1 //===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the spill code placement analysis.
11 //
12 // Each edge bundle corresponds to a node in a Hopfield network. Constraints on
13 // basic blocks are weighted by the block frequency and added to become the node
14 // bias.
15 //
16 // Transparent basic blocks have the variable live through, but don't care if it
17 // is spilled or in a register. These blocks become connections in the Hopfield
18 // network, again weighted by block frequency.
19 //
20 // The Hopfield network minimizes (possibly locally) its energy function:
21 //
22 // E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
23 //
24 // The energy function represents the expected spill code execution frequency,
25 // or the cost of spilling. This is a Lyapunov function which never increases
26 // when a node is updated. It is guaranteed to converge to a local minimum.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #include "SpillPlacement.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/CodeGen/EdgeBundles.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineLoopInfo.h"
37 #include "llvm/CodeGen/Passes.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/Format.h"
40 #include "llvm/Support/ManagedStatic.h"
41
42 using namespace llvm;
43
44 #define DEBUG_TYPE "spillplacement"
45
46 char SpillPlacement::ID = 0;
47 INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement",
48 "Spill Code Placement Analysis", true, true)
49 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
50 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
51 INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement",
52 "Spill Code Placement Analysis", true, true)
53
54 char &llvm::SpillPlacementID = SpillPlacement::ID;
55
getAnalysisUsage(AnalysisUsage & AU) const56 void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
57 AU.setPreservesAll();
58 AU.addRequired<MachineBlockFrequencyInfo>();
59 AU.addRequiredTransitive<EdgeBundles>();
60 AU.addRequiredTransitive<MachineLoopInfo>();
61 MachineFunctionPass::getAnalysisUsage(AU);
62 }
63
64 /// Node - Each edge bundle corresponds to a Hopfield node.
65 ///
66 /// The node contains precomputed frequency data that only depends on the CFG,
67 /// but Bias and Links are computed each time placeSpills is called.
68 ///
69 /// The node Value is positive when the variable should be in a register. The
70 /// value can change when linked nodes change, but convergence is very fast
71 /// because all weights are positive.
72 ///
73 struct SpillPlacement::Node {
74 /// BiasN - Sum of blocks that prefer a spill.
75 BlockFrequency BiasN;
76 /// BiasP - Sum of blocks that prefer a register.
77 BlockFrequency BiasP;
78
79 /// Value - Output value of this node computed from the Bias and links.
80 /// This is always on of the values {-1, 0, 1}. A positive number means the
81 /// variable should go in a register through this bundle.
82 int Value;
83
84 typedef SmallVector<std::pair<BlockFrequency, unsigned>, 4> LinkVector;
85
86 /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
87 /// bundles. The weights are all positive block frequencies.
88 LinkVector Links;
89
90 /// SumLinkWeights - Cached sum of the weights of all links + ThresHold.
91 BlockFrequency SumLinkWeights;
92
93 /// preferReg - Return true when this node prefers to be in a register.
preferRegSpillPlacement::Node94 bool preferReg() const {
95 // Undecided nodes (Value==0) go on the stack.
96 return Value > 0;
97 }
98
99 /// mustSpill - Return True if this node is so biased that it must spill.
mustSpillSpillPlacement::Node100 bool mustSpill() const {
101 // We must spill if Bias < -sum(weights) or the MustSpill flag was set.
102 // BiasN is saturated when MustSpill is set, make sure this still returns
103 // true when the RHS saturates. Note that SumLinkWeights includes Threshold.
104 return BiasN >= BiasP + SumLinkWeights;
105 }
106
107 /// clear - Reset per-query data, but preserve frequencies that only depend on
108 // the CFG.
clearSpillPlacement::Node109 void clear(const BlockFrequency &Threshold) {
110 BiasN = BiasP = Value = 0;
111 SumLinkWeights = Threshold;
112 Links.clear();
113 }
114
115 /// addLink - Add a link to bundle b with weight w.
addLinkSpillPlacement::Node116 void addLink(unsigned b, BlockFrequency w) {
117 // Update cached sum.
118 SumLinkWeights += w;
119
120 // There can be multiple links to the same bundle, add them up.
121 for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
122 if (I->second == b) {
123 I->first += w;
124 return;
125 }
126 // This must be the first link to b.
127 Links.push_back(std::make_pair(w, b));
128 }
129
130 /// addBias - Bias this node.
addBiasSpillPlacement::Node131 void addBias(BlockFrequency freq, BorderConstraint direction) {
132 switch (direction) {
133 default:
134 break;
135 case PrefReg:
136 BiasP += freq;
137 break;
138 case PrefSpill:
139 BiasN += freq;
140 break;
141 case MustSpill:
142 BiasN = BlockFrequency::getMaxFrequency();
143 break;
144 }
145 }
146
147 /// update - Recompute Value from Bias and Links. Return true when node
148 /// preference changes.
updateSpillPlacement::Node149 bool update(const Node nodes[], const BlockFrequency &Threshold) {
150 // Compute the weighted sum of inputs.
151 BlockFrequency SumN = BiasN;
152 BlockFrequency SumP = BiasP;
153 for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) {
154 if (nodes[I->second].Value == -1)
155 SumN += I->first;
156 else if (nodes[I->second].Value == 1)
157 SumP += I->first;
158 }
159
160 // Each weighted sum is going to be less than the total frequency of the
161 // bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we
162 // will add a dead zone around 0 for two reasons:
163 //
164 // 1. It avoids arbitrary bias when all links are 0 as is possible during
165 // initial iterations.
166 // 2. It helps tame rounding errors when the links nominally sum to 0.
167 //
168 bool Before = preferReg();
169 if (SumN >= SumP + Threshold)
170 Value = -1;
171 else if (SumP >= SumN + Threshold)
172 Value = 1;
173 else
174 Value = 0;
175 return Before != preferReg();
176 }
177 };
178
runOnMachineFunction(MachineFunction & mf)179 bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
180 MF = &mf;
181 bundles = &getAnalysis<EdgeBundles>();
182 loops = &getAnalysis<MachineLoopInfo>();
183
184 assert(!nodes && "Leaking node array");
185 nodes = new Node[bundles->getNumBundles()];
186
187 // Compute total ingoing and outgoing block frequencies for all bundles.
188 BlockFrequencies.resize(mf.getNumBlockIDs());
189 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
190 setThreshold(MBFI->getEntryFreq());
191 for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) {
192 unsigned Num = I->getNumber();
193 BlockFrequencies[Num] = MBFI->getBlockFreq(I);
194 }
195
196 // We never change the function.
197 return false;
198 }
199
releaseMemory()200 void SpillPlacement::releaseMemory() {
201 delete[] nodes;
202 nodes = nullptr;
203 }
204
205 /// activate - mark node n as active if it wasn't already.
activate(unsigned n)206 void SpillPlacement::activate(unsigned n) {
207 if (ActiveNodes->test(n))
208 return;
209 ActiveNodes->set(n);
210 nodes[n].clear(Threshold);
211
212 // Very large bundles usually come from big switches, indirect branches,
213 // landing pads, or loops with many 'continue' statements. It is difficult to
214 // allocate registers when so many different blocks are involved.
215 //
216 // Give a small negative bias to large bundles such that a substantial
217 // fraction of the connected blocks need to be interested before we consider
218 // expanding the region through the bundle. This helps compile time by
219 // limiting the number of blocks visited and the number of links in the
220 // Hopfield network.
221 if (bundles->getBlocks(n).size() > 100) {
222 nodes[n].BiasP = 0;
223 nodes[n].BiasN = (MBFI->getEntryFreq() / 16);
224 }
225 }
226
227 /// \brief Set the threshold for a given entry frequency.
228 ///
229 /// Set the threshold relative to \c Entry. Since the threshold is used as a
230 /// bound on the open interval (-Threshold;Threshold), 1 is the minimum
231 /// threshold.
setThreshold(const BlockFrequency & Entry)232 void SpillPlacement::setThreshold(const BlockFrequency &Entry) {
233 // Apparently 2 is a good threshold when Entry==2^14, but we need to scale
234 // it. Divide by 2^13, rounding as appropriate.
235 uint64_t Freq = Entry.getFrequency();
236 uint64_t Scaled = (Freq >> 13) + bool(Freq & (1 << 12));
237 Threshold = std::max(UINT64_C(1), Scaled);
238 }
239
240 /// addConstraints - Compute node biases and weights from a set of constraints.
241 /// Set a bit in NodeMask for each active node.
addConstraints(ArrayRef<BlockConstraint> LiveBlocks)242 void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) {
243 for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(),
244 E = LiveBlocks.end(); I != E; ++I) {
245 BlockFrequency Freq = BlockFrequencies[I->Number];
246
247 // Live-in to block?
248 if (I->Entry != DontCare) {
249 unsigned ib = bundles->getBundle(I->Number, 0);
250 activate(ib);
251 nodes[ib].addBias(Freq, I->Entry);
252 }
253
254 // Live-out from block?
255 if (I->Exit != DontCare) {
256 unsigned ob = bundles->getBundle(I->Number, 1);
257 activate(ob);
258 nodes[ob].addBias(Freq, I->Exit);
259 }
260 }
261 }
262
263 /// addPrefSpill - Same as addConstraints(PrefSpill)
addPrefSpill(ArrayRef<unsigned> Blocks,bool Strong)264 void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) {
265 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
266 I != E; ++I) {
267 BlockFrequency Freq = BlockFrequencies[*I];
268 if (Strong)
269 Freq += Freq;
270 unsigned ib = bundles->getBundle(*I, 0);
271 unsigned ob = bundles->getBundle(*I, 1);
272 activate(ib);
273 activate(ob);
274 nodes[ib].addBias(Freq, PrefSpill);
275 nodes[ob].addBias(Freq, PrefSpill);
276 }
277 }
278
addLinks(ArrayRef<unsigned> Links)279 void SpillPlacement::addLinks(ArrayRef<unsigned> Links) {
280 for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E;
281 ++I) {
282 unsigned Number = *I;
283 unsigned ib = bundles->getBundle(Number, 0);
284 unsigned ob = bundles->getBundle(Number, 1);
285
286 // Ignore self-loops.
287 if (ib == ob)
288 continue;
289 activate(ib);
290 activate(ob);
291 if (nodes[ib].Links.empty() && !nodes[ib].mustSpill())
292 Linked.push_back(ib);
293 if (nodes[ob].Links.empty() && !nodes[ob].mustSpill())
294 Linked.push_back(ob);
295 BlockFrequency Freq = BlockFrequencies[Number];
296 nodes[ib].addLink(ob, Freq);
297 nodes[ob].addLink(ib, Freq);
298 }
299 }
300
scanActiveBundles()301 bool SpillPlacement::scanActiveBundles() {
302 Linked.clear();
303 RecentPositive.clear();
304 for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) {
305 nodes[n].update(nodes, Threshold);
306 // A node that must spill, or a node without any links is not going to
307 // change its value ever again, so exclude it from iterations.
308 if (nodes[n].mustSpill())
309 continue;
310 if (!nodes[n].Links.empty())
311 Linked.push_back(n);
312 if (nodes[n].preferReg())
313 RecentPositive.push_back(n);
314 }
315 return !RecentPositive.empty();
316 }
317
318 /// iterate - Repeatedly update the Hopfield nodes until stability or the
319 /// maximum number of iterations is reached.
320 /// @param Linked - Numbers of linked nodes that need updating.
iterate()321 void SpillPlacement::iterate() {
322 // First update the recently positive nodes. They have likely received new
323 // negative bias that will turn them off.
324 while (!RecentPositive.empty())
325 nodes[RecentPositive.pop_back_val()].update(nodes, Threshold);
326
327 if (Linked.empty())
328 return;
329
330 // Run up to 10 iterations. The edge bundle numbering is closely related to
331 // basic block numbering, so there is a strong tendency towards chains of
332 // linked nodes with sequential numbers. By scanning the linked nodes
333 // backwards and forwards, we make it very likely that a single node can
334 // affect the entire network in a single iteration. That means very fast
335 // convergence, usually in a single iteration.
336 for (unsigned iteration = 0; iteration != 10; ++iteration) {
337 // Scan backwards, skipping the last node when iteration is not zero. When
338 // iteration is not zero, the last node was just updated.
339 bool Changed = false;
340 for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
341 iteration == 0 ? Linked.rbegin() : std::next(Linked.rbegin()),
342 E = Linked.rend(); I != E; ++I) {
343 unsigned n = *I;
344 if (nodes[n].update(nodes, Threshold)) {
345 Changed = true;
346 if (nodes[n].preferReg())
347 RecentPositive.push_back(n);
348 }
349 }
350 if (!Changed || !RecentPositive.empty())
351 return;
352
353 // Scan forwards, skipping the first node which was just updated.
354 Changed = false;
355 for (SmallVectorImpl<unsigned>::const_iterator I =
356 std::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
357 unsigned n = *I;
358 if (nodes[n].update(nodes, Threshold)) {
359 Changed = true;
360 if (nodes[n].preferReg())
361 RecentPositive.push_back(n);
362 }
363 }
364 if (!Changed || !RecentPositive.empty())
365 return;
366 }
367 }
368
prepare(BitVector & RegBundles)369 void SpillPlacement::prepare(BitVector &RegBundles) {
370 Linked.clear();
371 RecentPositive.clear();
372 // Reuse RegBundles as our ActiveNodes vector.
373 ActiveNodes = &RegBundles;
374 ActiveNodes->clear();
375 ActiveNodes->resize(bundles->getNumBundles());
376 }
377
378 bool
finish()379 SpillPlacement::finish() {
380 assert(ActiveNodes && "Call prepare() first");
381
382 // Write preferences back to ActiveNodes.
383 bool Perfect = true;
384 for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n))
385 if (!nodes[n].preferReg()) {
386 ActiveNodes->reset(n);
387 Perfect = false;
388 }
389 ActiveNodes = nullptr;
390 return Perfect;
391 }
392