference for FAST, but we get the final say
6055     if (*flags & IAudioFlinger::TRACK_FAST) {
6056       if (
6057             // we formerly checked for a callback handler (non-0 tid),
6058             // but that is no longer required for TRANSFER_OBTAIN mode
6059             //
6060             // frame count is not specified, or is exactly the pipe depth
6061             ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6062             // PCM data
6063             audio_is_linear_pcm(format) &&
6064             // native format
6065             (format == mFormat) &&
6066             // native channel mask
6067             (channelMask == mChannelMask) &&
6068             // native hardware sample rate
6069             (sampleRate == mSampleRate) &&
6070             // record thread has an associated fast capture
6071             hasFastCapture() &&
6072             // there are sufficient fast track slots available
6073             mFastTrackAvail
6074         ) {
6075         ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%u mFrameCount=%u",
6076                 frameCount, mFrameCount);
6077       } else {
6078         ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%u mFrameCount=%u mPipeFramesP2=%u "
6079                 "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6080                 "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6081                 frameCount, mFrameCount, mPipeFramesP2,
6082                 format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6083                 hasFastCapture(), tid, mFastTrackAvail);
6084         *flags &= ~IAudioFlinger::TRACK_FAST;
6085       }
6086     }
6087 
6088     // compute track buffer size in frames, and suggest the notification frame count
6089     if (*flags & IAudioFlinger::TRACK_FAST) {
6090         // fast track: frame count is exactly the pipe depth
6091         frameCount = mPipeFramesP2;
6092         // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6093         *notificationFrames = mFrameCount;
6094     } else {
6095         // not fast track: max notification period is resampled equivalent of one HAL buffer time
6096         //                 or 20 ms if there is a fast capture
6097         // TODO This could be a roundupRatio inline, and const
6098         size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6099                 * sampleRate + mSampleRate - 1) / mSampleRate;
6100         // minimum number of notification periods is at least kMinNotifications,
6101         // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6102         static const size_t kMinNotifications = 3;
6103         static const uint32_t kMinMs = 30;
6104         // TODO This could be a roundupRatio inline
6105         const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6106         // TODO This could be a roundupRatio inline
6107         const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6108                 maxNotificationFrames;
6109         const size_t minFrameCount = maxNotificationFrames *
6110                 max(kMinNotifications, minNotificationsByMs);
6111         frameCount = max(frameCount, minFrameCount);
6112         if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6113             *notificationFrames = maxNotificationFrames;
6114         }
6115     }
6116     *pFrameCount = frameCount;
6117 
6118     lStatus = initCheck();
6119     if (lStatus != NO_ERROR) {
6120         ALOGE("createRecordTrack_l() audio driver not initialized");
6121         goto Exit;
6122     }
6123 
6124     { // scope for mLock
6125         Mutex::Autolock _l(mLock);
6126 
6127         track = new RecordTrack(this, client, sampleRate,
6128                       format, channelMask, frameCount, NULL, sessionId, uid,
6129                       *flags, TrackBase::TYPE_DEFAULT);
6130 
6131         lStatus = track->initCheck();
6132         if (lStatus != NO_ERROR) {
6133             ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6134             // track must be cleared from the caller as the caller has the AF lock
6135             goto Exit;
6136         }
6137         mTracks.add(track);
6138 
6139         // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6140         bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6141                         mAudioFlinger->btNrecIsOff();
6142         setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6143         setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6144 
6145         if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
6146             pid_t callingPid = IPCThreadState::self()->getCallingPid();
6147             // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6148             // so ask activity manager to do this on our behalf
6149             sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6150         }
6151     }
6152 
6153     lStatus = NO_ERROR;
6154 
6155 Exit:
6156     *status = lStatus;
6157     return track;
6158 }
6159 
start(RecordThread::RecordTrack * recordTrack,AudioSystem::sync_event_t event,int triggerSession)6160 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6161                                            AudioSystem::sync_event_t event,
6162                                            int triggerSession)
6163 {
6164     ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6165     sp<ThreadBase> strongMe = this;
6166     status_t status = NO_ERROR;
6167 
6168     if (event == AudioSystem::SYNC_EVENT_NONE) {
6169         recordTrack->clearSyncStartEvent();
6170     } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6171         recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6172                                        triggerSession,
6173                                        recordTrack->sessionId(),
6174                                        syncStartEventCallback,
6175                                        recordTrack);
6176         // Sync event can be cancelled by the trigger session if the track is not in a
6177         // compatible state in which case we start record immediately
6178         if (recordTrack->mSyncStartEvent->isCancelled()) {
6179             recordTrack->clearSyncStartEvent();
6180         } else {
6181             // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6182             recordTrack->mFramesToDrop = -
6183                     ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6184         }
6185     }
6186 
6187     {
6188         // This section is a rendezvous between binder thread executing start() and RecordThread
6189         AutoMutex lock(mLock);
6190         if (mActiveTracks.indexOf(recordTrack) >= 0) {
6191             if (recordTrack->mState == TrackBase::PAUSING) {
6192                 ALOGV("active record track PAUSING -> ACTIVE");
6193                 recordTrack->mState = TrackBase::ACTIVE;
6194             } else {
6195                 ALOGV("active record track state %d", recordTrack->mState);
6196             }
6197             return status;
6198         }
6199 
6200         // TODO consider other ways of handling this, such as changing the state to :STARTING and
6201         //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6202         //      or using a separate command thread
6203         recordTrack->mState = TrackBase::STARTING_1;
6204         mActiveTracks.add(recordTrack);
6205         mActiveTracksGen++;
6206         status_t status = NO_ERROR;
6207         if (recordTrack->isExternalTrack()) {
6208             mLock.unlock();
6209             status = AudioSystem::startInput(mId, (audio_session_t)recordTrack->sessionId());
6210             mLock.lock();
6211             // FIXME should verify that recordTrack is still in mActiveTracks
6212             if (status != NO_ERROR) {
6213                 mActiveTracks.remove(recordTrack);
6214                 mActiveTracksGen++;
6215                 recordTrack->clearSyncStartEvent();
6216                 ALOGV("RecordThread::start error %d", status);
6217                 return status;
6218             }
6219         }
6220         // Catch up with current buffer indices if thread is already running.
6221         // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
6222         // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6223         // see previously buffered data before it called start(), but with greater risk of overrun.
6224 
6225         recordTrack->mResamplerBufferProvider->reset();
6226         // clear any converter state as new data will be discontinuous
6227         recordTrack->mRecordBufferConverter->reset();
6228         recordTrack->mState = TrackBase::STARTING_2;
6229         // signal thread to start
6230         mWaitWorkCV.broadcast();
6231         if (mActiveTracks.indexOf(recordTrack) < 0) {
6232             ALOGV("Record failed to start");
6233             status = BAD_VALUE;
6234             goto startError;
6235         }
6236         return status;
6237     }
6238 
6239 startError:
6240     if (recordTrack->isExternalTrack()) {
6241         AudioSystem::stopInput(mId, (audio_session_t)recordTrack->sessionId());
6242     }
6243     recordTrack->clearSyncStartEvent();
6244     // FIXME I wonder why we do not reset the state here?
6245     return status;
6246 }
6247 
syncStartEventCallback(const wp<SyncEvent> & event)6248 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6249 {
6250     sp<SyncEvent> strongEvent = event.promote();
6251 
6252     if (strongEvent != 0) {
6253         sp<RefBase> ptr = strongEvent->cookie().promote();
6254         if (ptr != 0) {
6255             RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6256             recordTrack->handleSyncStartEvent(strongEvent);
6257         }
6258     }
6259 }
6260 
stop(RecordThread::RecordTrack * recordTrack)6261 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6262     ALOGV("RecordThread::stop");
6263     AutoMutex _l(mLock);
6264     if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6265         return false;
6266     }
6267     // note that threadLoop may still be processing the track at this point [without lock]
6268     recordTrack->mState = TrackBase::PAUSING;
6269     // do not wait for mStartStopCond if exiting
6270     if (exitPending()) {
6271         return true;
6272     }
6273     // FIXME incorrect usage of wait: no explicit predicate or loop
6274     mStartStopCond.wait(mLock);
6275     // if we have been restarted, recordTrack is in mActiveTracks here
6276     if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6277         ALOGV("Record stopped OK");
6278         return true;
6279     }
6280     return false;
6281 }
6282 
isValidSyncEvent(const sp<SyncEvent> & event __unused) const6283 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6284 {
6285     return false;
6286 }
6287 
setSyncEvent(const sp<SyncEvent> & event __unused)6288 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6289 {
6290 #if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6291     if (!isValidSyncEvent(event)) {
6292         return BAD_VALUE;
6293     }
6294 
6295     int eventSession = event->triggerSession();
6296     status_t ret = NAME_NOT_FOUND;
6297 
6298     Mutex::Autolock _l(mLock);
6299 
6300     for (size_t i = 0; i < mTracks.size(); i++) {
6301         sp<RecordTrack> track = mTracks[i];
6302         if (eventSession == track->sessionId()) {
6303             (void) track->setSyncEvent(event);
6304             ret = NO_ERROR;
6305         }
6306     }
6307     return ret;
6308 #else
6309     return BAD_VALUE;
6310 #endif
6311 }
6312 
6313 // destroyTrack_l() must be called with ThreadBase::mLock held
destroyTrack_l(const sp<RecordTrack> & track)6314 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6315 {
6316     track->terminate();
6317     track->mState = TrackBase::STOPPED;
6318     // active tracks are removed by threadLoop()
6319     if (mActiveTracks.indexOf(track) < 0) {
6320         removeTrack_l(track);
6321     }
6322 }
6323 
removeTrack_l(const sp<RecordTrack> & track)6324 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6325 {
6326     mTracks.remove(track);
6327     // need anything related to effects here?
6328     if (track->isFastTrack()) {
6329         ALOG_ASSERT(!mFastTrackAvail);
6330         mFastTrackAvail = true;
6331     }
6332 }
6333 
dump(int fd,const Vector<String16> & args)6334 void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6335 {
6336     dumpInternals(fd, args);
6337     dumpTracks(fd, args);
6338     dumpEffectChains(fd, args);
6339 }
6340 
dumpInternals(int fd,const Vector<String16> & args)6341 void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6342 {
6343     dprintf(fd, "\nInput thread %p:\n", this);
6344 
6345     dumpBase(fd, args);
6346 
6347     if (mActiveTracks.size() == 0) {
6348         dprintf(fd, "  No active record clients\n");
6349     }
6350     dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6351     dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6352 
6353     //  Make a non-atomic copy of fast capture dump state so it won't change underneath us
6354     const FastCaptureDumpState copy(mFastCaptureDumpState);
6355     copy.dump(fd);
6356 }
6357 
dumpTracks(int fd,const Vector<String16> & args __unused)6358 void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6359 {
6360     const size_t SIZE = 256;
6361     char buffer[SIZE];
6362     String8 result;
6363 
6364     size_t numtracks = mTracks.size();
6365     size_t numactive = mActiveTracks.size();
6366     size_t numactiveseen = 0;
6367     dprintf(fd, "  %d Tracks", numtracks);
6368     if (numtracks) {
6369         dprintf(fd, " of which %d are active\n", numactive);
6370         RecordTrack::appendDumpHeader(result);
6371         for (size_t i = 0; i < numtracks ; ++i) {
6372             sp<RecordTrack> track = mTracks[i];
6373             if (track != 0) {
6374                 bool active = mActiveTracks.indexOf(track) >= 0;
6375                 if (active) {
6376                     numactiveseen++;
6377                 }
6378                 track->dump(buffer, SIZE, active);
6379                 result.append(buffer);
6380             }
6381         }
6382     } else {
6383         dprintf(fd, "\n");
6384     }
6385 
6386     if (numactiveseen != numactive) {
6387         snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6388                 " not in the track list\n");
6389         result.append(buffer);
6390         RecordTrack::appendDumpHeader(result);
6391         for (size_t i = 0; i < numactive; ++i) {
6392             sp<RecordTrack> track = mActiveTracks[i];
6393             if (mTracks.indexOf(track) < 0) {
6394                 track->dump(buffer, SIZE, true);
6395                 result.append(buffer);
6396             }
6397         }
6398 
6399     }
6400     write(fd, result.string(), result.size());
6401 }
6402 
6403 
reset()6404 void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6405 {
6406     sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6407     RecordThread *recordThread = (RecordThread *) threadBase.get();
6408     mRsmpInFront = recordThread->mRsmpInRear;
6409     mRsmpInUnrel = 0;
6410 }
6411 
sync(size_t * framesAvailable,bool * hasOverrun)6412 void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6413         size_t *framesAvailable, bool *hasOverrun)
6414 {
6415     sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6416     RecordThread *recordThread = (RecordThread *) threadBase.get();
6417     const int32_t rear = recordThread->mRsmpInRear;
6418     const int32_t front = mRsmpInFront;
6419     const ssize_t filled = rear - front;
6420 
6421     size_t framesIn;
6422     bool overrun = false;
6423     if (filled < 0) {
6424         // should not happen, but treat like a massive overrun and re-sync
6425         framesIn = 0;
6426         mRsmpInFront = rear;
6427         overrun = true;
6428     } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6429         framesIn = (size_t) filled;
6430     } else {
6431         // client is not keeping up with server, but give it latest data
6432         framesIn = recordThread->mRsmpInFrames;
6433         mRsmpInFront = /* front = */ rear - framesIn;
6434         overrun = true;
6435     }
6436     if (framesAvailable != NULL) {
6437         *framesAvailable = framesIn;
6438     }
6439     if (hasOverrun != NULL) {
6440         *hasOverrun = overrun;
6441     }
6442 }
6443 
6444 // AudioBufferProvider interface
getNextBuffer(AudioBufferProvider::Buffer * buffer,int64_t pts __unused)6445 status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6446         AudioBufferProvider::Buffer* buffer, int64_t pts __unused)
6447 {
6448     sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6449     if (threadBase == 0) {
6450         buffer->frameCount = 0;
6451         buffer->raw = NULL;
6452         return NOT_ENOUGH_DATA;
6453     }
6454     RecordThread *recordThread = (RecordThread *) threadBase.get();
6455     int32_t rear = recordThread->mRsmpInRear;
6456     int32_t front = mRsmpInFront;
6457     ssize_t filled = rear - front;
6458     // FIXME should not be P2 (don't want to increase latency)
6459     // FIXME if client not keeping up, discard
6460     LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6461     // 'filled' may be non-contiguous, so return only the first contiguous chunk
6462     front &= recordThread->mRsmpInFramesP2 - 1;
6463     size_t part1 = recordThread->mRsmpInFramesP2 - front;
6464     if (part1 > (size_t) filled) {
6465         part1 = filled;
6466     }
6467     size_t ask = buffer->frameCount;
6468     ALOG_ASSERT(ask > 0);
6469     if (part1 > ask) {
6470         part1 = ask;
6471     }
6472     if (part1 == 0) {
6473         // out of data is fine since the resampler will return a short-count.
6474         buffer->raw = NULL;
6475         buffer->frameCount = 0;
6476         mRsmpInUnrel = 0;
6477         return NOT_ENOUGH_DATA;
6478     }
6479 
6480     buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6481     buffer->frameCount = part1;
6482     mRsmpInUnrel = part1;
6483     return NO_ERROR;
6484 }
6485 
6486 // AudioBufferProvider interface
releaseBuffer(AudioBufferProvider::Buffer * buffer)6487 void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6488         AudioBufferProvider::Buffer* buffer)
6489 {
6490     size_t stepCount = buffer->frameCount;
6491     if (stepCount == 0) {
6492         return;
6493     }
6494     ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6495     mRsmpInUnrel -= stepCount;
6496     mRsmpInFront += stepCount;
6497     buffer->raw = NULL;
6498     buffer->frameCount = 0;
6499 }
6500 
RecordBufferConverter(audio_channel_mask_t srcChannelMask,audio_format_t srcFormat,uint32_t srcSampleRate,audio_channel_mask_t dstChannelMask,audio_format_t dstFormat,uint32_t dstSampleRate)6501 AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
6502         audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6503         uint32_t srcSampleRate,
6504         audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6505         uint32_t dstSampleRate) :
6506             mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
6507             // mSrcFormat
6508             // mSrcSampleRate
6509             // mDstChannelMask
6510             // mDstFormat
6511             // mDstSampleRate
6512             // mSrcChannelCount
6513             // mDstChannelCount
6514             // mDstFrameSize
6515             mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
6516             mResampler(NULL),
6517             mIsLegacyDownmix(false),
6518             mIsLegacyUpmix(false),
6519             mRequiresFloat(false),
6520             mInputConverterProvider(NULL)
6521 {
6522     (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
6523             dstChannelMask, dstFormat, dstSampleRate);
6524 }
6525 
~RecordBufferConverter()6526 AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
6527     free(mBuf);
6528     delete mResampler;
6529     delete mInputConverterProvider;
6530 }
6531 
convert(void * dst,AudioBufferProvider * provider,size_t frames)6532 size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
6533         AudioBufferProvider *provider, size_t frames)
6534 {
6535     if (mInputConverterProvider != NULL) {
6536         mInputConverterProvider->setBufferProvider(provider);
6537         provider = mInputConverterProvider;
6538     }
6539 
6540     if (mResampler == NULL) {
6541         ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6542                 mSrcSampleRate, mSrcFormat, mDstFormat);
6543 
6544         AudioBufferProvider::Buffer buffer;
6545         for (size_t i = frames; i > 0; ) {
6546             buffer.frameCount = i;
6547             status_t status = provider->getNextBuffer(&buffer, 0);
6548             if (status != OK || buffer.frameCount == 0) {
6549                 frames -= i; // cannot fill request.
6550                 break;
6551             }
6552             // format convert to destination buffer
6553             convertNoResampler(dst, buffer.raw, buffer.frameCount);
6554 
6555             dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
6556             i -= buffer.frameCount;
6557             provider->releaseBuffer(&buffer);
6558         }
6559     } else {
6560          ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6561                  mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
6562 
6563          // reallocate buffer if needed
6564          if (mBufFrameSize != 0 && mBufFrames < frames) {
6565              free(mBuf);
6566              mBufFrames = frames;
6567              (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6568          }
6569         // resampler accumulates, but we only have one source track
6570         memset(mBuf, 0, frames * mBufFrameSize);
6571         frames = mResampler->resample((int32_t*)mBuf, frames, provider);
6572         // format convert to destination buffer
6573         convertResampler(dst, mBuf, frames);
6574     }
6575     return frames;
6576 }
6577 
updateParameters(audio_channel_mask_t srcChannelMask,audio_format_t srcFormat,uint32_t srcSampleRate,audio_channel_mask_t dstChannelMask,audio_format_t dstFormat,uint32_t dstSampleRate)6578 status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
6579         audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6580         uint32_t srcSampleRate,
6581         audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6582         uint32_t dstSampleRate)
6583 {
6584     // quick evaluation if there is any change.
6585     if (mSrcFormat == srcFormat
6586             && mSrcChannelMask == srcChannelMask
6587             && mSrcSampleRate == srcSampleRate
6588             && mDstFormat == dstFormat
6589             && mDstChannelMask == dstChannelMask
6590             && mDstSampleRate == dstSampleRate) {
6591         return NO_ERROR;
6592     }
6593 
6594     ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
6595             "  srcFormat:%#x dstFormat:%#x  srcRate:%u dstRate:%u",
6596             srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
6597     const bool valid =
6598             audio_is_input_channel(srcChannelMask)
6599             && audio_is_input_channel(dstChannelMask)
6600             && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
6601             && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
6602             && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
6603             ; // no upsampling checks for now
6604     if (!valid) {
6605         return BAD_VALUE;
6606     }
6607 
6608     mSrcFormat = srcFormat;
6609     mSrcChannelMask = srcChannelMask;
6610     mSrcSampleRate = srcSampleRate;
6611     mDstFormat = dstFormat;
6612     mDstChannelMask = dstChannelMask;
6613     mDstSampleRate = dstSampleRate;
6614 
6615     // compute derived parameters
6616     mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
6617     mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
6618     mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
6619 
6620     // do we need to resample?
6621     delete mResampler;
6622     mResampler = NULL;
6623     if (mSrcSampleRate != mDstSampleRate) {
6624         mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
6625                 mSrcChannelCount, mDstSampleRate);
6626         mResampler->setSampleRate(mSrcSampleRate);
6627         mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
6628     }
6629 
6630     // are we running legacy channel conversion modes?
6631     mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
6632                             || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
6633                    && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
6634     mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
6635                    && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
6636                             || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
6637 
6638     // do we need to process in float?
6639     mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
6640 
6641     // do we need a staging buffer to convert for destination (we can still optimize this)?
6642     // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
6643     if (mResampler != NULL) {
6644         mBufFrameSize = max(mSrcChannelCount, FCC_2)
6645                 * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6646     } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
6647         mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6648     } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
6649         mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
6650     } else {
6651         mBufFrameSize = 0;
6652     }
6653     mBufFrames = 0; // force the buffer to be resized.
6654 
6655     // do we need an input converter buffer provider to give us float?
6656     delete mInputConverterProvider;
6657     mInputConverterProvider = NULL;
6658     if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
6659         mInputConverterProvider = new ReformatBufferProvider(
6660                 audio_channel_count_from_in_mask(mSrcChannelMask),
6661                 mSrcFormat,
6662                 AUDIO_FORMAT_PCM_FLOAT,
6663                 256 /* provider buffer frame count */);
6664     }
6665 
6666     // do we need a remixer to do channel mask conversion
6667     if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
6668         (void) memcpy_by_index_array_initialization_from_channel_mask(
6669                 mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
6670     }
6671     return NO_ERROR;
6672 }
6673 
convertNoResampler(void * dst,const void * src,size_t frames)6674 void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
6675         void *dst, const void *src, size_t frames)
6676 {
6677     // src is native type unless there is legacy upmix or downmix, whereupon it is float.
6678     if (mBufFrameSize != 0 && mBufFrames < frames) {
6679         free(mBuf);
6680         mBufFrames = frames;
6681         (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6682     }
6683     // do we need to do legacy upmix and downmix?
6684     if (mIsLegacyUpmix || mIsLegacyDownmix) {
6685         void *dstBuf = mBuf != NULL ? mBuf : dst;
6686         if (mIsLegacyUpmix) {
6687             upmix_to_stereo_float_from_mono_float((float *)dstBuf,
6688                     (const float *)src, frames);
6689         } else /*mIsLegacyDownmix */ {
6690             downmix_to_mono_float_from_stereo_float((float *)dstBuf,
6691                     (const float *)src, frames);
6692         }
6693         if (mBuf != NULL) {
6694             memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
6695                     frames * mDstChannelCount);
6696         }
6697         return;
6698     }
6699     // do we need to do channel mask conversion?
6700     if (mSrcChannelMask != mDstChannelMask) {
6701         void *dstBuf = mBuf != NULL ? mBuf : dst;
6702         memcpy_by_index_array(dstBuf, mDstChannelCount,
6703                 src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
6704         if (dstBuf == dst) {
6705             return; // format is the same
6706         }
6707     }
6708     // convert to destination buffer
6709     const void *convertBuf = mBuf != NULL ? mBuf : src;
6710     memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
6711             frames * mDstChannelCount);
6712 }
6713 
convertResampler(void * dst,void * src,size_t frames)6714 void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
6715         void *dst, /*not-a-const*/ void *src, size_t frames)
6716 {
6717     // src buffer format is ALWAYS float when entering this routine
6718     if (mIsLegacyUpmix) {
6719         ; // mono to stereo already handled by resampler
6720     } else if (mIsLegacyDownmix
6721             || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
6722         // the resampler outputs stereo for mono input channel (a feature?)
6723         // must convert to mono
6724         downmix_to_mono_float_from_stereo_float((float *)src,
6725                 (const float *)src, frames);
6726     } else if (mSrcChannelMask != mDstChannelMask) {
6727         // convert to mono channel again for channel mask conversion (could be skipped
6728         // with further optimization).
6729         if (mSrcChannelCount == 1) {
6730             downmix_to_mono_float_from_stereo_float((float *)src,
6731                 (const float *)src, frames);
6732         }
6733         // convert to destination format (in place, OK as float is larger than other types)
6734         if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
6735             memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6736                     frames * mSrcChannelCount);
6737         }
6738         // channel convert and save to dst
6739         memcpy_by_index_array(dst, mDstChannelCount,
6740                 src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
6741         return;
6742     }
6743     // convert to destination format and save to dst
6744     memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6745             frames * mDstChannelCount);
6746 }
6747 
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)6748 bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
6749                                                         status_t& status)
6750 {
6751     bool reconfig = false;
6752 
6753     status = NO_ERROR;
6754 
6755     audio_format_t reqFormat = mFormat;
6756     uint32_t samplingRate = mSampleRate;
6757     // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
6758     audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
6759 
6760     AudioParameter param = AudioParameter(keyValuePair);
6761     int value;
6762     // TODO Investigate when this code runs. Check with audio policy when a sample rate and
6763     //      channel count change can be requested. Do we mandate the first client defines the
6764     //      HAL sampling rate and channel count or do we allow changes on the fly?
6765     if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
6766         samplingRate = value;
6767         reconfig = true;
6768     }
6769     if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
6770         if (!audio_is_linear_pcm((audio_format_t) value)) {
6771             status = BAD_VALUE;
6772         } else {
6773             reqFormat = (audio_format_t) value;
6774             reconfig = true;
6775         }
6776     }
6777     if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
6778         audio_channel_mask_t mask = (audio_channel_mask_t) value;
6779         if (!audio_is_input_channel(mask) ||
6780                 audio_channel_count_from_in_mask(mask) > FCC_8) {
6781             status = BAD_VALUE;
6782         } else {
6783             channelMask = mask;
6784             reconfig = true;
6785         }
6786     }
6787     if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
6788         // do not accept frame count changes if tracks are open as the track buffer
6789         // size depends on frame count and correct behavior would not be guaranteed
6790         // if frame count is changed after track creation
6791         if (mActiveTracks.size() > 0) {
6792             status = INVALID_OPERATION;
6793         } else {
6794             reconfig = true;
6795         }
6796     }
6797     if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6798         // forward device change to effects that have requested to be
6799         // aware of attached audio device.
6800         for (size_t i = 0; i < mEffectChains.size(); i++) {
6801             mEffectChains[i]->setDevice_l(value);
6802         }
6803 
6804         // store input device and output device but do not forward output device to audio HAL.
6805         // Note that status is ignored by the caller for output device
6806         // (see AudioFlinger::setParameters()
6807         if (audio_is_output_devices(value)) {
6808             mOutDevice = value;
6809             status = BAD_VALUE;
6810         } else {
6811             mInDevice = value;
6812             if (value != AUDIO_DEVICE_NONE) {
6813                 mPrevInDevice = value;
6814             }
6815             // disable AEC and NS if the device is a BT SCO headset supporting those
6816             // pre processings
6817             if (mTracks.size() > 0) {
6818                 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6819                                     mAudioFlinger->btNrecIsOff();
6820                 for (size_t i = 0; i < mTracks.size(); i++) {
6821                     sp<RecordTrack> track = mTracks[i];
6822                     setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6823                     setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6824                 }
6825             }
6826         }
6827     }
6828     if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
6829             mAudioSource != (audio_source_t)value) {
6830         // forward device change to effects that have requested to be
6831         // aware of attached audio device.
6832         for (size_t i = 0; i < mEffectChains.size(); i++) {
6833             mEffectChains[i]->setAudioSource_l((audio_source_t)value);
6834         }
6835         mAudioSource = (audio_source_t)value;
6836     }
6837 
6838     if (status == NO_ERROR) {
6839         status = mInput->stream->common.set_parameters(&mInput->stream->common,
6840                 keyValuePair.string());
6841         if (status == INVALID_OPERATION) {
6842             inputStandBy();
6843             status = mInput->stream->common.set_parameters(&mInput->stream->common,
6844                     keyValuePair.string());
6845         }
6846         if (reconfig) {
6847             if (status == BAD_VALUE &&
6848                 audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
6849                 audio_is_linear_pcm(reqFormat) &&
6850                 (mInput->stream->common.get_sample_rate(&mInput->stream->common)
6851                         <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
6852                 audio_channel_count_from_in_mask(
6853                         mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
6854                 status = NO_ERROR;
6855             }
6856             if (status == NO_ERROR) {
6857                 readInputParameters_l();
6858                 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
6859             }
6860         }
6861     }
6862 
6863     return reconfig;
6864 }
6865 
getParameters(const String8 & keys)6866 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
6867 {
6868     Mutex::Autolock _l(mLock);
6869     if (initCheck() != NO_ERROR) {
6870         return String8();
6871     }
6872 
6873     char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
6874     const String8 out_s8(s);
6875     free(s);
6876     return out_s8;
6877 }
6878 
ioConfigChanged(audio_io_config_event event,pid_t pid)6879 void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
6880     sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
6881 
6882     desc->mIoHandle = mId;
6883 
6884     switch (event) {
6885     case AUDIO_INPUT_OPENED:
6886     case AUDIO_INPUT_CONFIG_CHANGED:
6887         desc->mPatch = mPatch;
6888         desc->mChannelMask = mChannelMask;
6889         desc->mSamplingRate = mSampleRate;
6890         desc->mFormat = mFormat;
6891         desc->mFrameCount = mFrameCount;
6892         desc->mLatency = 0;
6893         break;
6894 
6895     case AUDIO_INPUT_CLOSED:
6896     default:
6897         break;
6898     }
6899     mAudioFlinger->ioConfigChanged(event, desc, pid);
6900 }
6901 
readInputParameters_l()6902 void AudioFlinger::RecordThread::readInputParameters_l()
6903 {
6904     mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
6905     mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
6906     mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
6907     if (mChannelCount > FCC_8) {
6908         ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
6909     }
6910     mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
6911     mFormat = mHALFormat;
6912     if (!audio_is_linear_pcm(mFormat)) {
6913         ALOGE("HAL format %#x is not linear pcm", mFormat);
6914     }
6915     mFrameSize = audio_stream_in_frame_size(mInput->stream);
6916     mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
6917     mFrameCount = mBufferSize / mFrameSize;
6918     // This is the formula for calculating the temporary buffer size.
6919     // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
6920     // 1 full output buffer, regardless of the alignment of the available input.
6921     // The value is somewhat arbitrary, and could probably be even larger.
6922     // A larger value should allow more old data to be read after a track calls start(),
6923     // without increasing latency.
6924     //
6925     // Note this is independent of the maximum downsampling ratio permitted for capture.
6926     mRsmpInFrames = mFrameCount * 7;
6927     mRsmpInFramesP2 = roundup(mRsmpInFrames);
6928     free(mRsmpInBuffer);
6929 
6930     // TODO optimize audio capture buffer sizes ...
6931     // Here we calculate the size of the sliding buffer used as a source
6932     // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
6933     // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
6934     // be better to have it derived from the pipe depth in the long term.
6935     // The current value is higher than necessary.  However it should not add to latency.
6936 
6937     // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
6938     (void)posix_memalign(&mRsmpInBuffer, 32, (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize);
6939 
6940     // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
6941     // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
6942 }
6943 
getInputFramesLost()6944 uint32_t AudioFlinger::RecordThread::getInputFramesLost()
6945 {
6946     Mutex::Autolock _l(mLock);
6947     if (initCheck() != NO_ERROR) {
6948         return 0;
6949     }
6950 
6951     return mInput->stream->get_input_frames_lost(mInput->stream);
6952 }
6953 
hasAudioSession(int sessionId) const6954 uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
6955 {
6956     Mutex::Autolock _l(mLock);
6957     uint32_t result = 0;
6958     if (getEffectChain_l(sessionId) != 0) {
6959         result = EFFECT_SESSION;
6960     }
6961 
6962     for (size_t i = 0; i < mTracks.size(); ++i) {
6963         if (sessionId == mTracks[i]->sessionId()) {
6964             result |= TRACK_SESSION;
6965             break;
6966         }
6967     }
6968 
6969     return result;
6970 }
6971 
sessionIds() const6972 KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
6973 {
6974     KeyedVector<int, bool> ids;
6975     Mutex::Autolock _l(mLock);
6976     for (size_t j = 0; j < mTracks.size(); ++j) {
6977         sp<RecordThread::RecordTrack> track = mTracks[j];
6978         int sessionId = track->sessionId();
6979         if (ids.indexOfKey(sessionId) < 0) {
6980             ids.add(sessionId, true);
6981         }
6982     }
6983     return ids;
6984 }
6985 
clearInput()6986 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
6987 {
6988     Mutex::Autolock _l(mLock);
6989     AudioStreamIn *input = mInput;
6990     mInput = NULL;
6991     return input;
6992 }
6993 
6994 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const6995 audio_stream_t* AudioFlinger::RecordThread::stream() const
6996 {
6997     if (mInput == NULL) {
6998         return NULL;
6999     }
7000     return &mInput->stream->common;
7001 }
7002 
addEffectChain_l(const sp<EffectChain> & chain)7003 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7004 {
7005     // only one chain per input thread
7006     if (mEffectChains.size() != 0) {
7007         ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7008         return INVALID_OPERATION;
7009     }
7010     ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7011     chain->setThread(this);
7012     chain->setInBuffer(NULL);
7013     chain->setOutBuffer(NULL);
7014 
7015     checkSuspendOnAddEffectChain_l(chain);
7016 
7017     // make sure enabled pre processing effects state is communicated to the HAL as we
7018     // just moved them to a new input stream.
7019     chain->syncHalEffectsState();
7020 
7021     mEffectChains.add(chain);
7022 
7023     return NO_ERROR;
7024 }
7025 
removeEffectChain_l(const sp<EffectChain> & chain)7026 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7027 {
7028     ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7029     ALOGW_IF(mEffectChains.size() != 1,
7030             "removeEffectChain_l() %p invalid chain size %d on thread %p",
7031             chain.get(), mEffectChains.size(), this);
7032     if (mEffectChains.size() == 1) {
7033         mEffectChains.removeAt(0);
7034     }
7035     return 0;
7036 }
7037 
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)7038 status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7039                                                           audio_patch_handle_t *handle)
7040 {
7041     status_t status = NO_ERROR;
7042 
7043     // store new device and send to effects
7044     mInDevice = patch->sources[0].ext.device.type;
7045     mPatch = *patch;
7046     for (size_t i = 0; i < mEffectChains.size(); i++) {
7047         mEffectChains[i]->setDevice_l(mInDevice);
7048     }
7049 
7050     // disable AEC and NS if the device is a BT SCO headset supporting those
7051     // pre processings
7052     if (mTracks.size() > 0) {
7053         bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7054                             mAudioFlinger->btNrecIsOff();
7055         for (size_t i = 0; i < mTracks.size(); i++) {
7056             sp<RecordTrack> track = mTracks[i];
7057             setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7058             setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7059         }
7060     }
7061 
7062     // store new source and send to effects
7063     if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7064         mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7065         for (size_t i = 0; i < mEffectChains.size(); i++) {
7066             mEffectChains[i]->setAudioSource_l(mAudioSource);
7067         }
7068     }
7069 
7070     if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7071         audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7072         status = hwDevice->create_audio_patch(hwDevice,
7073                                                patch->num_sources,
7074                                                patch->sources,
7075                                                patch->num_sinks,
7076                                                patch->sinks,
7077                                                handle);
7078     } else {
7079         char *address;
7080         if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7081             address = audio_device_address_to_parameter(
7082                                                 patch->sources[0].ext.device.type,
7083                                                 patch->sources[0].ext.device.address);
7084         } else {
7085             address = (char *)calloc(1, 1);
7086         }
7087         AudioParameter param = AudioParameter(String8(address));
7088         free(address);
7089         param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
7090                      (int)patch->sources[0].ext.device.type);
7091         param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
7092                                          (int)patch->sinks[0].ext.mix.usecase.source);
7093         status = mInput->stream->common.set_parameters(&mInput->stream->common,
7094                 param.toString().string());
7095         *handle = AUDIO_PATCH_HANDLE_NONE;
7096     }
7097 
7098     if (mInDevice != mPrevInDevice) {
7099         sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7100         mPrevInDevice = mInDevice;
7101     }
7102 
7103     return status;
7104 }
7105 
releaseAudioPatch_l(const audio_patch_handle_t handle)7106 status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7107 {
7108     status_t status = NO_ERROR;
7109 
7110     mInDevice = AUDIO_DEVICE_NONE;
7111 
7112     if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7113         audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7114         status = hwDevice->release_audio_patch(hwDevice, handle);
7115     } else {
7116         AudioParameter param;
7117         param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
7118         status = mInput->stream->common.set_parameters(&mInput->stream->common,
7119                 param.toString().string());
7120     }
7121     return status;
7122 }
7123 
addPatchRecord(const sp<PatchRecord> & record)7124 void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7125 {
7126     Mutex::Autolock _l(mLock);
7127     mTracks.add(record);
7128 }
7129 
deletePatchRecord(const sp<PatchRecord> & record)7130 void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7131 {
7132     Mutex::Autolock _l(mLock);
7133     destroyTrack_l(record);
7134 }
7135 
getAudioPortConfig(struct audio_port_config * config)7136 void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7137 {
7138     ThreadBase::getAudioPortConfig(config);
7139     config->role = AUDIO_PORT_ROLE_SINK;
7140     config->ext.mix.hw_module = mInput->audioHwDev->handle();
7141     config->ext.mix.usecase.source = mAudioSource;
7142 }
7143 
7144 } // namespace android
7145