1 /* 2 * Copyright (C) 2005 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 // 18 // Definitions of resource data structures. 19 // 20 #ifndef _LIBS_UTILS_RESOURCE_TYPES_H 21 #define _LIBS_UTILS_RESOURCE_TYPES_H 22 23 #include <androidfw/Asset.h> 24 #include <utils/ByteOrder.h> 25 #include <utils/Errors.h> 26 #include <utils/String16.h> 27 #include <utils/Vector.h> 28 #include <utils/KeyedVector.h> 29 30 #include <utils/threads.h> 31 32 #include <stdint.h> 33 #include <sys/types.h> 34 35 #include <android/configuration.h> 36 37 namespace android { 38 39 /** 40 * In C++11, char16_t is defined as *at least* 16 bits. We do a lot of 41 * casting on raw data and expect char16_t to be exactly 16 bits. 42 */ 43 #if __cplusplus >= 201103L 44 struct __assertChar16Size { 45 static_assert(sizeof(char16_t) == sizeof(uint16_t), "char16_t is not 16 bits"); 46 static_assert(alignof(char16_t) == alignof(uint16_t), "char16_t is not 16-bit aligned"); 47 }; 48 #endif 49 50 /** ******************************************************************** 51 * PNG Extensions 52 * 53 * New private chunks that may be placed in PNG images. 54 * 55 *********************************************************************** */ 56 57 /** 58 * This chunk specifies how to split an image into segments for 59 * scaling. 60 * 61 * There are J horizontal and K vertical segments. These segments divide 62 * the image into J*K regions as follows (where J=4 and K=3): 63 * 64 * F0 S0 F1 S1 65 * +-----+----+------+-------+ 66 * S2| 0 | 1 | 2 | 3 | 67 * +-----+----+------+-------+ 68 * | | | | | 69 * | | | | | 70 * F2| 4 | 5 | 6 | 7 | 71 * | | | | | 72 * | | | | | 73 * +-----+----+------+-------+ 74 * S3| 8 | 9 | 10 | 11 | 75 * +-----+----+------+-------+ 76 * 77 * Each horizontal and vertical segment is considered to by either 78 * stretchable (marked by the Sx labels) or fixed (marked by the Fy 79 * labels), in the horizontal or vertical axis, respectively. In the 80 * above example, the first is horizontal segment (F0) is fixed, the 81 * next is stretchable and then they continue to alternate. Note that 82 * the segment list for each axis can begin or end with a stretchable 83 * or fixed segment. 84 * 85 * The relative sizes of the stretchy segments indicates the relative 86 * amount of stretchiness of the regions bordered by the segments. For 87 * example, regions 3, 7 and 11 above will take up more horizontal space 88 * than regions 1, 5 and 9 since the horizontal segment associated with 89 * the first set of regions is larger than the other set of regions. The 90 * ratios of the amount of horizontal (or vertical) space taken by any 91 * two stretchable slices is exactly the ratio of their corresponding 92 * segment lengths. 93 * 94 * xDivs and yDivs are arrays of horizontal and vertical pixel 95 * indices. The first pair of Divs (in either array) indicate the 96 * starting and ending points of the first stretchable segment in that 97 * axis. The next pair specifies the next stretchable segment, etc. So 98 * in the above example xDiv[0] and xDiv[1] specify the horizontal 99 * coordinates for the regions labeled 1, 5 and 9. xDiv[2] and 100 * xDiv[3] specify the coordinates for regions 3, 7 and 11. Note that 101 * the leftmost slices always start at x=0 and the rightmost slices 102 * always end at the end of the image. So, for example, the regions 0, 103 * 4 and 8 (which are fixed along the X axis) start at x value 0 and 104 * go to xDiv[0] and slices 2, 6 and 10 start at xDiv[1] and end at 105 * xDiv[2]. 106 * 107 * The colors array contains hints for each of the regions. They are 108 * ordered according left-to-right and top-to-bottom as indicated above. 109 * For each segment that is a solid color the array entry will contain 110 * that color value; otherwise it will contain NO_COLOR. Segments that 111 * are completely transparent will always have the value TRANSPARENT_COLOR. 112 * 113 * The PNG chunk type is "npTc". 114 */ 115 struct alignas(uintptr_t) Res_png_9patch 116 { Res_png_9patchRes_png_9patch117 Res_png_9patch() : wasDeserialized(false), xDivsOffset(0), 118 yDivsOffset(0), colorsOffset(0) { } 119 120 int8_t wasDeserialized; 121 uint8_t numXDivs; 122 uint8_t numYDivs; 123 uint8_t numColors; 124 125 // The offset (from the start of this structure) to the xDivs & yDivs 126 // array for this 9patch. To get a pointer to this array, call 127 // getXDivs or getYDivs. Note that the serialized form for 9patches places 128 // the xDivs, yDivs and colors arrays immediately after the location 129 // of the Res_png_9patch struct. 130 uint32_t xDivsOffset; 131 uint32_t yDivsOffset; 132 133 int32_t paddingLeft, paddingRight; 134 int32_t paddingTop, paddingBottom; 135 136 enum { 137 // The 9 patch segment is not a solid color. 138 NO_COLOR = 0x00000001, 139 140 // The 9 patch segment is completely transparent. 141 TRANSPARENT_COLOR = 0x00000000 142 }; 143 144 // The offset (from the start of this structure) to the colors array 145 // for this 9patch. 146 uint32_t colorsOffset; 147 148 // Convert data from device representation to PNG file representation. 149 void deviceToFile(); 150 // Convert data from PNG file representation to device representation. 151 void fileToDevice(); 152 153 // Serialize/Marshall the patch data into a newly malloc-ed block. 154 static void* serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs, 155 const int32_t* yDivs, const uint32_t* colors); 156 // Serialize/Marshall the patch data into |outData|. 157 static void serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs, 158 const int32_t* yDivs, const uint32_t* colors, void* outData); 159 // Deserialize/Unmarshall the patch data 160 static Res_png_9patch* deserialize(void* data); 161 // Compute the size of the serialized data structure 162 size_t serializedSize() const; 163 164 // These tell where the next section of a patch starts. 165 // For example, the first patch includes the pixels from 166 // 0 to xDivs[0]-1 and the second patch includes the pixels 167 // from xDivs[0] to xDivs[1]-1. getXDivsRes_png_9patch168 inline int32_t* getXDivs() const { 169 return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + xDivsOffset); 170 } getYDivsRes_png_9patch171 inline int32_t* getYDivs() const { 172 return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + yDivsOffset); 173 } getColorsRes_png_9patch174 inline uint32_t* getColors() const { 175 return reinterpret_cast<uint32_t*>(reinterpret_cast<uintptr_t>(this) + colorsOffset); 176 } 177 178 } __attribute__((packed)); 179 180 /** ******************************************************************** 181 * Base Types 182 * 183 * These are standard types that are shared between multiple specific 184 * resource types. 185 * 186 *********************************************************************** */ 187 188 /** 189 * Header that appears at the front of every data chunk in a resource. 190 */ 191 struct ResChunk_header 192 { 193 // Type identifier for this chunk. The meaning of this value depends 194 // on the containing chunk. 195 uint16_t type; 196 197 // Size of the chunk header (in bytes). Adding this value to 198 // the address of the chunk allows you to find its associated data 199 // (if any). 200 uint16_t headerSize; 201 202 // Total size of this chunk (in bytes). This is the chunkSize plus 203 // the size of any data associated with the chunk. Adding this value 204 // to the chunk allows you to completely skip its contents (including 205 // any child chunks). If this value is the same as chunkSize, there is 206 // no data associated with the chunk. 207 uint32_t size; 208 }; 209 210 enum { 211 RES_NULL_TYPE = 0x0000, 212 RES_STRING_POOL_TYPE = 0x0001, 213 RES_TABLE_TYPE = 0x0002, 214 RES_XML_TYPE = 0x0003, 215 216 // Chunk types in RES_XML_TYPE 217 RES_XML_FIRST_CHUNK_TYPE = 0x0100, 218 RES_XML_START_NAMESPACE_TYPE= 0x0100, 219 RES_XML_END_NAMESPACE_TYPE = 0x0101, 220 RES_XML_START_ELEMENT_TYPE = 0x0102, 221 RES_XML_END_ELEMENT_TYPE = 0x0103, 222 RES_XML_CDATA_TYPE = 0x0104, 223 RES_XML_LAST_CHUNK_TYPE = 0x017f, 224 // This contains a uint32_t array mapping strings in the string 225 // pool back to resource identifiers. It is optional. 226 RES_XML_RESOURCE_MAP_TYPE = 0x0180, 227 228 // Chunk types in RES_TABLE_TYPE 229 RES_TABLE_PACKAGE_TYPE = 0x0200, 230 RES_TABLE_TYPE_TYPE = 0x0201, 231 RES_TABLE_TYPE_SPEC_TYPE = 0x0202, 232 RES_TABLE_LIBRARY_TYPE = 0x0203 233 }; 234 235 /** 236 * Macros for building/splitting resource identifiers. 237 */ 238 #define Res_VALIDID(resid) (resid != 0) 239 #define Res_CHECKID(resid) ((resid&0xFFFF0000) != 0) 240 #define Res_MAKEID(package, type, entry) \ 241 (((package+1)<<24) | (((type+1)&0xFF)<<16) | (entry&0xFFFF)) 242 #define Res_GETPACKAGE(id) ((id>>24)-1) 243 #define Res_GETTYPE(id) (((id>>16)&0xFF)-1) 244 #define Res_GETENTRY(id) (id&0xFFFF) 245 246 #define Res_INTERNALID(resid) ((resid&0xFFFF0000) != 0 && (resid&0xFF0000) == 0) 247 #define Res_MAKEINTERNAL(entry) (0x01000000 | (entry&0xFFFF)) 248 #define Res_MAKEARRAY(entry) (0x02000000 | (entry&0xFFFF)) 249 250 static const size_t Res_MAXPACKAGE = 255; 251 static const size_t Res_MAXTYPE = 255; 252 253 /** 254 * Representation of a value in a resource, supplying type 255 * information. 256 */ 257 struct Res_value 258 { 259 // Number of bytes in this structure. 260 uint16_t size; 261 262 // Always set to 0. 263 uint8_t res0; 264 265 // Type of the data value. 266 enum { 267 // The 'data' is either 0 or 1, specifying this resource is either 268 // undefined or empty, respectively. 269 TYPE_NULL = 0x00, 270 // The 'data' holds a ResTable_ref, a reference to another resource 271 // table entry. 272 TYPE_REFERENCE = 0x01, 273 // The 'data' holds an attribute resource identifier. 274 TYPE_ATTRIBUTE = 0x02, 275 // The 'data' holds an index into the containing resource table's 276 // global value string pool. 277 TYPE_STRING = 0x03, 278 // The 'data' holds a single-precision floating point number. 279 TYPE_FLOAT = 0x04, 280 // The 'data' holds a complex number encoding a dimension value, 281 // such as "100in". 282 TYPE_DIMENSION = 0x05, 283 // The 'data' holds a complex number encoding a fraction of a 284 // container. 285 TYPE_FRACTION = 0x06, 286 // The 'data' holds a dynamic ResTable_ref, which needs to be 287 // resolved before it can be used like a TYPE_REFERENCE. 288 TYPE_DYNAMIC_REFERENCE = 0x07, 289 290 // Beginning of integer flavors... 291 TYPE_FIRST_INT = 0x10, 292 293 // The 'data' is a raw integer value of the form n..n. 294 TYPE_INT_DEC = 0x10, 295 // The 'data' is a raw integer value of the form 0xn..n. 296 TYPE_INT_HEX = 0x11, 297 // The 'data' is either 0 or 1, for input "false" or "true" respectively. 298 TYPE_INT_BOOLEAN = 0x12, 299 300 // Beginning of color integer flavors... 301 TYPE_FIRST_COLOR_INT = 0x1c, 302 303 // The 'data' is a raw integer value of the form #aarrggbb. 304 TYPE_INT_COLOR_ARGB8 = 0x1c, 305 // The 'data' is a raw integer value of the form #rrggbb. 306 TYPE_INT_COLOR_RGB8 = 0x1d, 307 // The 'data' is a raw integer value of the form #argb. 308 TYPE_INT_COLOR_ARGB4 = 0x1e, 309 // The 'data' is a raw integer value of the form #rgb. 310 TYPE_INT_COLOR_RGB4 = 0x1f, 311 312 // ...end of integer flavors. 313 TYPE_LAST_COLOR_INT = 0x1f, 314 315 // ...end of integer flavors. 316 TYPE_LAST_INT = 0x1f 317 }; 318 uint8_t dataType; 319 320 // Structure of complex data values (TYPE_UNIT and TYPE_FRACTION) 321 enum { 322 // Where the unit type information is. This gives us 16 possible 323 // types, as defined below. 324 COMPLEX_UNIT_SHIFT = 0, 325 COMPLEX_UNIT_MASK = 0xf, 326 327 // TYPE_DIMENSION: Value is raw pixels. 328 COMPLEX_UNIT_PX = 0, 329 // TYPE_DIMENSION: Value is Device Independent Pixels. 330 COMPLEX_UNIT_DIP = 1, 331 // TYPE_DIMENSION: Value is a Scaled device independent Pixels. 332 COMPLEX_UNIT_SP = 2, 333 // TYPE_DIMENSION: Value is in points. 334 COMPLEX_UNIT_PT = 3, 335 // TYPE_DIMENSION: Value is in inches. 336 COMPLEX_UNIT_IN = 4, 337 // TYPE_DIMENSION: Value is in millimeters. 338 COMPLEX_UNIT_MM = 5, 339 340 // TYPE_FRACTION: A basic fraction of the overall size. 341 COMPLEX_UNIT_FRACTION = 0, 342 // TYPE_FRACTION: A fraction of the parent size. 343 COMPLEX_UNIT_FRACTION_PARENT = 1, 344 345 // Where the radix information is, telling where the decimal place 346 // appears in the mantissa. This give us 4 possible fixed point 347 // representations as defined below. 348 COMPLEX_RADIX_SHIFT = 4, 349 COMPLEX_RADIX_MASK = 0x3, 350 351 // The mantissa is an integral number -- i.e., 0xnnnnnn.0 352 COMPLEX_RADIX_23p0 = 0, 353 // The mantissa magnitude is 16 bits -- i.e, 0xnnnn.nn 354 COMPLEX_RADIX_16p7 = 1, 355 // The mantissa magnitude is 8 bits -- i.e, 0xnn.nnnn 356 COMPLEX_RADIX_8p15 = 2, 357 // The mantissa magnitude is 0 bits -- i.e, 0x0.nnnnnn 358 COMPLEX_RADIX_0p23 = 3, 359 360 // Where the actual value is. This gives us 23 bits of 361 // precision. The top bit is the sign. 362 COMPLEX_MANTISSA_SHIFT = 8, 363 COMPLEX_MANTISSA_MASK = 0xffffff 364 }; 365 366 // Possible data values for TYPE_NULL. 367 enum { 368 // The value is not defined. 369 DATA_NULL_UNDEFINED = 0, 370 // The value is explicitly defined as empty. 371 DATA_NULL_EMPTY = 1 372 }; 373 374 // The data for this item, as interpreted according to dataType. 375 typedef uint32_t data_type; 376 data_type data; 377 378 void copyFrom_dtoh(const Res_value& src); 379 }; 380 381 /** 382 * This is a reference to a unique entry (a ResTable_entry structure) 383 * in a resource table. The value is structured as: 0xpptteeee, 384 * where pp is the package index, tt is the type index in that 385 * package, and eeee is the entry index in that type. The package 386 * and type values start at 1 for the first item, to help catch cases 387 * where they have not been supplied. 388 */ 389 struct ResTable_ref 390 { 391 uint32_t ident; 392 }; 393 394 /** 395 * Reference to a string in a string pool. 396 */ 397 struct ResStringPool_ref 398 { 399 // Index into the string pool table (uint32_t-offset from the indices 400 // immediately after ResStringPool_header) at which to find the location 401 // of the string data in the pool. 402 uint32_t index; 403 }; 404 405 /** ******************************************************************** 406 * String Pool 407 * 408 * A set of strings that can be references by others through a 409 * ResStringPool_ref. 410 * 411 *********************************************************************** */ 412 413 /** 414 * Definition for a pool of strings. The data of this chunk is an 415 * array of uint32_t providing indices into the pool, relative to 416 * stringsStart. At stringsStart are all of the UTF-16 strings 417 * concatenated together; each starts with a uint16_t of the string's 418 * length and each ends with a 0x0000 terminator. If a string is > 419 * 32767 characters, the high bit of the length is set meaning to take 420 * those 15 bits as a high word and it will be followed by another 421 * uint16_t containing the low word. 422 * 423 * If styleCount is not zero, then immediately following the array of 424 * uint32_t indices into the string table is another array of indices 425 * into a style table starting at stylesStart. Each entry in the 426 * style table is an array of ResStringPool_span structures. 427 */ 428 struct ResStringPool_header 429 { 430 struct ResChunk_header header; 431 432 // Number of strings in this pool (number of uint32_t indices that follow 433 // in the data). 434 uint32_t stringCount; 435 436 // Number of style span arrays in the pool (number of uint32_t indices 437 // follow the string indices). 438 uint32_t styleCount; 439 440 // Flags. 441 enum { 442 // If set, the string index is sorted by the string values (based 443 // on strcmp16()). 444 SORTED_FLAG = 1<<0, 445 446 // String pool is encoded in UTF-8 447 UTF8_FLAG = 1<<8 448 }; 449 uint32_t flags; 450 451 // Index from header of the string data. 452 uint32_t stringsStart; 453 454 // Index from header of the style data. 455 uint32_t stylesStart; 456 }; 457 458 /** 459 * This structure defines a span of style information associated with 460 * a string in the pool. 461 */ 462 struct ResStringPool_span 463 { 464 enum { 465 END = 0xFFFFFFFF 466 }; 467 468 // This is the name of the span -- that is, the name of the XML 469 // tag that defined it. The special value END (0xFFFFFFFF) indicates 470 // the end of an array of spans. 471 ResStringPool_ref name; 472 473 // The range of characters in the string that this span applies to. 474 uint32_t firstChar, lastChar; 475 }; 476 477 /** 478 * Convenience class for accessing data in a ResStringPool resource. 479 */ 480 class ResStringPool 481 { 482 public: 483 ResStringPool(); 484 ResStringPool(const void* data, size_t size, bool copyData=false); 485 ~ResStringPool(); 486 487 void setToEmpty(); 488 status_t setTo(const void* data, size_t size, bool copyData=false); 489 490 status_t getError() const; 491 492 void uninit(); 493 494 // Return string entry as UTF16; if the pool is UTF8, the string will 495 // be converted before returning. stringAt(const ResStringPool_ref & ref,size_t * outLen)496 inline const char16_t* stringAt(const ResStringPool_ref& ref, size_t* outLen) const { 497 return stringAt(ref.index, outLen); 498 } 499 const char16_t* stringAt(size_t idx, size_t* outLen) const; 500 501 // Note: returns null if the string pool is not UTF8. 502 const char* string8At(size_t idx, size_t* outLen) const; 503 504 // Return string whether the pool is UTF8 or UTF16. Does not allow you 505 // to distinguish null. 506 const String8 string8ObjectAt(size_t idx) const; 507 508 const ResStringPool_span* styleAt(const ResStringPool_ref& ref) const; 509 const ResStringPool_span* styleAt(size_t idx) const; 510 511 ssize_t indexOfString(const char16_t* str, size_t strLen) const; 512 513 size_t size() const; 514 size_t styleCount() const; 515 size_t bytes() const; 516 517 bool isSorted() const; 518 bool isUTF8() const; 519 520 private: 521 status_t mError; 522 void* mOwnedData; 523 const ResStringPool_header* mHeader; 524 size_t mSize; 525 mutable Mutex mDecodeLock; 526 const uint32_t* mEntries; 527 const uint32_t* mEntryStyles; 528 const void* mStrings; 529 char16_t mutable** mCache; 530 uint32_t mStringPoolSize; // number of uint16_t 531 const uint32_t* mStyles; 532 uint32_t mStylePoolSize; // number of uint32_t 533 }; 534 535 /** 536 * Wrapper class that allows the caller to retrieve a string from 537 * a string pool without knowing which string pool to look. 538 */ 539 class StringPoolRef { 540 public: 541 StringPoolRef(); 542 StringPoolRef(const ResStringPool* pool, uint32_t index); 543 544 const char* string8(size_t* outLen) const; 545 const char16_t* string16(size_t* outLen) const; 546 547 private: 548 const ResStringPool* mPool; 549 uint32_t mIndex; 550 }; 551 552 /** ******************************************************************** 553 * XML Tree 554 * 555 * Binary representation of an XML document. This is designed to 556 * express everything in an XML document, in a form that is much 557 * easier to parse on the device. 558 * 559 *********************************************************************** */ 560 561 /** 562 * XML tree header. This appears at the front of an XML tree, 563 * describing its content. It is followed by a flat array of 564 * ResXMLTree_node structures; the hierarchy of the XML document 565 * is described by the occurrance of RES_XML_START_ELEMENT_TYPE 566 * and corresponding RES_XML_END_ELEMENT_TYPE nodes in the array. 567 */ 568 struct ResXMLTree_header 569 { 570 struct ResChunk_header header; 571 }; 572 573 /** 574 * Basic XML tree node. A single item in the XML document. Extended info 575 * about the node can be found after header.headerSize. 576 */ 577 struct ResXMLTree_node 578 { 579 struct ResChunk_header header; 580 581 // Line number in original source file at which this element appeared. 582 uint32_t lineNumber; 583 584 // Optional XML comment that was associated with this element; -1 if none. 585 struct ResStringPool_ref comment; 586 }; 587 588 /** 589 * Extended XML tree node for CDATA tags -- includes the CDATA string. 590 * Appears header.headerSize bytes after a ResXMLTree_node. 591 */ 592 struct ResXMLTree_cdataExt 593 { 594 // The raw CDATA character data. 595 struct ResStringPool_ref data; 596 597 // The typed value of the character data if this is a CDATA node. 598 struct Res_value typedData; 599 }; 600 601 /** 602 * Extended XML tree node for namespace start/end nodes. 603 * Appears header.headerSize bytes after a ResXMLTree_node. 604 */ 605 struct ResXMLTree_namespaceExt 606 { 607 // The prefix of the namespace. 608 struct ResStringPool_ref prefix; 609 610 // The URI of the namespace. 611 struct ResStringPool_ref uri; 612 }; 613 614 /** 615 * Extended XML tree node for element start/end nodes. 616 * Appears header.headerSize bytes after a ResXMLTree_node. 617 */ 618 struct ResXMLTree_endElementExt 619 { 620 // String of the full namespace of this element. 621 struct ResStringPool_ref ns; 622 623 // String name of this node if it is an ELEMENT; the raw 624 // character data if this is a CDATA node. 625 struct ResStringPool_ref name; 626 }; 627 628 /** 629 * Extended XML tree node for start tags -- includes attribute 630 * information. 631 * Appears header.headerSize bytes after a ResXMLTree_node. 632 */ 633 struct ResXMLTree_attrExt 634 { 635 // String of the full namespace of this element. 636 struct ResStringPool_ref ns; 637 638 // String name of this node if it is an ELEMENT; the raw 639 // character data if this is a CDATA node. 640 struct ResStringPool_ref name; 641 642 // Byte offset from the start of this structure where the attributes start. 643 uint16_t attributeStart; 644 645 // Size of the ResXMLTree_attribute structures that follow. 646 uint16_t attributeSize; 647 648 // Number of attributes associated with an ELEMENT. These are 649 // available as an array of ResXMLTree_attribute structures 650 // immediately following this node. 651 uint16_t attributeCount; 652 653 // Index (1-based) of the "id" attribute. 0 if none. 654 uint16_t idIndex; 655 656 // Index (1-based) of the "class" attribute. 0 if none. 657 uint16_t classIndex; 658 659 // Index (1-based) of the "style" attribute. 0 if none. 660 uint16_t styleIndex; 661 }; 662 663 struct ResXMLTree_attribute 664 { 665 // Namespace of this attribute. 666 struct ResStringPool_ref ns; 667 668 // Name of this attribute. 669 struct ResStringPool_ref name; 670 671 // The original raw string value of this attribute. 672 struct ResStringPool_ref rawValue; 673 674 // Processesd typed value of this attribute. 675 struct Res_value typedValue; 676 }; 677 678 class ResXMLTree; 679 680 class ResXMLParser 681 { 682 public: 683 ResXMLParser(const ResXMLTree& tree); 684 685 enum event_code_t { 686 BAD_DOCUMENT = -1, 687 START_DOCUMENT = 0, 688 END_DOCUMENT = 1, 689 690 FIRST_CHUNK_CODE = RES_XML_FIRST_CHUNK_TYPE, 691 692 START_NAMESPACE = RES_XML_START_NAMESPACE_TYPE, 693 END_NAMESPACE = RES_XML_END_NAMESPACE_TYPE, 694 START_TAG = RES_XML_START_ELEMENT_TYPE, 695 END_TAG = RES_XML_END_ELEMENT_TYPE, 696 TEXT = RES_XML_CDATA_TYPE 697 }; 698 699 struct ResXMLPosition 700 { 701 event_code_t eventCode; 702 const ResXMLTree_node* curNode; 703 const void* curExt; 704 }; 705 706 void restart(); 707 708 const ResStringPool& getStrings() const; 709 710 event_code_t getEventType() const; 711 // Note, unlike XmlPullParser, the first call to next() will return 712 // START_TAG of the first element. 713 event_code_t next(); 714 715 // These are available for all nodes: 716 int32_t getCommentID() const; 717 const char16_t* getComment(size_t* outLen) const; 718 uint32_t getLineNumber() const; 719 720 // This is available for TEXT: 721 int32_t getTextID() const; 722 const char16_t* getText(size_t* outLen) const; 723 ssize_t getTextValue(Res_value* outValue) const; 724 725 // These are available for START_NAMESPACE and END_NAMESPACE: 726 int32_t getNamespacePrefixID() const; 727 const char16_t* getNamespacePrefix(size_t* outLen) const; 728 int32_t getNamespaceUriID() const; 729 const char16_t* getNamespaceUri(size_t* outLen) const; 730 731 // These are available for START_TAG and END_TAG: 732 int32_t getElementNamespaceID() const; 733 const char16_t* getElementNamespace(size_t* outLen) const; 734 int32_t getElementNameID() const; 735 const char16_t* getElementName(size_t* outLen) const; 736 737 // Remaining methods are for retrieving information about attributes 738 // associated with a START_TAG: 739 740 size_t getAttributeCount() const; 741 742 // Returns -1 if no namespace, -2 if idx out of range. 743 int32_t getAttributeNamespaceID(size_t idx) const; 744 const char16_t* getAttributeNamespace(size_t idx, size_t* outLen) const; 745 746 int32_t getAttributeNameID(size_t idx) const; 747 const char16_t* getAttributeName(size_t idx, size_t* outLen) const; 748 uint32_t getAttributeNameResID(size_t idx) const; 749 750 // These will work only if the underlying string pool is UTF-8. 751 const char* getAttributeNamespace8(size_t idx, size_t* outLen) const; 752 const char* getAttributeName8(size_t idx, size_t* outLen) const; 753 754 int32_t getAttributeValueStringID(size_t idx) const; 755 const char16_t* getAttributeStringValue(size_t idx, size_t* outLen) const; 756 757 int32_t getAttributeDataType(size_t idx) const; 758 int32_t getAttributeData(size_t idx) const; 759 ssize_t getAttributeValue(size_t idx, Res_value* outValue) const; 760 761 ssize_t indexOfAttribute(const char* ns, const char* attr) const; 762 ssize_t indexOfAttribute(const char16_t* ns, size_t nsLen, 763 const char16_t* attr, size_t attrLen) const; 764 765 ssize_t indexOfID() const; 766 ssize_t indexOfClass() const; 767 ssize_t indexOfStyle() const; 768 769 void getPosition(ResXMLPosition* pos) const; 770 void setPosition(const ResXMLPosition& pos); 771 772 private: 773 friend class ResXMLTree; 774 775 event_code_t nextNode(); 776 777 const ResXMLTree& mTree; 778 event_code_t mEventCode; 779 const ResXMLTree_node* mCurNode; 780 const void* mCurExt; 781 }; 782 783 class DynamicRefTable; 784 785 /** 786 * Convenience class for accessing data in a ResXMLTree resource. 787 */ 788 class ResXMLTree : public ResXMLParser 789 { 790 public: 791 ResXMLTree(const DynamicRefTable* dynamicRefTable); 792 ResXMLTree(); 793 ~ResXMLTree(); 794 795 status_t setTo(const void* data, size_t size, bool copyData=false); 796 797 status_t getError() const; 798 799 void uninit(); 800 801 private: 802 friend class ResXMLParser; 803 804 status_t validateNode(const ResXMLTree_node* node) const; 805 806 const DynamicRefTable* const mDynamicRefTable; 807 808 status_t mError; 809 void* mOwnedData; 810 const ResXMLTree_header* mHeader; 811 size_t mSize; 812 const uint8_t* mDataEnd; 813 ResStringPool mStrings; 814 const uint32_t* mResIds; 815 size_t mNumResIds; 816 const ResXMLTree_node* mRootNode; 817 const void* mRootExt; 818 event_code_t mRootCode; 819 }; 820 821 /** ******************************************************************** 822 * RESOURCE TABLE 823 * 824 *********************************************************************** */ 825 826 /** 827 * Header for a resource table. Its data contains a series of 828 * additional chunks: 829 * * A ResStringPool_header containing all table values. This string pool 830 * contains all of the string values in the entire resource table (not 831 * the names of entries or type identifiers however). 832 * * One or more ResTable_package chunks. 833 * 834 * Specific entries within a resource table can be uniquely identified 835 * with a single integer as defined by the ResTable_ref structure. 836 */ 837 struct ResTable_header 838 { 839 struct ResChunk_header header; 840 841 // The number of ResTable_package structures. 842 uint32_t packageCount; 843 }; 844 845 /** 846 * A collection of resource data types within a package. Followed by 847 * one or more ResTable_type and ResTable_typeSpec structures containing the 848 * entry values for each resource type. 849 */ 850 struct ResTable_package 851 { 852 struct ResChunk_header header; 853 854 // If this is a base package, its ID. Package IDs start 855 // at 1 (corresponding to the value of the package bits in a 856 // resource identifier). 0 means this is not a base package. 857 uint32_t id; 858 859 // Actual name of this package, \0-terminated. 860 uint16_t name[128]; 861 862 // Offset to a ResStringPool_header defining the resource 863 // type symbol table. If zero, this package is inheriting from 864 // another base package (overriding specific values in it). 865 uint32_t typeStrings; 866 867 // Last index into typeStrings that is for public use by others. 868 uint32_t lastPublicType; 869 870 // Offset to a ResStringPool_header defining the resource 871 // key symbol table. If zero, this package is inheriting from 872 // another base package (overriding specific values in it). 873 uint32_t keyStrings; 874 875 // Last index into keyStrings that is for public use by others. 876 uint32_t lastPublicKey; 877 878 uint32_t typeIdOffset; 879 }; 880 881 // The most specific locale can consist of: 882 // 883 // - a 3 char language code 884 // - a 3 char region code prefixed by a 'r' 885 // - a 4 char script code prefixed by a 's' 886 // - a 8 char variant code prefixed by a 'v' 887 // 888 // each separated by a single char separator, which sums up to a total of 24 889 // chars, (25 include the string terminator) rounded up to 28 to be 4 byte 890 // aligned. 891 #define RESTABLE_MAX_LOCALE_LEN 28 892 893 894 /** 895 * Describes a particular resource configuration. 896 */ 897 struct ResTable_config 898 { 899 // Number of bytes in this structure. 900 uint32_t size; 901 902 union { 903 struct { 904 // Mobile country code (from SIM). 0 means "any". 905 uint16_t mcc; 906 // Mobile network code (from SIM). 0 means "any". 907 uint16_t mnc; 908 }; 909 uint32_t imsi; 910 }; 911 912 union { 913 struct { 914 // This field can take three different forms: 915 // - \0\0 means "any". 916 // 917 // - Two 7 bit ascii values interpreted as ISO-639-1 language 918 // codes ('fr', 'en' etc. etc.). The high bit for both bytes is 919 // zero. 920 // 921 // - A single 16 bit little endian packed value representing an 922 // ISO-639-2 3 letter language code. This will be of the form: 923 // 924 // {1, t, t, t, t, t, s, s, s, s, s, f, f, f, f, f} 925 // 926 // bit[0, 4] = first letter of the language code 927 // bit[5, 9] = second letter of the language code 928 // bit[10, 14] = third letter of the language code. 929 // bit[15] = 1 always 930 // 931 // For backwards compatibility, languages that have unambiguous 932 // two letter codes are represented in that format. 933 // 934 // The layout is always bigendian irrespective of the runtime 935 // architecture. 936 char language[2]; 937 938 // This field can take three different forms: 939 // - \0\0 means "any". 940 // 941 // - Two 7 bit ascii values interpreted as 2 letter region 942 // codes ('US', 'GB' etc.). The high bit for both bytes is zero. 943 // 944 // - An UN M.49 3 digit region code. For simplicity, these are packed 945 // in the same manner as the language codes, though we should need 946 // only 10 bits to represent them, instead of the 15. 947 // 948 // The layout is always bigendian irrespective of the runtime 949 // architecture. 950 char country[2]; 951 }; 952 uint32_t locale; 953 }; 954 955 enum { 956 ORIENTATION_ANY = ACONFIGURATION_ORIENTATION_ANY, 957 ORIENTATION_PORT = ACONFIGURATION_ORIENTATION_PORT, 958 ORIENTATION_LAND = ACONFIGURATION_ORIENTATION_LAND, 959 ORIENTATION_SQUARE = ACONFIGURATION_ORIENTATION_SQUARE, 960 }; 961 962 enum { 963 TOUCHSCREEN_ANY = ACONFIGURATION_TOUCHSCREEN_ANY, 964 TOUCHSCREEN_NOTOUCH = ACONFIGURATION_TOUCHSCREEN_NOTOUCH, 965 TOUCHSCREEN_STYLUS = ACONFIGURATION_TOUCHSCREEN_STYLUS, 966 TOUCHSCREEN_FINGER = ACONFIGURATION_TOUCHSCREEN_FINGER, 967 }; 968 969 enum { 970 DENSITY_DEFAULT = ACONFIGURATION_DENSITY_DEFAULT, 971 DENSITY_LOW = ACONFIGURATION_DENSITY_LOW, 972 DENSITY_MEDIUM = ACONFIGURATION_DENSITY_MEDIUM, 973 DENSITY_TV = ACONFIGURATION_DENSITY_TV, 974 DENSITY_HIGH = ACONFIGURATION_DENSITY_HIGH, 975 DENSITY_XHIGH = ACONFIGURATION_DENSITY_XHIGH, 976 DENSITY_XXHIGH = ACONFIGURATION_DENSITY_XXHIGH, 977 DENSITY_XXXHIGH = ACONFIGURATION_DENSITY_XXXHIGH, 978 DENSITY_ANY = ACONFIGURATION_DENSITY_ANY, 979 DENSITY_NONE = ACONFIGURATION_DENSITY_NONE 980 }; 981 982 union { 983 struct { 984 uint8_t orientation; 985 uint8_t touchscreen; 986 uint16_t density; 987 }; 988 uint32_t screenType; 989 }; 990 991 enum { 992 KEYBOARD_ANY = ACONFIGURATION_KEYBOARD_ANY, 993 KEYBOARD_NOKEYS = ACONFIGURATION_KEYBOARD_NOKEYS, 994 KEYBOARD_QWERTY = ACONFIGURATION_KEYBOARD_QWERTY, 995 KEYBOARD_12KEY = ACONFIGURATION_KEYBOARD_12KEY, 996 }; 997 998 enum { 999 NAVIGATION_ANY = ACONFIGURATION_NAVIGATION_ANY, 1000 NAVIGATION_NONAV = ACONFIGURATION_NAVIGATION_NONAV, 1001 NAVIGATION_DPAD = ACONFIGURATION_NAVIGATION_DPAD, 1002 NAVIGATION_TRACKBALL = ACONFIGURATION_NAVIGATION_TRACKBALL, 1003 NAVIGATION_WHEEL = ACONFIGURATION_NAVIGATION_WHEEL, 1004 }; 1005 1006 enum { 1007 MASK_KEYSHIDDEN = 0x0003, 1008 KEYSHIDDEN_ANY = ACONFIGURATION_KEYSHIDDEN_ANY, 1009 KEYSHIDDEN_NO = ACONFIGURATION_KEYSHIDDEN_NO, 1010 KEYSHIDDEN_YES = ACONFIGURATION_KEYSHIDDEN_YES, 1011 KEYSHIDDEN_SOFT = ACONFIGURATION_KEYSHIDDEN_SOFT, 1012 }; 1013 1014 enum { 1015 MASK_NAVHIDDEN = 0x000c, 1016 SHIFT_NAVHIDDEN = 2, 1017 NAVHIDDEN_ANY = ACONFIGURATION_NAVHIDDEN_ANY << SHIFT_NAVHIDDEN, 1018 NAVHIDDEN_NO = ACONFIGURATION_NAVHIDDEN_NO << SHIFT_NAVHIDDEN, 1019 NAVHIDDEN_YES = ACONFIGURATION_NAVHIDDEN_YES << SHIFT_NAVHIDDEN, 1020 }; 1021 1022 union { 1023 struct { 1024 uint8_t keyboard; 1025 uint8_t navigation; 1026 uint8_t inputFlags; 1027 uint8_t inputPad0; 1028 }; 1029 uint32_t input; 1030 }; 1031 1032 enum { 1033 SCREENWIDTH_ANY = 0 1034 }; 1035 1036 enum { 1037 SCREENHEIGHT_ANY = 0 1038 }; 1039 1040 union { 1041 struct { 1042 uint16_t screenWidth; 1043 uint16_t screenHeight; 1044 }; 1045 uint32_t screenSize; 1046 }; 1047 1048 enum { 1049 SDKVERSION_ANY = 0 1050 }; 1051 1052 enum { 1053 MINORVERSION_ANY = 0 1054 }; 1055 1056 union { 1057 struct { 1058 uint16_t sdkVersion; 1059 // For now minorVersion must always be 0!!! Its meaning 1060 // is currently undefined. 1061 uint16_t minorVersion; 1062 }; 1063 uint32_t version; 1064 }; 1065 1066 enum { 1067 // screenLayout bits for screen size class. 1068 MASK_SCREENSIZE = 0x0f, 1069 SCREENSIZE_ANY = ACONFIGURATION_SCREENSIZE_ANY, 1070 SCREENSIZE_SMALL = ACONFIGURATION_SCREENSIZE_SMALL, 1071 SCREENSIZE_NORMAL = ACONFIGURATION_SCREENSIZE_NORMAL, 1072 SCREENSIZE_LARGE = ACONFIGURATION_SCREENSIZE_LARGE, 1073 SCREENSIZE_XLARGE = ACONFIGURATION_SCREENSIZE_XLARGE, 1074 1075 // screenLayout bits for wide/long screen variation. 1076 MASK_SCREENLONG = 0x30, 1077 SHIFT_SCREENLONG = 4, 1078 SCREENLONG_ANY = ACONFIGURATION_SCREENLONG_ANY << SHIFT_SCREENLONG, 1079 SCREENLONG_NO = ACONFIGURATION_SCREENLONG_NO << SHIFT_SCREENLONG, 1080 SCREENLONG_YES = ACONFIGURATION_SCREENLONG_YES << SHIFT_SCREENLONG, 1081 1082 // screenLayout bits for layout direction. 1083 MASK_LAYOUTDIR = 0xC0, 1084 SHIFT_LAYOUTDIR = 6, 1085 LAYOUTDIR_ANY = ACONFIGURATION_LAYOUTDIR_ANY << SHIFT_LAYOUTDIR, 1086 LAYOUTDIR_LTR = ACONFIGURATION_LAYOUTDIR_LTR << SHIFT_LAYOUTDIR, 1087 LAYOUTDIR_RTL = ACONFIGURATION_LAYOUTDIR_RTL << SHIFT_LAYOUTDIR, 1088 }; 1089 1090 enum { 1091 // uiMode bits for the mode type. 1092 MASK_UI_MODE_TYPE = 0x0f, 1093 UI_MODE_TYPE_ANY = ACONFIGURATION_UI_MODE_TYPE_ANY, 1094 UI_MODE_TYPE_NORMAL = ACONFIGURATION_UI_MODE_TYPE_NORMAL, 1095 UI_MODE_TYPE_DESK = ACONFIGURATION_UI_MODE_TYPE_DESK, 1096 UI_MODE_TYPE_CAR = ACONFIGURATION_UI_MODE_TYPE_CAR, 1097 UI_MODE_TYPE_TELEVISION = ACONFIGURATION_UI_MODE_TYPE_TELEVISION, 1098 UI_MODE_TYPE_APPLIANCE = ACONFIGURATION_UI_MODE_TYPE_APPLIANCE, 1099 UI_MODE_TYPE_WATCH = ACONFIGURATION_UI_MODE_TYPE_WATCH, 1100 1101 // uiMode bits for the night switch. 1102 MASK_UI_MODE_NIGHT = 0x30, 1103 SHIFT_UI_MODE_NIGHT = 4, 1104 UI_MODE_NIGHT_ANY = ACONFIGURATION_UI_MODE_NIGHT_ANY << SHIFT_UI_MODE_NIGHT, 1105 UI_MODE_NIGHT_NO = ACONFIGURATION_UI_MODE_NIGHT_NO << SHIFT_UI_MODE_NIGHT, 1106 UI_MODE_NIGHT_YES = ACONFIGURATION_UI_MODE_NIGHT_YES << SHIFT_UI_MODE_NIGHT, 1107 }; 1108 1109 union { 1110 struct { 1111 uint8_t screenLayout; 1112 uint8_t uiMode; 1113 uint16_t smallestScreenWidthDp; 1114 }; 1115 uint32_t screenConfig; 1116 }; 1117 1118 union { 1119 struct { 1120 uint16_t screenWidthDp; 1121 uint16_t screenHeightDp; 1122 }; 1123 uint32_t screenSizeDp; 1124 }; 1125 1126 // The ISO-15924 short name for the script corresponding to this 1127 // configuration. (eg. Hant, Latn, etc.). Interpreted in conjunction with 1128 // the locale field. 1129 char localeScript[4]; 1130 1131 // A single BCP-47 variant subtag. Will vary in length between 5 and 8 1132 // chars. Interpreted in conjunction with the locale field. 1133 char localeVariant[8]; 1134 1135 enum { 1136 // screenLayout2 bits for round/notround. 1137 MASK_SCREENROUND = 0x03, 1138 SCREENROUND_ANY = ACONFIGURATION_SCREENROUND_ANY, 1139 SCREENROUND_NO = ACONFIGURATION_SCREENROUND_NO, 1140 SCREENROUND_YES = ACONFIGURATION_SCREENROUND_YES, 1141 }; 1142 1143 // An extension of screenConfig. 1144 union { 1145 struct { 1146 uint8_t screenLayout2; // Contains round/notround qualifier. 1147 uint8_t screenConfigPad1; // Reserved padding. 1148 uint16_t screenConfigPad2; // Reserved padding. 1149 }; 1150 uint32_t screenConfig2; 1151 }; 1152 1153 void copyFromDeviceNoSwap(const ResTable_config& o); 1154 1155 void copyFromDtoH(const ResTable_config& o); 1156 1157 void swapHtoD(); 1158 1159 int compare(const ResTable_config& o) const; 1160 int compareLogical(const ResTable_config& o) const; 1161 1162 // Flags indicating a set of config values. These flag constants must 1163 // match the corresponding ones in android.content.pm.ActivityInfo and 1164 // attrs_manifest.xml. 1165 enum { 1166 CONFIG_MCC = ACONFIGURATION_MCC, 1167 CONFIG_MNC = ACONFIGURATION_MNC, 1168 CONFIG_LOCALE = ACONFIGURATION_LOCALE, 1169 CONFIG_TOUCHSCREEN = ACONFIGURATION_TOUCHSCREEN, 1170 CONFIG_KEYBOARD = ACONFIGURATION_KEYBOARD, 1171 CONFIG_KEYBOARD_HIDDEN = ACONFIGURATION_KEYBOARD_HIDDEN, 1172 CONFIG_NAVIGATION = ACONFIGURATION_NAVIGATION, 1173 CONFIG_ORIENTATION = ACONFIGURATION_ORIENTATION, 1174 CONFIG_DENSITY = ACONFIGURATION_DENSITY, 1175 CONFIG_SCREEN_SIZE = ACONFIGURATION_SCREEN_SIZE, 1176 CONFIG_SMALLEST_SCREEN_SIZE = ACONFIGURATION_SMALLEST_SCREEN_SIZE, 1177 CONFIG_VERSION = ACONFIGURATION_VERSION, 1178 CONFIG_SCREEN_LAYOUT = ACONFIGURATION_SCREEN_LAYOUT, 1179 CONFIG_UI_MODE = ACONFIGURATION_UI_MODE, 1180 CONFIG_LAYOUTDIR = ACONFIGURATION_LAYOUTDIR, 1181 CONFIG_SCREEN_ROUND = ACONFIGURATION_SCREEN_ROUND, 1182 }; 1183 1184 // Compare two configuration, returning CONFIG_* flags set for each value 1185 // that is different. 1186 int diff(const ResTable_config& o) const; 1187 1188 // Return true if 'this' is more specific than 'o'. 1189 bool isMoreSpecificThan(const ResTable_config& o) const; 1190 1191 // Return true if 'this' is a better match than 'o' for the 'requested' 1192 // configuration. This assumes that match() has already been used to 1193 // remove any configurations that don't match the requested configuration 1194 // at all; if they are not first filtered, non-matching results can be 1195 // considered better than matching ones. 1196 // The general rule per attribute: if the request cares about an attribute 1197 // (it normally does), if the two (this and o) are equal it's a tie. If 1198 // they are not equal then one must be generic because only generic and 1199 // '==requested' will pass the match() call. So if this is not generic, 1200 // it wins. If this IS generic, o wins (return false). 1201 bool isBetterThan(const ResTable_config& o, const ResTable_config* requested) const; 1202 1203 // Return true if 'this' can be considered a match for the parameters in 1204 // 'settings'. 1205 // Note this is asymetric. A default piece of data will match every request 1206 // but a request for the default should not match odd specifics 1207 // (ie, request with no mcc should not match a particular mcc's data) 1208 // settings is the requested settings 1209 bool match(const ResTable_config& settings) const; 1210 1211 // Get the string representation of the locale component of this 1212 // Config. The maximum size of this representation will be 1213 // |RESTABLE_MAX_LOCALE_LEN| (including a terminating '\0'). 1214 // 1215 // Example: en-US, en-Latn-US, en-POSIX. 1216 void getBcp47Locale(char* out) const; 1217 1218 // Append to str the resource-qualifer string representation of the 1219 // locale component of this Config. If the locale is only country 1220 // and language, it will look like en-rUS. If it has scripts and 1221 // variants, it will be a modified bcp47 tag: b+en+Latn+US. 1222 void appendDirLocale(String8& str) const; 1223 1224 // Sets the values of language, region, script and variant to the 1225 // well formed BCP-47 locale contained in |in|. The input locale is 1226 // assumed to be valid and no validation is performed. 1227 void setBcp47Locale(const char* in); 1228 clearLocaleResTable_config1229 inline void clearLocale() { 1230 locale = 0; 1231 memset(localeScript, 0, sizeof(localeScript)); 1232 memset(localeVariant, 0, sizeof(localeVariant)); 1233 } 1234 1235 // Get the 2 or 3 letter language code of this configuration. Trailing 1236 // bytes are set to '\0'. 1237 size_t unpackLanguage(char language[4]) const; 1238 // Get the 2 or 3 letter language code of this configuration. Trailing 1239 // bytes are set to '\0'. 1240 size_t unpackRegion(char region[4]) const; 1241 1242 // Sets the language code of this configuration to the first three 1243 // chars at |language|. 1244 // 1245 // If |language| is a 2 letter code, the trailing byte must be '\0' or 1246 // the BCP-47 separator '-'. 1247 void packLanguage(const char* language); 1248 // Sets the region code of this configuration to the first three bytes 1249 // at |region|. If |region| is a 2 letter code, the trailing byte must be '\0' 1250 // or the BCP-47 separator '-'. 1251 void packRegion(const char* region); 1252 1253 // Returns a positive integer if this config is more specific than |o| 1254 // with respect to their locales, a negative integer if |o| is more specific 1255 // and 0 if they're equally specific. 1256 int isLocaleMoreSpecificThan(const ResTable_config &o) const; 1257 1258 String8 toString() const; 1259 }; 1260 1261 /** 1262 * A specification of the resources defined by a particular type. 1263 * 1264 * There should be one of these chunks for each resource type. 1265 * 1266 * This structure is followed by an array of integers providing the set of 1267 * configuration change flags (ResTable_config::CONFIG_*) that have multiple 1268 * resources for that configuration. In addition, the high bit is set if that 1269 * resource has been made public. 1270 */ 1271 struct ResTable_typeSpec 1272 { 1273 struct ResChunk_header header; 1274 1275 // The type identifier this chunk is holding. Type IDs start 1276 // at 1 (corresponding to the value of the type bits in a 1277 // resource identifier). 0 is invalid. 1278 uint8_t id; 1279 1280 // Must be 0. 1281 uint8_t res0; 1282 // Must be 0. 1283 uint16_t res1; 1284 1285 // Number of uint32_t entry configuration masks that follow. 1286 uint32_t entryCount; 1287 1288 enum { 1289 // Additional flag indicating an entry is public. 1290 SPEC_PUBLIC = 0x40000000 1291 }; 1292 }; 1293 1294 /** 1295 * A collection of resource entries for a particular resource data 1296 * type. Followed by an array of uint32_t defining the resource 1297 * values, corresponding to the array of type strings in the 1298 * ResTable_package::typeStrings string block. Each of these hold an 1299 * index from entriesStart; a value of NO_ENTRY means that entry is 1300 * not defined. 1301 * 1302 * There may be multiple of these chunks for a particular resource type, 1303 * supply different configuration variations for the resource values of 1304 * that type. 1305 * 1306 * It would be nice to have an additional ordered index of entries, so 1307 * we can do a binary search if trying to find a resource by string name. 1308 */ 1309 struct ResTable_type 1310 { 1311 struct ResChunk_header header; 1312 1313 enum { 1314 NO_ENTRY = 0xFFFFFFFF 1315 }; 1316 1317 // The type identifier this chunk is holding. Type IDs start 1318 // at 1 (corresponding to the value of the type bits in a 1319 // resource identifier). 0 is invalid. 1320 uint8_t id; 1321 1322 // Must be 0. 1323 uint8_t res0; 1324 // Must be 0. 1325 uint16_t res1; 1326 1327 // Number of uint32_t entry indices that follow. 1328 uint32_t entryCount; 1329 1330 // Offset from header where ResTable_entry data starts. 1331 uint32_t entriesStart; 1332 1333 // Configuration this collection of entries is designed for. 1334 ResTable_config config; 1335 }; 1336 1337 /** 1338 * This is the beginning of information about an entry in the resource 1339 * table. It holds the reference to the name of this entry, and is 1340 * immediately followed by one of: 1341 * * A Res_value structure, if FLAG_COMPLEX is -not- set. 1342 * * An array of ResTable_map structures, if FLAG_COMPLEX is set. 1343 * These supply a set of name/value mappings of data. 1344 */ 1345 struct ResTable_entry 1346 { 1347 // Number of bytes in this structure. 1348 uint16_t size; 1349 1350 enum { 1351 // If set, this is a complex entry, holding a set of name/value 1352 // mappings. It is followed by an array of ResTable_map structures. 1353 FLAG_COMPLEX = 0x0001, 1354 // If set, this resource has been declared public, so libraries 1355 // are allowed to reference it. 1356 FLAG_PUBLIC = 0x0002, 1357 // If set, this is a weak resource and may be overriden by strong 1358 // resources of the same name/type. This is only useful during 1359 // linking with other resource tables. 1360 FLAG_WEAK = 0x0004 1361 }; 1362 uint16_t flags; 1363 1364 // Reference into ResTable_package::keyStrings identifying this entry. 1365 struct ResStringPool_ref key; 1366 }; 1367 1368 /** 1369 * Extended form of a ResTable_entry for map entries, defining a parent map 1370 * resource from which to inherit values. 1371 */ 1372 struct ResTable_map_entry : public ResTable_entry 1373 { 1374 // Resource identifier of the parent mapping, or 0 if there is none. 1375 // This is always treated as a TYPE_DYNAMIC_REFERENCE. 1376 ResTable_ref parent; 1377 // Number of name/value pairs that follow for FLAG_COMPLEX. 1378 uint32_t count; 1379 }; 1380 1381 /** 1382 * A single name/value mapping that is part of a complex resource 1383 * entry. 1384 */ 1385 struct ResTable_map 1386 { 1387 // The resource identifier defining this mapping's name. For attribute 1388 // resources, 'name' can be one of the following special resource types 1389 // to supply meta-data about the attribute; for all other resource types 1390 // it must be an attribute resource. 1391 ResTable_ref name; 1392 1393 // Special values for 'name' when defining attribute resources. 1394 enum { 1395 // This entry holds the attribute's type code. 1396 ATTR_TYPE = Res_MAKEINTERNAL(0), 1397 1398 // For integral attributes, this is the minimum value it can hold. 1399 ATTR_MIN = Res_MAKEINTERNAL(1), 1400 1401 // For integral attributes, this is the maximum value it can hold. 1402 ATTR_MAX = Res_MAKEINTERNAL(2), 1403 1404 // Localization of this resource is can be encouraged or required with 1405 // an aapt flag if this is set 1406 ATTR_L10N = Res_MAKEINTERNAL(3), 1407 1408 // for plural support, see android.content.res.PluralRules#attrForQuantity(int) 1409 ATTR_OTHER = Res_MAKEINTERNAL(4), 1410 ATTR_ZERO = Res_MAKEINTERNAL(5), 1411 ATTR_ONE = Res_MAKEINTERNAL(6), 1412 ATTR_TWO = Res_MAKEINTERNAL(7), 1413 ATTR_FEW = Res_MAKEINTERNAL(8), 1414 ATTR_MANY = Res_MAKEINTERNAL(9) 1415 1416 }; 1417 1418 // Bit mask of allowed types, for use with ATTR_TYPE. 1419 enum { 1420 // No type has been defined for this attribute, use generic 1421 // type handling. The low 16 bits are for types that can be 1422 // handled generically; the upper 16 require additional information 1423 // in the bag so can not be handled generically for TYPE_ANY. 1424 TYPE_ANY = 0x0000FFFF, 1425 1426 // Attribute holds a references to another resource. 1427 TYPE_REFERENCE = 1<<0, 1428 1429 // Attribute holds a generic string. 1430 TYPE_STRING = 1<<1, 1431 1432 // Attribute holds an integer value. ATTR_MIN and ATTR_MIN can 1433 // optionally specify a constrained range of possible integer values. 1434 TYPE_INTEGER = 1<<2, 1435 1436 // Attribute holds a boolean integer. 1437 TYPE_BOOLEAN = 1<<3, 1438 1439 // Attribute holds a color value. 1440 TYPE_COLOR = 1<<4, 1441 1442 // Attribute holds a floating point value. 1443 TYPE_FLOAT = 1<<5, 1444 1445 // Attribute holds a dimension value, such as "20px". 1446 TYPE_DIMENSION = 1<<6, 1447 1448 // Attribute holds a fraction value, such as "20%". 1449 TYPE_FRACTION = 1<<7, 1450 1451 // Attribute holds an enumeration. The enumeration values are 1452 // supplied as additional entries in the map. 1453 TYPE_ENUM = 1<<16, 1454 1455 // Attribute holds a bitmaks of flags. The flag bit values are 1456 // supplied as additional entries in the map. 1457 TYPE_FLAGS = 1<<17 1458 }; 1459 1460 // Enum of localization modes, for use with ATTR_L10N. 1461 enum { 1462 L10N_NOT_REQUIRED = 0, 1463 L10N_SUGGESTED = 1 1464 }; 1465 1466 // This mapping's value. 1467 Res_value value; 1468 }; 1469 1470 /** 1471 * A package-id to package name mapping for any shared libraries used 1472 * in this resource table. The package-id's encoded in this resource 1473 * table may be different than the id's assigned at runtime. We must 1474 * be able to translate the package-id's based on the package name. 1475 */ 1476 struct ResTable_lib_header 1477 { 1478 struct ResChunk_header header; 1479 1480 // The number of shared libraries linked in this resource table. 1481 uint32_t count; 1482 }; 1483 1484 /** 1485 * A shared library package-id to package name entry. 1486 */ 1487 struct ResTable_lib_entry 1488 { 1489 // The package-id this shared library was assigned at build time. 1490 // We use a uint32 to keep the structure aligned on a uint32 boundary. 1491 uint32_t packageId; 1492 1493 // The package name of the shared library. \0 terminated. 1494 uint16_t packageName[128]; 1495 }; 1496 1497 /** 1498 * Holds the shared library ID table. Shared libraries are assigned package IDs at 1499 * build time, but they may be loaded in a different order, so we need to maintain 1500 * a mapping of build-time package ID to run-time assigned package ID. 1501 * 1502 * Dynamic references are not currently supported in overlays. Only the base package 1503 * may have dynamic references. 1504 */ 1505 class DynamicRefTable 1506 { 1507 public: 1508 DynamicRefTable(uint8_t packageId); 1509 1510 // Loads an unmapped reference table from the package. 1511 status_t load(const ResTable_lib_header* const header); 1512 1513 // Adds mappings from the other DynamicRefTable 1514 status_t addMappings(const DynamicRefTable& other); 1515 1516 // Creates a mapping from build-time package ID to run-time package ID for 1517 // the given package. 1518 status_t addMapping(const String16& packageName, uint8_t packageId); 1519 1520 // Performs the actual conversion of build-time resource ID to run-time 1521 // resource ID. 1522 inline status_t lookupResourceId(uint32_t* resId) const; 1523 inline status_t lookupResourceValue(Res_value* value) const; 1524 entries()1525 inline const KeyedVector<String16, uint8_t>& entries() const { 1526 return mEntries; 1527 } 1528 1529 private: 1530 const uint8_t mAssignedPackageId; 1531 uint8_t mLookupTable[256]; 1532 KeyedVector<String16, uint8_t> mEntries; 1533 }; 1534 1535 bool U16StringToInt(const char16_t* s, size_t len, Res_value* outValue); 1536 1537 /** 1538 * Convenience class for accessing data in a ResTable resource. 1539 */ 1540 class ResTable 1541 { 1542 public: 1543 ResTable(); 1544 ResTable(const void* data, size_t size, const int32_t cookie, 1545 bool copyData=false); 1546 ~ResTable(); 1547 1548 status_t add(const void* data, size_t size, const int32_t cookie=-1, bool copyData=false); 1549 status_t add(const void* data, size_t size, const void* idmapData, size_t idmapDataSize, 1550 const int32_t cookie=-1, bool copyData=false); 1551 1552 status_t add(Asset* asset, const int32_t cookie=-1, bool copyData=false); 1553 status_t add(Asset* asset, Asset* idmapAsset, const int32_t cookie=-1, bool copyData=false); 1554 1555 status_t add(ResTable* src); 1556 status_t addEmpty(const int32_t cookie); 1557 1558 status_t getError() const; 1559 1560 void uninit(); 1561 1562 struct resource_name 1563 { 1564 const char16_t* package; 1565 size_t packageLen; 1566 const char16_t* type; 1567 const char* type8; 1568 size_t typeLen; 1569 const char16_t* name; 1570 const char* name8; 1571 size_t nameLen; 1572 }; 1573 1574 bool getResourceName(uint32_t resID, bool allowUtf8, resource_name* outName) const; 1575 1576 bool getResourceFlags(uint32_t resID, uint32_t* outFlags) const; 1577 1578 /** 1579 * Retrieve the value of a resource. If the resource is found, returns a 1580 * value >= 0 indicating the table it is in (for use with 1581 * getTableStringBlock() and getTableCookie()) and fills in 'outValue'. If 1582 * not found, returns a negative error code. 1583 * 1584 * Note that this function does not do reference traversal. If you want 1585 * to follow references to other resources to get the "real" value to 1586 * use, you need to call resolveReference() after this function. 1587 * 1588 * @param resID The desired resoruce identifier. 1589 * @param outValue Filled in with the resource data that was found. 1590 * 1591 * @return ssize_t Either a >= 0 table index or a negative error code. 1592 */ 1593 ssize_t getResource(uint32_t resID, Res_value* outValue, bool mayBeBag = false, 1594 uint16_t density = 0, 1595 uint32_t* outSpecFlags = NULL, 1596 ResTable_config* outConfig = NULL) const; 1597 1598 inline ssize_t getResource(const ResTable_ref& res, Res_value* outValue, 1599 uint32_t* outSpecFlags=NULL) const { 1600 return getResource(res.ident, outValue, false, 0, outSpecFlags, NULL); 1601 } 1602 1603 ssize_t resolveReference(Res_value* inOutValue, 1604 ssize_t blockIndex, 1605 uint32_t* outLastRef = NULL, 1606 uint32_t* inoutTypeSpecFlags = NULL, 1607 ResTable_config* outConfig = NULL) const; 1608 1609 enum { 1610 TMP_BUFFER_SIZE = 16 1611 }; 1612 const char16_t* valueToString(const Res_value* value, size_t stringBlock, 1613 char16_t tmpBuffer[TMP_BUFFER_SIZE], 1614 size_t* outLen) const; 1615 1616 struct bag_entry { 1617 ssize_t stringBlock; 1618 ResTable_map map; 1619 }; 1620 1621 /** 1622 * Retrieve the bag of a resource. If the resoruce is found, returns the 1623 * number of bags it contains and 'outBag' points to an array of their 1624 * values. If not found, a negative error code is returned. 1625 * 1626 * Note that this function -does- do reference traversal of the bag data. 1627 * 1628 * @param resID The desired resource identifier. 1629 * @param outBag Filled inm with a pointer to the bag mappings. 1630 * 1631 * @return ssize_t Either a >= 0 bag count of negative error code. 1632 */ 1633 ssize_t lockBag(uint32_t resID, const bag_entry** outBag) const; 1634 1635 void unlockBag(const bag_entry* bag) const; 1636 1637 void lock() const; 1638 1639 ssize_t getBagLocked(uint32_t resID, const bag_entry** outBag, 1640 uint32_t* outTypeSpecFlags=NULL) const; 1641 1642 void unlock() const; 1643 1644 class Theme { 1645 public: 1646 Theme(const ResTable& table); 1647 ~Theme(); 1648 getResTable()1649 inline const ResTable& getResTable() const { return mTable; } 1650 1651 status_t applyStyle(uint32_t resID, bool force=false); 1652 status_t setTo(const Theme& other); 1653 status_t clear(); 1654 1655 /** 1656 * Retrieve a value in the theme. If the theme defines this 1657 * value, returns a value >= 0 indicating the table it is in 1658 * (for use with getTableStringBlock() and getTableCookie) and 1659 * fills in 'outValue'. If not found, returns a negative error 1660 * code. 1661 * 1662 * Note that this function does not do reference traversal. If you want 1663 * to follow references to other resources to get the "real" value to 1664 * use, you need to call resolveReference() after this function. 1665 * 1666 * @param resID A resource identifier naming the desired theme 1667 * attribute. 1668 * @param outValue Filled in with the theme value that was 1669 * found. 1670 * 1671 * @return ssize_t Either a >= 0 table index or a negative error code. 1672 */ 1673 ssize_t getAttribute(uint32_t resID, Res_value* outValue, 1674 uint32_t* outTypeSpecFlags = NULL) const; 1675 1676 /** 1677 * This is like ResTable::resolveReference(), but also takes 1678 * care of resolving attribute references to the theme. 1679 */ 1680 ssize_t resolveAttributeReference(Res_value* inOutValue, 1681 ssize_t blockIndex, uint32_t* outLastRef = NULL, 1682 uint32_t* inoutTypeSpecFlags = NULL, 1683 ResTable_config* inoutConfig = NULL) const; 1684 1685 /** 1686 * Returns a bit mask of configuration changes that will impact this 1687 * theme (and thus require completely reloading it). 1688 */ 1689 uint32_t getChangingConfigurations() const; 1690 1691 void dumpToLog() const; 1692 1693 private: 1694 Theme(const Theme&); 1695 Theme& operator=(const Theme&); 1696 1697 struct theme_entry { 1698 ssize_t stringBlock; 1699 uint32_t typeSpecFlags; 1700 Res_value value; 1701 }; 1702 1703 struct type_info { 1704 size_t numEntries; 1705 theme_entry* entries; 1706 }; 1707 1708 struct package_info { 1709 type_info types[Res_MAXTYPE + 1]; 1710 }; 1711 1712 void free_package(package_info* pi); 1713 package_info* copy_package(package_info* pi); 1714 1715 const ResTable& mTable; 1716 package_info* mPackages[Res_MAXPACKAGE]; 1717 uint32_t mTypeSpecFlags; 1718 }; 1719 1720 void setParameters(const ResTable_config* params); 1721 void getParameters(ResTable_config* params) const; 1722 1723 // Retrieve an identifier (which can be passed to getResource) 1724 // for a given resource name. The 'name' can be fully qualified 1725 // (<package>:<type>.<basename>) or the package or type components 1726 // can be dropped if default values are supplied here. 1727 // 1728 // Returns 0 if no such resource was found, else a valid resource ID. 1729 uint32_t identifierForName(const char16_t* name, size_t nameLen, 1730 const char16_t* type = 0, size_t typeLen = 0, 1731 const char16_t* defPackage = 0, 1732 size_t defPackageLen = 0, 1733 uint32_t* outTypeSpecFlags = NULL) const; 1734 1735 static bool expandResourceRef(const char16_t* refStr, size_t refLen, 1736 String16* outPackage, 1737 String16* outType, 1738 String16* outName, 1739 const String16* defType = NULL, 1740 const String16* defPackage = NULL, 1741 const char** outErrorMsg = NULL, 1742 bool* outPublicOnly = NULL); 1743 1744 static bool stringToInt(const char16_t* s, size_t len, Res_value* outValue); 1745 static bool stringToFloat(const char16_t* s, size_t len, Res_value* outValue); 1746 1747 // Used with stringToValue. 1748 class Accessor 1749 { 1750 public: ~Accessor()1751 inline virtual ~Accessor() { } 1752 1753 virtual const String16& getAssetsPackage() const = 0; 1754 1755 virtual uint32_t getCustomResource(const String16& package, 1756 const String16& type, 1757 const String16& name) const = 0; 1758 virtual uint32_t getCustomResourceWithCreation(const String16& package, 1759 const String16& type, 1760 const String16& name, 1761 const bool createIfNeeded = false) = 0; 1762 virtual uint32_t getRemappedPackage(uint32_t origPackage) const = 0; 1763 virtual bool getAttributeType(uint32_t attrID, uint32_t* outType) = 0; 1764 virtual bool getAttributeMin(uint32_t attrID, uint32_t* outMin) = 0; 1765 virtual bool getAttributeMax(uint32_t attrID, uint32_t* outMax) = 0; 1766 virtual bool getAttributeEnum(uint32_t attrID, 1767 const char16_t* name, size_t nameLen, 1768 Res_value* outValue) = 0; 1769 virtual bool getAttributeFlags(uint32_t attrID, 1770 const char16_t* name, size_t nameLen, 1771 Res_value* outValue) = 0; 1772 virtual uint32_t getAttributeL10N(uint32_t attrID) = 0; 1773 virtual bool getLocalizationSetting() = 0; 1774 virtual void reportError(void* accessorCookie, const char* fmt, ...) = 0; 1775 }; 1776 1777 // Convert a string to a resource value. Handles standard "@res", 1778 // "#color", "123", and "0x1bd" types; performs escaping of strings. 1779 // The resulting value is placed in 'outValue'; if it is a string type, 1780 // 'outString' receives the string. If 'attrID' is supplied, the value is 1781 // type checked against this attribute and it is used to perform enum 1782 // evaluation. If 'acccessor' is supplied, it will be used to attempt to 1783 // resolve resources that do not exist in this ResTable. If 'attrType' is 1784 // supplied, the value will be type checked for this format if 'attrID' 1785 // is not supplied or found. 1786 bool stringToValue(Res_value* outValue, String16* outString, 1787 const char16_t* s, size_t len, 1788 bool preserveSpaces, bool coerceType, 1789 uint32_t attrID = 0, 1790 const String16* defType = NULL, 1791 const String16* defPackage = NULL, 1792 Accessor* accessor = NULL, 1793 void* accessorCookie = NULL, 1794 uint32_t attrType = ResTable_map::TYPE_ANY, 1795 bool enforcePrivate = true) const; 1796 1797 // Perform processing of escapes and quotes in a string. 1798 static bool collectString(String16* outString, 1799 const char16_t* s, size_t len, 1800 bool preserveSpaces, 1801 const char** outErrorMsg = NULL, 1802 bool append = false); 1803 1804 size_t getBasePackageCount() const; 1805 const String16 getBasePackageName(size_t idx) const; 1806 uint32_t getBasePackageId(size_t idx) const; 1807 uint32_t getLastTypeIdForPackage(size_t idx) const; 1808 1809 // Return the number of resource tables that the object contains. 1810 size_t getTableCount() const; 1811 // Return the values string pool for the resource table at the given 1812 // index. This string pool contains all of the strings for values 1813 // contained in the resource table -- that is the item values themselves, 1814 // but not the names their entries or types. 1815 const ResStringPool* getTableStringBlock(size_t index) const; 1816 // Return unique cookie identifier for the given resource table. 1817 int32_t getTableCookie(size_t index) const; 1818 1819 const DynamicRefTable* getDynamicRefTableForCookie(int32_t cookie) const; 1820 1821 // Return the configurations (ResTable_config) that we know about 1822 void getConfigurations(Vector<ResTable_config>* configs, bool ignoreMipmap=false) const; 1823 1824 void getLocales(Vector<String8>* locales) const; 1825 1826 // Generate an idmap. 1827 // 1828 // Return value: on success: NO_ERROR; caller is responsible for free-ing 1829 // outData (using free(3)). On failure, any status_t value other than 1830 // NO_ERROR; the caller should not free outData. 1831 status_t createIdmap(const ResTable& overlay, 1832 uint32_t targetCrc, uint32_t overlayCrc, 1833 const char* targetPath, const char* overlayPath, 1834 void** outData, size_t* outSize) const; 1835 1836 static const size_t IDMAP_HEADER_SIZE_BYTES = 4 * sizeof(uint32_t) + 2 * 256; 1837 1838 // Retrieve idmap meta-data. 1839 // 1840 // This function only requires the idmap header (the first 1841 // IDMAP_HEADER_SIZE_BYTES) bytes of an idmap file. 1842 static bool getIdmapInfo(const void* idmap, size_t size, 1843 uint32_t* pVersion, 1844 uint32_t* pTargetCrc, uint32_t* pOverlayCrc, 1845 String8* pTargetPath, String8* pOverlayPath); 1846 1847 void print(bool inclValues) const; 1848 static String8 normalizeForOutput(const char* input); 1849 1850 private: 1851 struct Header; 1852 struct Type; 1853 struct Entry; 1854 struct Package; 1855 struct PackageGroup; 1856 struct bag_set; 1857 typedef Vector<Type*> TypeList; 1858 1859 status_t addInternal(const void* data, size_t size, const void* idmapData, size_t idmapDataSize, 1860 const int32_t cookie, bool copyData); 1861 1862 ssize_t getResourcePackageIndex(uint32_t resID) const; 1863 1864 status_t getEntry( 1865 const PackageGroup* packageGroup, int typeIndex, int entryIndex, 1866 const ResTable_config* config, 1867 Entry* outEntry) const; 1868 1869 uint32_t findEntry(const PackageGroup* group, ssize_t typeIndex, const char16_t* name, 1870 size_t nameLen, uint32_t* outTypeSpecFlags) const; 1871 1872 status_t parsePackage( 1873 const ResTable_package* const pkg, const Header* const header); 1874 1875 void print_value(const Package* pkg, const Res_value& value) const; 1876 1877 mutable Mutex mLock; 1878 1879 status_t mError; 1880 1881 ResTable_config mParams; 1882 1883 // Array of all resource tables. 1884 Vector<Header*> mHeaders; 1885 1886 // Array of packages in all resource tables. 1887 Vector<PackageGroup*> mPackageGroups; 1888 1889 // Mapping from resource package IDs to indices into the internal 1890 // package array. 1891 uint8_t mPackageMap[256]; 1892 1893 uint8_t mNextPackageId; 1894 }; 1895 1896 } // namespace android 1897 1898 #endif // _LIBS_UTILS_RESOURCE_TYPES_H 1899