1 /*
2 * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <limits.h>
12 #include <math.h>
13
14 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
15
16 #include "vp9/common/vp9_seg_common.h"
17
18 #include "vp9/encoder/vp9_ratectrl.h"
19 #include "vp9/encoder/vp9_segmentation.h"
20
21 struct CYCLIC_REFRESH {
22 // Percentage of super-blocks per frame that are targeted as candidates
23 // for cyclic refresh.
24 int max_sbs_perframe;
25 // Maximum q-delta as percentage of base q.
26 int max_qdelta_perc;
27 // Block size below which we don't apply cyclic refresh.
28 BLOCK_SIZE min_block_size;
29 // Superblock starting index for cycling through the frame.
30 int sb_index;
31 // Controls how long a block will need to wait to be refreshed again.
32 int time_for_refresh;
33 // Actual number of (8x8) blocks that were applied delta-q (segment 1).
34 int num_seg_blocks;
35 // Actual encoding bits for segment 1.
36 int actual_seg_bits;
37 // RD mult. parameters for segment 1.
38 int rdmult;
39 // Cyclic refresh map.
40 signed char *map;
41 // Projected rate and distortion for the current superblock.
42 int64_t projected_rate_sb;
43 int64_t projected_dist_sb;
44 // Thresholds applied to projected rate/distortion of the superblock.
45 int64_t thresh_rate_sb;
46 int64_t thresh_dist_sb;
47 };
48
vp9_cyclic_refresh_alloc(int mi_rows,int mi_cols)49 CYCLIC_REFRESH *vp9_cyclic_refresh_alloc(int mi_rows, int mi_cols) {
50 CYCLIC_REFRESH *const cr = vpx_calloc(1, sizeof(*cr));
51 if (cr == NULL)
52 return NULL;
53
54 cr->map = vpx_calloc(mi_rows * mi_cols, sizeof(*cr->map));
55 if (cr->map == NULL) {
56 vpx_free(cr);
57 return NULL;
58 }
59
60 return cr;
61 }
62
vp9_cyclic_refresh_free(CYCLIC_REFRESH * cr)63 void vp9_cyclic_refresh_free(CYCLIC_REFRESH *cr) {
64 vpx_free(cr->map);
65 vpx_free(cr);
66 }
67
68 // Check if we should turn off cyclic refresh based on bitrate condition.
apply_cyclic_refresh_bitrate(const VP9_COMMON * cm,const RATE_CONTROL * rc)69 static int apply_cyclic_refresh_bitrate(const VP9_COMMON *cm,
70 const RATE_CONTROL *rc) {
71 // Turn off cyclic refresh if bits available per frame is not sufficiently
72 // larger than bit cost of segmentation. Segment map bit cost should scale
73 // with number of seg blocks, so compare available bits to number of blocks.
74 // Average bits available per frame = avg_frame_bandwidth
75 // Number of (8x8) blocks in frame = mi_rows * mi_cols;
76 const float factor = 0.5;
77 const int number_blocks = cm->mi_rows * cm->mi_cols;
78 // The condition below corresponds to turning off at target bitrates:
79 // ~24kbps for CIF, 72kbps for VGA (at 30fps).
80 // Also turn off at very small frame sizes, to avoid too large fraction of
81 // superblocks to be refreshed per frame. Threshold below is less than QCIF.
82 if (rc->avg_frame_bandwidth < factor * number_blocks ||
83 number_blocks / 64 < 5)
84 return 0;
85 else
86 return 1;
87 }
88
89 // Check if this coding block, of size bsize, should be considered for refresh
90 // (lower-qp coding). Decision can be based on various factors, such as
91 // size of the coding block (i.e., below min_block size rejected), coding
92 // mode, and rate/distortion.
candidate_refresh_aq(const CYCLIC_REFRESH * cr,const MB_MODE_INFO * mbmi,BLOCK_SIZE bsize,int use_rd)93 static int candidate_refresh_aq(const CYCLIC_REFRESH *cr,
94 const MB_MODE_INFO *mbmi,
95 BLOCK_SIZE bsize, int use_rd) {
96 if (use_rd) {
97 // If projected rate is below the thresh_rate (well below target,
98 // so undershoot expected), accept it for lower-qp coding.
99 if (cr->projected_rate_sb < cr->thresh_rate_sb)
100 return 1;
101 // Otherwise, reject the block for lower-qp coding if any of the following:
102 // 1) prediction block size is below min_block_size
103 // 2) mode is non-zero mv and projected distortion is above thresh_dist
104 // 3) mode is an intra-mode (we may want to allow some of this under
105 // another thresh_dist)
106 else if (bsize < cr->min_block_size ||
107 (mbmi->mv[0].as_int != 0 &&
108 cr->projected_dist_sb > cr->thresh_dist_sb) ||
109 !is_inter_block(mbmi))
110 return 0;
111 else
112 return 1;
113 } else {
114 // Rate/distortion not used for update.
115 if (bsize < cr->min_block_size ||
116 mbmi->mv[0].as_int != 0 ||
117 !is_inter_block(mbmi))
118 return 0;
119 else
120 return 1;
121 }
122 }
123
124 // Prior to coding a given prediction block, of size bsize at (mi_row, mi_col),
125 // check if we should reset the segment_id, and update the cyclic_refresh map
126 // and segmentation map.
vp9_cyclic_refresh_update_segment(VP9_COMP * const cpi,MB_MODE_INFO * const mbmi,int mi_row,int mi_col,BLOCK_SIZE bsize,int use_rd)127 void vp9_cyclic_refresh_update_segment(VP9_COMP *const cpi,
128 MB_MODE_INFO *const mbmi,
129 int mi_row, int mi_col,
130 BLOCK_SIZE bsize, int use_rd) {
131 const VP9_COMMON *const cm = &cpi->common;
132 CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
133 const int bw = num_8x8_blocks_wide_lookup[bsize];
134 const int bh = num_8x8_blocks_high_lookup[bsize];
135 const int xmis = MIN(cm->mi_cols - mi_col, bw);
136 const int ymis = MIN(cm->mi_rows - mi_row, bh);
137 const int block_index = mi_row * cm->mi_cols + mi_col;
138 const int refresh_this_block = cpi->mb.in_static_area ||
139 candidate_refresh_aq(cr, mbmi, bsize, use_rd);
140 // Default is to not update the refresh map.
141 int new_map_value = cr->map[block_index];
142 int x = 0; int y = 0;
143
144 // Check if we should reset the segment_id for this block.
145 if (mbmi->segment_id > 0 && !refresh_this_block)
146 mbmi->segment_id = 0;
147
148 // Update the cyclic refresh map, to be used for setting segmentation map
149 // for the next frame. If the block will be refreshed this frame, mark it
150 // as clean. The magnitude of the -ve influences how long before we consider
151 // it for refresh again.
152 if (mbmi->segment_id == 1) {
153 new_map_value = -cr->time_for_refresh;
154 } else if (refresh_this_block) {
155 // Else if it is accepted as candidate for refresh, and has not already
156 // been refreshed (marked as 1) then mark it as a candidate for cleanup
157 // for future time (marked as 0), otherwise don't update it.
158 if (cr->map[block_index] == 1)
159 new_map_value = 0;
160 } else {
161 // Leave it marked as block that is not candidate for refresh.
162 new_map_value = 1;
163 }
164 // Update entries in the cyclic refresh map with new_map_value, and
165 // copy mbmi->segment_id into global segmentation map.
166 for (y = 0; y < ymis; y++)
167 for (x = 0; x < xmis; x++) {
168 cr->map[block_index + y * cm->mi_cols + x] = new_map_value;
169 cpi->segmentation_map[block_index + y * cm->mi_cols + x] =
170 mbmi->segment_id;
171 }
172 // Keep track of actual number (in units of 8x8) of blocks in segment 1 used
173 // for encoding this frame.
174 if (mbmi->segment_id)
175 cr->num_seg_blocks += xmis * ymis;
176 }
177
178 // Setup cyclic background refresh: set delta q and segmentation map.
vp9_cyclic_refresh_setup(VP9_COMP * const cpi)179 void vp9_cyclic_refresh_setup(VP9_COMP *const cpi) {
180 VP9_COMMON *const cm = &cpi->common;
181 const RATE_CONTROL *const rc = &cpi->rc;
182 CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
183 struct segmentation *const seg = &cm->seg;
184 unsigned char *const seg_map = cpi->segmentation_map;
185 const int apply_cyclic_refresh = apply_cyclic_refresh_bitrate(cm, rc);
186 // Don't apply refresh on key frame or enhancement layer frames.
187 if (!apply_cyclic_refresh ||
188 (cm->frame_type == KEY_FRAME) ||
189 (cpi->svc.temporal_layer_id > 0)) {
190 // Set segmentation map to 0 and disable.
191 vpx_memset(seg_map, 0, cm->mi_rows * cm->mi_cols);
192 vp9_disable_segmentation(&cm->seg);
193 if (cm->frame_type == KEY_FRAME)
194 cr->sb_index = 0;
195 return;
196 } else {
197 int qindex_delta = 0;
198 int i, block_count, bl_index, sb_rows, sb_cols, sbs_in_frame;
199 int xmis, ymis, x, y, qindex2;
200
201 // Rate target ratio to set q delta.
202 const float rate_ratio_qdelta = 2.0;
203 const double q = vp9_convert_qindex_to_q(cm->base_qindex);
204 vp9_clear_system_state();
205 // Some of these parameters may be set via codec-control function later.
206 cr->max_sbs_perframe = 10;
207 cr->max_qdelta_perc = 50;
208 cr->min_block_size = BLOCK_8X8;
209 cr->time_for_refresh = 1;
210 // Set rate threshold to some fraction of target (and scaled by 256).
211 cr->thresh_rate_sb = (rc->sb64_target_rate * 256) >> 2;
212 // Distortion threshold, quadratic in Q, scale factor to be adjusted.
213 cr->thresh_dist_sb = 8 * (int)(q * q);
214 if (cpi->sf.use_nonrd_pick_mode) {
215 // May want to be more conservative with thresholds in non-rd mode for now
216 // as rate/distortion are derived from model based on prediction residual.
217 cr->thresh_rate_sb = (rc->sb64_target_rate * 256) >> 3;
218 cr->thresh_dist_sb = 4 * (int)(q * q);
219 }
220
221 cr->num_seg_blocks = 0;
222 // Set up segmentation.
223 // Clear down the segment map.
224 vpx_memset(seg_map, 0, cm->mi_rows * cm->mi_cols);
225 vp9_enable_segmentation(&cm->seg);
226 vp9_clearall_segfeatures(seg);
227 // Select delta coding method.
228 seg->abs_delta = SEGMENT_DELTADATA;
229
230 // Note: setting temporal_update has no effect, as the seg-map coding method
231 // (temporal or spatial) is determined in vp9_choose_segmap_coding_method(),
232 // based on the coding cost of each method. For error_resilient mode on the
233 // last_frame_seg_map is set to 0, so if temporal coding is used, it is
234 // relative to 0 previous map.
235 // seg->temporal_update = 0;
236
237 // Segment 0 "Q" feature is disabled so it defaults to the baseline Q.
238 vp9_disable_segfeature(seg, 0, SEG_LVL_ALT_Q);
239 // Use segment 1 for in-frame Q adjustment.
240 vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
241
242 // Set the q delta for segment 1.
243 qindex_delta = vp9_compute_qdelta_by_rate(rc, cm->frame_type,
244 cm->base_qindex,
245 rate_ratio_qdelta);
246 // TODO(marpan): Incorporate the actual-vs-target rate over/undershoot from
247 // previous encoded frame.
248 if (-qindex_delta > cr->max_qdelta_perc * cm->base_qindex / 100)
249 qindex_delta = -cr->max_qdelta_perc * cm->base_qindex / 100;
250
251 // Compute rd-mult for segment 1.
252 qindex2 = clamp(cm->base_qindex + cm->y_dc_delta_q + qindex_delta, 0, MAXQ);
253 cr->rdmult = vp9_compute_rd_mult(cpi, qindex2);
254
255 vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qindex_delta);
256
257 sb_cols = (cm->mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
258 sb_rows = (cm->mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
259 sbs_in_frame = sb_cols * sb_rows;
260 // Number of target superblocks to get the q delta (segment 1).
261 block_count = cr->max_sbs_perframe * sbs_in_frame / 100;
262 // Set the segmentation map: cycle through the superblocks, starting at
263 // cr->mb_index, and stopping when either block_count blocks have been found
264 // to be refreshed, or we have passed through whole frame.
265 assert(cr->sb_index < sbs_in_frame);
266 i = cr->sb_index;
267 do {
268 int sum_map = 0;
269 // Get the mi_row/mi_col corresponding to superblock index i.
270 int sb_row_index = (i / sb_cols);
271 int sb_col_index = i - sb_row_index * sb_cols;
272 int mi_row = sb_row_index * MI_BLOCK_SIZE;
273 int mi_col = sb_col_index * MI_BLOCK_SIZE;
274 assert(mi_row >= 0 && mi_row < cm->mi_rows);
275 assert(mi_col >= 0 && mi_col < cm->mi_cols);
276 bl_index = mi_row * cm->mi_cols + mi_col;
277 // Loop through all 8x8 blocks in superblock and update map.
278 xmis = MIN(cm->mi_cols - mi_col,
279 num_8x8_blocks_wide_lookup[BLOCK_64X64]);
280 ymis = MIN(cm->mi_rows - mi_row,
281 num_8x8_blocks_high_lookup[BLOCK_64X64]);
282 for (y = 0; y < ymis; y++) {
283 for (x = 0; x < xmis; x++) {
284 const int bl_index2 = bl_index + y * cm->mi_cols + x;
285 // If the block is as a candidate for clean up then mark it
286 // for possible boost/refresh (segment 1). The segment id may get
287 // reset to 0 later if block gets coded anything other than ZEROMV.
288 if (cr->map[bl_index2] == 0) {
289 seg_map[bl_index2] = 1;
290 sum_map++;
291 } else if (cr->map[bl_index2] < 0) {
292 cr->map[bl_index2]++;
293 }
294 }
295 }
296 // Enforce constant segment over superblock.
297 // If segment is partial over superblock, reset to either all 1 or 0.
298 if (sum_map > 0 && sum_map < xmis * ymis) {
299 const int new_value = (sum_map >= xmis * ymis / 2);
300 for (y = 0; y < ymis; y++)
301 for (x = 0; x < xmis; x++)
302 seg_map[bl_index + y * cm->mi_cols + x] = new_value;
303 }
304 i++;
305 if (i == sbs_in_frame) {
306 i = 0;
307 }
308 if (sum_map >= xmis * ymis /2)
309 block_count--;
310 } while (block_count && i != cr->sb_index);
311 cr->sb_index = i;
312 }
313 }
314
vp9_cyclic_refresh_set_rate_and_dist_sb(CYCLIC_REFRESH * cr,int64_t rate_sb,int64_t dist_sb)315 void vp9_cyclic_refresh_set_rate_and_dist_sb(CYCLIC_REFRESH *cr,
316 int64_t rate_sb, int64_t dist_sb) {
317 cr->projected_rate_sb = rate_sb;
318 cr->projected_dist_sb = dist_sb;
319 }
320
vp9_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH * cr)321 int vp9_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr) {
322 return cr->rdmult;
323 }
324