1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "art_method-inl.h"
18 #include "callee_save_frame.h"
19 #include "common_throws.h"
20 #include "dex_file-inl.h"
21 #include "dex_instruction-inl.h"
22 #include "entrypoints/entrypoint_utils-inl.h"
23 #include "entrypoints/runtime_asm_entrypoints.h"
24 #include "gc/accounting/card_table-inl.h"
25 #include "interpreter/interpreter.h"
26 #include "method_reference.h"
27 #include "mirror/class-inl.h"
28 #include "mirror/dex_cache-inl.h"
29 #include "mirror/method.h"
30 #include "mirror/object-inl.h"
31 #include "mirror/object_array-inl.h"
32 #include "runtime.h"
33 #include "scoped_thread_state_change.h"
34 #include "debugger.h"
35 
36 namespace art {
37 
38 // Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
39 class QuickArgumentVisitor {
40   // Number of bytes for each out register in the caller method's frame.
41   static constexpr size_t kBytesStackArgLocation = 4;
42   // Frame size in bytes of a callee-save frame for RefsAndArgs.
43   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
44       GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
45 #if defined(__arm__)
46   // The callee save frame is pointed to by SP.
47   // | argN       |  |
48   // | ...        |  |
49   // | arg4       |  |
50   // | arg3 spill |  |  Caller's frame
51   // | arg2 spill |  |
52   // | arg1 spill |  |
53   // | Method*    | ---
54   // | LR         |
55   // | ...        |    4x6 bytes callee saves
56   // | R3         |
57   // | R2         |
58   // | R1         |
59   // | S15        |
60   // | :          |
61   // | S0         |
62   // |            |    4x2 bytes padding
63   // | Method*    |  <- sp
64   static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat;
65   static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat;
66   static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat;
67   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat;
68   static constexpr size_t kNumQuickGprArgs = 3;
69   static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16;
70   static constexpr bool kGprFprLockstep = false;
71   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
72       arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
73   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
74       arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
75   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
76       arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)77   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
78     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
79   }
80 #elif defined(__aarch64__)
81   // The callee save frame is pointed to by SP.
82   // | argN       |  |
83   // | ...        |  |
84   // | arg4       |  |
85   // | arg3 spill |  |  Caller's frame
86   // | arg2 spill |  |
87   // | arg1 spill |  |
88   // | Method*    | ---
89   // | LR         |
90   // | X29        |
91   // |  :         |
92   // | X19        |
93   // | X7         |
94   // | :          |
95   // | X1         |
96   // | D7         |
97   // |  :         |
98   // | D0         |
99   // |            |    padding
100   // | Method*    |  <- sp
101   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
102   static constexpr bool kAlignPairRegister = false;
103   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
104   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
105   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
106   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
107   static constexpr bool kGprFprLockstep = false;
108   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
109       arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
110   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
111       arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
112   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
113       arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)114   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
115     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
116   }
117 #elif defined(__mips__) && !defined(__LP64__)
118   // The callee save frame is pointed to by SP.
119   // | argN       |  |
120   // | ...        |  |
121   // | arg4       |  |
122   // | arg3 spill |  |  Caller's frame
123   // | arg2 spill |  |
124   // | arg1 spill |  |
125   // | Method*    | ---
126   // | RA         |
127   // | ...        |    callee saves
128   // | A3         |    arg3
129   // | A2         |    arg2
130   // | A1         |    arg1
131   // | A0/Method* |  <- sp
132   static constexpr bool kSplitPairAcrossRegisterAndStack = true;
133   static constexpr bool kAlignPairRegister = false;
134   static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
135   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
136   static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
137   static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
138   static constexpr bool kGprFprLockstep = false;
139   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0;  // Offset of first FPR arg.
140   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 16;  // Offset of first GPR arg.
141   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)142   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
143     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
144   }
145 #elif defined(__mips__) && defined(__LP64__)
146   // The callee save frame is pointed to by SP.
147   // | argN       |  |
148   // | ...        |  |
149   // | arg4       |  |
150   // | arg3 spill |  |  Caller's frame
151   // | arg2 spill |  |
152   // | arg1 spill |  |
153   // | Method*    | ---
154   // | RA         |
155   // | ...        |    callee saves
156   // | F7         |    f_arg7
157   // | F6         |    f_arg6
158   // | F5         |    f_arg5
159   // | F4         |    f_arg4
160   // | F3         |    f_arg3
161   // | F2         |    f_arg2
162   // | F1         |    f_arg1
163   // | F0         |    f_arg0
164   // | A7         |    arg7
165   // | A6         |    arg6
166   // | A5         |    arg5
167   // | A4         |    arg4
168   // | A3         |    arg3
169   // | A2         |    arg2
170   // | A1         |    arg1
171   // |            |    padding
172   // | A0/Method* |  <- sp
173   // NOTE: for Mip64, when A0 is skipped, F0 is also skipped.
174   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
175   static constexpr bool kAlignPairRegister = false;
176   static constexpr bool kQuickSoftFloatAbi = false;
177   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
178   // These values are set to zeros because GPR and FPR register
179   // assignments for Mips64 are interleaved, which the current VisitArguments()
180   // function does not support.
181   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
182   static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
183   static constexpr bool kGprFprLockstep = true;
184 
185   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F1).
186   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
187   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)188   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
189     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
190   }
191 #elif defined(__i386__)
192   // The callee save frame is pointed to by SP.
193   // | argN        |  |
194   // | ...         |  |
195   // | arg4        |  |
196   // | arg3 spill  |  |  Caller's frame
197   // | arg2 spill  |  |
198   // | arg1 spill  |  |
199   // | Method*     | ---
200   // | Return      |
201   // | EBP,ESI,EDI |    callee saves
202   // | EBX         |    arg3
203   // | EDX         |    arg2
204   // | ECX         |    arg1
205   // | XMM3        |    float arg 4
206   // | XMM2        |    float arg 3
207   // | XMM1        |    float arg 2
208   // | XMM0        |    float arg 1
209   // | EAX/Method* |  <- sp
210   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
211   static constexpr bool kAlignPairRegister = false;
212   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
213   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
214   static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
215   static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
216   static constexpr bool kGprFprLockstep = false;
217   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
218   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
219   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)220   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
221     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
222   }
223 #elif defined(__x86_64__)
224   // The callee save frame is pointed to by SP.
225   // | argN            |  |
226   // | ...             |  |
227   // | reg. arg spills |  |  Caller's frame
228   // | Method*         | ---
229   // | Return          |
230   // | R15             |    callee save
231   // | R14             |    callee save
232   // | R13             |    callee save
233   // | R12             |    callee save
234   // | R9              |    arg5
235   // | R8              |    arg4
236   // | RSI/R6          |    arg1
237   // | RBP/R5          |    callee save
238   // | RBX/R3          |    callee save
239   // | RDX/R2          |    arg2
240   // | RCX/R1          |    arg3
241   // | XMM7            |    float arg 8
242   // | XMM6            |    float arg 7
243   // | XMM5            |    float arg 6
244   // | XMM4            |    float arg 5
245   // | XMM3            |    float arg 4
246   // | XMM2            |    float arg 3
247   // | XMM1            |    float arg 2
248   // | XMM0            |    float arg 1
249   // | Padding         |
250   // | RDI/Method*     |  <- sp
251   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
252   static constexpr bool kAlignPairRegister = false;
253   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
254   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
255   static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
256   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
257   static constexpr bool kGprFprLockstep = false;
258   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
259   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
260   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)261   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
262     switch (gpr_index) {
263       case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
264       case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
265       case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
266       case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
267       case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
268       default:
269       LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
270       return 0;
271     }
272   }
273 #else
274 #error "Unsupported architecture"
275 #endif
276 
277  public:
278   // Special handling for proxy methods. Proxy methods are instance methods so the
279   // 'this' object is the 1st argument. They also have the same frame layout as the
280   // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
281   // 1st GPR.
GetProxyThisObject(ArtMethod ** sp)282   static mirror::Object* GetProxyThisObject(ArtMethod** sp)
283       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
284     CHECK((*sp)->IsProxyMethod());
285     CHECK_EQ(kQuickCalleeSaveFrame_RefAndArgs_FrameSize, (*sp)->GetFrameSizeInBytes());
286     CHECK_GT(kNumQuickGprArgs, 0u);
287     constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
288     size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
289         GprIndexToGprOffset(kThisGprIndex);
290     uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
291     return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
292   }
293 
GetCallingMethod(ArtMethod ** sp)294   static ArtMethod* GetCallingMethod(ArtMethod** sp)
295       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
296     DCHECK((*sp)->IsCalleeSaveMethod());
297     uint8_t* previous_sp = reinterpret_cast<uint8_t*>(sp) +
298         kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
299     return *reinterpret_cast<ArtMethod**>(previous_sp);
300   }
301 
302   // For the given quick ref and args quick frame, return the caller's PC.
GetCallingPc(ArtMethod ** sp)303   static uintptr_t GetCallingPc(ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
304     DCHECK((*sp)->IsCalleeSaveMethod());
305     uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
306     return *reinterpret_cast<uintptr_t*>(lr);
307   }
308 
QuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len)309   QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
310                        uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) :
311           is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
312           gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
313           fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
314           stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
315               + sizeof(ArtMethod*)),  // Skip ArtMethod*.
316           gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
317           cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
318     static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
319                   "Number of Quick FPR arguments unexpected");
320     static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
321                   "Double alignment unexpected");
322     // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
323     // next register is even.
324     static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
325                   "Number of Quick FPR arguments not even");
326     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
327   }
328 
~QuickArgumentVisitor()329   virtual ~QuickArgumentVisitor() {}
330 
331   virtual void Visit() = 0;
332 
GetParamPrimitiveType() const333   Primitive::Type GetParamPrimitiveType() const {
334     return cur_type_;
335   }
336 
GetParamAddress() const337   uint8_t* GetParamAddress() const {
338     if (!kQuickSoftFloatAbi) {
339       Primitive::Type type = GetParamPrimitiveType();
340       if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
341         if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
342           if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
343             return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
344           }
345         } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
346           return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
347         }
348         return stack_args_ + (stack_index_ * kBytesStackArgLocation);
349       }
350     }
351     if (gpr_index_ < kNumQuickGprArgs) {
352       return gpr_args_ + GprIndexToGprOffset(gpr_index_);
353     }
354     return stack_args_ + (stack_index_ * kBytesStackArgLocation);
355   }
356 
IsSplitLongOrDouble() const357   bool IsSplitLongOrDouble() const {
358     if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
359         (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
360       return is_split_long_or_double_;
361     } else {
362       return false;  // An optimization for when GPR and FPRs are 64bit.
363     }
364   }
365 
IsParamAReference() const366   bool IsParamAReference() const {
367     return GetParamPrimitiveType() == Primitive::kPrimNot;
368   }
369 
IsParamALongOrDouble() const370   bool IsParamALongOrDouble() const {
371     Primitive::Type type = GetParamPrimitiveType();
372     return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
373   }
374 
ReadSplitLongParam() const375   uint64_t ReadSplitLongParam() const {
376     // The splitted long is always available through the stack.
377     return *reinterpret_cast<uint64_t*>(stack_args_
378         + stack_index_ * kBytesStackArgLocation);
379   }
380 
IncGprIndex()381   void IncGprIndex() {
382     gpr_index_++;
383     if (kGprFprLockstep) {
384       fpr_index_++;
385     }
386   }
387 
IncFprIndex()388   void IncFprIndex() {
389     fpr_index_++;
390     if (kGprFprLockstep) {
391       gpr_index_++;
392     }
393   }
394 
VisitArguments()395   void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
396     // (a) 'stack_args_' should point to the first method's argument
397     // (b) whatever the argument type it is, the 'stack_index_' should
398     //     be moved forward along with every visiting.
399     gpr_index_ = 0;
400     fpr_index_ = 0;
401     if (kQuickDoubleRegAlignedFloatBackFilled) {
402       fpr_double_index_ = 0;
403     }
404     stack_index_ = 0;
405     if (!is_static_) {  // Handle this.
406       cur_type_ = Primitive::kPrimNot;
407       is_split_long_or_double_ = false;
408       Visit();
409       stack_index_++;
410       if (kNumQuickGprArgs > 0) {
411         IncGprIndex();
412       }
413     }
414     for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
415       cur_type_ = Primitive::GetType(shorty_[shorty_index]);
416       switch (cur_type_) {
417         case Primitive::kPrimNot:
418         case Primitive::kPrimBoolean:
419         case Primitive::kPrimByte:
420         case Primitive::kPrimChar:
421         case Primitive::kPrimShort:
422         case Primitive::kPrimInt:
423           is_split_long_or_double_ = false;
424           Visit();
425           stack_index_++;
426           if (gpr_index_ < kNumQuickGprArgs) {
427             IncGprIndex();
428           }
429           break;
430         case Primitive::kPrimFloat:
431           is_split_long_or_double_ = false;
432           Visit();
433           stack_index_++;
434           if (kQuickSoftFloatAbi) {
435             if (gpr_index_ < kNumQuickGprArgs) {
436               IncGprIndex();
437             }
438           } else {
439             if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
440               IncFprIndex();
441               if (kQuickDoubleRegAlignedFloatBackFilled) {
442                 // Double should not overlap with float.
443                 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
444                 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
445                 // Float should not overlap with double.
446                 if (fpr_index_ % 2 == 0) {
447                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
448                 }
449               }
450             }
451           }
452           break;
453         case Primitive::kPrimDouble:
454         case Primitive::kPrimLong:
455           if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
456             if (cur_type_ == Primitive::kPrimLong && kAlignPairRegister && gpr_index_ == 0) {
457               // Currently, this is only for ARM, where the first available parameter register
458               // is R1. So we skip it, and use R2 instead.
459               IncGprIndex();
460             }
461             is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
462                 ((gpr_index_ + 1) == kNumQuickGprArgs);
463             if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
464               // We don't want to split this. Pass over this register.
465               gpr_index_++;
466               is_split_long_or_double_ = false;
467             }
468             Visit();
469             if (kBytesStackArgLocation == 4) {
470               stack_index_+= 2;
471             } else {
472               CHECK_EQ(kBytesStackArgLocation, 8U);
473               stack_index_++;
474             }
475             if (gpr_index_ < kNumQuickGprArgs) {
476               IncGprIndex();
477               if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
478                 if (gpr_index_ < kNumQuickGprArgs) {
479                   IncGprIndex();
480                 }
481               }
482             }
483           } else {
484             is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
485                 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
486             Visit();
487             if (kBytesStackArgLocation == 4) {
488               stack_index_+= 2;
489             } else {
490               CHECK_EQ(kBytesStackArgLocation, 8U);
491               stack_index_++;
492             }
493             if (kQuickDoubleRegAlignedFloatBackFilled) {
494               if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
495                 fpr_double_index_ += 2;
496                 // Float should not overlap with double.
497                 if (fpr_index_ % 2 == 0) {
498                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
499                 }
500               }
501             } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
502               IncFprIndex();
503               if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
504                 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
505                   IncFprIndex();
506                 }
507               }
508             }
509           }
510           break;
511         default:
512           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
513       }
514     }
515   }
516 
517  protected:
518   const bool is_static_;
519   const char* const shorty_;
520   const uint32_t shorty_len_;
521 
522  private:
523   uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
524   uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
525   uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
526   uint32_t gpr_index_;  // Index into spilled GPRs.
527   // Index into spilled FPRs.
528   // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
529   // holds a higher register number.
530   uint32_t fpr_index_;
531   // Index into spilled FPRs for aligned double.
532   // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
533   // terms of singles, may be behind fpr_index.
534   uint32_t fpr_double_index_;
535   uint32_t stack_index_;  // Index into arguments on the stack.
536   // The current type of argument during VisitArguments.
537   Primitive::Type cur_type_;
538   // Does a 64bit parameter straddle the register and stack arguments?
539   bool is_split_long_or_double_;
540 };
541 
542 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
543 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
artQuickGetProxyThisObject(ArtMethod ** sp)544 extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
545     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
546   return QuickArgumentVisitor::GetProxyThisObject(sp);
547 }
548 
549 // Visits arguments on the stack placing them into the shadow frame.
550 class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
551  public:
BuildQuickShadowFrameVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ShadowFrame * sf,size_t first_arg_reg)552   BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
553                                uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
554       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
555 
556   void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
557 
558  private:
559   ShadowFrame* const sf_;
560   uint32_t cur_reg_;
561 
562   DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
563 };
564 
Visit()565 void BuildQuickShadowFrameVisitor::Visit() {
566   Primitive::Type type = GetParamPrimitiveType();
567   switch (type) {
568     case Primitive::kPrimLong:  // Fall-through.
569     case Primitive::kPrimDouble:
570       if (IsSplitLongOrDouble()) {
571         sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
572       } else {
573         sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
574       }
575       ++cur_reg_;
576       break;
577     case Primitive::kPrimNot: {
578         StackReference<mirror::Object>* stack_ref =
579             reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
580         sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
581       }
582       break;
583     case Primitive::kPrimBoolean:  // Fall-through.
584     case Primitive::kPrimByte:     // Fall-through.
585     case Primitive::kPrimChar:     // Fall-through.
586     case Primitive::kPrimShort:    // Fall-through.
587     case Primitive::kPrimInt:      // Fall-through.
588     case Primitive::kPrimFloat:
589       sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
590       break;
591     case Primitive::kPrimVoid:
592       LOG(FATAL) << "UNREACHABLE";
593       UNREACHABLE();
594   }
595   ++cur_reg_;
596 }
597 
artQuickToInterpreterBridge(ArtMethod * method,Thread * self,ArtMethod ** sp)598 extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
599     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
600   // Ensure we don't get thread suspension until the object arguments are safely in the shadow
601   // frame.
602   ScopedQuickEntrypointChecks sqec(self);
603 
604   if (method->IsAbstract()) {
605     ThrowAbstractMethodError(method);
606     return 0;
607   } else {
608     DCHECK(!method->IsNative()) << PrettyMethod(method);
609     const char* old_cause = self->StartAssertNoThreadSuspension(
610         "Building interpreter shadow frame");
611     const DexFile::CodeItem* code_item = method->GetCodeItem();
612     DCHECK(code_item != nullptr) << PrettyMethod(method);
613     uint16_t num_regs = code_item->registers_size_;
614     void* memory = alloca(ShadowFrame::ComputeSize(num_regs));
615     // No last shadow coming from quick.
616     ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, nullptr, method, 0, memory));
617     size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
618     uint32_t shorty_len = 0;
619     auto* non_proxy_method = method->GetInterfaceMethodIfProxy(sizeof(void*));
620     const char* shorty = non_proxy_method->GetShorty(&shorty_len);
621     BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
622                                                       shadow_frame, first_arg_reg);
623     shadow_frame_builder.VisitArguments();
624     const bool needs_initialization =
625         method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
626     // Push a transition back into managed code onto the linked list in thread.
627     ManagedStack fragment;
628     self->PushManagedStackFragment(&fragment);
629     self->PushShadowFrame(shadow_frame);
630     self->EndAssertNoThreadSuspension(old_cause);
631 
632     if (needs_initialization) {
633       // Ensure static method's class is initialized.
634       StackHandleScope<1> hs(self);
635       Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
636       if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
637         DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(shadow_frame->GetMethod());
638         self->PopManagedStackFragment(fragment);
639         return 0;
640       }
641     }
642     JValue result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
643     // Pop transition.
644     self->PopManagedStackFragment(fragment);
645 
646     // Request a stack deoptimization if needed
647     ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
648     if (UNLIKELY(Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
649       self->SetException(Thread::GetDeoptimizationException());
650       self->SetDeoptimizationReturnValue(result, shorty[0] == 'L');
651     }
652 
653     // No need to restore the args since the method has already been run by the interpreter.
654     return result.GetJ();
655   }
656 }
657 
658 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
659 // to jobjects.
660 class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
661  public:
BuildQuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa,std::vector<jvalue> * args)662   BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
663                             ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
664       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
665 
666   void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
667 
668   void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
669 
670  private:
671   ScopedObjectAccessUnchecked* const soa_;
672   std::vector<jvalue>* const args_;
673   // References which we must update when exiting in case the GC moved the objects.
674   std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
675 
676   DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
677 };
678 
Visit()679 void BuildQuickArgumentVisitor::Visit() {
680   jvalue val;
681   Primitive::Type type = GetParamPrimitiveType();
682   switch (type) {
683     case Primitive::kPrimNot: {
684       StackReference<mirror::Object>* stack_ref =
685           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
686       val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
687       references_.push_back(std::make_pair(val.l, stack_ref));
688       break;
689     }
690     case Primitive::kPrimLong:  // Fall-through.
691     case Primitive::kPrimDouble:
692       if (IsSplitLongOrDouble()) {
693         val.j = ReadSplitLongParam();
694       } else {
695         val.j = *reinterpret_cast<jlong*>(GetParamAddress());
696       }
697       break;
698     case Primitive::kPrimBoolean:  // Fall-through.
699     case Primitive::kPrimByte:     // Fall-through.
700     case Primitive::kPrimChar:     // Fall-through.
701     case Primitive::kPrimShort:    // Fall-through.
702     case Primitive::kPrimInt:      // Fall-through.
703     case Primitive::kPrimFloat:
704       val.i = *reinterpret_cast<jint*>(GetParamAddress());
705       break;
706     case Primitive::kPrimVoid:
707       LOG(FATAL) << "UNREACHABLE";
708       UNREACHABLE();
709   }
710   args_->push_back(val);
711 }
712 
FixupReferences()713 void BuildQuickArgumentVisitor::FixupReferences() {
714   // Fixup any references which may have changed.
715   for (const auto& pair : references_) {
716     pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
717     soa_->Env()->DeleteLocalRef(pair.first);
718   }
719 }
720 
721 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
722 // which is responsible for recording callee save registers. We explicitly place into jobjects the
723 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
724 // field within the proxy object, which will box the primitive arguments and deal with error cases.
artQuickProxyInvokeHandler(ArtMethod * proxy_method,mirror::Object * receiver,Thread * self,ArtMethod ** sp)725 extern "C" uint64_t artQuickProxyInvokeHandler(
726     ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
727     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
728   DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
729   DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
730   // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
731   const char* old_cause =
732       self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
733   // Register the top of the managed stack, making stack crawlable.
734   DCHECK_EQ((*sp), proxy_method) << PrettyMethod(proxy_method);
735   DCHECK_EQ(proxy_method->GetFrameSizeInBytes(),
736             Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes())
737       << PrettyMethod(proxy_method);
738   self->VerifyStack();
739   // Start new JNI local reference state.
740   JNIEnvExt* env = self->GetJniEnv();
741   ScopedObjectAccessUnchecked soa(env);
742   ScopedJniEnvLocalRefState env_state(env);
743   // Create local ref. copies of proxy method and the receiver.
744   jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
745 
746   // Placing arguments into args vector and remove the receiver.
747   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(sizeof(void*));
748   CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " "
749                                        << PrettyMethod(non_proxy_method);
750   std::vector<jvalue> args;
751   uint32_t shorty_len = 0;
752   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
753   BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
754 
755   local_ref_visitor.VisitArguments();
756   DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
757   args.erase(args.begin());
758 
759   // Convert proxy method into expected interface method.
760   ArtMethod* interface_method = proxy_method->FindOverriddenMethod(sizeof(void*));
761   DCHECK(interface_method != nullptr) << PrettyMethod(proxy_method);
762   DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
763   self->EndAssertNoThreadSuspension(old_cause);
764   jobject interface_method_jobj = soa.AddLocalReference<jobject>(
765       mirror::Method::CreateFromArtMethod(soa.Self(), interface_method));
766 
767   // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
768   // that performs allocations.
769   JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
770   // Restore references which might have moved.
771   local_ref_visitor.FixupReferences();
772   return result.GetJ();
773 }
774 
775 // Read object references held in arguments from quick frames and place in a JNI local references,
776 // so they don't get garbage collected.
777 class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
778  public:
RememberForGcArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa)779   RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
780                                uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
781       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
782 
783   void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
784 
785   void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
786 
787  private:
788   ScopedObjectAccessUnchecked* const soa_;
789   // References which we must update when exiting in case the GC moved the objects.
790   std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
791 
792   DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
793 };
794 
Visit()795 void RememberForGcArgumentVisitor::Visit() {
796   if (IsParamAReference()) {
797     StackReference<mirror::Object>* stack_ref =
798         reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
799     jobject reference =
800         soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
801     references_.push_back(std::make_pair(reference, stack_ref));
802   }
803 }
804 
FixupReferences()805 void RememberForGcArgumentVisitor::FixupReferences() {
806   // Fixup any references which may have changed.
807   for (const auto& pair : references_) {
808     pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
809     soa_->Env()->DeleteLocalRef(pair.first);
810   }
811 }
812 
813 // Lazily resolve a method for quick. Called by stub code.
artQuickResolutionTrampoline(ArtMethod * called,mirror::Object * receiver,Thread * self,ArtMethod ** sp)814 extern "C" const void* artQuickResolutionTrampoline(
815     ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
816     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
817   ScopedQuickEntrypointChecks sqec(self);
818   // Start new JNI local reference state
819   JNIEnvExt* env = self->GetJniEnv();
820   ScopedObjectAccessUnchecked soa(env);
821   ScopedJniEnvLocalRefState env_state(env);
822   const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
823 
824   // Compute details about the called method (avoid GCs)
825   ClassLinker* linker = Runtime::Current()->GetClassLinker();
826   ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
827   InvokeType invoke_type;
828   MethodReference called_method(nullptr, 0);
829   const bool called_method_known_on_entry = !called->IsRuntimeMethod();
830   if (!called_method_known_on_entry) {
831     uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp));
832     const DexFile::CodeItem* code;
833     called_method.dex_file = caller->GetDexFile();
834     code = caller->GetCodeItem();
835     CHECK_LT(dex_pc, code->insns_size_in_code_units_);
836     const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
837     Instruction::Code instr_code = instr->Opcode();
838     bool is_range;
839     switch (instr_code) {
840       case Instruction::INVOKE_DIRECT:
841         invoke_type = kDirect;
842         is_range = false;
843         break;
844       case Instruction::INVOKE_DIRECT_RANGE:
845         invoke_type = kDirect;
846         is_range = true;
847         break;
848       case Instruction::INVOKE_STATIC:
849         invoke_type = kStatic;
850         is_range = false;
851         break;
852       case Instruction::INVOKE_STATIC_RANGE:
853         invoke_type = kStatic;
854         is_range = true;
855         break;
856       case Instruction::INVOKE_SUPER:
857         invoke_type = kSuper;
858         is_range = false;
859         break;
860       case Instruction::INVOKE_SUPER_RANGE:
861         invoke_type = kSuper;
862         is_range = true;
863         break;
864       case Instruction::INVOKE_VIRTUAL:
865         invoke_type = kVirtual;
866         is_range = false;
867         break;
868       case Instruction::INVOKE_VIRTUAL_RANGE:
869         invoke_type = kVirtual;
870         is_range = true;
871         break;
872       case Instruction::INVOKE_INTERFACE:
873         invoke_type = kInterface;
874         is_range = false;
875         break;
876       case Instruction::INVOKE_INTERFACE_RANGE:
877         invoke_type = kInterface;
878         is_range = true;
879         break;
880       default:
881         LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
882         UNREACHABLE();
883     }
884     called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
885   } else {
886     invoke_type = kStatic;
887     called_method.dex_file = called->GetDexFile();
888     called_method.dex_method_index = called->GetDexMethodIndex();
889   }
890   uint32_t shorty_len;
891   const char* shorty =
892       called_method.dex_file->GetMethodShorty(
893           called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
894   RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
895   visitor.VisitArguments();
896   self->EndAssertNoThreadSuspension(old_cause);
897   const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
898   // Resolve method filling in dex cache.
899   if (!called_method_known_on_entry) {
900     StackHandleScope<1> hs(self);
901     mirror::Object* dummy = nullptr;
902     HandleWrapper<mirror::Object> h_receiver(
903         hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
904     DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
905     called = linker->ResolveMethod(self, called_method.dex_method_index, caller, invoke_type);
906   }
907   const void* code = nullptr;
908   if (LIKELY(!self->IsExceptionPending())) {
909     // Incompatible class change should have been handled in resolve method.
910     CHECK(!called->CheckIncompatibleClassChange(invoke_type))
911         << PrettyMethod(called) << " " << invoke_type;
912     if (virtual_or_interface) {
913       // Refine called method based on receiver.
914       CHECK(receiver != nullptr) << invoke_type;
915 
916       ArtMethod* orig_called = called;
917       if (invoke_type == kVirtual) {
918         called = receiver->GetClass()->FindVirtualMethodForVirtual(called, sizeof(void*));
919       } else {
920         called = receiver->GetClass()->FindVirtualMethodForInterface(called, sizeof(void*));
921       }
922 
923       CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
924                                << PrettyTypeOf(receiver) << " "
925                                << invoke_type << " " << orig_called->GetVtableIndex();
926 
927       // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
928       // of the sharpened method avoiding dirtying the dex cache if possible.
929       // Note, called_method.dex_method_index references the dex method before the
930       // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares
931       // about the name and signature.
932       uint32_t update_dex_cache_method_index = called->GetDexMethodIndex();
933       if (!called->HasSameDexCacheResolvedMethods(caller)) {
934         // Calling from one dex file to another, need to compute the method index appropriate to
935         // the caller's dex file. Since we get here only if the original called was a runtime
936         // method, we've got the correct dex_file and a dex_method_idx from above.
937         DCHECK(!called_method_known_on_entry);
938         DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
939         const DexFile* caller_dex_file = called_method.dex_file;
940         uint32_t caller_method_name_and_sig_index = called_method.dex_method_index;
941         update_dex_cache_method_index =
942             called->FindDexMethodIndexInOtherDexFile(*caller_dex_file,
943                                                      caller_method_name_and_sig_index);
944       }
945       if ((update_dex_cache_method_index != DexFile::kDexNoIndex) &&
946           (caller->GetDexCacheResolvedMethod(
947               update_dex_cache_method_index, sizeof(void*)) != called)) {
948         caller->SetDexCacheResolvedMethod(update_dex_cache_method_index, called, sizeof(void*));
949       }
950     } else if (invoke_type == kStatic) {
951       const auto called_dex_method_idx = called->GetDexMethodIndex();
952       // For static invokes, we may dispatch to the static method in the superclass but resolve
953       // using the subclass. To prevent getting slow paths on each invoke, we force set the
954       // resolved method for the super class dex method index if we are in the same dex file.
955       // b/19175856
956       if (called->GetDexFile() == called_method.dex_file &&
957           called_method.dex_method_index != called_dex_method_idx) {
958         called->GetDexCache()->SetResolvedMethod(called_dex_method_idx, called, sizeof(void*));
959       }
960     }
961 
962     // Ensure that the called method's class is initialized.
963     StackHandleScope<1> hs(soa.Self());
964     Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
965     linker->EnsureInitialized(soa.Self(), called_class, true, true);
966     if (LIKELY(called_class->IsInitialized())) {
967       if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
968         // If we are single-stepping or the called method is deoptimized (by a
969         // breakpoint, for example), then we have to execute the called method
970         // with the interpreter.
971         code = GetQuickToInterpreterBridge();
972       } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
973         // If the caller is deoptimized (by a breakpoint, for example), we have to
974         // continue its execution with interpreter when returning from the called
975         // method. Because we do not want to execute the called method with the
976         // interpreter, we wrap its execution into the instrumentation stubs.
977         // When the called method returns, it will execute the instrumentation
978         // exit hook that will determine the need of the interpreter with a call
979         // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
980         // it is needed.
981         code = GetQuickInstrumentationEntryPoint();
982       } else {
983         code = called->GetEntryPointFromQuickCompiledCode();
984       }
985     } else if (called_class->IsInitializing()) {
986       if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
987         // If we are single-stepping or the called method is deoptimized (by a
988         // breakpoint, for example), then we have to execute the called method
989         // with the interpreter.
990         code = GetQuickToInterpreterBridge();
991       } else if (invoke_type == kStatic) {
992         // Class is still initializing, go to oat and grab code (trampoline must be left in place
993         // until class is initialized to stop races between threads).
994         code = linker->GetQuickOatCodeFor(called);
995       } else {
996         // No trampoline for non-static methods.
997         code = called->GetEntryPointFromQuickCompiledCode();
998       }
999     } else {
1000       DCHECK(called_class->IsErroneous());
1001     }
1002   }
1003   CHECK_EQ(code == nullptr, self->IsExceptionPending());
1004   // Fixup any locally saved objects may have moved during a GC.
1005   visitor.FixupReferences();
1006   // Place called method in callee-save frame to be placed as first argument to quick method.
1007   *sp = called;
1008 
1009   return code;
1010 }
1011 
1012 /*
1013  * This class uses a couple of observations to unite the different calling conventions through
1014  * a few constants.
1015  *
1016  * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1017  *    possible alignment.
1018  * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1019  *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1020  *    when we have to split things
1021  * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1022  *    and we can use Int handling directly.
1023  * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1024  *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1025  *    extension should be compatible with Aarch64, which mandates copying the available bits
1026  *    into LSB and leaving the rest unspecified.
1027  * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1028  *    the stack.
1029  * 6) There is only little endian.
1030  *
1031  *
1032  * Actual work is supposed to be done in a delegate of the template type. The interface is as
1033  * follows:
1034  *
1035  * void PushGpr(uintptr_t):   Add a value for the next GPR
1036  *
1037  * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1038  *                            padding, that is, think the architecture is 32b and aligns 64b.
1039  *
1040  * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1041  *                            split this if necessary. The current state will have aligned, if
1042  *                            necessary.
1043  *
1044  * void PushStack(uintptr_t): Push a value to the stack.
1045  *
1046  * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1047  *                                          as this might be important for null initialization.
1048  *                                          Must return the jobject, that is, the reference to the
1049  *                                          entry in the HandleScope (nullptr if necessary).
1050  *
1051  */
1052 template<class T> class BuildNativeCallFrameStateMachine {
1053  public:
1054 #if defined(__arm__)
1055   // TODO: These are all dummy values!
1056   static constexpr bool kNativeSoftFloatAbi = true;
1057   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1058   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1059 
1060   static constexpr size_t kRegistersNeededForLong = 2;
1061   static constexpr size_t kRegistersNeededForDouble = 2;
1062   static constexpr bool kMultiRegistersAligned = true;
1063   static constexpr bool kMultiFPRegistersWidened = false;
1064   static constexpr bool kMultiGPRegistersWidened = false;
1065   static constexpr bool kAlignLongOnStack = true;
1066   static constexpr bool kAlignDoubleOnStack = true;
1067 #elif defined(__aarch64__)
1068   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1069   static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1070   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1071 
1072   static constexpr size_t kRegistersNeededForLong = 1;
1073   static constexpr size_t kRegistersNeededForDouble = 1;
1074   static constexpr bool kMultiRegistersAligned = false;
1075   static constexpr bool kMultiFPRegistersWidened = false;
1076   static constexpr bool kMultiGPRegistersWidened = false;
1077   static constexpr bool kAlignLongOnStack = false;
1078   static constexpr bool kAlignDoubleOnStack = false;
1079 #elif defined(__mips__) && !defined(__LP64__)
1080   static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1081   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1082   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1083 
1084   static constexpr size_t kRegistersNeededForLong = 2;
1085   static constexpr size_t kRegistersNeededForDouble = 2;
1086   static constexpr bool kMultiRegistersAligned = true;
1087   static constexpr bool kMultiFPRegistersWidened = true;
1088   static constexpr bool kMultiGPRegistersWidened = false;
1089   static constexpr bool kAlignLongOnStack = true;
1090   static constexpr bool kAlignDoubleOnStack = true;
1091 #elif defined(__mips__) && defined(__LP64__)
1092   // Let the code prepare GPRs only and we will load the FPRs with same data.
1093   static constexpr bool kNativeSoftFloatAbi = true;
1094   static constexpr size_t kNumNativeGprArgs = 8;
1095   static constexpr size_t kNumNativeFprArgs = 0;
1096 
1097   static constexpr size_t kRegistersNeededForLong = 1;
1098   static constexpr size_t kRegistersNeededForDouble = 1;
1099   static constexpr bool kMultiRegistersAligned = false;
1100   static constexpr bool kMultiFPRegistersWidened = false;
1101   static constexpr bool kMultiGPRegistersWidened = true;
1102   static constexpr bool kAlignLongOnStack = false;
1103   static constexpr bool kAlignDoubleOnStack = false;
1104 #elif defined(__i386__)
1105   // TODO: Check these!
1106   static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1107   static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1108   static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1109 
1110   static constexpr size_t kRegistersNeededForLong = 2;
1111   static constexpr size_t kRegistersNeededForDouble = 2;
1112   static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1113   static constexpr bool kMultiFPRegistersWidened = false;
1114   static constexpr bool kMultiGPRegistersWidened = false;
1115   static constexpr bool kAlignLongOnStack = false;
1116   static constexpr bool kAlignDoubleOnStack = false;
1117 #elif defined(__x86_64__)
1118   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1119   static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1120   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1121 
1122   static constexpr size_t kRegistersNeededForLong = 1;
1123   static constexpr size_t kRegistersNeededForDouble = 1;
1124   static constexpr bool kMultiRegistersAligned = false;
1125   static constexpr bool kMultiFPRegistersWidened = false;
1126   static constexpr bool kMultiGPRegistersWidened = false;
1127   static constexpr bool kAlignLongOnStack = false;
1128   static constexpr bool kAlignDoubleOnStack = false;
1129 #else
1130 #error "Unsupported architecture"
1131 #endif
1132 
1133  public:
BuildNativeCallFrameStateMachine(T * delegate)1134   explicit BuildNativeCallFrameStateMachine(T* delegate)
1135       : gpr_index_(kNumNativeGprArgs),
1136         fpr_index_(kNumNativeFprArgs),
1137         stack_entries_(0),
1138         delegate_(delegate) {
1139     // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1140     // the next register is even; counting down is just to make the compiler happy...
1141     static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1142     static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1143   }
1144 
~BuildNativeCallFrameStateMachine()1145   virtual ~BuildNativeCallFrameStateMachine() {}
1146 
HavePointerGpr() const1147   bool HavePointerGpr() const {
1148     return gpr_index_ > 0;
1149   }
1150 
AdvancePointer(const void * val)1151   void AdvancePointer(const void* val) {
1152     if (HavePointerGpr()) {
1153       gpr_index_--;
1154       PushGpr(reinterpret_cast<uintptr_t>(val));
1155     } else {
1156       stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1157       PushStack(reinterpret_cast<uintptr_t>(val));
1158       gpr_index_ = 0;
1159     }
1160   }
1161 
HaveHandleScopeGpr() const1162   bool HaveHandleScopeGpr() const {
1163     return gpr_index_ > 0;
1164   }
1165 
AdvanceHandleScope(mirror::Object * ptr)1166   void AdvanceHandleScope(mirror::Object* ptr) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1167     uintptr_t handle = PushHandle(ptr);
1168     if (HaveHandleScopeGpr()) {
1169       gpr_index_--;
1170       PushGpr(handle);
1171     } else {
1172       stack_entries_++;
1173       PushStack(handle);
1174       gpr_index_ = 0;
1175     }
1176   }
1177 
HaveIntGpr() const1178   bool HaveIntGpr() const {
1179     return gpr_index_ > 0;
1180   }
1181 
AdvanceInt(uint32_t val)1182   void AdvanceInt(uint32_t val) {
1183     if (HaveIntGpr()) {
1184       gpr_index_--;
1185       if (kMultiGPRegistersWidened) {
1186         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1187         PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1188       } else {
1189         PushGpr(val);
1190       }
1191     } else {
1192       stack_entries_++;
1193       if (kMultiGPRegistersWidened) {
1194         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1195         PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1196       } else {
1197         PushStack(val);
1198       }
1199       gpr_index_ = 0;
1200     }
1201   }
1202 
HaveLongGpr() const1203   bool HaveLongGpr() const {
1204     return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1205   }
1206 
LongGprNeedsPadding() const1207   bool LongGprNeedsPadding() const {
1208     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1209         kAlignLongOnStack &&                  // and when it needs alignment
1210         (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1211   }
1212 
LongStackNeedsPadding() const1213   bool LongStackNeedsPadding() const {
1214     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1215         kAlignLongOnStack &&                  // and when it needs 8B alignment
1216         (stack_entries_ & 1) == 1;            // counter is odd
1217   }
1218 
AdvanceLong(uint64_t val)1219   void AdvanceLong(uint64_t val) {
1220     if (HaveLongGpr()) {
1221       if (LongGprNeedsPadding()) {
1222         PushGpr(0);
1223         gpr_index_--;
1224       }
1225       if (kRegistersNeededForLong == 1) {
1226         PushGpr(static_cast<uintptr_t>(val));
1227       } else {
1228         PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1229         PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1230       }
1231       gpr_index_ -= kRegistersNeededForLong;
1232     } else {
1233       if (LongStackNeedsPadding()) {
1234         PushStack(0);
1235         stack_entries_++;
1236       }
1237       if (kRegistersNeededForLong == 1) {
1238         PushStack(static_cast<uintptr_t>(val));
1239         stack_entries_++;
1240       } else {
1241         PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1242         PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1243         stack_entries_ += 2;
1244       }
1245       gpr_index_ = 0;
1246     }
1247   }
1248 
HaveFloatFpr() const1249   bool HaveFloatFpr() const {
1250     return fpr_index_ > 0;
1251   }
1252 
AdvanceFloat(float val)1253   void AdvanceFloat(float val) {
1254     if (kNativeSoftFloatAbi) {
1255       AdvanceInt(bit_cast<uint32_t, float>(val));
1256     } else {
1257       if (HaveFloatFpr()) {
1258         fpr_index_--;
1259         if (kRegistersNeededForDouble == 1) {
1260           if (kMultiFPRegistersWidened) {
1261             PushFpr8(bit_cast<uint64_t, double>(val));
1262           } else {
1263             // No widening, just use the bits.
1264             PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1265           }
1266         } else {
1267           PushFpr4(val);
1268         }
1269       } else {
1270         stack_entries_++;
1271         if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1272           // Need to widen before storing: Note the "double" in the template instantiation.
1273           // Note: We need to jump through those hoops to make the compiler happy.
1274           DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1275           PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1276         } else {
1277           PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1278         }
1279         fpr_index_ = 0;
1280       }
1281     }
1282   }
1283 
HaveDoubleFpr() const1284   bool HaveDoubleFpr() const {
1285     return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1286   }
1287 
DoubleFprNeedsPadding() const1288   bool DoubleFprNeedsPadding() const {
1289     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1290         kAlignDoubleOnStack &&                  // and when it needs alignment
1291         (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1292   }
1293 
DoubleStackNeedsPadding() const1294   bool DoubleStackNeedsPadding() const {
1295     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1296         kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1297         (stack_entries_ & 1) == 1;              // counter is odd
1298   }
1299 
AdvanceDouble(uint64_t val)1300   void AdvanceDouble(uint64_t val) {
1301     if (kNativeSoftFloatAbi) {
1302       AdvanceLong(val);
1303     } else {
1304       if (HaveDoubleFpr()) {
1305         if (DoubleFprNeedsPadding()) {
1306           PushFpr4(0);
1307           fpr_index_--;
1308         }
1309         PushFpr8(val);
1310         fpr_index_ -= kRegistersNeededForDouble;
1311       } else {
1312         if (DoubleStackNeedsPadding()) {
1313           PushStack(0);
1314           stack_entries_++;
1315         }
1316         if (kRegistersNeededForDouble == 1) {
1317           PushStack(static_cast<uintptr_t>(val));
1318           stack_entries_++;
1319         } else {
1320           PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1321           PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1322           stack_entries_ += 2;
1323         }
1324         fpr_index_ = 0;
1325       }
1326     }
1327   }
1328 
GetStackEntries() const1329   uint32_t GetStackEntries() const {
1330     return stack_entries_;
1331   }
1332 
GetNumberOfUsedGprs() const1333   uint32_t GetNumberOfUsedGprs() const {
1334     return kNumNativeGprArgs - gpr_index_;
1335   }
1336 
GetNumberOfUsedFprs() const1337   uint32_t GetNumberOfUsedFprs() const {
1338     return kNumNativeFprArgs - fpr_index_;
1339   }
1340 
1341  private:
PushGpr(uintptr_t val)1342   void PushGpr(uintptr_t val) {
1343     delegate_->PushGpr(val);
1344   }
PushFpr4(float val)1345   void PushFpr4(float val) {
1346     delegate_->PushFpr4(val);
1347   }
PushFpr8(uint64_t val)1348   void PushFpr8(uint64_t val) {
1349     delegate_->PushFpr8(val);
1350   }
PushStack(uintptr_t val)1351   void PushStack(uintptr_t val) {
1352     delegate_->PushStack(val);
1353   }
PushHandle(mirror::Object * ref)1354   uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1355     return delegate_->PushHandle(ref);
1356   }
1357 
1358   uint32_t gpr_index_;      // Number of free GPRs
1359   uint32_t fpr_index_;      // Number of free FPRs
1360   uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1361                             // extended
1362   T* const delegate_;             // What Push implementation gets called
1363 };
1364 
1365 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
1366 // in subclasses.
1367 //
1368 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
1369 // them with handles.
1370 class ComputeNativeCallFrameSize {
1371  public:
ComputeNativeCallFrameSize()1372   ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1373 
~ComputeNativeCallFrameSize()1374   virtual ~ComputeNativeCallFrameSize() {}
1375 
GetStackSize() const1376   uint32_t GetStackSize() const {
1377     return num_stack_entries_ * sizeof(uintptr_t);
1378   }
1379 
LayoutCallStack(uint8_t * sp8) const1380   uint8_t* LayoutCallStack(uint8_t* sp8) const {
1381     sp8 -= GetStackSize();
1382     // Align by kStackAlignment.
1383     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1384     return sp8;
1385   }
1386 
LayoutCallRegisterStacks(uint8_t * sp8,uintptr_t ** start_gpr,uint32_t ** start_fpr) const1387   uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1388       const {
1389     // Assumption is OK right now, as we have soft-float arm
1390     size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1391     sp8 -= fregs * sizeof(uintptr_t);
1392     *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1393     size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1394     sp8 -= iregs * sizeof(uintptr_t);
1395     *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1396     return sp8;
1397   }
1398 
LayoutNativeCall(uint8_t * sp8,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr) const1399   uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1400                             uint32_t** start_fpr) const {
1401     // Native call stack.
1402     sp8 = LayoutCallStack(sp8);
1403     *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1404 
1405     // Put fprs and gprs below.
1406     sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1407 
1408     // Return the new bottom.
1409     return sp8;
1410   }
1411 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)1412   virtual void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm)
1413       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1414     UNUSED(sm);
1415   }
1416 
Walk(const char * shorty,uint32_t shorty_len)1417   void Walk(const char* shorty, uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1418     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1419 
1420     WalkHeader(&sm);
1421 
1422     for (uint32_t i = 1; i < shorty_len; ++i) {
1423       Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1424       switch (cur_type_) {
1425         case Primitive::kPrimNot:
1426           // TODO: fix abuse of mirror types.
1427           sm.AdvanceHandleScope(
1428               reinterpret_cast<mirror::Object*>(0x12345678));
1429           break;
1430 
1431         case Primitive::kPrimBoolean:
1432         case Primitive::kPrimByte:
1433         case Primitive::kPrimChar:
1434         case Primitive::kPrimShort:
1435         case Primitive::kPrimInt:
1436           sm.AdvanceInt(0);
1437           break;
1438         case Primitive::kPrimFloat:
1439           sm.AdvanceFloat(0);
1440           break;
1441         case Primitive::kPrimDouble:
1442           sm.AdvanceDouble(0);
1443           break;
1444         case Primitive::kPrimLong:
1445           sm.AdvanceLong(0);
1446           break;
1447         default:
1448           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1449           UNREACHABLE();
1450       }
1451     }
1452 
1453     num_stack_entries_ = sm.GetStackEntries();
1454   }
1455 
PushGpr(uintptr_t)1456   void PushGpr(uintptr_t /* val */) {
1457     // not optimizing registers, yet
1458   }
1459 
PushFpr4(float)1460   void PushFpr4(float /* val */) {
1461     // not optimizing registers, yet
1462   }
1463 
PushFpr8(uint64_t)1464   void PushFpr8(uint64_t /* val */) {
1465     // not optimizing registers, yet
1466   }
1467 
PushStack(uintptr_t)1468   void PushStack(uintptr_t /* val */) {
1469     // counting is already done in the superclass
1470   }
1471 
PushHandle(mirror::Object *)1472   virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1473     return reinterpret_cast<uintptr_t>(nullptr);
1474   }
1475 
1476  protected:
1477   uint32_t num_stack_entries_;
1478 };
1479 
1480 class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1481  public:
ComputeGenericJniFrameSize()1482   ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {}
1483 
1484   // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1485   // is at *m = sp. Will update to point to the bottom of the save frame.
1486   //
1487   // Note: assumes ComputeAll() has been run before.
LayoutCalleeSaveFrame(Thread * self,ArtMethod *** m,void * sp,HandleScope ** handle_scope)1488   void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1489       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1490     ArtMethod* method = **m;
1491 
1492     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
1493 
1494     uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1495 
1496     // First, fix up the layout of the callee-save frame.
1497     // We have to squeeze in the HandleScope, and relocate the method pointer.
1498 
1499     // "Free" the slot for the method.
1500     sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
1501 
1502     // Under the callee saves put handle scope and new method stack reference.
1503     size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1504     size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
1505 
1506     sp8 -= scope_and_method;
1507     // Align by kStackAlignment.
1508     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1509 
1510     uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
1511     *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
1512                                         num_handle_scope_references_);
1513 
1514     // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1515     uint8_t* method_pointer = sp8;
1516     auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
1517     *new_method_ref = method;
1518     *m = new_method_ref;
1519   }
1520 
1521   // Adds space for the cookie. Note: may leave stack unaligned.
LayoutCookie(uint8_t ** sp) const1522   void LayoutCookie(uint8_t** sp) const {
1523     // Reference cookie and padding
1524     *sp -= 8;
1525   }
1526 
1527   // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1528   // Returns the new bottom. Note: this may be unaligned.
LayoutJNISaveFrame(Thread * self,ArtMethod *** m,void * sp,HandleScope ** handle_scope)1529   uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1530       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1531     // First, fix up the layout of the callee-save frame.
1532     // We have to squeeze in the HandleScope, and relocate the method pointer.
1533     LayoutCalleeSaveFrame(self, m, sp, handle_scope);
1534 
1535     // The bottom of the callee-save frame is now where the method is, *m.
1536     uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1537 
1538     // Add space for cookie.
1539     LayoutCookie(&sp8);
1540 
1541     return sp8;
1542   }
1543 
1544   // WARNING: After this, *sp won't be pointing to the method anymore!
ComputeLayout(Thread * self,ArtMethod *** m,const char * shorty,uint32_t shorty_len,HandleScope ** handle_scope,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr)1545   uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
1546                          HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
1547                          uint32_t** start_fpr)
1548       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1549     Walk(shorty, shorty_len);
1550 
1551     // JNI part.
1552     uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
1553 
1554     sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1555 
1556     // Return the new bottom.
1557     return sp8;
1558   }
1559 
1560   uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1561 
1562   // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1563   void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1564       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1565 
1566  private:
1567   uint32_t num_handle_scope_references_;
1568 };
1569 
PushHandle(mirror::Object *)1570 uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1571   num_handle_scope_references_++;
1572   return reinterpret_cast<uintptr_t>(nullptr);
1573 }
1574 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)1575 void ComputeGenericJniFrameSize::WalkHeader(
1576     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1577   // JNIEnv
1578   sm->AdvancePointer(nullptr);
1579 
1580   // Class object or this as first argument
1581   sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1582 }
1583 
1584 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
1585 // the template requirements of BuildGenericJniFrameStateMachine.
1586 class FillNativeCall {
1587  public:
FillNativeCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1588   FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1589       cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1590 
~FillNativeCall()1591   virtual ~FillNativeCall() {}
1592 
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1593   void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1594     cur_gpr_reg_ = gpr_regs;
1595     cur_fpr_reg_ = fpr_regs;
1596     cur_stack_arg_ = stack_args;
1597   }
1598 
PushGpr(uintptr_t val)1599   void PushGpr(uintptr_t val) {
1600     *cur_gpr_reg_ = val;
1601     cur_gpr_reg_++;
1602   }
1603 
PushFpr4(float val)1604   void PushFpr4(float val) {
1605     *cur_fpr_reg_ = val;
1606     cur_fpr_reg_++;
1607   }
1608 
PushFpr8(uint64_t val)1609   void PushFpr8(uint64_t val) {
1610     uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1611     *tmp = val;
1612     cur_fpr_reg_ += 2;
1613   }
1614 
PushStack(uintptr_t val)1615   void PushStack(uintptr_t val) {
1616     *cur_stack_arg_ = val;
1617     cur_stack_arg_++;
1618   }
1619 
PushHandle(mirror::Object *)1620   virtual uintptr_t PushHandle(mirror::Object*) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1621     LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1622     UNREACHABLE();
1623   }
1624 
1625  private:
1626   uintptr_t* cur_gpr_reg_;
1627   uint32_t* cur_fpr_reg_;
1628   uintptr_t* cur_stack_arg_;
1629 };
1630 
1631 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
1632 // of transitioning into native code.
1633 class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1634  public:
BuildGenericJniFrameVisitor(Thread * self,bool is_static,const char * shorty,uint32_t shorty_len,ArtMethod *** sp)1635   BuildGenericJniFrameVisitor(Thread* self, bool is_static, const char* shorty, uint32_t shorty_len,
1636                               ArtMethod*** sp)
1637      : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1638        jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) {
1639     ComputeGenericJniFrameSize fsc;
1640     uintptr_t* start_gpr_reg;
1641     uint32_t* start_fpr_reg;
1642     uintptr_t* start_stack_arg;
1643     bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
1644                                              &handle_scope_,
1645                                              &start_stack_arg,
1646                                              &start_gpr_reg, &start_fpr_reg);
1647 
1648     jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1649 
1650     // jni environment is always first argument
1651     sm_.AdvancePointer(self->GetJniEnv());
1652 
1653     if (is_static) {
1654       sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
1655     }
1656   }
1657 
1658   void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
1659 
1660   void FinalizeHandleScope(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1661 
GetFirstHandleScopeEntry()1662   StackReference<mirror::Object>* GetFirstHandleScopeEntry()
1663       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1664     return handle_scope_->GetHandle(0).GetReference();
1665   }
1666 
GetFirstHandleScopeJObject() const1667   jobject GetFirstHandleScopeJObject() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1668     return handle_scope_->GetHandle(0).ToJObject();
1669   }
1670 
GetBottomOfUsedArea() const1671   void* GetBottomOfUsedArea() const {
1672     return bottom_of_used_area_;
1673   }
1674 
1675  private:
1676   // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1677   class FillJniCall FINAL : public FillNativeCall {
1678    public:
FillJniCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * handle_scope)1679     FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1680                 HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1681                                              handle_scope_(handle_scope), cur_entry_(0) {}
1682 
1683     uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1684 
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * scope)1685     void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1686       FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1687       handle_scope_ = scope;
1688       cur_entry_ = 0U;
1689     }
1690 
ResetRemainingScopeSlots()1691     void ResetRemainingScopeSlots() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1692       // Initialize padding entries.
1693       size_t expected_slots = handle_scope_->NumberOfReferences();
1694       while (cur_entry_ < expected_slots) {
1695         handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
1696       }
1697       DCHECK_NE(cur_entry_, 0U);
1698     }
1699 
1700    private:
1701     HandleScope* handle_scope_;
1702     size_t cur_entry_;
1703   };
1704 
1705   HandleScope* handle_scope_;
1706   FillJniCall jni_call_;
1707   void* bottom_of_used_area_;
1708 
1709   BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1710 
1711   DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1712 };
1713 
PushHandle(mirror::Object * ref)1714 uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
1715   uintptr_t tmp;
1716   MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
1717   h.Assign(ref);
1718   tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
1719   cur_entry_++;
1720   return tmp;
1721 }
1722 
Visit()1723 void BuildGenericJniFrameVisitor::Visit() {
1724   Primitive::Type type = GetParamPrimitiveType();
1725   switch (type) {
1726     case Primitive::kPrimLong: {
1727       jlong long_arg;
1728       if (IsSplitLongOrDouble()) {
1729         long_arg = ReadSplitLongParam();
1730       } else {
1731         long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1732       }
1733       sm_.AdvanceLong(long_arg);
1734       break;
1735     }
1736     case Primitive::kPrimDouble: {
1737       uint64_t double_arg;
1738       if (IsSplitLongOrDouble()) {
1739         // Read into union so that we don't case to a double.
1740         double_arg = ReadSplitLongParam();
1741       } else {
1742         double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1743       }
1744       sm_.AdvanceDouble(double_arg);
1745       break;
1746     }
1747     case Primitive::kPrimNot: {
1748       StackReference<mirror::Object>* stack_ref =
1749           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1750       sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
1751       break;
1752     }
1753     case Primitive::kPrimFloat:
1754       sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1755       break;
1756     case Primitive::kPrimBoolean:  // Fall-through.
1757     case Primitive::kPrimByte:     // Fall-through.
1758     case Primitive::kPrimChar:     // Fall-through.
1759     case Primitive::kPrimShort:    // Fall-through.
1760     case Primitive::kPrimInt:      // Fall-through.
1761       sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1762       break;
1763     case Primitive::kPrimVoid:
1764       LOG(FATAL) << "UNREACHABLE";
1765       UNREACHABLE();
1766   }
1767 }
1768 
FinalizeHandleScope(Thread * self)1769 void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
1770   // Clear out rest of the scope.
1771   jni_call_.ResetRemainingScopeSlots();
1772   // Install HandleScope.
1773   self->PushHandleScope(handle_scope_);
1774 }
1775 
1776 #if defined(__arm__) || defined(__aarch64__)
1777 extern "C" void* artFindNativeMethod();
1778 #else
1779 extern "C" void* artFindNativeMethod(Thread* self);
1780 #endif
1781 
artQuickGenericJniEndJNIRef(Thread * self,uint32_t cookie,jobject l,jobject lock)1782 uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
1783   if (lock != nullptr) {
1784     return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1785   } else {
1786     return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1787   }
1788 }
1789 
artQuickGenericJniEndJNINonRef(Thread * self,uint32_t cookie,jobject lock)1790 void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
1791   if (lock != nullptr) {
1792     JniMethodEndSynchronized(cookie, lock, self);
1793   } else {
1794     JniMethodEnd(cookie, self);
1795   }
1796 }
1797 
1798 /*
1799  * Initializes an alloca region assumed to be directly below sp for a native call:
1800  * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
1801  * The final element on the stack is a pointer to the native code.
1802  *
1803  * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
1804  * We need to fix this, as the handle scope needs to go into the callee-save frame.
1805  *
1806  * The return of this function denotes:
1807  * 1) How many bytes of the alloca can be released, if the value is non-negative.
1808  * 2) An error, if the value is negative.
1809  */
artQuickGenericJniTrampoline(Thread * self,ArtMethod ** sp)1810 extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
1811     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1812   ArtMethod* called = *sp;
1813   DCHECK(called->IsNative()) << PrettyMethod(called, true);
1814   uint32_t shorty_len = 0;
1815   const char* shorty = called->GetShorty(&shorty_len);
1816 
1817   // Run the visitor and update sp.
1818   BuildGenericJniFrameVisitor visitor(self, called->IsStatic(), shorty, shorty_len, &sp);
1819   visitor.VisitArguments();
1820   visitor.FinalizeHandleScope(self);
1821 
1822   // Fix up managed-stack things in Thread.
1823   self->SetTopOfStack(sp);
1824 
1825   self->VerifyStack();
1826 
1827   // Start JNI, save the cookie.
1828   uint32_t cookie;
1829   if (called->IsSynchronized()) {
1830     cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
1831     if (self->IsExceptionPending()) {
1832       self->PopHandleScope();
1833       // A negative value denotes an error.
1834       return GetTwoWordFailureValue();
1835     }
1836   } else {
1837     cookie = JniMethodStart(self);
1838   }
1839   uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1840   *(sp32 - 1) = cookie;
1841 
1842   // Retrieve the stored native code.
1843   void* nativeCode = called->GetEntryPointFromJni();
1844 
1845   // There are two cases for the content of nativeCode:
1846   // 1) Pointer to the native function.
1847   // 2) Pointer to the trampoline for native code binding.
1848   // In the second case, we need to execute the binding and continue with the actual native function
1849   // pointer.
1850   DCHECK(nativeCode != nullptr);
1851   if (nativeCode == GetJniDlsymLookupStub()) {
1852 #if defined(__arm__) || defined(__aarch64__)
1853     nativeCode = artFindNativeMethod();
1854 #else
1855     nativeCode = artFindNativeMethod(self);
1856 #endif
1857 
1858     if (nativeCode == nullptr) {
1859       DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
1860 
1861       // End JNI, as the assembly will move to deliver the exception.
1862       jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
1863       if (shorty[0] == 'L') {
1864         artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
1865       } else {
1866         artQuickGenericJniEndJNINonRef(self, cookie, lock);
1867       }
1868 
1869       return GetTwoWordFailureValue();
1870     }
1871     // Note that the native code pointer will be automatically set by artFindNativeMethod().
1872   }
1873 
1874   // Return native code addr(lo) and bottom of alloca address(hi).
1875   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
1876                                 reinterpret_cast<uintptr_t>(nativeCode));
1877 }
1878 
1879 /*
1880  * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
1881  * unlocking.
1882  */
artQuickGenericJniEndTrampoline(Thread * self,jvalue result,uint64_t result_f)1883 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, jvalue result, uint64_t result_f)
1884     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1885   ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
1886   uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1887   ArtMethod* called = *sp;
1888   uint32_t cookie = *(sp32 - 1);
1889 
1890   jobject lock = nullptr;
1891   if (called->IsSynchronized()) {
1892     HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp)
1893         + sizeof(*sp));
1894     lock = table->GetHandle(0).ToJObject();
1895   }
1896 
1897   char return_shorty_char = called->GetShorty()[0];
1898 
1899   if (return_shorty_char == 'L') {
1900     return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock);
1901   } else {
1902     artQuickGenericJniEndJNINonRef(self, cookie, lock);
1903 
1904     switch (return_shorty_char) {
1905       case 'F': {
1906         if (kRuntimeISA == kX86) {
1907           // Convert back the result to float.
1908           double d = bit_cast<double, uint64_t>(result_f);
1909           return bit_cast<uint32_t, float>(static_cast<float>(d));
1910         } else {
1911           return result_f;
1912         }
1913       }
1914       case 'D':
1915         return result_f;
1916       case 'Z':
1917         return result.z;
1918       case 'B':
1919         return result.b;
1920       case 'C':
1921         return result.c;
1922       case 'S':
1923         return result.s;
1924       case 'I':
1925         return result.i;
1926       case 'J':
1927         return result.j;
1928       case 'V':
1929         return 0;
1930       default:
1931         LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char;
1932         return 0;
1933     }
1934   }
1935 }
1936 
1937 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
1938 // for the method pointer.
1939 //
1940 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
1941 // to hold the mutator lock (see SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) annotations).
1942 
1943 template<InvokeType type, bool access_check>
1944 static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1945                                      ArtMethod* caller_method, Thread* self, ArtMethod** sp);
1946 
1947 template<InvokeType type, bool access_check>
artInvokeCommon(uint32_t method_idx,mirror::Object * this_object,ArtMethod * caller_method,Thread * self,ArtMethod ** sp)1948 static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1949                                      ArtMethod* caller_method, Thread* self, ArtMethod** sp) {
1950   ScopedQuickEntrypointChecks sqec(self);
1951   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs));
1952   ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type);
1953   if (UNLIKELY(method == nullptr)) {
1954     const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1955     uint32_t shorty_len;
1956     const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
1957     {
1958       // Remember the args in case a GC happens in FindMethodFromCode.
1959       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1960       RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
1961       visitor.VisitArguments();
1962       method = FindMethodFromCode<type, access_check>(method_idx, &this_object, &caller_method,
1963                                                       self);
1964       visitor.FixupReferences();
1965     }
1966 
1967     if (UNLIKELY(method == nullptr)) {
1968       CHECK(self->IsExceptionPending());
1969       return GetTwoWordFailureValue();  // Failure.
1970     }
1971   }
1972   DCHECK(!self->IsExceptionPending());
1973   const void* code = method->GetEntryPointFromQuickCompiledCode();
1974 
1975   // When we return, the caller will branch to this address, so it had better not be 0!
1976   DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
1977                           << " location: "
1978                           << method->GetDexFile()->GetLocation();
1979 
1980   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
1981                                 reinterpret_cast<uintptr_t>(method));
1982 }
1983 
1984 // Explicit artInvokeCommon template function declarations to please analysis tool.
1985 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
1986   template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)                                          \
1987   TwoWordReturn artInvokeCommon<type, access_check>(uint32_t method_idx,                        \
1988                                                     mirror::Object* this_object,                \
1989                                                     ArtMethod* caller_method,                   \
1990                                                     Thread* self,                               \
1991                                                     ArtMethod** sp)      \
1992 
1993 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
1994 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
1995 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
1996 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
1997 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
1998 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
1999 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2000 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2001 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2002 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2003 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2004 
2005 // See comments in runtime_support_asm.S
artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,ArtMethod * caller_method,Thread * self,ArtMethod ** sp)2006 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2007     uint32_t method_idx, mirror::Object* this_object,
2008     ArtMethod* caller_method, Thread* self, ArtMethod** sp)
2009         SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2010   return artInvokeCommon<kInterface, true>(method_idx, this_object,
2011                                            caller_method, self, sp);
2012 }
2013 
artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,ArtMethod * caller_method,Thread * self,ArtMethod ** sp)2014 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2015     uint32_t method_idx, mirror::Object* this_object,
2016     ArtMethod* caller_method, Thread* self, ArtMethod** sp)
2017         SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2018   return artInvokeCommon<kDirect, true>(method_idx, this_object, caller_method,
2019                                         self, sp);
2020 }
2021 
artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,ArtMethod * caller_method,Thread * self,ArtMethod ** sp)2022 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2023     uint32_t method_idx, mirror::Object* this_object,
2024     ArtMethod* caller_method, Thread* self, ArtMethod** sp)
2025         SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2026   return artInvokeCommon<kStatic, true>(method_idx, this_object, caller_method,
2027                                         self, sp);
2028 }
2029 
artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,ArtMethod * caller_method,Thread * self,ArtMethod ** sp)2030 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2031     uint32_t method_idx, mirror::Object* this_object,
2032     ArtMethod* caller_method, Thread* self, ArtMethod** sp)
2033         SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2034   return artInvokeCommon<kSuper, true>(method_idx, this_object, caller_method,
2035                                        self, sp);
2036 }
2037 
artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,ArtMethod * caller_method,Thread * self,ArtMethod ** sp)2038 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2039     uint32_t method_idx, mirror::Object* this_object,
2040     ArtMethod* caller_method, Thread* self, ArtMethod** sp)
2041         SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2042   return artInvokeCommon<kVirtual, true>(method_idx, this_object, caller_method,
2043                                          self, sp);
2044 }
2045 
2046 // Determine target of interface dispatch. This object is known non-null.
artInvokeInterfaceTrampoline(ArtMethod * interface_method,mirror::Object * this_object,ArtMethod * caller_method,Thread * self,ArtMethod ** sp)2047 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
2048                                                       mirror::Object* this_object,
2049                                                       ArtMethod* caller_method,
2050                                                       Thread* self,
2051                                                       ArtMethod** sp)
2052     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2053   ScopedQuickEntrypointChecks sqec(self);
2054   ArtMethod* method;
2055   if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
2056     method = this_object->GetClass()->FindVirtualMethodForInterface(
2057         interface_method, sizeof(void*));
2058     if (UNLIKELY(method == nullptr)) {
2059       ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2060           interface_method, this_object, caller_method);
2061       return GetTwoWordFailureValue();  // Failure.
2062     }
2063   } else {
2064     DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod());
2065 
2066     // Find the caller PC.
2067     constexpr size_t pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA, Runtime::kRefsAndArgs);
2068     uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) + pc_offset);
2069 
2070     // Map the caller PC to a dex PC.
2071     uint32_t dex_pc = caller_method->ToDexPc(caller_pc);
2072     const DexFile::CodeItem* code = caller_method->GetCodeItem();
2073     CHECK_LT(dex_pc, code->insns_size_in_code_units_);
2074     const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
2075     Instruction::Code instr_code = instr->Opcode();
2076     CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2077           instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2078         << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr);
2079     uint32_t dex_method_idx;
2080     if (instr_code == Instruction::INVOKE_INTERFACE) {
2081       dex_method_idx = instr->VRegB_35c();
2082     } else {
2083       DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2084       dex_method_idx = instr->VRegB_3rc();
2085     }
2086 
2087     const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
2088         ->GetDexFile();
2089     uint32_t shorty_len;
2090     const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
2091                                                    &shorty_len);
2092     {
2093       // Remember the args in case a GC happens in FindMethodFromCode.
2094       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2095       RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2096       visitor.VisitArguments();
2097       method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, &caller_method,
2098                                                      self);
2099       visitor.FixupReferences();
2100     }
2101 
2102     if (UNLIKELY(method == nullptr)) {
2103       CHECK(self->IsExceptionPending());
2104       return GetTwoWordFailureValue();  // Failure.
2105     }
2106   }
2107   const void* code = method->GetEntryPointFromQuickCompiledCode();
2108 
2109   // When we return, the caller will branch to this address, so it had better not be 0!
2110   DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
2111                           << " location: " << method->GetDexFile()->GetLocation();
2112 
2113   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2114                                 reinterpret_cast<uintptr_t>(method));
2115 }
2116 
2117 }  // namespace art
2118