1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <pthread.h>
30
31 #include <errno.h>
32 #include <limits.h>
33 #include <stdatomic.h>
34 #include <string.h>
35 #include <sys/cdefs.h>
36 #include <sys/mman.h>
37 #include <unistd.h>
38
39 #include "pthread_internal.h"
40
41 #include "private/bionic_constants.h"
42 #include "private/bionic_futex.h"
43 #include "private/bionic_systrace.h"
44 #include "private/bionic_time_conversions.h"
45 #include "private/bionic_tls.h"
46
47 /* a mutex attribute holds the following fields
48 *
49 * bits: name description
50 * 0-3 type type of mutex
51 * 4 shared process-shared flag
52 */
53 #define MUTEXATTR_TYPE_MASK 0x000f
54 #define MUTEXATTR_SHARED_MASK 0x0010
55
pthread_mutexattr_init(pthread_mutexattr_t * attr)56 int pthread_mutexattr_init(pthread_mutexattr_t *attr)
57 {
58 *attr = PTHREAD_MUTEX_DEFAULT;
59 return 0;
60 }
61
pthread_mutexattr_destroy(pthread_mutexattr_t * attr)62 int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
63 {
64 *attr = -1;
65 return 0;
66 }
67
pthread_mutexattr_gettype(const pthread_mutexattr_t * attr,int * type_p)68 int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type_p)
69 {
70 int type = (*attr & MUTEXATTR_TYPE_MASK);
71
72 if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK) {
73 return EINVAL;
74 }
75
76 *type_p = type;
77 return 0;
78 }
79
pthread_mutexattr_settype(pthread_mutexattr_t * attr,int type)80 int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
81 {
82 if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK ) {
83 return EINVAL;
84 }
85
86 *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
87 return 0;
88 }
89
90 /* process-shared mutexes are not supported at the moment */
91
pthread_mutexattr_setpshared(pthread_mutexattr_t * attr,int pshared)92 int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
93 {
94 switch (pshared) {
95 case PTHREAD_PROCESS_PRIVATE:
96 *attr &= ~MUTEXATTR_SHARED_MASK;
97 return 0;
98
99 case PTHREAD_PROCESS_SHARED:
100 /* our current implementation of pthread actually supports shared
101 * mutexes but won't cleanup if a process dies with the mutex held.
102 * Nevertheless, it's better than nothing. Shared mutexes are used
103 * by surfaceflinger and audioflinger.
104 */
105 *attr |= MUTEXATTR_SHARED_MASK;
106 return 0;
107 }
108 return EINVAL;
109 }
110
pthread_mutexattr_getpshared(const pthread_mutexattr_t * attr,int * pshared)111 int pthread_mutexattr_getpshared(const pthread_mutexattr_t* attr, int* pshared) {
112 *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED : PTHREAD_PROCESS_PRIVATE;
113 return 0;
114 }
115
116 /* a mutex contains a state value and a owner_tid.
117 * The value is implemented as a 16-bit integer holding the following fields:
118 *
119 * bits: name description
120 * 15-14 type mutex type
121 * 13 shared process-shared flag
122 * 12-2 counter counter of recursive mutexes
123 * 1-0 state lock state (0, 1 or 2)
124 *
125 * The owner_tid is used only in recursive and errorcheck mutex to hold the mutex owner thread tid.
126 */
127
128 /* Convenience macro, creates a mask of 'bits' bits that starts from
129 * the 'shift'-th least significant bit in a 32-bit word.
130 *
131 * Examples: FIELD_MASK(0,4) -> 0xf
132 * FIELD_MASK(16,9) -> 0x1ff0000
133 */
134 #define FIELD_MASK(shift,bits) (((1 << (bits))-1) << (shift))
135
136 /* This one is used to create a bit pattern from a given field value */
137 #define FIELD_TO_BITS(val,shift,bits) (((val) & ((1 << (bits))-1)) << (shift))
138
139 /* And this one does the opposite, i.e. extract a field's value from a bit pattern */
140 #define FIELD_FROM_BITS(val,shift,bits) (((val) >> (shift)) & ((1 << (bits))-1))
141
142
143 /* Convenience macros.
144 *
145 * These are used to form or modify the bit pattern of a given mutex value
146 */
147
148 /* Mutex state:
149 *
150 * 0 for unlocked
151 * 1 for locked, no waiters
152 * 2 for locked, maybe waiters
153 */
154 #define MUTEX_STATE_SHIFT 0
155 #define MUTEX_STATE_LEN 2
156
157 #define MUTEX_STATE_MASK FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
158 #define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
159 #define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
160
161 #define MUTEX_STATE_UNLOCKED 0 /* must be 0 to match PTHREAD_MUTEX_INITIALIZER */
162 #define MUTEX_STATE_LOCKED_UNCONTENDED 1 /* must be 1 due to atomic dec in unlock operation */
163 #define MUTEX_STATE_LOCKED_CONTENDED 2 /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */
164
165 #define MUTEX_STATE_BITS_UNLOCKED MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
166 #define MUTEX_STATE_BITS_LOCKED_UNCONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
167 #define MUTEX_STATE_BITS_LOCKED_CONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)
168
169 /* return true iff the mutex if locked with no waiters */
170 #define MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED)
171
172 /* return true iff the mutex if locked with maybe waiters */
173 #define MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED)
174
175 /* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */
176 #define MUTEX_STATE_BITS_FLIP_CONTENTION(v) ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED))
177
178 /* Mutex counter:
179 *
180 * We need to check for overflow before incrementing, and we also need to
181 * detect when the counter is 0
182 */
183 #define MUTEX_COUNTER_SHIFT 2
184 #define MUTEX_COUNTER_LEN 11
185 #define MUTEX_COUNTER_MASK FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN)
186
187 #define MUTEX_COUNTER_BITS_WILL_OVERFLOW(v) (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK)
188 #define MUTEX_COUNTER_BITS_IS_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0)
189
190 /* Used to increment the counter directly after overflow has been checked */
191 #define MUTEX_COUNTER_BITS_ONE FIELD_TO_BITS(1, MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
192
193 /* Mutex shared bit flag
194 *
195 * This flag is set to indicate that the mutex is shared among processes.
196 * This changes the futex opcode we use for futex wait/wake operations
197 * (non-shared operations are much faster).
198 */
199 #define MUTEX_SHARED_SHIFT 13
200 #define MUTEX_SHARED_MASK FIELD_MASK(MUTEX_SHARED_SHIFT,1)
201
202 /* Mutex type:
203 * We support normal, recursive and errorcheck mutexes.
204 */
205 #define MUTEX_TYPE_SHIFT 14
206 #define MUTEX_TYPE_LEN 2
207 #define MUTEX_TYPE_MASK FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN)
208
209 #define MUTEX_TYPE_TO_BITS(t) FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN)
210
211 #define MUTEX_TYPE_BITS_NORMAL MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_NORMAL)
212 #define MUTEX_TYPE_BITS_RECURSIVE MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_RECURSIVE)
213 #define MUTEX_TYPE_BITS_ERRORCHECK MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_ERRORCHECK)
214
215 struct pthread_mutex_internal_t {
216 _Atomic(uint16_t) state;
217 #if defined(__LP64__)
218 uint16_t __pad;
219 atomic_int owner_tid;
220 char __reserved[32];
221 #else
222 _Atomic(uint16_t) owner_tid;
223 #endif
224 } __attribute__((aligned(4)));
225
226 static_assert(sizeof(pthread_mutex_t) == sizeof(pthread_mutex_internal_t),
227 "pthread_mutex_t should actually be pthread_mutex_internal_t in implementation.");
228
229 // For binary compatibility with old version of pthread_mutex_t, we can't use more strict alignment
230 // than 4-byte alignment.
231 static_assert(alignof(pthread_mutex_t) == 4,
232 "pthread_mutex_t should fulfill the alignment of pthread_mutex_internal_t.");
233
__get_internal_mutex(pthread_mutex_t * mutex_interface)234 static inline pthread_mutex_internal_t* __get_internal_mutex(pthread_mutex_t* mutex_interface) {
235 return reinterpret_cast<pthread_mutex_internal_t*>(mutex_interface);
236 }
237
pthread_mutex_init(pthread_mutex_t * mutex_interface,const pthread_mutexattr_t * attr)238 int pthread_mutex_init(pthread_mutex_t* mutex_interface, const pthread_mutexattr_t* attr) {
239 pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
240
241 memset(mutex, 0, sizeof(pthread_mutex_internal_t));
242
243 if (__predict_true(attr == NULL)) {
244 atomic_init(&mutex->state, MUTEX_TYPE_BITS_NORMAL);
245 return 0;
246 }
247
248 uint16_t state = 0;
249 if ((*attr & MUTEXATTR_SHARED_MASK) != 0) {
250 state |= MUTEX_SHARED_MASK;
251 }
252
253 switch (*attr & MUTEXATTR_TYPE_MASK) {
254 case PTHREAD_MUTEX_NORMAL:
255 state |= MUTEX_TYPE_BITS_NORMAL;
256 break;
257 case PTHREAD_MUTEX_RECURSIVE:
258 state |= MUTEX_TYPE_BITS_RECURSIVE;
259 break;
260 case PTHREAD_MUTEX_ERRORCHECK:
261 state |= MUTEX_TYPE_BITS_ERRORCHECK;
262 break;
263 default:
264 return EINVAL;
265 }
266
267 atomic_init(&mutex->state, state);
268 atomic_init(&mutex->owner_tid, 0);
269 return 0;
270 }
271
__pthread_normal_mutex_trylock(pthread_mutex_internal_t * mutex,uint16_t shared)272 static inline __always_inline int __pthread_normal_mutex_trylock(pthread_mutex_internal_t* mutex,
273 uint16_t shared) {
274 const uint16_t unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
275 const uint16_t locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
276
277 uint16_t old_state = unlocked;
278 if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state,
279 locked_uncontended, memory_order_acquire, memory_order_relaxed))) {
280 return 0;
281 }
282 return EBUSY;
283 }
284
285 /*
286 * Lock a mutex of type NORMAL.
287 *
288 * As noted above, there are three states:
289 * 0 (unlocked, no contention)
290 * 1 (locked, no contention)
291 * 2 (locked, contention)
292 *
293 * Non-recursive mutexes don't use the thread-id or counter fields, and the
294 * "type" value is zero, so the only bits that will be set are the ones in
295 * the lock state field.
296 */
__pthread_normal_mutex_lock(pthread_mutex_internal_t * mutex,uint16_t shared,const timespec * abs_timeout_or_null,clockid_t clock)297 static inline __always_inline int __pthread_normal_mutex_lock(pthread_mutex_internal_t* mutex,
298 uint16_t shared,
299 const timespec* abs_timeout_or_null,
300 clockid_t clock) {
301 if (__predict_true(__pthread_normal_mutex_trylock(mutex, shared) == 0)) {
302 return 0;
303 }
304
305 ScopedTrace trace("Contending for pthread mutex");
306
307 const uint16_t unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
308 const uint16_t locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
309
310 // We want to go to sleep until the mutex is available, which requires
311 // promoting it to locked_contended. We need to swap in the new state
312 // and then wait until somebody wakes us up.
313 // An atomic_exchange is used to compete with other threads for the lock.
314 // If it returns unlocked, we have acquired the lock, otherwise another
315 // thread still holds the lock and we should wait again.
316 // If lock is acquired, an acquire fence is needed to make all memory accesses
317 // made by other threads visible to the current CPU.
318 while (atomic_exchange_explicit(&mutex->state, locked_contended,
319 memory_order_acquire) != unlocked) {
320 timespec ts;
321 timespec* rel_timeout = NULL;
322 if (abs_timeout_or_null != NULL) {
323 rel_timeout = &ts;
324 if (!timespec_from_absolute_timespec(*rel_timeout, *abs_timeout_or_null, clock)) {
325 return ETIMEDOUT;
326 }
327 }
328 if (__futex_wait_ex(&mutex->state, shared, locked_contended, rel_timeout) == -ETIMEDOUT) {
329 return ETIMEDOUT;
330 }
331 }
332 return 0;
333 }
334
335 /*
336 * Release a normal mutex. The caller is responsible for determining
337 * that we are in fact the owner of this lock.
338 */
__pthread_normal_mutex_unlock(pthread_mutex_internal_t * mutex,uint16_t shared)339 static inline __always_inline void __pthread_normal_mutex_unlock(pthread_mutex_internal_t* mutex,
340 uint16_t shared) {
341 const uint16_t unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
342 const uint16_t locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
343
344 // We use an atomic_exchange to release the lock. If locked_contended state
345 // is returned, some threads is waiting for the lock and we need to wake up
346 // one of them.
347 // A release fence is required to make previous stores visible to next
348 // lock owner threads.
349 if (atomic_exchange_explicit(&mutex->state, unlocked,
350 memory_order_release) == locked_contended) {
351 // Wake up one waiting thread. We don't know which thread will be
352 // woken or when it'll start executing -- futexes make no guarantees
353 // here. There may not even be a thread waiting.
354 //
355 // The newly-woken thread will replace the unlocked state we just set above
356 // with locked_contended state, which means that when it eventually releases
357 // the mutex it will also call FUTEX_WAKE. This results in one extra wake
358 // call whenever a lock is contended, but let us avoid forgetting anyone
359 // without requiring us to track the number of sleepers.
360 //
361 // It's possible for another thread to sneak in and grab the lock between
362 // the exchange above and the wake call below. If the new thread is "slow"
363 // and holds the lock for a while, we'll wake up a sleeper, which will swap
364 // in locked_uncontended state and then go back to sleep since the lock is
365 // still held. If the new thread is "fast", running to completion before
366 // we call wake, the thread we eventually wake will find an unlocked mutex
367 // and will execute. Either way we have correct behavior and nobody is
368 // orphaned on the wait queue.
369 __futex_wake_ex(&mutex->state, shared, 1);
370 }
371 }
372
373 /* This common inlined function is used to increment the counter of a recursive mutex.
374 *
375 * If the counter overflows, it will return EAGAIN.
376 * Otherwise, it atomically increments the counter and returns 0.
377 *
378 */
__recursive_increment(pthread_mutex_internal_t * mutex,uint16_t old_state)379 static inline __always_inline int __recursive_increment(pthread_mutex_internal_t* mutex,
380 uint16_t old_state) {
381 // Detect recursive lock overflow and return EAGAIN.
382 // This is safe because only the owner thread can modify the
383 // counter bits in the mutex value.
384 if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(old_state)) {
385 return EAGAIN;
386 }
387
388 // Other threads are able to change the lower bits (e.g. promoting it to "contended"),
389 // but the mutex counter will not overflow. So we use atomic_fetch_add operation here.
390 // The mutex is still locked by current thread, so we don't need a release fence.
391 atomic_fetch_add_explicit(&mutex->state, MUTEX_COUNTER_BITS_ONE, memory_order_relaxed);
392 return 0;
393 }
394
__recursive_or_errorcheck_mutex_wait(pthread_mutex_internal_t * mutex,uint16_t shared,uint16_t old_state,const timespec * rel_timeout)395 static inline __always_inline int __recursive_or_errorcheck_mutex_wait(
396 pthread_mutex_internal_t* mutex,
397 uint16_t shared,
398 uint16_t old_state,
399 const timespec* rel_timeout) {
400 // __futex_wait always waits on a 32-bit value. But state is 16-bit. For a normal mutex, the owner_tid
401 // field in mutex is not used. On 64-bit devices, the __pad field in mutex is not used.
402 // But when a recursive or errorcheck mutex is used on 32-bit devices, we need to add the
403 // owner_tid value in the value argument for __futex_wait, otherwise we may always get EAGAIN error.
404
405 #if defined(__LP64__)
406 return __futex_wait_ex(&mutex->state, shared, old_state, rel_timeout);
407
408 #else
409 // This implementation works only when the layout of pthread_mutex_internal_t matches below expectation.
410 // And it is based on the assumption that Android is always in little-endian devices.
411 static_assert(offsetof(pthread_mutex_internal_t, state) == 0, "");
412 static_assert(offsetof(pthread_mutex_internal_t, owner_tid) == 2, "");
413
414 uint32_t owner_tid = atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed);
415 return __futex_wait_ex(&mutex->state, shared, (owner_tid << 16) | old_state, rel_timeout);
416 #endif
417 }
418
__pthread_mutex_lock_with_timeout(pthread_mutex_internal_t * mutex,const timespec * abs_timeout_or_null,clockid_t clock)419 static int __pthread_mutex_lock_with_timeout(pthread_mutex_internal_t* mutex,
420 const timespec* abs_timeout_or_null, clockid_t clock) {
421 uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
422 uint16_t mtype = (old_state & MUTEX_TYPE_MASK);
423 uint16_t shared = (old_state & MUTEX_SHARED_MASK);
424
425 // Handle common case first.
426 if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
427 return __pthread_normal_mutex_lock(mutex, shared, abs_timeout_or_null, clock);
428 }
429
430 // Do we already own this recursive or error-check mutex?
431 pid_t tid = __get_thread()->tid;
432 if (tid == atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed)) {
433 if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
434 return EDEADLK;
435 }
436 return __recursive_increment(mutex, old_state);
437 }
438
439 const uint16_t unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED;
440 const uint16_t locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
441 const uint16_t locked_contended = mtype | shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
442
443 // First, if the mutex is unlocked, try to quickly acquire it.
444 // In the optimistic case where this works, set the state to locked_uncontended.
445 if (old_state == unlocked) {
446 // If exchanged successfully, an acquire fence is required to make
447 // all memory accesses made by other threads visible to the current CPU.
448 if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state,
449 locked_uncontended, memory_order_acquire, memory_order_relaxed))) {
450 atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed);
451 return 0;
452 }
453 }
454
455 ScopedTrace trace("Contending for pthread mutex");
456
457 while (true) {
458 if (old_state == unlocked) {
459 // NOTE: We put the state to locked_contended since we _know_ there
460 // is contention when we are in this loop. This ensures all waiters
461 // will be unlocked.
462
463 // If exchanged successfully, an acquire fence is required to make
464 // all memory accesses made by other threads visible to the current CPU.
465 if (__predict_true(atomic_compare_exchange_weak_explicit(&mutex->state,
466 &old_state, locked_contended,
467 memory_order_acquire,
468 memory_order_relaxed))) {
469 atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed);
470 return 0;
471 }
472 continue;
473 } else if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(old_state)) {
474 // We should set it to locked_contended beforing going to sleep. This can make
475 // sure waiters will be woken up eventually.
476
477 int new_state = MUTEX_STATE_BITS_FLIP_CONTENTION(old_state);
478 if (__predict_false(!atomic_compare_exchange_weak_explicit(&mutex->state,
479 &old_state, new_state,
480 memory_order_relaxed,
481 memory_order_relaxed))) {
482 continue;
483 }
484 old_state = new_state;
485 }
486
487 // We are in locked_contended state, sleep until someone wakes us up.
488 timespec ts;
489 timespec* rel_timeout = NULL;
490 if (abs_timeout_or_null != NULL) {
491 rel_timeout = &ts;
492 if (!timespec_from_absolute_timespec(*rel_timeout, *abs_timeout_or_null, clock)) {
493 return ETIMEDOUT;
494 }
495 }
496 if (__recursive_or_errorcheck_mutex_wait(mutex, shared, old_state, rel_timeout) == -ETIMEDOUT) {
497 return ETIMEDOUT;
498 }
499 old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
500 }
501 }
502
pthread_mutex_lock(pthread_mutex_t * mutex_interface)503 int pthread_mutex_lock(pthread_mutex_t* mutex_interface) {
504 #if !defined(__LP64__)
505 if (mutex_interface == NULL) {
506 return EINVAL;
507 }
508 #endif
509
510 pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
511
512 uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
513 uint16_t mtype = (old_state & MUTEX_TYPE_MASK);
514 uint16_t shared = (old_state & MUTEX_SHARED_MASK);
515 // Avoid slowing down fast path of normal mutex lock operation.
516 if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
517 if (__predict_true(__pthread_normal_mutex_trylock(mutex, shared) == 0)) {
518 return 0;
519 }
520 }
521 return __pthread_mutex_lock_with_timeout(mutex, NULL, 0);
522 }
523
pthread_mutex_unlock(pthread_mutex_t * mutex_interface)524 int pthread_mutex_unlock(pthread_mutex_t* mutex_interface) {
525 #if !defined(__LP64__)
526 if (mutex_interface == NULL) {
527 return EINVAL;
528 }
529 #endif
530
531 pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
532
533 uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
534 uint16_t mtype = (old_state & MUTEX_TYPE_MASK);
535 uint16_t shared = (old_state & MUTEX_SHARED_MASK);
536
537 // Handle common case first.
538 if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
539 __pthread_normal_mutex_unlock(mutex, shared);
540 return 0;
541 }
542
543 // Do we already own this recursive or error-check mutex?
544 pid_t tid = __get_thread()->tid;
545 if ( tid != atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed) ) {
546 return EPERM;
547 }
548
549 // If the counter is > 0, we can simply decrement it atomically.
550 // Since other threads can mutate the lower state bits (and only the
551 // lower state bits), use a compare_exchange loop to do it.
552 if (!MUTEX_COUNTER_BITS_IS_ZERO(old_state)) {
553 // We still own the mutex, so a release fence is not needed.
554 atomic_fetch_sub_explicit(&mutex->state, MUTEX_COUNTER_BITS_ONE, memory_order_relaxed);
555 return 0;
556 }
557
558 // The counter is 0, so we'are going to unlock the mutex by resetting its
559 // state to unlocked, we need to perform a atomic_exchange inorder to read
560 // the current state, which will be locked_contended if there may have waiters
561 // to awake.
562 // A release fence is required to make previous stores visible to next
563 // lock owner threads.
564 atomic_store_explicit(&mutex->owner_tid, 0, memory_order_relaxed);
565 const uint16_t unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED;
566 old_state = atomic_exchange_explicit(&mutex->state, unlocked, memory_order_release);
567 if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(old_state)) {
568 __futex_wake_ex(&mutex->state, shared, 1);
569 }
570
571 return 0;
572 }
573
pthread_mutex_trylock(pthread_mutex_t * mutex_interface)574 int pthread_mutex_trylock(pthread_mutex_t* mutex_interface) {
575 pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
576
577 uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
578 uint16_t mtype = (old_state & MUTEX_TYPE_MASK);
579 uint16_t shared = (old_state & MUTEX_SHARED_MASK);
580
581 const uint16_t unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED;
582 const uint16_t locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
583
584 // Handle common case first.
585 if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
586 return __pthread_normal_mutex_trylock(mutex, shared);
587 }
588
589 // Do we already own this recursive or error-check mutex?
590 pid_t tid = __get_thread()->tid;
591 if (tid == atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed)) {
592 if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
593 return EBUSY;
594 }
595 return __recursive_increment(mutex, old_state);
596 }
597
598 // Same as pthread_mutex_lock, except that we don't want to wait, and
599 // the only operation that can succeed is a single compare_exchange to acquire the
600 // lock if it is released / not owned by anyone. No need for a complex loop.
601 // If exchanged successfully, an acquire fence is required to make
602 // all memory accesses made by other threads visible to the current CPU.
603 old_state = unlocked;
604 if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state,
605 locked_uncontended,
606 memory_order_acquire,
607 memory_order_relaxed))) {
608 atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed);
609 return 0;
610 }
611 return EBUSY;
612 }
613
614 #if !defined(__LP64__)
pthread_mutex_lock_timeout_np(pthread_mutex_t * mutex_interface,unsigned ms)615 extern "C" int pthread_mutex_lock_timeout_np(pthread_mutex_t* mutex_interface, unsigned ms) {
616 timespec abs_timeout;
617 clock_gettime(CLOCK_MONOTONIC, &abs_timeout);
618 abs_timeout.tv_sec += ms / 1000;
619 abs_timeout.tv_nsec += (ms % 1000) * 1000000;
620 if (abs_timeout.tv_nsec >= NS_PER_S) {
621 abs_timeout.tv_sec++;
622 abs_timeout.tv_nsec -= NS_PER_S;
623 }
624
625 int error = __pthread_mutex_lock_with_timeout(__get_internal_mutex(mutex_interface),
626 &abs_timeout, CLOCK_MONOTONIC);
627 if (error == ETIMEDOUT) {
628 error = EBUSY;
629 }
630 return error;
631 }
632 #endif
633
pthread_mutex_timedlock(pthread_mutex_t * mutex_interface,const timespec * abs_timeout)634 int pthread_mutex_timedlock(pthread_mutex_t* mutex_interface, const timespec* abs_timeout) {
635 return __pthread_mutex_lock_with_timeout(__get_internal_mutex(mutex_interface),
636 abs_timeout, CLOCK_REALTIME);
637 }
638
pthread_mutex_destroy(pthread_mutex_t * mutex_interface)639 int pthread_mutex_destroy(pthread_mutex_t* mutex_interface) {
640 // Use trylock to ensure that the mutex is valid and not already locked.
641 int error = pthread_mutex_trylock(mutex_interface);
642 if (error != 0) {
643 return error;
644 }
645 return 0;
646 }
647