1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* ChangeLog for this library:
30  *
31  * NDK r10e?: Add MIPS MSA feature.
32  *
33  * NDK r10: Support for 64-bit CPUs (Intel, ARM & MIPS).
34  *
35  * NDK r8d: Add android_setCpu().
36  *
37  * NDK r8c: Add new ARM CPU features: VFPv2, VFP_D32, VFP_FP16,
38  *          VFP_FMA, NEON_FMA, IDIV_ARM, IDIV_THUMB2 and iWMMXt.
39  *
40  *          Rewrite the code to parse /proc/self/auxv instead of
41  *          the "Features" field in /proc/cpuinfo.
42  *
43  *          Dynamically allocate the buffer that hold the content
44  *          of /proc/cpuinfo to deal with newer hardware.
45  *
46  * NDK r7c: Fix CPU count computation. The old method only reported the
47  *           number of _active_ CPUs when the library was initialized,
48  *           which could be less than the real total.
49  *
50  * NDK r5: Handle buggy kernels which report a CPU Architecture number of 7
51  *         for an ARMv6 CPU (see below).
52  *
53  *         Handle kernels that only report 'neon', and not 'vfpv3'
54  *         (VFPv3 is mandated by the ARM architecture is Neon is implemented)
55  *
56  *         Handle kernels that only report 'vfpv3d16', and not 'vfpv3'
57  *
58  *         Fix x86 compilation. Report ANDROID_CPU_FAMILY_X86 in
59  *         android_getCpuFamily().
60  *
61  * NDK r4: Initial release
62  */
63 
64 #if defined(__le32__) || defined(__le64__)
65 
66 // When users enter this, we should only provide interface and
67 // libportable will give the implementations.
68 
69 #else // !__le32__ && !__le64__
70 
71 #include "cpu-features.h"
72 
73 #include <dlfcn.h>
74 #include <errno.h>
75 #include <fcntl.h>
76 #include <pthread.h>
77 #include <stdio.h>
78 #include <stdlib.h>
79 #include <sys/system_properties.h>
80 
81 static  pthread_once_t     g_once;
82 static  int                g_inited;
83 static  AndroidCpuFamily   g_cpuFamily;
84 static  uint64_t           g_cpuFeatures;
85 static  int                g_cpuCount;
86 
87 #ifdef __arm__
88 static  uint32_t           g_cpuIdArm;
89 #endif
90 
91 static const int android_cpufeatures_debug = 0;
92 
93 #define  D(...) \
94     do { \
95         if (android_cpufeatures_debug) { \
96             printf(__VA_ARGS__); fflush(stdout); \
97         } \
98     } while (0)
99 
100 #ifdef __i386__
x86_cpuid(int func,int values[4])101 static __inline__ void x86_cpuid(int func, int values[4])
102 {
103     int a, b, c, d;
104     /* We need to preserve ebx since we're compiling PIC code */
105     /* this means we can't use "=b" for the second output register */
106     __asm__ __volatile__ ( \
107       "push %%ebx\n"
108       "cpuid\n" \
109       "mov %%ebx, %1\n"
110       "pop %%ebx\n"
111       : "=a" (a), "=r" (b), "=c" (c), "=d" (d) \
112       : "a" (func) \
113     );
114     values[0] = a;
115     values[1] = b;
116     values[2] = c;
117     values[3] = d;
118 }
119 #endif
120 
121 /* Get the size of a file by reading it until the end. This is needed
122  * because files under /proc do not always return a valid size when
123  * using fseek(0, SEEK_END) + ftell(). Nor can they be mmap()-ed.
124  */
125 static int
get_file_size(const char * pathname)126 get_file_size(const char* pathname)
127 {
128 
129    int fd, result = 0;
130     char buffer[256];
131 
132     fd = open(pathname, O_RDONLY);
133     if (fd < 0) {
134         D("Can't open %s: %s\n", pathname, strerror(errno));
135         return -1;
136     }
137 
138     for (;;) {
139         int ret = read(fd, buffer, sizeof buffer);
140         if (ret < 0) {
141             if (errno == EINTR)
142                 continue;
143             D("Error while reading %s: %s\n", pathname, strerror(errno));
144             break;
145         }
146         if (ret == 0)
147             break;
148 
149         result += ret;
150     }
151     close(fd);
152     return result;
153 }
154 
155 /* Read the content of /proc/cpuinfo into a user-provided buffer.
156  * Return the length of the data, or -1 on error. Does *not*
157  * zero-terminate the content. Will not read more
158  * than 'buffsize' bytes.
159  */
160 static int
read_file(const char * pathname,char * buffer,size_t buffsize)161 read_file(const char*  pathname, char*  buffer, size_t  buffsize)
162 {
163     int  fd, count;
164 
165     fd = open(pathname, O_RDONLY);
166     if (fd < 0) {
167         D("Could not open %s: %s\n", pathname, strerror(errno));
168         return -1;
169     }
170     count = 0;
171     while (count < (int)buffsize) {
172         int ret = read(fd, buffer + count, buffsize - count);
173         if (ret < 0) {
174             if (errno == EINTR)
175                 continue;
176             D("Error while reading from %s: %s\n", pathname, strerror(errno));
177             if (count == 0)
178                 count = -1;
179             break;
180         }
181         if (ret == 0)
182             break;
183         count += ret;
184     }
185     close(fd);
186     return count;
187 }
188 
189 /* Extract the content of a the first occurence of a given field in
190  * the content of /proc/cpuinfo and return it as a heap-allocated
191  * string that must be freed by the caller.
192  *
193  * Return NULL if not found
194  */
195 static char*
extract_cpuinfo_field(const char * buffer,int buflen,const char * field)196 extract_cpuinfo_field(const char* buffer, int buflen, const char* field)
197 {
198     int  fieldlen = strlen(field);
199     const char* bufend = buffer + buflen;
200     char* result = NULL;
201     int len;
202     const char *p, *q;
203 
204     /* Look for first field occurence, and ensures it starts the line. */
205     p = buffer;
206     for (;;) {
207         p = memmem(p, bufend-p, field, fieldlen);
208         if (p == NULL)
209             goto EXIT;
210 
211         if (p == buffer || p[-1] == '\n')
212             break;
213 
214         p += fieldlen;
215     }
216 
217     /* Skip to the first column followed by a space */
218     p += fieldlen;
219     p  = memchr(p, ':', bufend-p);
220     if (p == NULL || p[1] != ' ')
221         goto EXIT;
222 
223     /* Find the end of the line */
224     p += 2;
225     q = memchr(p, '\n', bufend-p);
226     if (q == NULL)
227         q = bufend;
228 
229     /* Copy the line into a heap-allocated buffer */
230     len = q-p;
231     result = malloc(len+1);
232     if (result == NULL)
233         goto EXIT;
234 
235     memcpy(result, p, len);
236     result[len] = '\0';
237 
238 EXIT:
239     return result;
240 }
241 
242 /* Checks that a space-separated list of items contains one given 'item'.
243  * Returns 1 if found, 0 otherwise.
244  */
245 static int
has_list_item(const char * list,const char * item)246 has_list_item(const char* list, const char* item)
247 {
248     const char*  p = list;
249     int itemlen = strlen(item);
250 
251     if (list == NULL)
252         return 0;
253 
254     while (*p) {
255         const char*  q;
256 
257         /* skip spaces */
258         while (*p == ' ' || *p == '\t')
259             p++;
260 
261         /* find end of current list item */
262         q = p;
263         while (*q && *q != ' ' && *q != '\t')
264             q++;
265 
266         if (itemlen == q-p && !memcmp(p, item, itemlen))
267             return 1;
268 
269         /* skip to next item */
270         p = q;
271     }
272     return 0;
273 }
274 
275 /* Parse a number starting from 'input', but not going further
276  * than 'limit'. Return the value into '*result'.
277  *
278  * NOTE: Does not skip over leading spaces, or deal with sign characters.
279  * NOTE: Ignores overflows.
280  *
281  * The function returns NULL in case of error (bad format), or the new
282  * position after the decimal number in case of success (which will always
283  * be <= 'limit').
284  */
285 static const char*
parse_number(const char * input,const char * limit,int base,int * result)286 parse_number(const char* input, const char* limit, int base, int* result)
287 {
288     const char* p = input;
289     int val = 0;
290     while (p < limit) {
291         int d = (*p - '0');
292         if ((unsigned)d >= 10U) {
293             d = (*p - 'a');
294             if ((unsigned)d >= 6U)
295               d = (*p - 'A');
296             if ((unsigned)d >= 6U)
297               break;
298             d += 10;
299         }
300         if (d >= base)
301           break;
302         val = val*base + d;
303         p++;
304     }
305     if (p == input)
306         return NULL;
307 
308     *result = val;
309     return p;
310 }
311 
312 static const char*
parse_decimal(const char * input,const char * limit,int * result)313 parse_decimal(const char* input, const char* limit, int* result)
314 {
315     return parse_number(input, limit, 10, result);
316 }
317 
318 static const char*
parse_hexadecimal(const char * input,const char * limit,int * result)319 parse_hexadecimal(const char* input, const char* limit, int* result)
320 {
321     return parse_number(input, limit, 16, result);
322 }
323 
324 /* This small data type is used to represent a CPU list / mask, as read
325  * from sysfs on Linux. See http://www.kernel.org/doc/Documentation/cputopology.txt
326  *
327  * For now, we don't expect more than 32 cores on mobile devices, so keep
328  * everything simple.
329  */
330 typedef struct {
331     uint32_t mask;
332 } CpuList;
333 
334 static __inline__ void
cpulist_init(CpuList * list)335 cpulist_init(CpuList* list) {
336     list->mask = 0;
337 }
338 
339 static __inline__ void
cpulist_and(CpuList * list1,CpuList * list2)340 cpulist_and(CpuList* list1, CpuList* list2) {
341     list1->mask &= list2->mask;
342 }
343 
344 static __inline__ void
cpulist_set(CpuList * list,int index)345 cpulist_set(CpuList* list, int index) {
346     if ((unsigned)index < 32) {
347         list->mask |= (uint32_t)(1U << index);
348     }
349 }
350 
351 static __inline__ int
cpulist_count(CpuList * list)352 cpulist_count(CpuList* list) {
353     return __builtin_popcount(list->mask);
354 }
355 
356 /* Parse a textual list of cpus and store the result inside a CpuList object.
357  * Input format is the following:
358  * - comma-separated list of items (no spaces)
359  * - each item is either a single decimal number (cpu index), or a range made
360  *   of two numbers separated by a single dash (-). Ranges are inclusive.
361  *
362  * Examples:   0
363  *             2,4-127,128-143
364  *             0-1
365  */
366 static void
cpulist_parse(CpuList * list,const char * line,int line_len)367 cpulist_parse(CpuList* list, const char* line, int line_len)
368 {
369     const char* p = line;
370     const char* end = p + line_len;
371     const char* q;
372 
373     /* NOTE: the input line coming from sysfs typically contains a
374      * trailing newline, so take care of it in the code below
375      */
376     while (p < end && *p != '\n')
377     {
378         int val, start_value, end_value;
379 
380         /* Find the end of current item, and put it into 'q' */
381         q = memchr(p, ',', end-p);
382         if (q == NULL) {
383             q = end;
384         }
385 
386         /* Get first value */
387         p = parse_decimal(p, q, &start_value);
388         if (p == NULL)
389             goto BAD_FORMAT;
390 
391         end_value = start_value;
392 
393         /* If we're not at the end of the item, expect a dash and
394          * and integer; extract end value.
395          */
396         if (p < q && *p == '-') {
397             p = parse_decimal(p+1, q, &end_value);
398             if (p == NULL)
399                 goto BAD_FORMAT;
400         }
401 
402         /* Set bits CPU list bits */
403         for (val = start_value; val <= end_value; val++) {
404             cpulist_set(list, val);
405         }
406 
407         /* Jump to next item */
408         p = q;
409         if (p < end)
410             p++;
411     }
412 
413 BAD_FORMAT:
414     ;
415 }
416 
417 /* Read a CPU list from one sysfs file */
418 static void
cpulist_read_from(CpuList * list,const char * filename)419 cpulist_read_from(CpuList* list, const char* filename)
420 {
421     char   file[64];
422     int    filelen;
423 
424     cpulist_init(list);
425 
426     filelen = read_file(filename, file, sizeof file);
427     if (filelen < 0) {
428         D("Could not read %s: %s\n", filename, strerror(errno));
429         return;
430     }
431 
432     cpulist_parse(list, file, filelen);
433 }
434 #if defined(__aarch64__)
435 // see <uapi/asm/hwcap.h> kernel header
436 #define HWCAP_FP                (1 << 0)
437 #define HWCAP_ASIMD             (1 << 1)
438 #define HWCAP_AES               (1 << 3)
439 #define HWCAP_PMULL             (1 << 4)
440 #define HWCAP_SHA1              (1 << 5)
441 #define HWCAP_SHA2              (1 << 6)
442 #define HWCAP_CRC32             (1 << 7)
443 #endif
444 
445 #if defined(__arm__)
446 
447 // See <asm/hwcap.h> kernel header.
448 #define HWCAP_VFP       (1 << 6)
449 #define HWCAP_IWMMXT    (1 << 9)
450 #define HWCAP_NEON      (1 << 12)
451 #define HWCAP_VFPv3     (1 << 13)
452 #define HWCAP_VFPv3D16  (1 << 14)
453 #define HWCAP_VFPv4     (1 << 16)
454 #define HWCAP_IDIVA     (1 << 17)
455 #define HWCAP_IDIVT     (1 << 18)
456 
457 // see <uapi/asm/hwcap.h> kernel header
458 #define HWCAP2_AES     (1 << 0)
459 #define HWCAP2_PMULL   (1 << 1)
460 #define HWCAP2_SHA1    (1 << 2)
461 #define HWCAP2_SHA2    (1 << 3)
462 #define HWCAP2_CRC32   (1 << 4)
463 
464 // This is the list of 32-bit ARMv7 optional features that are _always_
465 // supported by ARMv8 CPUs, as mandated by the ARM Architecture Reference
466 // Manual.
467 #define HWCAP_SET_FOR_ARMV8  \
468   ( HWCAP_VFP | \
469     HWCAP_NEON | \
470     HWCAP_VFPv3 | \
471     HWCAP_VFPv4 | \
472     HWCAP_IDIVA | \
473     HWCAP_IDIVT )
474 #endif
475 
476 #if defined(__mips__)
477 // see <uapi/asm/hwcap.h> kernel header
478 #define HWCAP_MIPS_R6           (1 << 0)
479 #define HWCAP_MIPS_MSA          (1 << 1)
480 #endif
481 
482 #if defined(__arm__) || defined(__aarch64__) || defined(__mips__)
483 
484 #define AT_HWCAP 16
485 #define AT_HWCAP2 26
486 
487 // Probe the system's C library for a 'getauxval' function and call it if
488 // it exits, or return 0 for failure. This function is available since API
489 // level 20.
490 //
491 // This code does *NOT* check for '__ANDROID_API__ >= 20' to support the
492 // edge case where some NDK developers use headers for a platform that is
493 // newer than the one really targetted by their application.
494 // This is typically done to use newer native APIs only when running on more
495 // recent Android versions, and requires careful symbol management.
496 //
497 // Note that getauxval() can't really be re-implemented here, because
498 // its implementation does not parse /proc/self/auxv. Instead it depends
499 // on values  that are passed by the kernel at process-init time to the
500 // C runtime initialization layer.
501 static uint32_t
get_elf_hwcap_from_getauxval(int hwcap_type)502 get_elf_hwcap_from_getauxval(int hwcap_type) {
503     typedef unsigned long getauxval_func_t(unsigned long);
504 
505     dlerror();
506     void* libc_handle = dlopen("libc.so", RTLD_NOW);
507     if (!libc_handle) {
508         D("Could not dlopen() C library: %s\n", dlerror());
509         return 0;
510     }
511 
512     uint32_t ret = 0;
513     getauxval_func_t* func = (getauxval_func_t*)
514             dlsym(libc_handle, "getauxval");
515     if (!func) {
516         D("Could not find getauxval() in C library\n");
517     } else {
518         // Note: getauxval() returns 0 on failure. Doesn't touch errno.
519         ret = (uint32_t)(*func)(hwcap_type);
520     }
521     dlclose(libc_handle);
522     return ret;
523 }
524 #endif
525 
526 #if defined(__arm__)
527 // Parse /proc/self/auxv to extract the ELF HW capabilities bitmap for the
528 // current CPU. Note that this file is not accessible from regular
529 // application processes on some Android platform releases.
530 // On success, return new ELF hwcaps, or 0 on failure.
531 static uint32_t
get_elf_hwcap_from_proc_self_auxv(void)532 get_elf_hwcap_from_proc_self_auxv(void) {
533     const char filepath[] = "/proc/self/auxv";
534     int fd = TEMP_FAILURE_RETRY(open(filepath, O_RDONLY));
535     if (fd < 0) {
536         D("Could not open %s: %s\n", filepath, strerror(errno));
537         return 0;
538     }
539 
540     struct { uint32_t tag; uint32_t value; } entry;
541 
542     uint32_t result = 0;
543     for (;;) {
544         int ret = TEMP_FAILURE_RETRY(read(fd, (char*)&entry, sizeof entry));
545         if (ret < 0) {
546             D("Error while reading %s: %s\n", filepath, strerror(errno));
547             break;
548         }
549         // Detect end of list.
550         if (ret == 0 || (entry.tag == 0 && entry.value == 0))
551           break;
552         if (entry.tag == AT_HWCAP) {
553           result = entry.value;
554           break;
555         }
556     }
557     close(fd);
558     return result;
559 }
560 
561 /* Compute the ELF HWCAP flags from the content of /proc/cpuinfo.
562  * This works by parsing the 'Features' line, which lists which optional
563  * features the device's CPU supports, on top of its reference
564  * architecture.
565  */
566 static uint32_t
get_elf_hwcap_from_proc_cpuinfo(const char * cpuinfo,int cpuinfo_len)567 get_elf_hwcap_from_proc_cpuinfo(const char* cpuinfo, int cpuinfo_len) {
568     uint32_t hwcaps = 0;
569     long architecture = 0;
570     char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
571     if (cpuArch) {
572         architecture = strtol(cpuArch, NULL, 10);
573         free(cpuArch);
574 
575         if (architecture >= 8L) {
576             // This is a 32-bit ARM binary running on a 64-bit ARM64 kernel.
577             // The 'Features' line only lists the optional features that the
578             // device's CPU supports, compared to its reference architecture
579             // which are of no use for this process.
580             D("Faking 32-bit ARM HWCaps on ARMv%ld CPU\n", architecture);
581             return HWCAP_SET_FOR_ARMV8;
582         }
583     }
584 
585     char* cpuFeatures = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "Features");
586     if (cpuFeatures != NULL) {
587         D("Found cpuFeatures = '%s'\n", cpuFeatures);
588 
589         if (has_list_item(cpuFeatures, "vfp"))
590             hwcaps |= HWCAP_VFP;
591         if (has_list_item(cpuFeatures, "vfpv3"))
592             hwcaps |= HWCAP_VFPv3;
593         if (has_list_item(cpuFeatures, "vfpv3d16"))
594             hwcaps |= HWCAP_VFPv3D16;
595         if (has_list_item(cpuFeatures, "vfpv4"))
596             hwcaps |= HWCAP_VFPv4;
597         if (has_list_item(cpuFeatures, "neon"))
598             hwcaps |= HWCAP_NEON;
599         if (has_list_item(cpuFeatures, "idiva"))
600             hwcaps |= HWCAP_IDIVA;
601         if (has_list_item(cpuFeatures, "idivt"))
602             hwcaps |= HWCAP_IDIVT;
603         if (has_list_item(cpuFeatures, "idiv"))
604             hwcaps |= HWCAP_IDIVA | HWCAP_IDIVT;
605         if (has_list_item(cpuFeatures, "iwmmxt"))
606             hwcaps |= HWCAP_IWMMXT;
607 
608         free(cpuFeatures);
609     }
610     return hwcaps;
611 }
612 #endif  /* __arm__ */
613 
614 /* Return the number of cpus present on a given device.
615  *
616  * To handle all weird kernel configurations, we need to compute the
617  * intersection of the 'present' and 'possible' CPU lists and count
618  * the result.
619  */
620 static int
get_cpu_count(void)621 get_cpu_count(void)
622 {
623     CpuList cpus_present[1];
624     CpuList cpus_possible[1];
625 
626     cpulist_read_from(cpus_present, "/sys/devices/system/cpu/present");
627     cpulist_read_from(cpus_possible, "/sys/devices/system/cpu/possible");
628 
629     /* Compute the intersection of both sets to get the actual number of
630      * CPU cores that can be used on this device by the kernel.
631      */
632     cpulist_and(cpus_present, cpus_possible);
633 
634     return cpulist_count(cpus_present);
635 }
636 
637 static void
android_cpuInitFamily(void)638 android_cpuInitFamily(void)
639 {
640 #if defined(__arm__)
641     g_cpuFamily = ANDROID_CPU_FAMILY_ARM;
642 #elif defined(__i386__)
643     g_cpuFamily = ANDROID_CPU_FAMILY_X86;
644 #elif defined(__mips64)
645 /* Needs to be before __mips__ since the compiler defines both */
646     g_cpuFamily = ANDROID_CPU_FAMILY_MIPS64;
647 #elif defined(__mips__)
648     g_cpuFamily = ANDROID_CPU_FAMILY_MIPS;
649 #elif defined(__aarch64__)
650     g_cpuFamily = ANDROID_CPU_FAMILY_ARM64;
651 #elif defined(__x86_64__)
652     g_cpuFamily = ANDROID_CPU_FAMILY_X86_64;
653 #else
654     g_cpuFamily = ANDROID_CPU_FAMILY_UNKNOWN;
655 #endif
656 }
657 
658 static void
android_cpuInit(void)659 android_cpuInit(void)
660 {
661     char* cpuinfo = NULL;
662     int   cpuinfo_len;
663 
664     android_cpuInitFamily();
665 
666     g_cpuFeatures = 0;
667     g_cpuCount    = 1;
668     g_inited      = 1;
669 
670     cpuinfo_len = get_file_size("/proc/cpuinfo");
671     if (cpuinfo_len < 0) {
672       D("cpuinfo_len cannot be computed!");
673       return;
674     }
675     cpuinfo = malloc(cpuinfo_len);
676     if (cpuinfo == NULL) {
677       D("cpuinfo buffer could not be allocated");
678       return;
679     }
680     cpuinfo_len = read_file("/proc/cpuinfo", cpuinfo, cpuinfo_len);
681     D("cpuinfo_len is (%d):\n%.*s\n", cpuinfo_len,
682       cpuinfo_len >= 0 ? cpuinfo_len : 0, cpuinfo);
683 
684     if (cpuinfo_len < 0)  /* should not happen */ {
685         free(cpuinfo);
686         return;
687     }
688 
689     /* Count the CPU cores, the value may be 0 for single-core CPUs */
690     g_cpuCount = get_cpu_count();
691     if (g_cpuCount == 0) {
692         g_cpuCount = 1;
693     }
694 
695     D("found cpuCount = %d\n", g_cpuCount);
696 
697 #ifdef __arm__
698     {
699         /* Extract architecture from the "CPU Architecture" field.
700          * The list is well-known, unlike the the output of
701          * the 'Processor' field which can vary greatly.
702          *
703          * See the definition of the 'proc_arch' array in
704          * $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
705          * same file.
706          */
707         char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
708 
709         if (cpuArch != NULL) {
710             char*  end;
711             long   archNumber;
712             int    hasARMv7 = 0;
713 
714             D("found cpuArch = '%s'\n", cpuArch);
715 
716             /* read the initial decimal number, ignore the rest */
717             archNumber = strtol(cpuArch, &end, 10);
718 
719             /* Note that ARMv8 is upwards compatible with ARMv7. */
720             if (end > cpuArch && archNumber >= 7) {
721                 hasARMv7 = 1;
722             }
723 
724             /* Unfortunately, it seems that certain ARMv6-based CPUs
725              * report an incorrect architecture number of 7!
726              *
727              * See http://code.google.com/p/android/issues/detail?id=10812
728              *
729              * We try to correct this by looking at the 'elf_format'
730              * field reported by the 'Processor' field, which is of the
731              * form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
732              * an ARMv6-one.
733              */
734             if (hasARMv7) {
735                 char* cpuProc = extract_cpuinfo_field(cpuinfo, cpuinfo_len,
736                                                       "Processor");
737                 if (cpuProc != NULL) {
738                     D("found cpuProc = '%s'\n", cpuProc);
739                     if (has_list_item(cpuProc, "(v6l)")) {
740                         D("CPU processor and architecture mismatch!!\n");
741                         hasARMv7 = 0;
742                     }
743                     free(cpuProc);
744                 }
745             }
746 
747             if (hasARMv7) {
748                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_ARMv7;
749             }
750 
751             /* The LDREX / STREX instructions are available from ARMv6 */
752             if (archNumber >= 6) {
753                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_LDREX_STREX;
754             }
755 
756             free(cpuArch);
757         }
758 
759         /* Extract the list of CPU features from ELF hwcaps */
760         uint32_t hwcaps = 0;
761         hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
762         if (!hwcaps) {
763             D("Parsing /proc/self/auxv to extract ELF hwcaps!\n");
764             hwcaps = get_elf_hwcap_from_proc_self_auxv();
765         }
766         if (!hwcaps) {
767             // Parsing /proc/self/auxv will fail from regular application
768             // processes on some Android platform versions, when this happens
769             // parse proc/cpuinfo instead.
770             D("Parsing /proc/cpuinfo to extract ELF hwcaps!\n");
771             hwcaps = get_elf_hwcap_from_proc_cpuinfo(cpuinfo, cpuinfo_len);
772         }
773 
774         if (hwcaps != 0) {
775             int has_vfp = (hwcaps & HWCAP_VFP);
776             int has_vfpv3 = (hwcaps & HWCAP_VFPv3);
777             int has_vfpv3d16 = (hwcaps & HWCAP_VFPv3D16);
778             int has_vfpv4 = (hwcaps & HWCAP_VFPv4);
779             int has_neon = (hwcaps & HWCAP_NEON);
780             int has_idiva = (hwcaps & HWCAP_IDIVA);
781             int has_idivt = (hwcaps & HWCAP_IDIVT);
782             int has_iwmmxt = (hwcaps & HWCAP_IWMMXT);
783 
784             // The kernel does a poor job at ensuring consistency when
785             // describing CPU features. So lots of guessing is needed.
786 
787             // 'vfpv4' implies VFPv3|VFP_FMA|FP16
788             if (has_vfpv4)
789                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3    |
790                                  ANDROID_CPU_ARM_FEATURE_VFP_FP16 |
791                                  ANDROID_CPU_ARM_FEATURE_VFP_FMA;
792 
793             // 'vfpv3' or 'vfpv3d16' imply VFPv3. Note that unlike GCC,
794             // a value of 'vfpv3' doesn't necessarily mean that the D32
795             // feature is present, so be conservative. All CPUs in the
796             // field that support D32 also support NEON, so this should
797             // not be a problem in practice.
798             if (has_vfpv3 || has_vfpv3d16)
799                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
800 
801             // 'vfp' is super ambiguous. Depending on the kernel, it can
802             // either mean VFPv2 or VFPv3. Make it depend on ARMv7.
803             if (has_vfp) {
804               if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_ARMv7)
805                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
806               else
807                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2;
808             }
809 
810             // Neon implies VFPv3|D32, and if vfpv4 is detected, NEON_FMA
811             if (has_neon) {
812                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 |
813                                  ANDROID_CPU_ARM_FEATURE_NEON |
814                                  ANDROID_CPU_ARM_FEATURE_VFP_D32;
815               if (has_vfpv4)
816                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_NEON_FMA;
817             }
818 
819             // VFPv3 implies VFPv2 and ARMv7
820             if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_VFPv3)
821                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2 |
822                                  ANDROID_CPU_ARM_FEATURE_ARMv7;
823 
824             if (has_idiva)
825                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
826             if (has_idivt)
827                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2;
828 
829             if (has_iwmmxt)
830                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_iWMMXt;
831         }
832 
833         /* Extract the list of CPU features from ELF hwcaps2 */
834         uint32_t hwcaps2 = 0;
835         hwcaps2 = get_elf_hwcap_from_getauxval(AT_HWCAP2);
836         if (hwcaps2 != 0) {
837             int has_aes     = (hwcaps2 & HWCAP2_AES);
838             int has_pmull   = (hwcaps2 & HWCAP2_PMULL);
839             int has_sha1    = (hwcaps2 & HWCAP2_SHA1);
840             int has_sha2    = (hwcaps2 & HWCAP2_SHA2);
841             int has_crc32   = (hwcaps2 & HWCAP2_CRC32);
842 
843             if (has_aes)
844                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_AES;
845             if (has_pmull)
846                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_PMULL;
847             if (has_sha1)
848                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_SHA1;
849             if (has_sha2)
850                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_SHA2;
851             if (has_crc32)
852                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_CRC32;
853         }
854         /* Extract the cpuid value from various fields */
855         // The CPUID value is broken up in several entries in /proc/cpuinfo.
856         // This table is used to rebuild it from the entries.
857         static const struct CpuIdEntry {
858             const char* field;
859             char        format;
860             char        bit_lshift;
861             char        bit_length;
862         } cpu_id_entries[] = {
863             { "CPU implementer", 'x', 24, 8 },
864             { "CPU variant", 'x', 20, 4 },
865             { "CPU part", 'x', 4, 12 },
866             { "CPU revision", 'd', 0, 4 },
867         };
868         size_t i;
869         D("Parsing /proc/cpuinfo to recover CPUID\n");
870         for (i = 0;
871              i < sizeof(cpu_id_entries)/sizeof(cpu_id_entries[0]);
872              ++i) {
873             const struct CpuIdEntry* entry = &cpu_id_entries[i];
874             char* value = extract_cpuinfo_field(cpuinfo,
875                                                 cpuinfo_len,
876                                                 entry->field);
877             if (value == NULL)
878                 continue;
879 
880             D("field=%s value='%s'\n", entry->field, value);
881             char* value_end = value + strlen(value);
882             int val = 0;
883             const char* start = value;
884             const char* p;
885             if (value[0] == '0' && (value[1] == 'x' || value[1] == 'X')) {
886               start += 2;
887               p = parse_hexadecimal(start, value_end, &val);
888             } else if (entry->format == 'x')
889               p = parse_hexadecimal(value, value_end, &val);
890             else
891               p = parse_decimal(value, value_end, &val);
892 
893             if (p > (const char*)start) {
894               val &= ((1 << entry->bit_length)-1);
895               val <<= entry->bit_lshift;
896               g_cpuIdArm |= (uint32_t) val;
897             }
898 
899             free(value);
900         }
901 
902         // Handle kernel configuration bugs that prevent the correct
903         // reporting of CPU features.
904         static const struct CpuFix {
905             uint32_t  cpuid;
906             uint64_t  or_flags;
907         } cpu_fixes[] = {
908             /* The Nexus 4 (Qualcomm Krait) kernel configuration
909              * forgets to report IDIV support. */
910             { 0x510006f2, ANDROID_CPU_ARM_FEATURE_IDIV_ARM |
911                           ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 },
912             { 0x510006f3, ANDROID_CPU_ARM_FEATURE_IDIV_ARM |
913                           ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 },
914         };
915         size_t n;
916         for (n = 0; n < sizeof(cpu_fixes)/sizeof(cpu_fixes[0]); ++n) {
917             const struct CpuFix* entry = &cpu_fixes[n];
918 
919             if (g_cpuIdArm == entry->cpuid)
920                 g_cpuFeatures |= entry->or_flags;
921         }
922 
923         // Special case: The emulator-specific Android 4.2 kernel fails
924         // to report support for the 32-bit ARM IDIV instruction.
925         // Technically, this is a feature of the virtual CPU implemented
926         // by the emulator. Note that it could also support Thumb IDIV
927         // in the future, and this will have to be slightly updated.
928         char* hardware = extract_cpuinfo_field(cpuinfo,
929                                                cpuinfo_len,
930                                                "Hardware");
931         if (hardware) {
932             if (!strcmp(hardware, "Goldfish") &&
933                 g_cpuIdArm == 0x4100c080 &&
934                 (g_cpuFamily & ANDROID_CPU_ARM_FEATURE_ARMv7) != 0) {
935                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
936             }
937             free(hardware);
938         }
939     }
940 #endif /* __arm__ */
941 #ifdef __aarch64__
942     {
943         /* Extract the list of CPU features from ELF hwcaps */
944         uint32_t hwcaps = 0;
945         hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
946         if (hwcaps != 0) {
947             int has_fp      = (hwcaps & HWCAP_FP);
948             int has_asimd   = (hwcaps & HWCAP_ASIMD);
949             int has_aes     = (hwcaps & HWCAP_AES);
950             int has_pmull   = (hwcaps & HWCAP_PMULL);
951             int has_sha1    = (hwcaps & HWCAP_SHA1);
952             int has_sha2    = (hwcaps & HWCAP_SHA2);
953             int has_crc32   = (hwcaps & HWCAP_CRC32);
954 
955             if(has_fp == 0) {
956                 D("ERROR: Floating-point unit missing, but is required by Android on AArch64 CPUs\n");
957             }
958             if(has_asimd == 0) {
959                 D("ERROR: ASIMD unit missing, but is required by Android on AArch64 CPUs\n");
960             }
961 
962             if (has_fp)
963                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_FP;
964             if (has_asimd)
965                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_ASIMD;
966             if (has_aes)
967                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_AES;
968             if (has_pmull)
969                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_PMULL;
970             if (has_sha1)
971                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_SHA1;
972             if (has_sha2)
973                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_SHA2;
974             if (has_crc32)
975                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_CRC32;
976         }
977     }
978 #endif /* __aarch64__ */
979 
980 #ifdef __i386__
981     int regs[4];
982 
983 /* According to http://en.wikipedia.org/wiki/CPUID */
984 #define VENDOR_INTEL_b  0x756e6547
985 #define VENDOR_INTEL_c  0x6c65746e
986 #define VENDOR_INTEL_d  0x49656e69
987 
988     x86_cpuid(0, regs);
989     int vendorIsIntel = (regs[1] == VENDOR_INTEL_b &&
990                          regs[2] == VENDOR_INTEL_c &&
991                          regs[3] == VENDOR_INTEL_d);
992 
993     x86_cpuid(1, regs);
994     if ((regs[2] & (1 << 9)) != 0) {
995         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSSE3;
996     }
997     if ((regs[2] & (1 << 23)) != 0) {
998         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_POPCNT;
999     }
1000     if (vendorIsIntel && (regs[2] & (1 << 22)) != 0) {
1001         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_MOVBE;
1002     }
1003 #endif
1004 #if defined( __mips__)
1005     {   /* MIPS and MIPS64 */
1006         /* Extract the list of CPU features from ELF hwcaps */
1007         uint32_t hwcaps = 0;
1008         hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
1009         if (hwcaps != 0) {
1010             int has_r6      = (hwcaps & HWCAP_MIPS_R6);
1011             int has_msa     = (hwcaps & HWCAP_MIPS_MSA);
1012             if (has_r6)
1013                 g_cpuFeatures |= ANDROID_CPU_MIPS_FEATURE_R6;
1014             if (has_msa)
1015                 g_cpuFeatures |= ANDROID_CPU_MIPS_FEATURE_MSA;
1016         }
1017     }
1018 #endif /* __mips__ */
1019 
1020     free(cpuinfo);
1021 }
1022 
1023 
1024 AndroidCpuFamily
android_getCpuFamily(void)1025 android_getCpuFamily(void)
1026 {
1027     pthread_once(&g_once, android_cpuInit);
1028     return g_cpuFamily;
1029 }
1030 
1031 
1032 uint64_t
android_getCpuFeatures(void)1033 android_getCpuFeatures(void)
1034 {
1035     pthread_once(&g_once, android_cpuInit);
1036     return g_cpuFeatures;
1037 }
1038 
1039 
1040 int
android_getCpuCount(void)1041 android_getCpuCount(void)
1042 {
1043     pthread_once(&g_once, android_cpuInit);
1044     return g_cpuCount;
1045 }
1046 
1047 static void
android_cpuInitDummy(void)1048 android_cpuInitDummy(void)
1049 {
1050     g_inited = 1;
1051 }
1052 
1053 int
android_setCpu(int cpu_count,uint64_t cpu_features)1054 android_setCpu(int cpu_count, uint64_t cpu_features)
1055 {
1056     /* Fail if the library was already initialized. */
1057     if (g_inited)
1058         return 0;
1059 
1060     android_cpuInitFamily();
1061     g_cpuCount = (cpu_count <= 0 ? 1 : cpu_count);
1062     g_cpuFeatures = cpu_features;
1063     pthread_once(&g_once, android_cpuInitDummy);
1064 
1065     return 1;
1066 }
1067 
1068 #ifdef __arm__
1069 uint32_t
android_getCpuIdArm(void)1070 android_getCpuIdArm(void)
1071 {
1072     pthread_once(&g_once, android_cpuInit);
1073     return g_cpuIdArm;
1074 }
1075 
1076 int
android_setCpuArm(int cpu_count,uint64_t cpu_features,uint32_t cpu_id)1077 android_setCpuArm(int cpu_count, uint64_t cpu_features, uint32_t cpu_id)
1078 {
1079     if (!android_setCpu(cpu_count, cpu_features))
1080         return 0;
1081 
1082     g_cpuIdArm = cpu_id;
1083     return 1;
1084 }
1085 #endif  /* __arm__ */
1086 
1087 /*
1088  * Technical note: Making sense of ARM's FPU architecture versions.
1089  *
1090  * FPA was ARM's first attempt at an FPU architecture. There is no Android
1091  * device that actually uses it since this technology was already obsolete
1092  * when the project started. If you see references to FPA instructions
1093  * somewhere, you can be sure that this doesn't apply to Android at all.
1094  *
1095  * FPA was followed by "VFP", soon renamed "VFPv1" due to the emergence of
1096  * new versions / additions to it. ARM considers this obsolete right now,
1097  * and no known Android device implements it either.
1098  *
1099  * VFPv2 added a few instructions to VFPv1, and is an *optional* extension
1100  * supported by some ARMv5TE, ARMv6 and ARMv6T2 CPUs. Note that a device
1101  * supporting the 'armeabi' ABI doesn't necessarily support these.
1102  *
1103  * VFPv3-D16 adds a few instructions on top of VFPv2 and is typically used
1104  * on ARMv7-A CPUs which implement a FPU. Note that it is also mandated
1105  * by the Android 'armeabi-v7a' ABI. The -D16 suffix in its name means
1106  * that it provides 16 double-precision FPU registers (d0-d15) and 32
1107  * single-precision ones (s0-s31) which happen to be mapped to the same
1108  * register banks.
1109  *
1110  * VFPv3-D32 is the name of an extension to VFPv3-D16 that provides 16
1111  * additional double precision registers (d16-d31). Note that there are
1112  * still only 32 single precision registers.
1113  *
1114  * VFPv3xD is a *subset* of VFPv3-D16 that only provides single-precision
1115  * registers. It is only used on ARMv7-M (i.e. on micro-controllers) which
1116  * are not supported by Android. Note that it is not compatible with VFPv2.
1117  *
1118  * NOTE: The term 'VFPv3' usually designate either VFPv3-D16 or VFPv3-D32
1119  *       depending on context. For example GCC uses it for VFPv3-D32, but
1120  *       the Linux kernel code uses it for VFPv3-D16 (especially in
1121  *       /proc/cpuinfo). Always try to use the full designation when
1122  *       possible.
1123  *
1124  * NEON, a.k.a. "ARM Advanced SIMD" is an extension that provides
1125  * instructions to perform parallel computations on vectors of 8, 16,
1126  * 32, 64 and 128 bit quantities. NEON requires VFPv32-D32 since all
1127  * NEON registers are also mapped to the same register banks.
1128  *
1129  * VFPv4-D16, adds a few instructions on top of VFPv3-D16 in order to
1130  * perform fused multiply-accumulate on VFP registers, as well as
1131  * half-precision (16-bit) conversion operations.
1132  *
1133  * VFPv4-D32 is VFPv4-D16 with 32, instead of 16, FPU double precision
1134  * registers.
1135  *
1136  * VPFv4-NEON is VFPv4-D32 with NEON instructions. It also adds fused
1137  * multiply-accumulate instructions that work on the NEON registers.
1138  *
1139  * NOTE: Similarly, "VFPv4" might either reference VFPv4-D16 or VFPv4-D32
1140  *       depending on context.
1141  *
1142  * The following information was determined by scanning the binutils-2.22
1143  * sources:
1144  *
1145  * Basic VFP instruction subsets:
1146  *
1147  * #define FPU_VFP_EXT_V1xD 0x08000000     // Base VFP instruction set.
1148  * #define FPU_VFP_EXT_V1   0x04000000     // Double-precision insns.
1149  * #define FPU_VFP_EXT_V2   0x02000000     // ARM10E VFPr1.
1150  * #define FPU_VFP_EXT_V3xD 0x01000000     // VFPv3 single-precision.
1151  * #define FPU_VFP_EXT_V3   0x00800000     // VFPv3 double-precision.
1152  * #define FPU_NEON_EXT_V1  0x00400000     // Neon (SIMD) insns.
1153  * #define FPU_VFP_EXT_D32  0x00200000     // Registers D16-D31.
1154  * #define FPU_VFP_EXT_FP16 0x00100000     // Half-precision extensions.
1155  * #define FPU_NEON_EXT_FMA 0x00080000     // Neon fused multiply-add
1156  * #define FPU_VFP_EXT_FMA  0x00040000     // VFP fused multiply-add
1157  *
1158  * FPU types (excluding NEON)
1159  *
1160  * FPU_VFP_V1xD (EXT_V1xD)
1161  *    |
1162  *    +--------------------------+
1163  *    |                          |
1164  * FPU_VFP_V1 (+EXT_V1)       FPU_VFP_V3xD (+EXT_V2+EXT_V3xD)
1165  *    |                          |
1166  *    |                          |
1167  * FPU_VFP_V2 (+EXT_V2)       FPU_VFP_V4_SP_D16 (+EXT_FP16+EXT_FMA)
1168  *    |
1169  * FPU_VFP_V3D16 (+EXT_Vx3D+EXT_V3)
1170  *    |
1171  *    +--------------------------+
1172  *    |                          |
1173  * FPU_VFP_V3 (+EXT_D32)     FPU_VFP_V4D16 (+EXT_FP16+EXT_FMA)
1174  *    |                          |
1175  *    |                      FPU_VFP_V4 (+EXT_D32)
1176  *    |
1177  * FPU_VFP_HARD (+EXT_FMA+NEON_EXT_FMA)
1178  *
1179  * VFP architectures:
1180  *
1181  * ARCH_VFP_V1xD  (EXT_V1xD)
1182  *   |
1183  *   +------------------+
1184  *   |                  |
1185  *   |             ARCH_VFP_V3xD (+EXT_V2+EXT_V3xD)
1186  *   |                  |
1187  *   |             ARCH_VFP_V3xD_FP16 (+EXT_FP16)
1188  *   |                  |
1189  *   |             ARCH_VFP_V4_SP_D16 (+EXT_FMA)
1190  *   |
1191  * ARCH_VFP_V1 (+EXT_V1)
1192  *   |
1193  * ARCH_VFP_V2 (+EXT_V2)
1194  *   |
1195  * ARCH_VFP_V3D16 (+EXT_V3xD+EXT_V3)
1196  *   |
1197  *   +-------------------+
1198  *   |                   |
1199  *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
1200  *   |
1201  *   +-------------------+
1202  *   |                   |
1203  *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
1204  *   |                   |
1205  *   |         ARCH_VFP_V4 (+EXT_D32)
1206  *   |                   |
1207  *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
1208  *   |
1209  * ARCH_VFP_V3 (+EXT_D32)
1210  *   |
1211  *   +-------------------+
1212  *   |                   |
1213  *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
1214  *   |
1215  * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
1216  *   |
1217  * ARCH_NEON_FP16 (+EXT_FP16)
1218  *
1219  * -fpu=<name> values and their correspondance with FPU architectures above:
1220  *
1221  *   {"vfp",               FPU_ARCH_VFP_V2},
1222  *   {"vfp9",              FPU_ARCH_VFP_V2},
1223  *   {"vfp3",              FPU_ARCH_VFP_V3}, // For backwards compatbility.
1224  *   {"vfp10",             FPU_ARCH_VFP_V2},
1225  *   {"vfp10-r0",          FPU_ARCH_VFP_V1},
1226  *   {"vfpxd",             FPU_ARCH_VFP_V1xD},
1227  *   {"vfpv2",             FPU_ARCH_VFP_V2},
1228  *   {"vfpv3",             FPU_ARCH_VFP_V3},
1229  *   {"vfpv3-fp16",        FPU_ARCH_VFP_V3_FP16},
1230  *   {"vfpv3-d16",         FPU_ARCH_VFP_V3D16},
1231  *   {"vfpv3-d16-fp16",    FPU_ARCH_VFP_V3D16_FP16},
1232  *   {"vfpv3xd",           FPU_ARCH_VFP_V3xD},
1233  *   {"vfpv3xd-fp16",      FPU_ARCH_VFP_V3xD_FP16},
1234  *   {"neon",              FPU_ARCH_VFP_V3_PLUS_NEON_V1},
1235  *   {"neon-fp16",         FPU_ARCH_NEON_FP16},
1236  *   {"vfpv4",             FPU_ARCH_VFP_V4},
1237  *   {"vfpv4-d16",         FPU_ARCH_VFP_V4D16},
1238  *   {"fpv4-sp-d16",       FPU_ARCH_VFP_V4_SP_D16},
1239  *   {"neon-vfpv4",        FPU_ARCH_NEON_VFP_V4},
1240  *
1241  *
1242  * Simplified diagram that only includes FPUs supported by Android:
1243  * Only ARCH_VFP_V3D16 is actually mandated by the armeabi-v7a ABI,
1244  * all others are optional and must be probed at runtime.
1245  *
1246  * ARCH_VFP_V3D16 (EXT_V1xD+EXT_V1+EXT_V2+EXT_V3xD+EXT_V3)
1247  *   |
1248  *   +-------------------+
1249  *   |                   |
1250  *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
1251  *   |
1252  *   +-------------------+
1253  *   |                   |
1254  *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
1255  *   |                   |
1256  *   |         ARCH_VFP_V4 (+EXT_D32)
1257  *   |                   |
1258  *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
1259  *   |
1260  * ARCH_VFP_V3 (+EXT_D32)
1261  *   |
1262  *   +-------------------+
1263  *   |                   |
1264  *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
1265  *   |
1266  * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
1267  *   |
1268  * ARCH_NEON_FP16 (+EXT_FP16)
1269  *
1270  */
1271 
1272 #endif // defined(__le32__) || defined(__le64__)
1273