1 /*
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18
19 #define LOG_TAG "AudioFlinger"
20 //#define LOG_NDEBUG 0
21 #define ATRACE_TAG ATRACE_TAG_AUDIO
22
23 #include "Configuration.h"
24 #include <math.h>
25 #include <fcntl.h>
26 #include <linux/futex.h>
27 #include <sys/stat.h>
28 #include <sys/syscall.h>
29 #include <cutils/properties.h>
30 #include <media/AudioParameter.h>
31 #include <media/AudioResamplerPublic.h>
32 #include <utils/Log.h>
33 #include <utils/Trace.h>
34
35 #include <private/media/AudioTrackShared.h>
36 #include <hardware/audio.h>
37 #include <audio_effects/effect_ns.h>
38 #include <audio_effects/effect_aec.h>
39 #include <audio_utils/primitives.h>
40 #include <audio_utils/format.h>
41 #include <audio_utils/minifloat.h>
42
43 // NBAIO implementations
44 #include <media/nbaio/AudioStreamInSource.h>
45 #include <media/nbaio/AudioStreamOutSink.h>
46 #include <media/nbaio/MonoPipe.h>
47 #include <media/nbaio/MonoPipeReader.h>
48 #include <media/nbaio/Pipe.h>
49 #include <media/nbaio/PipeReader.h>
50 #include <media/nbaio/SourceAudioBufferProvider.h>
51
52 #include <powermanager/PowerManager.h>
53
54 #include <common_time/cc_helper.h>
55 #include <common_time/local_clock.h>
56
57 #include "AudioFlinger.h"
58 #include "AudioMixer.h"
59 #include "BufferProviders.h"
60 #include "FastMixer.h"
61 #include "FastCapture.h"
62 #include "ServiceUtilities.h"
63 #include "SchedulingPolicyService.h"
64
65 #ifdef ADD_BATTERY_DATA
66 #include <media/IMediaPlayerService.h>
67 #include <media/IMediaDeathNotifier.h>
68 #endif
69
70 #ifdef DEBUG_CPU_USAGE
71 #include <cpustats/CentralTendencyStatistics.h>
72 #include <cpustats/ThreadCpuUsage.h>
73 #endif
74
75 // ----------------------------------------------------------------------------
76
77 // Note: the following macro is used for extremely verbose logging message. In
78 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
79 // 0; but one side effect of this is to turn all LOGV's as well. Some messages
80 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
81 // turned on. Do not uncomment the #def below unless you really know what you
82 // are doing and want to see all of the extremely verbose messages.
83 //#define VERY_VERY_VERBOSE_LOGGING
84 #ifdef VERY_VERY_VERBOSE_LOGGING
85 #define ALOGVV ALOGV
86 #else
87 #define ALOGVV(a...) do { } while(0)
88 #endif
89
90 // TODO: Move these macro/inlines to a header file.
91 #define max(a, b) ((a) > (b) ? (a) : (b))
92 template <typename T>
min(const T & a,const T & b)93 static inline T min(const T& a, const T& b)
94 {
95 return a < b ? a : b;
96 }
97
98 #ifndef ARRAY_SIZE
99 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
100 #endif
101
102 namespace android {
103
104 // retry counts for buffer fill timeout
105 // 50 * ~20msecs = 1 second
106 static const int8_t kMaxTrackRetries = 50;
107 static const int8_t kMaxTrackStartupRetries = 50;
108 // allow less retry attempts on direct output thread.
109 // direct outputs can be a scarce resource in audio hardware and should
110 // be released as quickly as possible.
111 static const int8_t kMaxTrackRetriesDirect = 2;
112
113 // don't warn about blocked writes or record buffer overflows more often than this
114 static const nsecs_t kWarningThrottleNs = seconds(5);
115
116 // RecordThread loop sleep time upon application overrun or audio HAL read error
117 static const int kRecordThreadSleepUs = 5000;
118
119 // maximum time to wait in sendConfigEvent_l() for a status to be received
120 static const nsecs_t kConfigEventTimeoutNs = seconds(2);
121
122 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
123 static const uint32_t kMinThreadSleepTimeUs = 5000;
124 // maximum divider applied to the active sleep time in the mixer thread loop
125 static const uint32_t kMaxThreadSleepTimeShift = 2;
126
127 // minimum normal sink buffer size, expressed in milliseconds rather than frames
128 // FIXME This should be based on experimentally observed scheduling jitter
129 static const uint32_t kMinNormalSinkBufferSizeMs = 20;
130 // maximum normal sink buffer size
131 static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
132
133 // minimum capture buffer size in milliseconds to _not_ need a fast capture thread
134 // FIXME This should be based on experimentally observed scheduling jitter
135 static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
136
137 // Offloaded output thread standby delay: allows track transition without going to standby
138 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
139
140 // Whether to use fast mixer
141 static const enum {
142 FastMixer_Never, // never initialize or use: for debugging only
143 FastMixer_Always, // always initialize and use, even if not needed: for debugging only
144 // normal mixer multiplier is 1
145 FastMixer_Static, // initialize if needed, then use all the time if initialized,
146 // multiplier is calculated based on min & max normal mixer buffer size
147 FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load,
148 // multiplier is calculated based on min & max normal mixer buffer size
149 // FIXME for FastMixer_Dynamic:
150 // Supporting this option will require fixing HALs that can't handle large writes.
151 // For example, one HAL implementation returns an error from a large write,
152 // and another HAL implementation corrupts memory, possibly in the sample rate converter.
153 // We could either fix the HAL implementations, or provide a wrapper that breaks
154 // up large writes into smaller ones, and the wrapper would need to deal with scheduler.
155 } kUseFastMixer = FastMixer_Static;
156
157 // Whether to use fast capture
158 static const enum {
159 FastCapture_Never, // never initialize or use: for debugging only
160 FastCapture_Always, // always initialize and use, even if not needed: for debugging only
161 FastCapture_Static, // initialize if needed, then use all the time if initialized
162 } kUseFastCapture = FastCapture_Static;
163
164 // Priorities for requestPriority
165 static const int kPriorityAudioApp = 2;
166 static const int kPriorityFastMixer = 3;
167 static const int kPriorityFastCapture = 3;
168
169 // IAudioFlinger::createTrack() reports back to client the total size of shared memory area
170 // for the track. The client then sub-divides this into smaller buffers for its use.
171 // Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
172 // So for now we just assume that client is double-buffered for fast tracks.
173 // FIXME It would be better for client to tell AudioFlinger the value of N,
174 // so AudioFlinger could allocate the right amount of memory.
175 // See the client's minBufCount and mNotificationFramesAct calculations for details.
176
177 // This is the default value, if not specified by property.
178 static const int kFastTrackMultiplier = 2;
179
180 // The minimum and maximum allowed values
181 static const int kFastTrackMultiplierMin = 1;
182 static const int kFastTrackMultiplierMax = 2;
183
184 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
185 static int sFastTrackMultiplier = kFastTrackMultiplier;
186
187 // See Thread::readOnlyHeap().
188 // Initially this heap is used to allocate client buffers for "fast" AudioRecord.
189 // Eventually it will be the single buffer that FastCapture writes into via HAL read(),
190 // and that all "fast" AudioRecord clients read from. In either case, the size can be small.
191 static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
192
193 // ----------------------------------------------------------------------------
194
195 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
196
sFastTrackMultiplierInit()197 static void sFastTrackMultiplierInit()
198 {
199 char value[PROPERTY_VALUE_MAX];
200 if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
201 char *endptr;
202 unsigned long ul = strtoul(value, &endptr, 0);
203 if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
204 sFastTrackMultiplier = (int) ul;
205 }
206 }
207 }
208
209 // ----------------------------------------------------------------------------
210
211 #ifdef ADD_BATTERY_DATA
212 // To collect the amplifier usage
addBatteryData(uint32_t params)213 static void addBatteryData(uint32_t params) {
214 sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
215 if (service == NULL) {
216 // it already logged
217 return;
218 }
219
220 service->addBatteryData(params);
221 }
222 #endif
223
224
225 // ----------------------------------------------------------------------------
226 // CPU Stats
227 // ----------------------------------------------------------------------------
228
229 class CpuStats {
230 public:
231 CpuStats();
232 void sample(const String8 &title);
233 #ifdef DEBUG_CPU_USAGE
234 private:
235 ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns
236 CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
237
238 CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
239
240 int mCpuNum; // thread's current CPU number
241 int mCpukHz; // frequency of thread's current CPU in kHz
242 #endif
243 };
244
CpuStats()245 CpuStats::CpuStats()
246 #ifdef DEBUG_CPU_USAGE
247 : mCpuNum(-1), mCpukHz(-1)
248 #endif
249 {
250 }
251
sample(const String8 & title __unused)252 void CpuStats::sample(const String8 &title
253 #ifndef DEBUG_CPU_USAGE
254 __unused
255 #endif
256 ) {
257 #ifdef DEBUG_CPU_USAGE
258 // get current thread's delta CPU time in wall clock ns
259 double wcNs;
260 bool valid = mCpuUsage.sampleAndEnable(wcNs);
261
262 // record sample for wall clock statistics
263 if (valid) {
264 mWcStats.sample(wcNs);
265 }
266
267 // get the current CPU number
268 int cpuNum = sched_getcpu();
269
270 // get the current CPU frequency in kHz
271 int cpukHz = mCpuUsage.getCpukHz(cpuNum);
272
273 // check if either CPU number or frequency changed
274 if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
275 mCpuNum = cpuNum;
276 mCpukHz = cpukHz;
277 // ignore sample for purposes of cycles
278 valid = false;
279 }
280
281 // if no change in CPU number or frequency, then record sample for cycle statistics
282 if (valid && mCpukHz > 0) {
283 double cycles = wcNs * cpukHz * 0.000001;
284 mHzStats.sample(cycles);
285 }
286
287 unsigned n = mWcStats.n();
288 // mCpuUsage.elapsed() is expensive, so don't call it every loop
289 if ((n & 127) == 1) {
290 long long elapsed = mCpuUsage.elapsed();
291 if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
292 double perLoop = elapsed / (double) n;
293 double perLoop100 = perLoop * 0.01;
294 double perLoop1k = perLoop * 0.001;
295 double mean = mWcStats.mean();
296 double stddev = mWcStats.stddev();
297 double minimum = mWcStats.minimum();
298 double maximum = mWcStats.maximum();
299 double meanCycles = mHzStats.mean();
300 double stddevCycles = mHzStats.stddev();
301 double minCycles = mHzStats.minimum();
302 double maxCycles = mHzStats.maximum();
303 mCpuUsage.resetElapsed();
304 mWcStats.reset();
305 mHzStats.reset();
306 ALOGD("CPU usage for %s over past %.1f secs\n"
307 " (%u mixer loops at %.1f mean ms per loop):\n"
308 " us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
309 " %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
310 " MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
311 title.string(),
312 elapsed * .000000001, n, perLoop * .000001,
313 mean * .001,
314 stddev * .001,
315 minimum * .001,
316 maximum * .001,
317 mean / perLoop100,
318 stddev / perLoop100,
319 minimum / perLoop100,
320 maximum / perLoop100,
321 meanCycles / perLoop1k,
322 stddevCycles / perLoop1k,
323 minCycles / perLoop1k,
324 maxCycles / perLoop1k);
325
326 }
327 }
328 #endif
329 };
330
331 // ----------------------------------------------------------------------------
332 // ThreadBase
333 // ----------------------------------------------------------------------------
334
335 // static
threadTypeToString(AudioFlinger::ThreadBase::type_t type)336 const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
337 {
338 switch (type) {
339 case MIXER:
340 return "MIXER";
341 case DIRECT:
342 return "DIRECT";
343 case DUPLICATING:
344 return "DUPLICATING";
345 case RECORD:
346 return "RECORD";
347 case OFFLOAD:
348 return "OFFLOAD";
349 default:
350 return "unknown";
351 }
352 }
353
devicesToString(audio_devices_t devices)354 String8 devicesToString(audio_devices_t devices)
355 {
356 static const struct mapping {
357 audio_devices_t mDevices;
358 const char * mString;
359 } mappingsOut[] = {
360 AUDIO_DEVICE_OUT_EARPIECE, "EARPIECE",
361 AUDIO_DEVICE_OUT_SPEAKER, "SPEAKER",
362 AUDIO_DEVICE_OUT_WIRED_HEADSET, "WIRED_HEADSET",
363 AUDIO_DEVICE_OUT_WIRED_HEADPHONE, "WIRED_HEADPHONE",
364 AUDIO_DEVICE_OUT_BLUETOOTH_SCO, "BLUETOOTH_SCO",
365 AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET",
366 AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT, "BLUETOOTH_SCO_CARKIT",
367 AUDIO_DEVICE_OUT_BLUETOOTH_A2DP, "BLUETOOTH_A2DP",
368 AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES, "BLUETOOTH_A2DP_HEADPHONES",
369 AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER, "BLUETOOTH_A2DP_SPEAKER",
370 AUDIO_DEVICE_OUT_AUX_DIGITAL, "AUX_DIGITAL",
371 AUDIO_DEVICE_OUT_HDMI, "HDMI",
372 AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET",
373 AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET",
374 AUDIO_DEVICE_OUT_USB_ACCESSORY, "USB_ACCESSORY",
375 AUDIO_DEVICE_OUT_USB_DEVICE, "USB_DEVICE",
376 AUDIO_DEVICE_OUT_TELEPHONY_TX, "TELEPHONY_TX",
377 AUDIO_DEVICE_OUT_LINE, "LINE",
378 AUDIO_DEVICE_OUT_HDMI_ARC, "HDMI_ARC",
379 AUDIO_DEVICE_OUT_SPDIF, "SPDIF",
380 AUDIO_DEVICE_OUT_FM, "FM",
381 AUDIO_DEVICE_OUT_AUX_LINE, "AUX_LINE",
382 AUDIO_DEVICE_OUT_SPEAKER_SAFE, "SPEAKER_SAFE",
383 AUDIO_DEVICE_OUT_IP, "IP",
384 AUDIO_DEVICE_NONE, "NONE", // must be last
385 }, mappingsIn[] = {
386 AUDIO_DEVICE_IN_COMMUNICATION, "COMMUNICATION",
387 AUDIO_DEVICE_IN_AMBIENT, "AMBIENT",
388 AUDIO_DEVICE_IN_BUILTIN_MIC, "BUILTIN_MIC",
389 AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET",
390 AUDIO_DEVICE_IN_WIRED_HEADSET, "WIRED_HEADSET",
391 AUDIO_DEVICE_IN_AUX_DIGITAL, "AUX_DIGITAL",
392 AUDIO_DEVICE_IN_VOICE_CALL, "VOICE_CALL",
393 AUDIO_DEVICE_IN_TELEPHONY_RX, "TELEPHONY_RX",
394 AUDIO_DEVICE_IN_BACK_MIC, "BACK_MIC",
395 AUDIO_DEVICE_IN_REMOTE_SUBMIX, "REMOTE_SUBMIX",
396 AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET",
397 AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET",
398 AUDIO_DEVICE_IN_USB_ACCESSORY, "USB_ACCESSORY",
399 AUDIO_DEVICE_IN_USB_DEVICE, "USB_DEVICE",
400 AUDIO_DEVICE_IN_FM_TUNER, "FM_TUNER",
401 AUDIO_DEVICE_IN_TV_TUNER, "TV_TUNER",
402 AUDIO_DEVICE_IN_LINE, "LINE",
403 AUDIO_DEVICE_IN_SPDIF, "SPDIF",
404 AUDIO_DEVICE_IN_BLUETOOTH_A2DP, "BLUETOOTH_A2DP",
405 AUDIO_DEVICE_IN_LOOPBACK, "LOOPBACK",
406 AUDIO_DEVICE_IN_IP, "IP",
407 AUDIO_DEVICE_NONE, "NONE", // must be last
408 };
409 String8 result;
410 audio_devices_t allDevices = AUDIO_DEVICE_NONE;
411 const mapping *entry;
412 if (devices & AUDIO_DEVICE_BIT_IN) {
413 devices &= ~AUDIO_DEVICE_BIT_IN;
414 entry = mappingsIn;
415 } else {
416 entry = mappingsOut;
417 }
418 for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
419 allDevices = (audio_devices_t) (allDevices | entry->mDevices);
420 if (devices & entry->mDevices) {
421 if (!result.isEmpty()) {
422 result.append("|");
423 }
424 result.append(entry->mString);
425 }
426 }
427 if (devices & ~allDevices) {
428 if (!result.isEmpty()) {
429 result.append("|");
430 }
431 result.appendFormat("0x%X", devices & ~allDevices);
432 }
433 if (result.isEmpty()) {
434 result.append(entry->mString);
435 }
436 return result;
437 }
438
inputFlagsToString(audio_input_flags_t flags)439 String8 inputFlagsToString(audio_input_flags_t flags)
440 {
441 static const struct mapping {
442 audio_input_flags_t mFlag;
443 const char * mString;
444 } mappings[] = {
445 AUDIO_INPUT_FLAG_FAST, "FAST",
446 AUDIO_INPUT_FLAG_HW_HOTWORD, "HW_HOTWORD",
447 AUDIO_INPUT_FLAG_NONE, "NONE", // must be last
448 };
449 String8 result;
450 audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
451 const mapping *entry;
452 for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
453 allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
454 if (flags & entry->mFlag) {
455 if (!result.isEmpty()) {
456 result.append("|");
457 }
458 result.append(entry->mString);
459 }
460 }
461 if (flags & ~allFlags) {
462 if (!result.isEmpty()) {
463 result.append("|");
464 }
465 result.appendFormat("0x%X", flags & ~allFlags);
466 }
467 if (result.isEmpty()) {
468 result.append(entry->mString);
469 }
470 return result;
471 }
472
outputFlagsToString(audio_output_flags_t flags)473 String8 outputFlagsToString(audio_output_flags_t flags)
474 {
475 static const struct mapping {
476 audio_output_flags_t mFlag;
477 const char * mString;
478 } mappings[] = {
479 AUDIO_OUTPUT_FLAG_DIRECT, "DIRECT",
480 AUDIO_OUTPUT_FLAG_PRIMARY, "PRIMARY",
481 AUDIO_OUTPUT_FLAG_FAST, "FAST",
482 AUDIO_OUTPUT_FLAG_DEEP_BUFFER, "DEEP_BUFFER",
483 AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD, "COMPRESS_OFFLOAD",
484 AUDIO_OUTPUT_FLAG_NON_BLOCKING, "NON_BLOCKING",
485 AUDIO_OUTPUT_FLAG_HW_AV_SYNC, "HW_AV_SYNC",
486 AUDIO_OUTPUT_FLAG_NONE, "NONE", // must be last
487 };
488 String8 result;
489 audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
490 const mapping *entry;
491 for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
492 allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
493 if (flags & entry->mFlag) {
494 if (!result.isEmpty()) {
495 result.append("|");
496 }
497 result.append(entry->mString);
498 }
499 }
500 if (flags & ~allFlags) {
501 if (!result.isEmpty()) {
502 result.append("|");
503 }
504 result.appendFormat("0x%X", flags & ~allFlags);
505 }
506 if (result.isEmpty()) {
507 result.append(entry->mString);
508 }
509 return result;
510 }
511
sourceToString(audio_source_t source)512 const char *sourceToString(audio_source_t source)
513 {
514 switch (source) {
515 case AUDIO_SOURCE_DEFAULT: return "default";
516 case AUDIO_SOURCE_MIC: return "mic";
517 case AUDIO_SOURCE_VOICE_UPLINK: return "voice uplink";
518 case AUDIO_SOURCE_VOICE_DOWNLINK: return "voice downlink";
519 case AUDIO_SOURCE_VOICE_CALL: return "voice call";
520 case AUDIO_SOURCE_CAMCORDER: return "camcorder";
521 case AUDIO_SOURCE_VOICE_RECOGNITION: return "voice recognition";
522 case AUDIO_SOURCE_VOICE_COMMUNICATION: return "voice communication";
523 case AUDIO_SOURCE_REMOTE_SUBMIX: return "remote submix";
524 case AUDIO_SOURCE_FM_TUNER: return "FM tuner";
525 case AUDIO_SOURCE_HOTWORD: return "hotword";
526 default: return "unknown";
527 }
528 }
529
ThreadBase(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,type_t type,bool systemReady)530 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
531 audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
532 : Thread(false /*canCallJava*/),
533 mType(type),
534 mAudioFlinger(audioFlinger),
535 // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
536 // are set by PlaybackThread::readOutputParameters_l() or
537 // RecordThread::readInputParameters_l()
538 //FIXME: mStandby should be true here. Is this some kind of hack?
539 mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
540 mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
541 mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
542 // mName will be set by concrete (non-virtual) subclass
543 mDeathRecipient(new PMDeathRecipient(this)),
544 mSystemReady(systemReady)
545 {
546 memset(&mPatch, 0, sizeof(struct audio_patch));
547 }
548
~ThreadBase()549 AudioFlinger::ThreadBase::~ThreadBase()
550 {
551 // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
552 mConfigEvents.clear();
553
554 // do not lock the mutex in destructor
555 releaseWakeLock_l();
556 if (mPowerManager != 0) {
557 sp<IBinder> binder = IInterface::asBinder(mPowerManager);
558 binder->unlinkToDeath(mDeathRecipient);
559 }
560 }
561
readyToRun()562 status_t AudioFlinger::ThreadBase::readyToRun()
563 {
564 status_t status = initCheck();
565 if (status == NO_ERROR) {
566 ALOGI("AudioFlinger's thread %p ready to run", this);
567 } else {
568 ALOGE("No working audio driver found.");
569 }
570 return status;
571 }
572
exit()573 void AudioFlinger::ThreadBase::exit()
574 {
575 ALOGV("ThreadBase::exit");
576 // do any cleanup required for exit to succeed
577 preExit();
578 {
579 // This lock prevents the following race in thread (uniprocessor for illustration):
580 // if (!exitPending()) {
581 // // context switch from here to exit()
582 // // exit() calls requestExit(), what exitPending() observes
583 // // exit() calls signal(), which is dropped since no waiters
584 // // context switch back from exit() to here
585 // mWaitWorkCV.wait(...);
586 // // now thread is hung
587 // }
588 AutoMutex lock(mLock);
589 requestExit();
590 mWaitWorkCV.broadcast();
591 }
592 // When Thread::requestExitAndWait is made virtual and this method is renamed to
593 // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
594 requestExitAndWait();
595 }
596
setParameters(const String8 & keyValuePairs)597 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
598 {
599 status_t status;
600
601 ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
602 Mutex::Autolock _l(mLock);
603
604 return sendSetParameterConfigEvent_l(keyValuePairs);
605 }
606
607 // sendConfigEvent_l() must be called with ThreadBase::mLock held
608 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
sendConfigEvent_l(sp<ConfigEvent> & event)609 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
610 {
611 status_t status = NO_ERROR;
612
613 if (event->mRequiresSystemReady && !mSystemReady) {
614 event->mWaitStatus = false;
615 mPendingConfigEvents.add(event);
616 return status;
617 }
618 mConfigEvents.add(event);
619 ALOGV("sendConfigEvent_l() num events %d event %d", mConfigEvents.size(), event->mType);
620 mWaitWorkCV.signal();
621 mLock.unlock();
622 {
623 Mutex::Autolock _l(event->mLock);
624 while (event->mWaitStatus) {
625 if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
626 event->mStatus = TIMED_OUT;
627 event->mWaitStatus = false;
628 }
629 }
630 status = event->mStatus;
631 }
632 mLock.lock();
633 return status;
634 }
635
sendIoConfigEvent(audio_io_config_event event,pid_t pid)636 void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
637 {
638 Mutex::Autolock _l(mLock);
639 sendIoConfigEvent_l(event, pid);
640 }
641
642 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
sendIoConfigEvent_l(audio_io_config_event event,pid_t pid)643 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
644 {
645 sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
646 sendConfigEvent_l(configEvent);
647 }
648
sendPrioConfigEvent(pid_t pid,pid_t tid,int32_t prio)649 void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
650 {
651 Mutex::Autolock _l(mLock);
652 sendPrioConfigEvent_l(pid, tid, prio);
653 }
654
655 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
sendPrioConfigEvent_l(pid_t pid,pid_t tid,int32_t prio)656 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
657 {
658 sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
659 sendConfigEvent_l(configEvent);
660 }
661
662 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
sendSetParameterConfigEvent_l(const String8 & keyValuePair)663 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
664 {
665 sp<ConfigEvent> configEvent = (ConfigEvent *)new SetParameterConfigEvent(keyValuePair);
666 return sendConfigEvent_l(configEvent);
667 }
668
sendCreateAudioPatchConfigEvent(const struct audio_patch * patch,audio_patch_handle_t * handle)669 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
670 const struct audio_patch *patch,
671 audio_patch_handle_t *handle)
672 {
673 Mutex::Autolock _l(mLock);
674 sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
675 status_t status = sendConfigEvent_l(configEvent);
676 if (status == NO_ERROR) {
677 CreateAudioPatchConfigEventData *data =
678 (CreateAudioPatchConfigEventData *)configEvent->mData.get();
679 *handle = data->mHandle;
680 }
681 return status;
682 }
683
sendReleaseAudioPatchConfigEvent(const audio_patch_handle_t handle)684 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
685 const audio_patch_handle_t handle)
686 {
687 Mutex::Autolock _l(mLock);
688 sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
689 return sendConfigEvent_l(configEvent);
690 }
691
692
693 // post condition: mConfigEvents.isEmpty()
processConfigEvents_l()694 void AudioFlinger::ThreadBase::processConfigEvents_l()
695 {
696 bool configChanged = false;
697
698 while (!mConfigEvents.isEmpty()) {
699 ALOGV("processConfigEvents_l() remaining events %d", mConfigEvents.size());
700 sp<ConfigEvent> event = mConfigEvents[0];
701 mConfigEvents.removeAt(0);
702 switch (event->mType) {
703 case CFG_EVENT_PRIO: {
704 PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
705 // FIXME Need to understand why this has to be done asynchronously
706 int err = requestPriority(data->mPid, data->mTid, data->mPrio,
707 true /*asynchronous*/);
708 if (err != 0) {
709 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
710 data->mPrio, data->mPid, data->mTid, err);
711 }
712 } break;
713 case CFG_EVENT_IO: {
714 IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
715 ioConfigChanged(data->mEvent, data->mPid);
716 } break;
717 case CFG_EVENT_SET_PARAMETER: {
718 SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
719 if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
720 configChanged = true;
721 }
722 } break;
723 case CFG_EVENT_CREATE_AUDIO_PATCH: {
724 CreateAudioPatchConfigEventData *data =
725 (CreateAudioPatchConfigEventData *)event->mData.get();
726 event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
727 } break;
728 case CFG_EVENT_RELEASE_AUDIO_PATCH: {
729 ReleaseAudioPatchConfigEventData *data =
730 (ReleaseAudioPatchConfigEventData *)event->mData.get();
731 event->mStatus = releaseAudioPatch_l(data->mHandle);
732 } break;
733 default:
734 ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
735 break;
736 }
737 {
738 Mutex::Autolock _l(event->mLock);
739 if (event->mWaitStatus) {
740 event->mWaitStatus = false;
741 event->mCond.signal();
742 }
743 }
744 ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
745 }
746
747 if (configChanged) {
748 cacheParameters_l();
749 }
750 }
751
channelMaskToString(audio_channel_mask_t mask,bool output)752 String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
753 String8 s;
754 const audio_channel_representation_t representation =
755 audio_channel_mask_get_representation(mask);
756
757 switch (representation) {
758 case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
759 if (output) {
760 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
761 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
762 if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
763 if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
764 if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
765 if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
766 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
767 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
768 if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
769 if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
770 if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
771 if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
772 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
773 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
774 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
775 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
776 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
777 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
778 if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown, ");
779 } else {
780 if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
781 if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
782 if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
783 if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
784 if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
785 if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
786 if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
787 if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
788 if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
789 if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
790 if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
791 if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
792 if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
793 if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
794 if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown, ");
795 }
796 const int len = s.length();
797 if (len > 2) {
798 char *str = s.lockBuffer(len); // needed?
799 s.unlockBuffer(len - 2); // remove trailing ", "
800 }
801 return s;
802 }
803 case AUDIO_CHANNEL_REPRESENTATION_INDEX:
804 s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
805 return s;
806 default:
807 s.appendFormat("unknown mask, representation:%d bits:%#x",
808 representation, audio_channel_mask_get_bits(mask));
809 return s;
810 }
811 }
812
dumpBase(int fd,const Vector<String16> & args __unused)813 void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
814 {
815 const size_t SIZE = 256;
816 char buffer[SIZE];
817 String8 result;
818
819 bool locked = AudioFlinger::dumpTryLock(mLock);
820 if (!locked) {
821 dprintf(fd, "thread %p may be deadlocked\n", this);
822 }
823
824 dprintf(fd, " Thread name: %s\n", mThreadName);
825 dprintf(fd, " I/O handle: %d\n", mId);
826 dprintf(fd, " TID: %d\n", getTid());
827 dprintf(fd, " Standby: %s\n", mStandby ? "yes" : "no");
828 dprintf(fd, " Sample rate: %u Hz\n", mSampleRate);
829 dprintf(fd, " HAL frame count: %zu\n", mFrameCount);
830 dprintf(fd, " HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
831 dprintf(fd, " HAL buffer size: %u bytes\n", mBufferSize);
832 dprintf(fd, " Channel count: %u\n", mChannelCount);
833 dprintf(fd, " Channel mask: 0x%08x (%s)\n", mChannelMask,
834 channelMaskToString(mChannelMask, mType != RECORD).string());
835 dprintf(fd, " Format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
836 dprintf(fd, " Frame size: %zu bytes\n", mFrameSize);
837 dprintf(fd, " Pending config events:");
838 size_t numConfig = mConfigEvents.size();
839 if (numConfig) {
840 for (size_t i = 0; i < numConfig; i++) {
841 mConfigEvents[i]->dump(buffer, SIZE);
842 dprintf(fd, "\n %s", buffer);
843 }
844 dprintf(fd, "\n");
845 } else {
846 dprintf(fd, " none\n");
847 }
848 dprintf(fd, " Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
849 dprintf(fd, " Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
850 dprintf(fd, " Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
851
852 if (locked) {
853 mLock.unlock();
854 }
855 }
856
dumpEffectChains(int fd,const Vector<String16> & args)857 void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
858 {
859 const size_t SIZE = 256;
860 char buffer[SIZE];
861 String8 result;
862
863 size_t numEffectChains = mEffectChains.size();
864 snprintf(buffer, SIZE, " %zu Effect Chains\n", numEffectChains);
865 write(fd, buffer, strlen(buffer));
866
867 for (size_t i = 0; i < numEffectChains; ++i) {
868 sp<EffectChain> chain = mEffectChains[i];
869 if (chain != 0) {
870 chain->dump(fd, args);
871 }
872 }
873 }
874
acquireWakeLock(int uid)875 void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
876 {
877 Mutex::Autolock _l(mLock);
878 acquireWakeLock_l(uid);
879 }
880
getWakeLockTag()881 String16 AudioFlinger::ThreadBase::getWakeLockTag()
882 {
883 switch (mType) {
884 case MIXER:
885 return String16("AudioMix");
886 case DIRECT:
887 return String16("AudioDirectOut");
888 case DUPLICATING:
889 return String16("AudioDup");
890 case RECORD:
891 return String16("AudioIn");
892 case OFFLOAD:
893 return String16("AudioOffload");
894 default:
895 ALOG_ASSERT(false);
896 return String16("AudioUnknown");
897 }
898 }
899
acquireWakeLock_l(int uid)900 void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
901 {
902 getPowerManager_l();
903 if (mPowerManager != 0) {
904 sp<IBinder> binder = new BBinder();
905 status_t status;
906 if (uid >= 0) {
907 status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
908 binder,
909 getWakeLockTag(),
910 String16("media"),
911 uid,
912 true /* FIXME force oneway contrary to .aidl */);
913 } else {
914 status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
915 binder,
916 getWakeLockTag(),
917 String16("media"),
918 true /* FIXME force oneway contrary to .aidl */);
919 }
920 if (status == NO_ERROR) {
921 mWakeLockToken = binder;
922 }
923 ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
924 }
925 }
926
releaseWakeLock()927 void AudioFlinger::ThreadBase::releaseWakeLock()
928 {
929 Mutex::Autolock _l(mLock);
930 releaseWakeLock_l();
931 }
932
releaseWakeLock_l()933 void AudioFlinger::ThreadBase::releaseWakeLock_l()
934 {
935 if (mWakeLockToken != 0) {
936 ALOGV("releaseWakeLock_l() %s", mThreadName);
937 if (mPowerManager != 0) {
938 mPowerManager->releaseWakeLock(mWakeLockToken, 0,
939 true /* FIXME force oneway contrary to .aidl */);
940 }
941 mWakeLockToken.clear();
942 }
943 }
944
updateWakeLockUids(const SortedVector<int> & uids)945 void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
946 Mutex::Autolock _l(mLock);
947 updateWakeLockUids_l(uids);
948 }
949
getPowerManager_l()950 void AudioFlinger::ThreadBase::getPowerManager_l() {
951 if (mSystemReady && mPowerManager == 0) {
952 // use checkService() to avoid blocking if power service is not up yet
953 sp<IBinder> binder =
954 defaultServiceManager()->checkService(String16("power"));
955 if (binder == 0) {
956 ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
957 } else {
958 mPowerManager = interface_cast<IPowerManager>(binder);
959 binder->linkToDeath(mDeathRecipient);
960 }
961 }
962 }
963
updateWakeLockUids_l(const SortedVector<int> & uids)964 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
965 getPowerManager_l();
966 if (mWakeLockToken == NULL) {
967 ALOGE("no wake lock to update!");
968 return;
969 }
970 if (mPowerManager != 0) {
971 sp<IBinder> binder = new BBinder();
972 status_t status;
973 status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
974 true /* FIXME force oneway contrary to .aidl */);
975 ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
976 }
977 }
978
clearPowerManager()979 void AudioFlinger::ThreadBase::clearPowerManager()
980 {
981 Mutex::Autolock _l(mLock);
982 releaseWakeLock_l();
983 mPowerManager.clear();
984 }
985
binderDied(const wp<IBinder> & who __unused)986 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
987 {
988 sp<ThreadBase> thread = mThread.promote();
989 if (thread != 0) {
990 thread->clearPowerManager();
991 }
992 ALOGW("power manager service died !!!");
993 }
994
setEffectSuspended(const effect_uuid_t * type,bool suspend,int sessionId)995 void AudioFlinger::ThreadBase::setEffectSuspended(
996 const effect_uuid_t *type, bool suspend, int sessionId)
997 {
998 Mutex::Autolock _l(mLock);
999 setEffectSuspended_l(type, suspend, sessionId);
1000 }
1001
setEffectSuspended_l(const effect_uuid_t * type,bool suspend,int sessionId)1002 void AudioFlinger::ThreadBase::setEffectSuspended_l(
1003 const effect_uuid_t *type, bool suspend, int sessionId)
1004 {
1005 sp<EffectChain> chain = getEffectChain_l(sessionId);
1006 if (chain != 0) {
1007 if (type != NULL) {
1008 chain->setEffectSuspended_l(type, suspend);
1009 } else {
1010 chain->setEffectSuspendedAll_l(suspend);
1011 }
1012 }
1013
1014 updateSuspendedSessions_l(type, suspend, sessionId);
1015 }
1016
checkSuspendOnAddEffectChain_l(const sp<EffectChain> & chain)1017 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1018 {
1019 ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1020 if (index < 0) {
1021 return;
1022 }
1023
1024 const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1025 mSuspendedSessions.valueAt(index);
1026
1027 for (size_t i = 0; i < sessionEffects.size(); i++) {
1028 sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
1029 for (int j = 0; j < desc->mRefCount; j++) {
1030 if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1031 chain->setEffectSuspendedAll_l(true);
1032 } else {
1033 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1034 desc->mType.timeLow);
1035 chain->setEffectSuspended_l(&desc->mType, true);
1036 }
1037 }
1038 }
1039 }
1040
updateSuspendedSessions_l(const effect_uuid_t * type,bool suspend,int sessionId)1041 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1042 bool suspend,
1043 int sessionId)
1044 {
1045 ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1046
1047 KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1048
1049 if (suspend) {
1050 if (index >= 0) {
1051 sessionEffects = mSuspendedSessions.valueAt(index);
1052 } else {
1053 mSuspendedSessions.add(sessionId, sessionEffects);
1054 }
1055 } else {
1056 if (index < 0) {
1057 return;
1058 }
1059 sessionEffects = mSuspendedSessions.valueAt(index);
1060 }
1061
1062
1063 int key = EffectChain::kKeyForSuspendAll;
1064 if (type != NULL) {
1065 key = type->timeLow;
1066 }
1067 index = sessionEffects.indexOfKey(key);
1068
1069 sp<SuspendedSessionDesc> desc;
1070 if (suspend) {
1071 if (index >= 0) {
1072 desc = sessionEffects.valueAt(index);
1073 } else {
1074 desc = new SuspendedSessionDesc();
1075 if (type != NULL) {
1076 desc->mType = *type;
1077 }
1078 sessionEffects.add(key, desc);
1079 ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1080 }
1081 desc->mRefCount++;
1082 } else {
1083 if (index < 0) {
1084 return;
1085 }
1086 desc = sessionEffects.valueAt(index);
1087 if (--desc->mRefCount == 0) {
1088 ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1089 sessionEffects.removeItemsAt(index);
1090 if (sessionEffects.isEmpty()) {
1091 ALOGV("updateSuspendedSessions_l() restore removing session %d",
1092 sessionId);
1093 mSuspendedSessions.removeItem(sessionId);
1094 }
1095 }
1096 }
1097 if (!sessionEffects.isEmpty()) {
1098 mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1099 }
1100 }
1101
checkSuspendOnEffectEnabled(const sp<EffectModule> & effect,bool enabled,int sessionId)1102 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1103 bool enabled,
1104 int sessionId)
1105 {
1106 Mutex::Autolock _l(mLock);
1107 checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1108 }
1109
checkSuspendOnEffectEnabled_l(const sp<EffectModule> & effect,bool enabled,int sessionId)1110 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1111 bool enabled,
1112 int sessionId)
1113 {
1114 if (mType != RECORD) {
1115 // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1116 // another session. This gives the priority to well behaved effect control panels
1117 // and applications not using global effects.
1118 // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1119 // global effects
1120 if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1121 setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1122 }
1123 }
1124
1125 sp<EffectChain> chain = getEffectChain_l(sessionId);
1126 if (chain != 0) {
1127 chain->checkSuspendOnEffectEnabled(effect, enabled);
1128 }
1129 }
1130
1131 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
createEffect_l(const sp<AudioFlinger::Client> & client,const sp<IEffectClient> & effectClient,int32_t priority,int sessionId,effect_descriptor_t * desc,int * enabled,status_t * status)1132 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1133 const sp<AudioFlinger::Client>& client,
1134 const sp<IEffectClient>& effectClient,
1135 int32_t priority,
1136 int sessionId,
1137 effect_descriptor_t *desc,
1138 int *enabled,
1139 status_t *status)
1140 {
1141 sp<EffectModule> effect;
1142 sp<EffectHandle> handle;
1143 status_t lStatus;
1144 sp<EffectChain> chain;
1145 bool chainCreated = false;
1146 bool effectCreated = false;
1147 bool effectRegistered = false;
1148
1149 lStatus = initCheck();
1150 if (lStatus != NO_ERROR) {
1151 ALOGW("createEffect_l() Audio driver not initialized.");
1152 goto Exit;
1153 }
1154
1155 // Reject any effect on Direct output threads for now, since the format of
1156 // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1157 if (mType == DIRECT) {
1158 ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
1159 desc->name, mThreadName);
1160 lStatus = BAD_VALUE;
1161 goto Exit;
1162 }
1163
1164 // Reject any effect on mixer or duplicating multichannel sinks.
1165 // TODO: fix both format and multichannel issues with effects.
1166 if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
1167 ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
1168 desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
1169 lStatus = BAD_VALUE;
1170 goto Exit;
1171 }
1172
1173 // Allow global effects only on offloaded and mixer threads
1174 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1175 switch (mType) {
1176 case MIXER:
1177 case OFFLOAD:
1178 break;
1179 case DIRECT:
1180 case DUPLICATING:
1181 case RECORD:
1182 default:
1183 ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
1184 desc->name, mThreadName);
1185 lStatus = BAD_VALUE;
1186 goto Exit;
1187 }
1188 }
1189
1190 // Only Pre processor effects are allowed on input threads and only on input threads
1191 if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
1192 ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
1193 desc->name, desc->flags, mType);
1194 lStatus = BAD_VALUE;
1195 goto Exit;
1196 }
1197
1198 ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1199
1200 { // scope for mLock
1201 Mutex::Autolock _l(mLock);
1202
1203 // check for existing effect chain with the requested audio session
1204 chain = getEffectChain_l(sessionId);
1205 if (chain == 0) {
1206 // create a new chain for this session
1207 ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1208 chain = new EffectChain(this, sessionId);
1209 addEffectChain_l(chain);
1210 chain->setStrategy(getStrategyForSession_l(sessionId));
1211 chainCreated = true;
1212 } else {
1213 effect = chain->getEffectFromDesc_l(desc);
1214 }
1215
1216 ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1217
1218 if (effect == 0) {
1219 int id = mAudioFlinger->nextUniqueId();
1220 // Check CPU and memory usage
1221 lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1222 if (lStatus != NO_ERROR) {
1223 goto Exit;
1224 }
1225 effectRegistered = true;
1226 // create a new effect module if none present in the chain
1227 effect = new EffectModule(this, chain, desc, id, sessionId);
1228 lStatus = effect->status();
1229 if (lStatus != NO_ERROR) {
1230 goto Exit;
1231 }
1232 effect->setOffloaded(mType == OFFLOAD, mId);
1233
1234 lStatus = chain->addEffect_l(effect);
1235 if (lStatus != NO_ERROR) {
1236 goto Exit;
1237 }
1238 effectCreated = true;
1239
1240 effect->setDevice(mOutDevice);
1241 effect->setDevice(mInDevice);
1242 effect->setMode(mAudioFlinger->getMode());
1243 effect->setAudioSource(mAudioSource);
1244 }
1245 // create effect handle and connect it to effect module
1246 handle = new EffectHandle(effect, client, effectClient, priority);
1247 lStatus = handle->initCheck();
1248 if (lStatus == OK) {
1249 lStatus = effect->addHandle(handle.get());
1250 }
1251 if (enabled != NULL) {
1252 *enabled = (int)effect->isEnabled();
1253 }
1254 }
1255
1256 Exit:
1257 if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1258 Mutex::Autolock _l(mLock);
1259 if (effectCreated) {
1260 chain->removeEffect_l(effect);
1261 }
1262 if (effectRegistered) {
1263 AudioSystem::unregisterEffect(effect->id());
1264 }
1265 if (chainCreated) {
1266 removeEffectChain_l(chain);
1267 }
1268 handle.clear();
1269 }
1270
1271 *status = lStatus;
1272 return handle;
1273 }
1274
getEffect(int sessionId,int effectId)1275 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
1276 {
1277 Mutex::Autolock _l(mLock);
1278 return getEffect_l(sessionId, effectId);
1279 }
1280
getEffect_l(int sessionId,int effectId)1281 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
1282 {
1283 sp<EffectChain> chain = getEffectChain_l(sessionId);
1284 return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1285 }
1286
1287 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1288 // PlaybackThread::mLock held
addEffect_l(const sp<EffectModule> & effect)1289 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1290 {
1291 // check for existing effect chain with the requested audio session
1292 int sessionId = effect->sessionId();
1293 sp<EffectChain> chain = getEffectChain_l(sessionId);
1294 bool chainCreated = false;
1295
1296 ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1297 "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1298 this, effect->desc().name, effect->desc().flags);
1299
1300 if (chain == 0) {
1301 // create a new chain for this session
1302 ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1303 chain = new EffectChain(this, sessionId);
1304 addEffectChain_l(chain);
1305 chain->setStrategy(getStrategyForSession_l(sessionId));
1306 chainCreated = true;
1307 }
1308 ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1309
1310 if (chain->getEffectFromId_l(effect->id()) != 0) {
1311 ALOGW("addEffect_l() %p effect %s already present in chain %p",
1312 this, effect->desc().name, chain.get());
1313 return BAD_VALUE;
1314 }
1315
1316 effect->setOffloaded(mType == OFFLOAD, mId);
1317
1318 status_t status = chain->addEffect_l(effect);
1319 if (status != NO_ERROR) {
1320 if (chainCreated) {
1321 removeEffectChain_l(chain);
1322 }
1323 return status;
1324 }
1325
1326 effect->setDevice(mOutDevice);
1327 effect->setDevice(mInDevice);
1328 effect->setMode(mAudioFlinger->getMode());
1329 effect->setAudioSource(mAudioSource);
1330 return NO_ERROR;
1331 }
1332
removeEffect_l(const sp<EffectModule> & effect)1333 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1334
1335 ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1336 effect_descriptor_t desc = effect->desc();
1337 if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1338 detachAuxEffect_l(effect->id());
1339 }
1340
1341 sp<EffectChain> chain = effect->chain().promote();
1342 if (chain != 0) {
1343 // remove effect chain if removing last effect
1344 if (chain->removeEffect_l(effect) == 0) {
1345 removeEffectChain_l(chain);
1346 }
1347 } else {
1348 ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1349 }
1350 }
1351
lockEffectChains_l(Vector<sp<AudioFlinger::EffectChain>> & effectChains)1352 void AudioFlinger::ThreadBase::lockEffectChains_l(
1353 Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1354 {
1355 effectChains = mEffectChains;
1356 for (size_t i = 0; i < mEffectChains.size(); i++) {
1357 mEffectChains[i]->lock();
1358 }
1359 }
1360
unlockEffectChains(const Vector<sp<AudioFlinger::EffectChain>> & effectChains)1361 void AudioFlinger::ThreadBase::unlockEffectChains(
1362 const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1363 {
1364 for (size_t i = 0; i < effectChains.size(); i++) {
1365 effectChains[i]->unlock();
1366 }
1367 }
1368
getEffectChain(int sessionId)1369 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
1370 {
1371 Mutex::Autolock _l(mLock);
1372 return getEffectChain_l(sessionId);
1373 }
1374
getEffectChain_l(int sessionId) const1375 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
1376 {
1377 size_t size = mEffectChains.size();
1378 for (size_t i = 0; i < size; i++) {
1379 if (mEffectChains[i]->sessionId() == sessionId) {
1380 return mEffectChains[i];
1381 }
1382 }
1383 return 0;
1384 }
1385
setMode(audio_mode_t mode)1386 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1387 {
1388 Mutex::Autolock _l(mLock);
1389 size_t size = mEffectChains.size();
1390 for (size_t i = 0; i < size; i++) {
1391 mEffectChains[i]->setMode_l(mode);
1392 }
1393 }
1394
getAudioPortConfig(struct audio_port_config * config)1395 void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1396 {
1397 config->type = AUDIO_PORT_TYPE_MIX;
1398 config->ext.mix.handle = mId;
1399 config->sample_rate = mSampleRate;
1400 config->format = mFormat;
1401 config->channel_mask = mChannelMask;
1402 config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1403 AUDIO_PORT_CONFIG_FORMAT;
1404 }
1405
systemReady()1406 void AudioFlinger::ThreadBase::systemReady()
1407 {
1408 Mutex::Autolock _l(mLock);
1409 if (mSystemReady) {
1410 return;
1411 }
1412 mSystemReady = true;
1413
1414 for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1415 sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1416 }
1417 mPendingConfigEvents.clear();
1418 }
1419
1420
1421 // ----------------------------------------------------------------------------
1422 // Playback
1423 // ----------------------------------------------------------------------------
1424
PlaybackThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,type_t type,bool systemReady)1425 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1426 AudioStreamOut* output,
1427 audio_io_handle_t id,
1428 audio_devices_t device,
1429 type_t type,
1430 bool systemReady)
1431 : ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1432 mNormalFrameCount(0), mSinkBuffer(NULL),
1433 mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1434 mMixerBuffer(NULL),
1435 mMixerBufferSize(0),
1436 mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1437 mMixerBufferValid(false),
1438 mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1439 mEffectBuffer(NULL),
1440 mEffectBufferSize(0),
1441 mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1442 mEffectBufferValid(false),
1443 mSuspended(0), mBytesWritten(0),
1444 mActiveTracksGeneration(0),
1445 // mStreamTypes[] initialized in constructor body
1446 mOutput(output),
1447 mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1448 mMixerStatus(MIXER_IDLE),
1449 mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1450 mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1451 mBytesRemaining(0),
1452 mCurrentWriteLength(0),
1453 mUseAsyncWrite(false),
1454 mWriteAckSequence(0),
1455 mDrainSequence(0),
1456 mSignalPending(false),
1457 mScreenState(AudioFlinger::mScreenState),
1458 // index 0 is reserved for normal mixer's submix
1459 mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1460 mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1461 // mLatchD, mLatchQ,
1462 mLatchDValid(false), mLatchQValid(false)
1463 {
1464 snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1465 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1466
1467 // Assumes constructor is called by AudioFlinger with it's mLock held, but
1468 // it would be safer to explicitly pass initial masterVolume/masterMute as
1469 // parameter.
1470 //
1471 // If the HAL we are using has support for master volume or master mute,
1472 // then do not attenuate or mute during mixing (just leave the volume at 1.0
1473 // and the mute set to false).
1474 mMasterVolume = audioFlinger->masterVolume_l();
1475 mMasterMute = audioFlinger->masterMute_l();
1476 if (mOutput && mOutput->audioHwDev) {
1477 if (mOutput->audioHwDev->canSetMasterVolume()) {
1478 mMasterVolume = 1.0;
1479 }
1480
1481 if (mOutput->audioHwDev->canSetMasterMute()) {
1482 mMasterMute = false;
1483 }
1484 }
1485
1486 readOutputParameters_l();
1487
1488 // ++ operator does not compile
1489 for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1490 stream = (audio_stream_type_t) (stream + 1)) {
1491 mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1492 mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1493 }
1494 }
1495
~PlaybackThread()1496 AudioFlinger::PlaybackThread::~PlaybackThread()
1497 {
1498 mAudioFlinger->unregisterWriter(mNBLogWriter);
1499 free(mSinkBuffer);
1500 free(mMixerBuffer);
1501 free(mEffectBuffer);
1502 }
1503
dump(int fd,const Vector<String16> & args)1504 void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1505 {
1506 dumpInternals(fd, args);
1507 dumpTracks(fd, args);
1508 dumpEffectChains(fd, args);
1509 }
1510
dumpTracks(int fd,const Vector<String16> & args __unused)1511 void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1512 {
1513 const size_t SIZE = 256;
1514 char buffer[SIZE];
1515 String8 result;
1516
1517 result.appendFormat(" Stream volumes in dB: ");
1518 for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1519 const stream_type_t *st = &mStreamTypes[i];
1520 if (i > 0) {
1521 result.appendFormat(", ");
1522 }
1523 result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1524 if (st->mute) {
1525 result.append("M");
1526 }
1527 }
1528 result.append("\n");
1529 write(fd, result.string(), result.length());
1530 result.clear();
1531
1532 // These values are "raw"; they will wrap around. See prepareTracks_l() for a better way.
1533 FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1534 dprintf(fd, " Normal mixer raw underrun counters: partial=%u empty=%u\n",
1535 underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1536
1537 size_t numtracks = mTracks.size();
1538 size_t numactive = mActiveTracks.size();
1539 dprintf(fd, " %d Tracks", numtracks);
1540 size_t numactiveseen = 0;
1541 if (numtracks) {
1542 dprintf(fd, " of which %d are active\n", numactive);
1543 Track::appendDumpHeader(result);
1544 for (size_t i = 0; i < numtracks; ++i) {
1545 sp<Track> track = mTracks[i];
1546 if (track != 0) {
1547 bool active = mActiveTracks.indexOf(track) >= 0;
1548 if (active) {
1549 numactiveseen++;
1550 }
1551 track->dump(buffer, SIZE, active);
1552 result.append(buffer);
1553 }
1554 }
1555 } else {
1556 result.append("\n");
1557 }
1558 if (numactiveseen != numactive) {
1559 // some tracks in the active list were not in the tracks list
1560 snprintf(buffer, SIZE, " The following tracks are in the active list but"
1561 " not in the track list\n");
1562 result.append(buffer);
1563 Track::appendDumpHeader(result);
1564 for (size_t i = 0; i < numactive; ++i) {
1565 sp<Track> track = mActiveTracks[i].promote();
1566 if (track != 0 && mTracks.indexOf(track) < 0) {
1567 track->dump(buffer, SIZE, true);
1568 result.append(buffer);
1569 }
1570 }
1571 }
1572
1573 write(fd, result.string(), result.size());
1574 }
1575
dumpInternals(int fd,const Vector<String16> & args)1576 void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1577 {
1578 dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1579
1580 dumpBase(fd, args);
1581
1582 dprintf(fd, " Normal frame count: %zu\n", mNormalFrameCount);
1583 dprintf(fd, " Last write occurred (msecs): %llu\n", ns2ms(systemTime() - mLastWriteTime));
1584 dprintf(fd, " Total writes: %d\n", mNumWrites);
1585 dprintf(fd, " Delayed writes: %d\n", mNumDelayedWrites);
1586 dprintf(fd, " Blocked in write: %s\n", mInWrite ? "yes" : "no");
1587 dprintf(fd, " Suspend count: %d\n", mSuspended);
1588 dprintf(fd, " Sink buffer : %p\n", mSinkBuffer);
1589 dprintf(fd, " Mixer buffer: %p\n", mMixerBuffer);
1590 dprintf(fd, " Effect buffer: %p\n", mEffectBuffer);
1591 dprintf(fd, " Fast track availMask=%#x\n", mFastTrackAvailMask);
1592 AudioStreamOut *output = mOutput;
1593 audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1594 String8 flagsAsString = outputFlagsToString(flags);
1595 dprintf(fd, " AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1596 }
1597
1598 // Thread virtuals
1599
onFirstRef()1600 void AudioFlinger::PlaybackThread::onFirstRef()
1601 {
1602 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1603 }
1604
1605 // ThreadBase virtuals
preExit()1606 void AudioFlinger::PlaybackThread::preExit()
1607 {
1608 ALOGV(" preExit()");
1609 // FIXME this is using hard-coded strings but in the future, this functionality will be
1610 // converted to use audio HAL extensions required to support tunneling
1611 mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1612 }
1613
1614 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
createTrack_l(const sp<AudioFlinger::Client> & client,audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,const sp<IMemory> & sharedBuffer,int sessionId,IAudioFlinger::track_flags_t * flags,pid_t tid,int uid,status_t * status)1615 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1616 const sp<AudioFlinger::Client>& client,
1617 audio_stream_type_t streamType,
1618 uint32_t sampleRate,
1619 audio_format_t format,
1620 audio_channel_mask_t channelMask,
1621 size_t *pFrameCount,
1622 const sp<IMemory>& sharedBuffer,
1623 int sessionId,
1624 IAudioFlinger::track_flags_t *flags,
1625 pid_t tid,
1626 int uid,
1627 status_t *status)
1628 {
1629 size_t frameCount = *pFrameCount;
1630 sp<Track> track;
1631 status_t lStatus;
1632
1633 bool isTimed = (*flags & IAudioFlinger::TRACK_TIMED) != 0;
1634
1635 // client expresses a preference for FAST, but we get the final say
1636 if (*flags & IAudioFlinger::TRACK_FAST) {
1637 if (
1638 // not timed
1639 (!isTimed) &&
1640 // either of these use cases:
1641 (
1642 // use case 1: shared buffer with any frame count
1643 (
1644 (sharedBuffer != 0)
1645 ) ||
1646 // use case 2: frame count is default or at least as large as HAL
1647 (
1648 // we formerly checked for a callback handler (non-0 tid),
1649 // but that is no longer required for TRANSFER_OBTAIN mode
1650 ((frameCount == 0) ||
1651 (frameCount >= mFrameCount))
1652 )
1653 ) &&
1654 // PCM data
1655 audio_is_linear_pcm(format) &&
1656 // TODO: extract as a data library function that checks that a computationally
1657 // expensive downmixer is not required: isFastOutputChannelConversion()
1658 (channelMask == mChannelMask ||
1659 mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1660 (channelMask == AUDIO_CHANNEL_OUT_MONO
1661 /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1662 // hardware sample rate
1663 (sampleRate == mSampleRate) &&
1664 // normal mixer has an associated fast mixer
1665 hasFastMixer() &&
1666 // there are sufficient fast track slots available
1667 (mFastTrackAvailMask != 0)
1668 // FIXME test that MixerThread for this fast track has a capable output HAL
1669 // FIXME add a permission test also?
1670 ) {
1671 // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
1672 if (frameCount == 0) {
1673 // read the fast track multiplier property the first time it is needed
1674 int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1675 if (ok != 0) {
1676 ALOGE("%s pthread_once failed: %d", __func__, ok);
1677 }
1678 frameCount = mFrameCount * sFastTrackMultiplier;
1679 }
1680 ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
1681 frameCount, mFrameCount);
1682 } else {
1683 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: isTimed=%d sharedBuffer=%p frameCount=%d "
1684 "mFrameCount=%d format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1685 "sampleRate=%u mSampleRate=%u "
1686 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1687 isTimed, sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1688 audio_is_linear_pcm(format),
1689 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1690 *flags &= ~IAudioFlinger::TRACK_FAST;
1691 }
1692 }
1693 // For normal PCM streaming tracks, update minimum frame count.
1694 // For compatibility with AudioTrack calculation, buffer depth is forced
1695 // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1696 // This is probably too conservative, but legacy application code may depend on it.
1697 // If you change this calculation, also review the start threshold which is related.
1698 if (!(*flags & IAudioFlinger::TRACK_FAST)
1699 && audio_is_linear_pcm(format) && sharedBuffer == 0) {
1700 // this must match AudioTrack.cpp calculateMinFrameCount().
1701 // TODO: Move to a common library
1702 uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1703 uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1704 if (minBufCount < 2) {
1705 minBufCount = 2;
1706 }
1707 // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1708 // or the client should compute and pass in a larger buffer request.
1709 size_t minFrameCount =
1710 minBufCount * sourceFramesNeededWithTimestretch(
1711 sampleRate, mNormalFrameCount,
1712 mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1713 if (frameCount < minFrameCount) { // including frameCount == 0
1714 frameCount = minFrameCount;
1715 }
1716 }
1717 *pFrameCount = frameCount;
1718
1719 switch (mType) {
1720
1721 case DIRECT:
1722 if (audio_is_linear_pcm(format)) {
1723 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1724 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1725 "for output %p with format %#x",
1726 sampleRate, format, channelMask, mOutput, mFormat);
1727 lStatus = BAD_VALUE;
1728 goto Exit;
1729 }
1730 }
1731 break;
1732
1733 case OFFLOAD:
1734 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1735 ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1736 "for output %p with format %#x",
1737 sampleRate, format, channelMask, mOutput, mFormat);
1738 lStatus = BAD_VALUE;
1739 goto Exit;
1740 }
1741 break;
1742
1743 default:
1744 if (!audio_is_linear_pcm(format)) {
1745 ALOGE("createTrack_l() Bad parameter: format %#x \""
1746 "for output %p with format %#x",
1747 format, mOutput, mFormat);
1748 lStatus = BAD_VALUE;
1749 goto Exit;
1750 }
1751 if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1752 ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1753 lStatus = BAD_VALUE;
1754 goto Exit;
1755 }
1756 break;
1757
1758 }
1759
1760 lStatus = initCheck();
1761 if (lStatus != NO_ERROR) {
1762 ALOGE("createTrack_l() audio driver not initialized");
1763 goto Exit;
1764 }
1765
1766 { // scope for mLock
1767 Mutex::Autolock _l(mLock);
1768
1769 // all tracks in same audio session must share the same routing strategy otherwise
1770 // conflicts will happen when tracks are moved from one output to another by audio policy
1771 // manager
1772 uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1773 for (size_t i = 0; i < mTracks.size(); ++i) {
1774 sp<Track> t = mTracks[i];
1775 if (t != 0 && t->isExternalTrack()) {
1776 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1777 if (sessionId == t->sessionId() && strategy != actual) {
1778 ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1779 strategy, actual);
1780 lStatus = BAD_VALUE;
1781 goto Exit;
1782 }
1783 }
1784 }
1785
1786 if (!isTimed) {
1787 track = new Track(this, client, streamType, sampleRate, format,
1788 channelMask, frameCount, NULL, sharedBuffer,
1789 sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1790 } else {
1791 track = TimedTrack::create(this, client, streamType, sampleRate, format,
1792 channelMask, frameCount, sharedBuffer, sessionId, uid);
1793 }
1794
1795 // new Track always returns non-NULL,
1796 // but TimedTrack::create() is a factory that could fail by returning NULL
1797 lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1798 if (lStatus != NO_ERROR) {
1799 ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1800 // track must be cleared from the caller as the caller has the AF lock
1801 goto Exit;
1802 }
1803 mTracks.add(track);
1804
1805 sp<EffectChain> chain = getEffectChain_l(sessionId);
1806 if (chain != 0) {
1807 ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1808 track->setMainBuffer(chain->inBuffer());
1809 chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1810 chain->incTrackCnt();
1811 }
1812
1813 if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1814 pid_t callingPid = IPCThreadState::self()->getCallingPid();
1815 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1816 // so ask activity manager to do this on our behalf
1817 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1818 }
1819 }
1820
1821 lStatus = NO_ERROR;
1822
1823 Exit:
1824 *status = lStatus;
1825 return track;
1826 }
1827
correctLatency_l(uint32_t latency) const1828 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1829 {
1830 return latency;
1831 }
1832
latency() const1833 uint32_t AudioFlinger::PlaybackThread::latency() const
1834 {
1835 Mutex::Autolock _l(mLock);
1836 return latency_l();
1837 }
latency_l() const1838 uint32_t AudioFlinger::PlaybackThread::latency_l() const
1839 {
1840 if (initCheck() == NO_ERROR) {
1841 return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1842 } else {
1843 return 0;
1844 }
1845 }
1846
setMasterVolume(float value)1847 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1848 {
1849 Mutex::Autolock _l(mLock);
1850 // Don't apply master volume in SW if our HAL can do it for us.
1851 if (mOutput && mOutput->audioHwDev &&
1852 mOutput->audioHwDev->canSetMasterVolume()) {
1853 mMasterVolume = 1.0;
1854 } else {
1855 mMasterVolume = value;
1856 }
1857 }
1858
setMasterMute(bool muted)1859 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
1860 {
1861 Mutex::Autolock _l(mLock);
1862 // Don't apply master mute in SW if our HAL can do it for us.
1863 if (mOutput && mOutput->audioHwDev &&
1864 mOutput->audioHwDev->canSetMasterMute()) {
1865 mMasterMute = false;
1866 } else {
1867 mMasterMute = muted;
1868 }
1869 }
1870
setStreamVolume(audio_stream_type_t stream,float value)1871 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
1872 {
1873 Mutex::Autolock _l(mLock);
1874 mStreamTypes[stream].volume = value;
1875 broadcast_l();
1876 }
1877
setStreamMute(audio_stream_type_t stream,bool muted)1878 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
1879 {
1880 Mutex::Autolock _l(mLock);
1881 mStreamTypes[stream].mute = muted;
1882 broadcast_l();
1883 }
1884
streamVolume(audio_stream_type_t stream) const1885 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
1886 {
1887 Mutex::Autolock _l(mLock);
1888 return mStreamTypes[stream].volume;
1889 }
1890
1891 // addTrack_l() must be called with ThreadBase::mLock held
addTrack_l(const sp<Track> & track)1892 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
1893 {
1894 status_t status = ALREADY_EXISTS;
1895
1896 // set retry count for buffer fill
1897 track->mRetryCount = kMaxTrackStartupRetries;
1898 if (mActiveTracks.indexOf(track) < 0) {
1899 // the track is newly added, make sure it fills up all its
1900 // buffers before playing. This is to ensure the client will
1901 // effectively get the latency it requested.
1902 if (track->isExternalTrack()) {
1903 TrackBase::track_state state = track->mState;
1904 mLock.unlock();
1905 status = AudioSystem::startOutput(mId, track->streamType(),
1906 (audio_session_t)track->sessionId());
1907 mLock.lock();
1908 // abort track was stopped/paused while we released the lock
1909 if (state != track->mState) {
1910 if (status == NO_ERROR) {
1911 mLock.unlock();
1912 AudioSystem::stopOutput(mId, track->streamType(),
1913 (audio_session_t)track->sessionId());
1914 mLock.lock();
1915 }
1916 return INVALID_OPERATION;
1917 }
1918 // abort if start is rejected by audio policy manager
1919 if (status != NO_ERROR) {
1920 return PERMISSION_DENIED;
1921 }
1922 #ifdef ADD_BATTERY_DATA
1923 // to track the speaker usage
1924 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
1925 #endif
1926 }
1927
1928 track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
1929 track->mResetDone = false;
1930 track->mPresentationCompleteFrames = 0;
1931 mActiveTracks.add(track);
1932 mWakeLockUids.add(track->uid());
1933 mActiveTracksGeneration++;
1934 mLatestActiveTrack = track;
1935 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1936 if (chain != 0) {
1937 ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
1938 track->sessionId());
1939 chain->incActiveTrackCnt();
1940 }
1941
1942 status = NO_ERROR;
1943 }
1944
1945 onAddNewTrack_l();
1946 return status;
1947 }
1948
destroyTrack_l(const sp<Track> & track)1949 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
1950 {
1951 track->terminate();
1952 // active tracks are removed by threadLoop()
1953 bool trackActive = (mActiveTracks.indexOf(track) >= 0);
1954 track->mState = TrackBase::STOPPED;
1955 if (!trackActive) {
1956 removeTrack_l(track);
1957 } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
1958 track->mState = TrackBase::STOPPING_1;
1959 }
1960
1961 return trackActive;
1962 }
1963
removeTrack_l(const sp<Track> & track)1964 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
1965 {
1966 track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
1967 mTracks.remove(track);
1968 deleteTrackName_l(track->name());
1969 // redundant as track is about to be destroyed, for dumpsys only
1970 track->mName = -1;
1971 if (track->isFastTrack()) {
1972 int index = track->mFastIndex;
1973 ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
1974 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
1975 mFastTrackAvailMask |= 1 << index;
1976 // redundant as track is about to be destroyed, for dumpsys only
1977 track->mFastIndex = -1;
1978 }
1979 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1980 if (chain != 0) {
1981 chain->decTrackCnt();
1982 }
1983 }
1984
broadcast_l()1985 void AudioFlinger::PlaybackThread::broadcast_l()
1986 {
1987 // Thread could be blocked waiting for async
1988 // so signal it to handle state changes immediately
1989 // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1990 // be lost so we also flag to prevent it blocking on mWaitWorkCV
1991 mSignalPending = true;
1992 mWaitWorkCV.broadcast();
1993 }
1994
getParameters(const String8 & keys)1995 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
1996 {
1997 Mutex::Autolock _l(mLock);
1998 if (initCheck() != NO_ERROR) {
1999 return String8();
2000 }
2001
2002 char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
2003 const String8 out_s8(s);
2004 free(s);
2005 return out_s8;
2006 }
2007
ioConfigChanged(audio_io_config_event event,pid_t pid)2008 void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2009 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2010 ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2011
2012 desc->mIoHandle = mId;
2013
2014 switch (event) {
2015 case AUDIO_OUTPUT_OPENED:
2016 case AUDIO_OUTPUT_CONFIG_CHANGED:
2017 desc->mPatch = mPatch;
2018 desc->mChannelMask = mChannelMask;
2019 desc->mSamplingRate = mSampleRate;
2020 desc->mFormat = mFormat;
2021 desc->mFrameCount = mNormalFrameCount; // FIXME see
2022 // AudioFlinger::frameCount(audio_io_handle_t)
2023 desc->mLatency = latency_l();
2024 break;
2025
2026 case AUDIO_OUTPUT_CLOSED:
2027 default:
2028 break;
2029 }
2030 mAudioFlinger->ioConfigChanged(event, desc, pid);
2031 }
2032
writeCallback()2033 void AudioFlinger::PlaybackThread::writeCallback()
2034 {
2035 ALOG_ASSERT(mCallbackThread != 0);
2036 mCallbackThread->resetWriteBlocked();
2037 }
2038
drainCallback()2039 void AudioFlinger::PlaybackThread::drainCallback()
2040 {
2041 ALOG_ASSERT(mCallbackThread != 0);
2042 mCallbackThread->resetDraining();
2043 }
2044
resetWriteBlocked(uint32_t sequence)2045 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2046 {
2047 Mutex::Autolock _l(mLock);
2048 // reject out of sequence requests
2049 if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2050 mWriteAckSequence &= ~1;
2051 mWaitWorkCV.signal();
2052 }
2053 }
2054
resetDraining(uint32_t sequence)2055 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2056 {
2057 Mutex::Autolock _l(mLock);
2058 // reject out of sequence requests
2059 if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2060 mDrainSequence &= ~1;
2061 mWaitWorkCV.signal();
2062 }
2063 }
2064
2065 // static
asyncCallback(stream_callback_event_t event,void * param __unused,void * cookie)2066 int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
2067 void *param __unused,
2068 void *cookie)
2069 {
2070 AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
2071 ALOGV("asyncCallback() event %d", event);
2072 switch (event) {
2073 case STREAM_CBK_EVENT_WRITE_READY:
2074 me->writeCallback();
2075 break;
2076 case STREAM_CBK_EVENT_DRAIN_READY:
2077 me->drainCallback();
2078 break;
2079 default:
2080 ALOGW("asyncCallback() unknown event %d", event);
2081 break;
2082 }
2083 return 0;
2084 }
2085
readOutputParameters_l()2086 void AudioFlinger::PlaybackThread::readOutputParameters_l()
2087 {
2088 // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2089 mSampleRate = mOutput->getSampleRate();
2090 mChannelMask = mOutput->getChannelMask();
2091 if (!audio_is_output_channel(mChannelMask)) {
2092 LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2093 }
2094 if ((mType == MIXER || mType == DUPLICATING)
2095 && !isValidPcmSinkChannelMask(mChannelMask)) {
2096 LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2097 mChannelMask);
2098 }
2099 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2100
2101 // Get actual HAL format.
2102 mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2103 // Get format from the shim, which will be different than the HAL format
2104 // if playing compressed audio over HDMI passthrough.
2105 mFormat = mOutput->getFormat();
2106 if (!audio_is_valid_format(mFormat)) {
2107 LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2108 }
2109 if ((mType == MIXER || mType == DUPLICATING)
2110 && !isValidPcmSinkFormat(mFormat)) {
2111 LOG_FATAL("HAL format %#x not supported for mixed output",
2112 mFormat);
2113 }
2114 mFrameSize = mOutput->getFrameSize();
2115 mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2116 mFrameCount = mBufferSize / mFrameSize;
2117 if (mFrameCount & 15) {
2118 ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
2119 mFrameCount);
2120 }
2121
2122 if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2123 (mOutput->stream->set_callback != NULL)) {
2124 if (mOutput->stream->set_callback(mOutput->stream,
2125 AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2126 mUseAsyncWrite = true;
2127 mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2128 }
2129 }
2130
2131 mHwSupportsPause = false;
2132 if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2133 if (mOutput->stream->pause != NULL) {
2134 if (mOutput->stream->resume != NULL) {
2135 mHwSupportsPause = true;
2136 } else {
2137 ALOGW("direct output implements pause but not resume");
2138 }
2139 } else if (mOutput->stream->resume != NULL) {
2140 ALOGW("direct output implements resume but not pause");
2141 }
2142 }
2143 if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2144 LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2145 }
2146
2147 if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2148 // For best precision, we use float instead of the associated output
2149 // device format (typically PCM 16 bit).
2150
2151 mFormat = AUDIO_FORMAT_PCM_FLOAT;
2152 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2153 mBufferSize = mFrameSize * mFrameCount;
2154
2155 // TODO: We currently use the associated output device channel mask and sample rate.
2156 // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2157 // (if a valid mask) to avoid premature downmix.
2158 // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2159 // instead of the output device sample rate to avoid loss of high frequency information.
2160 // This may need to be updated as MixerThread/OutputTracks are added and not here.
2161 }
2162
2163 // Calculate size of normal sink buffer relative to the HAL output buffer size
2164 double multiplier = 1.0;
2165 if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2166 kUseFastMixer == FastMixer_Dynamic)) {
2167 size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2168 size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2169 // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2170 minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2171 maxNormalFrameCount = maxNormalFrameCount & ~15;
2172 if (maxNormalFrameCount < minNormalFrameCount) {
2173 maxNormalFrameCount = minNormalFrameCount;
2174 }
2175 multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2176 if (multiplier <= 1.0) {
2177 multiplier = 1.0;
2178 } else if (multiplier <= 2.0) {
2179 if (2 * mFrameCount <= maxNormalFrameCount) {
2180 multiplier = 2.0;
2181 } else {
2182 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2183 }
2184 } else {
2185 // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
2186 // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
2187 // track, but we sometimes have to do this to satisfy the maximum frame count
2188 // constraint)
2189 // FIXME this rounding up should not be done if no HAL SRC
2190 uint32_t truncMult = (uint32_t) multiplier;
2191 if ((truncMult & 1)) {
2192 if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
2193 ++truncMult;
2194 }
2195 }
2196 multiplier = (double) truncMult;
2197 }
2198 }
2199 mNormalFrameCount = multiplier * mFrameCount;
2200 // round up to nearest 16 frames to satisfy AudioMixer
2201 if (mType == MIXER || mType == DUPLICATING) {
2202 mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2203 }
2204 ALOGI("HAL output buffer size %u frames, normal sink buffer size %u frames", mFrameCount,
2205 mNormalFrameCount);
2206
2207 // Check if we want to throttle the processing to no more than 2x normal rate
2208 mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2209 mThreadThrottleTimeMs = 0;
2210 mThreadThrottleEndMs = 0;
2211 mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2212
2213 // mSinkBuffer is the sink buffer. Size is always multiple-of-16 frames.
2214 // Originally this was int16_t[] array, need to remove legacy implications.
2215 free(mSinkBuffer);
2216 mSinkBuffer = NULL;
2217 // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2218 // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2219 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2220 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2221
2222 // We resize the mMixerBuffer according to the requirements of the sink buffer which
2223 // drives the output.
2224 free(mMixerBuffer);
2225 mMixerBuffer = NULL;
2226 if (mMixerBufferEnabled) {
2227 mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2228 mMixerBufferSize = mNormalFrameCount * mChannelCount
2229 * audio_bytes_per_sample(mMixerBufferFormat);
2230 (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2231 }
2232 free(mEffectBuffer);
2233 mEffectBuffer = NULL;
2234 if (mEffectBufferEnabled) {
2235 mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2236 mEffectBufferSize = mNormalFrameCount * mChannelCount
2237 * audio_bytes_per_sample(mEffectBufferFormat);
2238 (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2239 }
2240
2241 // force reconfiguration of effect chains and engines to take new buffer size and audio
2242 // parameters into account
2243 // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2244 // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2245 // matter.
2246 // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2247 Vector< sp<EffectChain> > effectChains = mEffectChains;
2248 for (size_t i = 0; i < effectChains.size(); i ++) {
2249 mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2250 }
2251 }
2252
2253
getRenderPosition(uint32_t * halFrames,uint32_t * dspFrames)2254 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2255 {
2256 if (halFrames == NULL || dspFrames == NULL) {
2257 return BAD_VALUE;
2258 }
2259 Mutex::Autolock _l(mLock);
2260 if (initCheck() != NO_ERROR) {
2261 return INVALID_OPERATION;
2262 }
2263 size_t framesWritten = mBytesWritten / mFrameSize;
2264 *halFrames = framesWritten;
2265
2266 if (isSuspended()) {
2267 // return an estimation of rendered frames when the output is suspended
2268 size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2269 *dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0;
2270 return NO_ERROR;
2271 } else {
2272 status_t status;
2273 uint32_t frames;
2274 status = mOutput->getRenderPosition(&frames);
2275 *dspFrames = (size_t)frames;
2276 return status;
2277 }
2278 }
2279
hasAudioSession(int sessionId) const2280 uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
2281 {
2282 Mutex::Autolock _l(mLock);
2283 uint32_t result = 0;
2284 if (getEffectChain_l(sessionId) != 0) {
2285 result = EFFECT_SESSION;
2286 }
2287
2288 for (size_t i = 0; i < mTracks.size(); ++i) {
2289 sp<Track> track = mTracks[i];
2290 if (sessionId == track->sessionId() && !track->isInvalid()) {
2291 result |= TRACK_SESSION;
2292 break;
2293 }
2294 }
2295
2296 return result;
2297 }
2298
getStrategyForSession_l(int sessionId)2299 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
2300 {
2301 // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2302 // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2303 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2304 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2305 }
2306 for (size_t i = 0; i < mTracks.size(); i++) {
2307 sp<Track> track = mTracks[i];
2308 if (sessionId == track->sessionId() && !track->isInvalid()) {
2309 return AudioSystem::getStrategyForStream(track->streamType());
2310 }
2311 }
2312 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2313 }
2314
2315
getOutput() const2316 AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2317 {
2318 Mutex::Autolock _l(mLock);
2319 return mOutput;
2320 }
2321
clearOutput()2322 AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2323 {
2324 Mutex::Autolock _l(mLock);
2325 AudioStreamOut *output = mOutput;
2326 mOutput = NULL;
2327 // FIXME FastMixer might also have a raw ptr to mOutputSink;
2328 // must push a NULL and wait for ack
2329 mOutputSink.clear();
2330 mPipeSink.clear();
2331 mNormalSink.clear();
2332 return output;
2333 }
2334
2335 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const2336 audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2337 {
2338 if (mOutput == NULL) {
2339 return NULL;
2340 }
2341 return &mOutput->stream->common;
2342 }
2343
activeSleepTimeUs() const2344 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2345 {
2346 return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2347 }
2348
setSyncEvent(const sp<SyncEvent> & event)2349 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2350 {
2351 if (!isValidSyncEvent(event)) {
2352 return BAD_VALUE;
2353 }
2354
2355 Mutex::Autolock _l(mLock);
2356
2357 for (size_t i = 0; i < mTracks.size(); ++i) {
2358 sp<Track> track = mTracks[i];
2359 if (event->triggerSession() == track->sessionId()) {
2360 (void) track->setSyncEvent(event);
2361 return NO_ERROR;
2362 }
2363 }
2364
2365 return NAME_NOT_FOUND;
2366 }
2367
isValidSyncEvent(const sp<SyncEvent> & event) const2368 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2369 {
2370 return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2371 }
2372
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)2373 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2374 const Vector< sp<Track> >& tracksToRemove)
2375 {
2376 size_t count = tracksToRemove.size();
2377 if (count > 0) {
2378 for (size_t i = 0 ; i < count ; i++) {
2379 const sp<Track>& track = tracksToRemove.itemAt(i);
2380 if (track->isExternalTrack()) {
2381 AudioSystem::stopOutput(mId, track->streamType(),
2382 (audio_session_t)track->sessionId());
2383 #ifdef ADD_BATTERY_DATA
2384 // to track the speaker usage
2385 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2386 #endif
2387 if (track->isTerminated()) {
2388 AudioSystem::releaseOutput(mId, track->streamType(),
2389 (audio_session_t)track->sessionId());
2390 }
2391 }
2392 }
2393 }
2394 }
2395
checkSilentMode_l()2396 void AudioFlinger::PlaybackThread::checkSilentMode_l()
2397 {
2398 if (!mMasterMute) {
2399 char value[PROPERTY_VALUE_MAX];
2400 if (property_get("ro.audio.silent", value, "0") > 0) {
2401 char *endptr;
2402 unsigned long ul = strtoul(value, &endptr, 0);
2403 if (*endptr == '\0' && ul != 0) {
2404 ALOGD("Silence is golden");
2405 // The setprop command will not allow a property to be changed after
2406 // the first time it is set, so we don't have to worry about un-muting.
2407 setMasterMute_l(true);
2408 }
2409 }
2410 }
2411 }
2412
2413 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_write()2414 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2415 {
2416 // FIXME rewrite to reduce number of system calls
2417 mLastWriteTime = systemTime();
2418 mInWrite = true;
2419 ssize_t bytesWritten;
2420 const size_t offset = mCurrentWriteLength - mBytesRemaining;
2421
2422 // If an NBAIO sink is present, use it to write the normal mixer's submix
2423 if (mNormalSink != 0) {
2424
2425 const size_t count = mBytesRemaining / mFrameSize;
2426
2427 ATRACE_BEGIN("write");
2428 // update the setpoint when AudioFlinger::mScreenState changes
2429 uint32_t screenState = AudioFlinger::mScreenState;
2430 if (screenState != mScreenState) {
2431 mScreenState = screenState;
2432 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2433 if (pipe != NULL) {
2434 pipe->setAvgFrames((mScreenState & 1) ?
2435 (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2436 }
2437 }
2438 ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2439 ATRACE_END();
2440 if (framesWritten > 0) {
2441 bytesWritten = framesWritten * mFrameSize;
2442 } else {
2443 bytesWritten = framesWritten;
2444 }
2445 mLatchDValid = false;
2446 status_t status = mNormalSink->getTimestamp(mLatchD.mTimestamp);
2447 if (status == NO_ERROR) {
2448 size_t totalFramesWritten = mNormalSink->framesWritten();
2449 if (totalFramesWritten >= mLatchD.mTimestamp.mPosition) {
2450 mLatchD.mUnpresentedFrames = totalFramesWritten - mLatchD.mTimestamp.mPosition;
2451 // mLatchD.mFramesReleased is set immediately before D is clocked into Q
2452 mLatchDValid = true;
2453 }
2454 }
2455 // otherwise use the HAL / AudioStreamOut directly
2456 } else {
2457 // Direct output and offload threads
2458
2459 if (mUseAsyncWrite) {
2460 ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2461 mWriteAckSequence += 2;
2462 mWriteAckSequence |= 1;
2463 ALOG_ASSERT(mCallbackThread != 0);
2464 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2465 }
2466 // FIXME We should have an implementation of timestamps for direct output threads.
2467 // They are used e.g for multichannel PCM playback over HDMI.
2468 bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2469 if (mUseAsyncWrite &&
2470 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2471 // do not wait for async callback in case of error of full write
2472 mWriteAckSequence &= ~1;
2473 ALOG_ASSERT(mCallbackThread != 0);
2474 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2475 }
2476 }
2477
2478 mNumWrites++;
2479 mInWrite = false;
2480 mStandby = false;
2481 return bytesWritten;
2482 }
2483
threadLoop_drain()2484 void AudioFlinger::PlaybackThread::threadLoop_drain()
2485 {
2486 if (mOutput->stream->drain) {
2487 ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2488 if (mUseAsyncWrite) {
2489 ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2490 mDrainSequence |= 1;
2491 ALOG_ASSERT(mCallbackThread != 0);
2492 mCallbackThread->setDraining(mDrainSequence);
2493 }
2494 mOutput->stream->drain(mOutput->stream,
2495 (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2496 : AUDIO_DRAIN_ALL);
2497 }
2498 }
2499
threadLoop_exit()2500 void AudioFlinger::PlaybackThread::threadLoop_exit()
2501 {
2502 {
2503 Mutex::Autolock _l(mLock);
2504 for (size_t i = 0; i < mTracks.size(); i++) {
2505 sp<Track> track = mTracks[i];
2506 track->invalidate();
2507 }
2508 }
2509 }
2510
2511 /*
2512 The derived values that are cached:
2513 - mSinkBufferSize from frame count * frame size
2514 - mActiveSleepTimeUs from activeSleepTimeUs()
2515 - mIdleSleepTimeUs from idleSleepTimeUs()
2516 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only)
2517 - maxPeriod from frame count and sample rate (MIXER only)
2518
2519 The parameters that affect these derived values are:
2520 - frame count
2521 - frame size
2522 - sample rate
2523 - device type: A2DP or not
2524 - device latency
2525 - format: PCM or not
2526 - active sleep time
2527 - idle sleep time
2528 */
2529
cacheParameters_l()2530 void AudioFlinger::PlaybackThread::cacheParameters_l()
2531 {
2532 mSinkBufferSize = mNormalFrameCount * mFrameSize;
2533 mActiveSleepTimeUs = activeSleepTimeUs();
2534 mIdleSleepTimeUs = idleSleepTimeUs();
2535 }
2536
invalidateTracks(audio_stream_type_t streamType)2537 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2538 {
2539 ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
2540 this, streamType, mTracks.size());
2541 Mutex::Autolock _l(mLock);
2542
2543 size_t size = mTracks.size();
2544 for (size_t i = 0; i < size; i++) {
2545 sp<Track> t = mTracks[i];
2546 if (t->streamType() == streamType) {
2547 t->invalidate();
2548 }
2549 }
2550 }
2551
addEffectChain_l(const sp<EffectChain> & chain)2552 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2553 {
2554 int session = chain->sessionId();
2555 int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2556 ? mEffectBuffer : mSinkBuffer);
2557 bool ownsBuffer = false;
2558
2559 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2560 if (session > 0) {
2561 // Only one effect chain can be present in direct output thread and it uses
2562 // the sink buffer as input
2563 if (mType != DIRECT) {
2564 size_t numSamples = mNormalFrameCount * mChannelCount;
2565 buffer = new int16_t[numSamples];
2566 memset(buffer, 0, numSamples * sizeof(int16_t));
2567 ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2568 ownsBuffer = true;
2569 }
2570
2571 // Attach all tracks with same session ID to this chain.
2572 for (size_t i = 0; i < mTracks.size(); ++i) {
2573 sp<Track> track = mTracks[i];
2574 if (session == track->sessionId()) {
2575 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2576 buffer);
2577 track->setMainBuffer(buffer);
2578 chain->incTrackCnt();
2579 }
2580 }
2581
2582 // indicate all active tracks in the chain
2583 for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2584 sp<Track> track = mActiveTracks[i].promote();
2585 if (track == 0) {
2586 continue;
2587 }
2588 if (session == track->sessionId()) {
2589 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2590 chain->incActiveTrackCnt();
2591 }
2592 }
2593 }
2594 chain->setThread(this);
2595 chain->setInBuffer(buffer, ownsBuffer);
2596 chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2597 ? mEffectBuffer : mSinkBuffer));
2598 // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2599 // chains list in order to be processed last as it contains output stage effects
2600 // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2601 // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2602 // after track specific effects and before output stage
2603 // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2604 // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
2605 // Effect chain for other sessions are inserted at beginning of effect
2606 // chains list to be processed before output mix effects. Relative order between other
2607 // sessions is not important
2608 size_t size = mEffectChains.size();
2609 size_t i = 0;
2610 for (i = 0; i < size; i++) {
2611 if (mEffectChains[i]->sessionId() < session) {
2612 break;
2613 }
2614 }
2615 mEffectChains.insertAt(chain, i);
2616 checkSuspendOnAddEffectChain_l(chain);
2617
2618 return NO_ERROR;
2619 }
2620
removeEffectChain_l(const sp<EffectChain> & chain)2621 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2622 {
2623 int session = chain->sessionId();
2624
2625 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2626
2627 for (size_t i = 0; i < mEffectChains.size(); i++) {
2628 if (chain == mEffectChains[i]) {
2629 mEffectChains.removeAt(i);
2630 // detach all active tracks from the chain
2631 for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2632 sp<Track> track = mActiveTracks[i].promote();
2633 if (track == 0) {
2634 continue;
2635 }
2636 if (session == track->sessionId()) {
2637 ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2638 chain.get(), session);
2639 chain->decActiveTrackCnt();
2640 }
2641 }
2642
2643 // detach all tracks with same session ID from this chain
2644 for (size_t i = 0; i < mTracks.size(); ++i) {
2645 sp<Track> track = mTracks[i];
2646 if (session == track->sessionId()) {
2647 track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2648 chain->decTrackCnt();
2649 }
2650 }
2651 break;
2652 }
2653 }
2654 return mEffectChains.size();
2655 }
2656
attachAuxEffect(const sp<AudioFlinger::PlaybackThread::Track> track,int EffectId)2657 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2658 const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2659 {
2660 Mutex::Autolock _l(mLock);
2661 return attachAuxEffect_l(track, EffectId);
2662 }
2663
attachAuxEffect_l(const sp<AudioFlinger::PlaybackThread::Track> track,int EffectId)2664 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2665 const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2666 {
2667 status_t status = NO_ERROR;
2668
2669 if (EffectId == 0) {
2670 track->setAuxBuffer(0, NULL);
2671 } else {
2672 // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2673 sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2674 if (effect != 0) {
2675 if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2676 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2677 } else {
2678 status = INVALID_OPERATION;
2679 }
2680 } else {
2681 status = BAD_VALUE;
2682 }
2683 }
2684 return status;
2685 }
2686
detachAuxEffect_l(int effectId)2687 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2688 {
2689 for (size_t i = 0; i < mTracks.size(); ++i) {
2690 sp<Track> track = mTracks[i];
2691 if (track->auxEffectId() == effectId) {
2692 attachAuxEffect_l(track, 0);
2693 }
2694 }
2695 }
2696
threadLoop()2697 bool AudioFlinger::PlaybackThread::threadLoop()
2698 {
2699 Vector< sp<Track> > tracksToRemove;
2700
2701 mStandbyTimeNs = systemTime();
2702
2703 // MIXER
2704 nsecs_t lastWarning = 0;
2705
2706 // DUPLICATING
2707 // FIXME could this be made local to while loop?
2708 writeFrames = 0;
2709
2710 int lastGeneration = 0;
2711
2712 cacheParameters_l();
2713 mSleepTimeUs = mIdleSleepTimeUs;
2714
2715 if (mType == MIXER) {
2716 sleepTimeShift = 0;
2717 }
2718
2719 CpuStats cpuStats;
2720 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2721
2722 acquireWakeLock();
2723
2724 // mNBLogWriter->log can only be called while thread mutex mLock is held.
2725 // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2726 // and then that string will be logged at the next convenient opportunity.
2727 const char *logString = NULL;
2728
2729 checkSilentMode_l();
2730
2731 while (!exitPending())
2732 {
2733 cpuStats.sample(myName);
2734
2735 Vector< sp<EffectChain> > effectChains;
2736
2737 { // scope for mLock
2738
2739 Mutex::Autolock _l(mLock);
2740
2741 processConfigEvents_l();
2742
2743 if (logString != NULL) {
2744 mNBLogWriter->logTimestamp();
2745 mNBLogWriter->log(logString);
2746 logString = NULL;
2747 }
2748
2749 // Gather the framesReleased counters for all active tracks,
2750 // and latch them atomically with the timestamp.
2751 // FIXME We're using raw pointers as indices. A unique track ID would be a better index.
2752 mLatchD.mFramesReleased.clear();
2753 size_t size = mActiveTracks.size();
2754 for (size_t i = 0; i < size; i++) {
2755 sp<Track> t = mActiveTracks[i].promote();
2756 if (t != 0) {
2757 mLatchD.mFramesReleased.add(t.get(),
2758 t->mAudioTrackServerProxy->framesReleased());
2759 }
2760 }
2761 if (mLatchDValid) {
2762 mLatchQ = mLatchD;
2763 mLatchDValid = false;
2764 mLatchQValid = true;
2765 }
2766
2767 saveOutputTracks();
2768 if (mSignalPending) {
2769 // A signal was raised while we were unlocked
2770 mSignalPending = false;
2771 } else if (waitingAsyncCallback_l()) {
2772 if (exitPending()) {
2773 break;
2774 }
2775 bool released = false;
2776 // The following works around a bug in the offload driver. Ideally we would release
2777 // the wake lock every time, but that causes the last offload buffer(s) to be
2778 // dropped while the device is on battery, so we need to hold a wake lock during
2779 // the drain phase.
2780 if (mBytesRemaining && !(mDrainSequence & 1)) {
2781 releaseWakeLock_l();
2782 released = true;
2783 }
2784 mWakeLockUids.clear();
2785 mActiveTracksGeneration++;
2786 ALOGV("wait async completion");
2787 mWaitWorkCV.wait(mLock);
2788 ALOGV("async completion/wake");
2789 if (released) {
2790 acquireWakeLock_l();
2791 }
2792 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2793 mSleepTimeUs = 0;
2794
2795 continue;
2796 }
2797 if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
2798 isSuspended()) {
2799 // put audio hardware into standby after short delay
2800 if (shouldStandby_l()) {
2801
2802 threadLoop_standby();
2803
2804 mStandby = true;
2805 }
2806
2807 if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2808 // we're about to wait, flush the binder command buffer
2809 IPCThreadState::self()->flushCommands();
2810
2811 clearOutputTracks();
2812
2813 if (exitPending()) {
2814 break;
2815 }
2816
2817 releaseWakeLock_l();
2818 mWakeLockUids.clear();
2819 mActiveTracksGeneration++;
2820 // wait until we have something to do...
2821 ALOGV("%s going to sleep", myName.string());
2822 mWaitWorkCV.wait(mLock);
2823 ALOGV("%s waking up", myName.string());
2824 acquireWakeLock_l();
2825
2826 mMixerStatus = MIXER_IDLE;
2827 mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2828 mBytesWritten = 0;
2829 mBytesRemaining = 0;
2830 checkSilentMode_l();
2831
2832 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2833 mSleepTimeUs = mIdleSleepTimeUs;
2834 if (mType == MIXER) {
2835 sleepTimeShift = 0;
2836 }
2837
2838 continue;
2839 }
2840 }
2841 // mMixerStatusIgnoringFastTracks is also updated internally
2842 mMixerStatus = prepareTracks_l(&tracksToRemove);
2843
2844 // compare with previously applied list
2845 if (lastGeneration != mActiveTracksGeneration) {
2846 // update wakelock
2847 updateWakeLockUids_l(mWakeLockUids);
2848 lastGeneration = mActiveTracksGeneration;
2849 }
2850
2851 // prevent any changes in effect chain list and in each effect chain
2852 // during mixing and effect process as the audio buffers could be deleted
2853 // or modified if an effect is created or deleted
2854 lockEffectChains_l(effectChains);
2855 } // mLock scope ends
2856
2857 if (mBytesRemaining == 0) {
2858 mCurrentWriteLength = 0;
2859 if (mMixerStatus == MIXER_TRACKS_READY) {
2860 // threadLoop_mix() sets mCurrentWriteLength
2861 threadLoop_mix();
2862 } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
2863 && (mMixerStatus != MIXER_DRAIN_ALL)) {
2864 // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
2865 // must be written to HAL
2866 threadLoop_sleepTime();
2867 if (mSleepTimeUs == 0) {
2868 mCurrentWriteLength = mSinkBufferSize;
2869 }
2870 }
2871 // Either threadLoop_mix() or threadLoop_sleepTime() should have set
2872 // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
2873 // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
2874 // or mSinkBuffer (if there are no effects).
2875 //
2876 // This is done pre-effects computation; if effects change to
2877 // support higher precision, this needs to move.
2878 //
2879 // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
2880 // TODO use mSleepTimeUs == 0 as an additional condition.
2881 if (mMixerBufferValid) {
2882 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
2883 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
2884
2885 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
2886 mNormalFrameCount * mChannelCount);
2887 }
2888
2889 mBytesRemaining = mCurrentWriteLength;
2890 if (isSuspended()) {
2891 mSleepTimeUs = suspendSleepTimeUs();
2892 // simulate write to HAL when suspended
2893 mBytesWritten += mSinkBufferSize;
2894 mBytesRemaining = 0;
2895 }
2896
2897 // only process effects if we're going to write
2898 if (mSleepTimeUs == 0 && mType != OFFLOAD) {
2899 for (size_t i = 0; i < effectChains.size(); i ++) {
2900 effectChains[i]->process_l();
2901 }
2902 }
2903 }
2904 // Process effect chains for offloaded thread even if no audio
2905 // was read from audio track: process only updates effect state
2906 // and thus does have to be synchronized with audio writes but may have
2907 // to be called while waiting for async write callback
2908 if (mType == OFFLOAD) {
2909 for (size_t i = 0; i < effectChains.size(); i ++) {
2910 effectChains[i]->process_l();
2911 }
2912 }
2913
2914 // Only if the Effects buffer is enabled and there is data in the
2915 // Effects buffer (buffer valid), we need to
2916 // copy into the sink buffer.
2917 // TODO use mSleepTimeUs == 0 as an additional condition.
2918 if (mEffectBufferValid) {
2919 //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
2920 memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
2921 mNormalFrameCount * mChannelCount);
2922 }
2923
2924 // enable changes in effect chain
2925 unlockEffectChains(effectChains);
2926
2927 if (!waitingAsyncCallback()) {
2928 // mSleepTimeUs == 0 means we must write to audio hardware
2929 if (mSleepTimeUs == 0) {
2930 ssize_t ret = 0;
2931 if (mBytesRemaining) {
2932 ret = threadLoop_write();
2933 if (ret < 0) {
2934 mBytesRemaining = 0;
2935 } else {
2936 mBytesWritten += ret;
2937 mBytesRemaining -= ret;
2938 }
2939 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
2940 (mMixerStatus == MIXER_DRAIN_ALL)) {
2941 threadLoop_drain();
2942 }
2943 if (mType == MIXER && !mStandby) {
2944 // write blocked detection
2945 nsecs_t now = systemTime();
2946 nsecs_t delta = now - mLastWriteTime;
2947 if (delta > maxPeriod) {
2948 mNumDelayedWrites++;
2949 if ((now - lastWarning) > kWarningThrottleNs) {
2950 ATRACE_NAME("underrun");
2951 ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
2952 ns2ms(delta), mNumDelayedWrites, this);
2953 lastWarning = now;
2954 }
2955 }
2956
2957 if (mThreadThrottle
2958 && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
2959 && ret > 0) { // we wrote something
2960 // Limit MixerThread data processing to no more than twice the
2961 // expected processing rate.
2962 //
2963 // This helps prevent underruns with NuPlayer and other applications
2964 // which may set up buffers that are close to the minimum size, or use
2965 // deep buffers, and rely on a double-buffering sleep strategy to fill.
2966 //
2967 // The throttle smooths out sudden large data drains from the device,
2968 // e.g. when it comes out of standby, which often causes problems with
2969 // (1) mixer threads without a fast mixer (which has its own warm-up)
2970 // (2) minimum buffer sized tracks (even if the track is full,
2971 // the app won't fill fast enough to handle the sudden draw).
2972
2973 const int32_t deltaMs = delta / 1000000;
2974 const int32_t throttleMs = mHalfBufferMs - deltaMs;
2975 if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
2976 usleep(throttleMs * 1000);
2977 // notify of throttle start on verbose log
2978 ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
2979 "mixer(%p) throttle begin:"
2980 " ret(%zd) deltaMs(%d) requires sleep %d ms",
2981 this, ret, deltaMs, throttleMs);
2982 mThreadThrottleTimeMs += throttleMs;
2983 } else {
2984 uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
2985 if (diff > 0) {
2986 // notify of throttle end on debug log
2987 ALOGD("mixer(%p) throttle end: throttle time(%u)", this, diff);
2988 mThreadThrottleEndMs = mThreadThrottleTimeMs;
2989 }
2990 }
2991 }
2992 }
2993
2994 } else {
2995 ATRACE_BEGIN("sleep");
2996 usleep(mSleepTimeUs);
2997 ATRACE_END();
2998 }
2999 }
3000
3001 // Finally let go of removed track(s), without the lock held
3002 // since we can't guarantee the destructors won't acquire that
3003 // same lock. This will also mutate and push a new fast mixer state.
3004 threadLoop_removeTracks(tracksToRemove);
3005 tracksToRemove.clear();
3006
3007 // FIXME I don't understand the need for this here;
3008 // it was in the original code but maybe the
3009 // assignment in saveOutputTracks() makes this unnecessary?
3010 clearOutputTracks();
3011
3012 // Effect chains will be actually deleted here if they were removed from
3013 // mEffectChains list during mixing or effects processing
3014 effectChains.clear();
3015
3016 // FIXME Note that the above .clear() is no longer necessary since effectChains
3017 // is now local to this block, but will keep it for now (at least until merge done).
3018 }
3019
3020 threadLoop_exit();
3021
3022 if (!mStandby) {
3023 threadLoop_standby();
3024 mStandby = true;
3025 }
3026
3027 releaseWakeLock();
3028 mWakeLockUids.clear();
3029 mActiveTracksGeneration++;
3030
3031 ALOGV("Thread %p type %d exiting", this, mType);
3032 return false;
3033 }
3034
3035 // removeTracks_l() must be called with ThreadBase::mLock held
removeTracks_l(const Vector<sp<Track>> & tracksToRemove)3036 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3037 {
3038 size_t count = tracksToRemove.size();
3039 if (count > 0) {
3040 for (size_t i=0 ; i<count ; i++) {
3041 const sp<Track>& track = tracksToRemove.itemAt(i);
3042 mActiveTracks.remove(track);
3043 mWakeLockUids.remove(track->uid());
3044 mActiveTracksGeneration++;
3045 ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3046 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3047 if (chain != 0) {
3048 ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3049 track->sessionId());
3050 chain->decActiveTrackCnt();
3051 }
3052 if (track->isTerminated()) {
3053 removeTrack_l(track);
3054 }
3055 }
3056 }
3057
3058 }
3059
getTimestamp_l(AudioTimestamp & timestamp)3060 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3061 {
3062 if (mNormalSink != 0) {
3063 return mNormalSink->getTimestamp(timestamp);
3064 }
3065 if ((mType == OFFLOAD || mType == DIRECT)
3066 && mOutput != NULL && mOutput->stream->get_presentation_position) {
3067 uint64_t position64;
3068 int ret = mOutput->getPresentationPosition(&position64, ×tamp.mTime);
3069 if (ret == 0) {
3070 timestamp.mPosition = (uint32_t)position64;
3071 return NO_ERROR;
3072 }
3073 }
3074 return INVALID_OPERATION;
3075 }
3076
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)3077 status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3078 audio_patch_handle_t *handle)
3079 {
3080 // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3081 FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3082 if (mFastMixer != 0) {
3083 FastMixerStateQueue *sq = mFastMixer->sq();
3084 FastMixerState *state = sq->begin();
3085 if (!(state->mCommand & FastMixerState::IDLE)) {
3086 previousCommand = state->mCommand;
3087 state->mCommand = FastMixerState::HOT_IDLE;
3088 sq->end();
3089 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3090 } else {
3091 sq->end(false /*didModify*/);
3092 }
3093 }
3094 status_t status = PlaybackThread::createAudioPatch_l(patch, handle);
3095
3096 if (!(previousCommand & FastMixerState::IDLE)) {
3097 ALOG_ASSERT(mFastMixer != 0);
3098 FastMixerStateQueue *sq = mFastMixer->sq();
3099 FastMixerState *state = sq->begin();
3100 ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3101 state->mCommand = previousCommand;
3102 sq->end();
3103 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3104 }
3105
3106 return status;
3107 }
3108
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)3109 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3110 audio_patch_handle_t *handle)
3111 {
3112 status_t status = NO_ERROR;
3113
3114 // store new device and send to effects
3115 audio_devices_t type = AUDIO_DEVICE_NONE;
3116 for (unsigned int i = 0; i < patch->num_sinks; i++) {
3117 type |= patch->sinks[i].ext.device.type;
3118 }
3119
3120 #ifdef ADD_BATTERY_DATA
3121 // when changing the audio output device, call addBatteryData to notify
3122 // the change
3123 if (mOutDevice != type) {
3124 uint32_t params = 0;
3125 // check whether speaker is on
3126 if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3127 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3128 }
3129
3130 audio_devices_t deviceWithoutSpeaker
3131 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3132 // check if any other device (except speaker) is on
3133 if (type & deviceWithoutSpeaker) {
3134 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3135 }
3136
3137 if (params != 0) {
3138 addBatteryData(params);
3139 }
3140 }
3141 #endif
3142
3143 for (size_t i = 0; i < mEffectChains.size(); i++) {
3144 mEffectChains[i]->setDevice_l(type);
3145 }
3146
3147 // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3148 // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3149 bool configChanged = mPrevOutDevice != type;
3150 mOutDevice = type;
3151 mPatch = *patch;
3152
3153 if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3154 audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3155 status = hwDevice->create_audio_patch(hwDevice,
3156 patch->num_sources,
3157 patch->sources,
3158 patch->num_sinks,
3159 patch->sinks,
3160 handle);
3161 } else {
3162 char *address;
3163 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3164 //FIXME: we only support address on first sink with HAL version < 3.0
3165 address = audio_device_address_to_parameter(
3166 patch->sinks[0].ext.device.type,
3167 patch->sinks[0].ext.device.address);
3168 } else {
3169 address = (char *)calloc(1, 1);
3170 }
3171 AudioParameter param = AudioParameter(String8(address));
3172 free(address);
3173 param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
3174 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3175 param.toString().string());
3176 *handle = AUDIO_PATCH_HANDLE_NONE;
3177 }
3178 if (configChanged) {
3179 mPrevOutDevice = type;
3180 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3181 }
3182 return status;
3183 }
3184
releaseAudioPatch_l(const audio_patch_handle_t handle)3185 status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3186 {
3187 // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3188 FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3189 if (mFastMixer != 0) {
3190 FastMixerStateQueue *sq = mFastMixer->sq();
3191 FastMixerState *state = sq->begin();
3192 if (!(state->mCommand & FastMixerState::IDLE)) {
3193 previousCommand = state->mCommand;
3194 state->mCommand = FastMixerState::HOT_IDLE;
3195 sq->end();
3196 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3197 } else {
3198 sq->end(false /*didModify*/);
3199 }
3200 }
3201
3202 status_t status = PlaybackThread::releaseAudioPatch_l(handle);
3203
3204 if (!(previousCommand & FastMixerState::IDLE)) {
3205 ALOG_ASSERT(mFastMixer != 0);
3206 FastMixerStateQueue *sq = mFastMixer->sq();
3207 FastMixerState *state = sq->begin();
3208 ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3209 state->mCommand = previousCommand;
3210 sq->end();
3211 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3212 }
3213
3214 return status;
3215 }
3216
releaseAudioPatch_l(const audio_patch_handle_t handle)3217 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3218 {
3219 status_t status = NO_ERROR;
3220
3221 mOutDevice = AUDIO_DEVICE_NONE;
3222
3223 if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3224 audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3225 status = hwDevice->release_audio_patch(hwDevice, handle);
3226 } else {
3227 AudioParameter param;
3228 param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
3229 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3230 param.toString().string());
3231 }
3232 return status;
3233 }
3234
addPatchTrack(const sp<PatchTrack> & track)3235 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3236 {
3237 Mutex::Autolock _l(mLock);
3238 mTracks.add(track);
3239 }
3240
deletePatchTrack(const sp<PatchTrack> & track)3241 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3242 {
3243 Mutex::Autolock _l(mLock);
3244 destroyTrack_l(track);
3245 }
3246
getAudioPortConfig(struct audio_port_config * config)3247 void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3248 {
3249 ThreadBase::getAudioPortConfig(config);
3250 config->role = AUDIO_PORT_ROLE_SOURCE;
3251 config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3252 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3253 }
3254
3255 // ----------------------------------------------------------------------------
3256
MixerThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,bool systemReady,type_t type)3257 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3258 audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3259 : PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3260 // mAudioMixer below
3261 // mFastMixer below
3262 mFastMixerFutex(0)
3263 // mOutputSink below
3264 // mPipeSink below
3265 // mNormalSink below
3266 {
3267 ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3268 ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
3269 "mFrameCount=%d, mNormalFrameCount=%d",
3270 mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3271 mNormalFrameCount);
3272 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3273
3274 if (type == DUPLICATING) {
3275 // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3276 // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3277 // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3278 return;
3279 }
3280 // create an NBAIO sink for the HAL output stream, and negotiate
3281 mOutputSink = new AudioStreamOutSink(output->stream);
3282 size_t numCounterOffers = 0;
3283 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3284 ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3285 ALOG_ASSERT(index == 0);
3286
3287 // initialize fast mixer depending on configuration
3288 bool initFastMixer;
3289 switch (kUseFastMixer) {
3290 case FastMixer_Never:
3291 initFastMixer = false;
3292 break;
3293 case FastMixer_Always:
3294 initFastMixer = true;
3295 break;
3296 case FastMixer_Static:
3297 case FastMixer_Dynamic:
3298 initFastMixer = mFrameCount < mNormalFrameCount;
3299 break;
3300 }
3301 if (initFastMixer) {
3302 audio_format_t fastMixerFormat;
3303 if (mMixerBufferEnabled && mEffectBufferEnabled) {
3304 fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3305 } else {
3306 fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3307 }
3308 if (mFormat != fastMixerFormat) {
3309 // change our Sink format to accept our intermediate precision
3310 mFormat = fastMixerFormat;
3311 free(mSinkBuffer);
3312 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3313 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3314 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3315 }
3316
3317 // create a MonoPipe to connect our submix to FastMixer
3318 NBAIO_Format format = mOutputSink->format();
3319 NBAIO_Format origformat = format;
3320 // adjust format to match that of the Fast Mixer
3321 ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3322 format.mFormat = fastMixerFormat;
3323 format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3324
3325 // This pipe depth compensates for scheduling latency of the normal mixer thread.
3326 // When it wakes up after a maximum latency, it runs a few cycles quickly before
3327 // finally blocking. Note the pipe implementation rounds up the request to a power of 2.
3328 MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3329 const NBAIO_Format offers[1] = {format};
3330 size_t numCounterOffers = 0;
3331 ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3332 ALOG_ASSERT(index == 0);
3333 monoPipe->setAvgFrames((mScreenState & 1) ?
3334 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3335 mPipeSink = monoPipe;
3336
3337 #ifdef TEE_SINK
3338 if (mTeeSinkOutputEnabled) {
3339 // create a Pipe to archive a copy of FastMixer's output for dumpsys
3340 Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3341 const NBAIO_Format offers2[1] = {origformat};
3342 numCounterOffers = 0;
3343 index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3344 ALOG_ASSERT(index == 0);
3345 mTeeSink = teeSink;
3346 PipeReader *teeSource = new PipeReader(*teeSink);
3347 numCounterOffers = 0;
3348 index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3349 ALOG_ASSERT(index == 0);
3350 mTeeSource = teeSource;
3351 }
3352 #endif
3353
3354 // create fast mixer and configure it initially with just one fast track for our submix
3355 mFastMixer = new FastMixer();
3356 FastMixerStateQueue *sq = mFastMixer->sq();
3357 #ifdef STATE_QUEUE_DUMP
3358 sq->setObserverDump(&mStateQueueObserverDump);
3359 sq->setMutatorDump(&mStateQueueMutatorDump);
3360 #endif
3361 FastMixerState *state = sq->begin();
3362 FastTrack *fastTrack = &state->mFastTracks[0];
3363 // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3364 fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3365 fastTrack->mVolumeProvider = NULL;
3366 fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3367 fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3368 fastTrack->mGeneration++;
3369 state->mFastTracksGen++;
3370 state->mTrackMask = 1;
3371 // fast mixer will use the HAL output sink
3372 state->mOutputSink = mOutputSink.get();
3373 state->mOutputSinkGen++;
3374 state->mFrameCount = mFrameCount;
3375 state->mCommand = FastMixerState::COLD_IDLE;
3376 // already done in constructor initialization list
3377 //mFastMixerFutex = 0;
3378 state->mColdFutexAddr = &mFastMixerFutex;
3379 state->mColdGen++;
3380 state->mDumpState = &mFastMixerDumpState;
3381 #ifdef TEE_SINK
3382 state->mTeeSink = mTeeSink.get();
3383 #endif
3384 mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3385 state->mNBLogWriter = mFastMixerNBLogWriter.get();
3386 sq->end();
3387 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3388
3389 // start the fast mixer
3390 mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3391 pid_t tid = mFastMixer->getTid();
3392 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3393
3394 #ifdef AUDIO_WATCHDOG
3395 // create and start the watchdog
3396 mAudioWatchdog = new AudioWatchdog();
3397 mAudioWatchdog->setDump(&mAudioWatchdogDump);
3398 mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3399 tid = mAudioWatchdog->getTid();
3400 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3401 #endif
3402
3403 }
3404
3405 switch (kUseFastMixer) {
3406 case FastMixer_Never:
3407 case FastMixer_Dynamic:
3408 mNormalSink = mOutputSink;
3409 break;
3410 case FastMixer_Always:
3411 mNormalSink = mPipeSink;
3412 break;
3413 case FastMixer_Static:
3414 mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3415 break;
3416 }
3417 }
3418
~MixerThread()3419 AudioFlinger::MixerThread::~MixerThread()
3420 {
3421 if (mFastMixer != 0) {
3422 FastMixerStateQueue *sq = mFastMixer->sq();
3423 FastMixerState *state = sq->begin();
3424 if (state->mCommand == FastMixerState::COLD_IDLE) {
3425 int32_t old = android_atomic_inc(&mFastMixerFutex);
3426 if (old == -1) {
3427 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3428 }
3429 }
3430 state->mCommand = FastMixerState::EXIT;
3431 sq->end();
3432 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3433 mFastMixer->join();
3434 // Though the fast mixer thread has exited, it's state queue is still valid.
3435 // We'll use that extract the final state which contains one remaining fast track
3436 // corresponding to our sub-mix.
3437 state = sq->begin();
3438 ALOG_ASSERT(state->mTrackMask == 1);
3439 FastTrack *fastTrack = &state->mFastTracks[0];
3440 ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3441 delete fastTrack->mBufferProvider;
3442 sq->end(false /*didModify*/);
3443 mFastMixer.clear();
3444 #ifdef AUDIO_WATCHDOG
3445 if (mAudioWatchdog != 0) {
3446 mAudioWatchdog->requestExit();
3447 mAudioWatchdog->requestExitAndWait();
3448 mAudioWatchdog.clear();
3449 }
3450 #endif
3451 }
3452 mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3453 delete mAudioMixer;
3454 }
3455
3456
correctLatency_l(uint32_t latency) const3457 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3458 {
3459 if (mFastMixer != 0) {
3460 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3461 latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3462 }
3463 return latency;
3464 }
3465
3466
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)3467 void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3468 {
3469 PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3470 }
3471
threadLoop_write()3472 ssize_t AudioFlinger::MixerThread::threadLoop_write()
3473 {
3474 // FIXME we should only do one push per cycle; confirm this is true
3475 // Start the fast mixer if it's not already running
3476 if (mFastMixer != 0) {
3477 FastMixerStateQueue *sq = mFastMixer->sq();
3478 FastMixerState *state = sq->begin();
3479 if (state->mCommand != FastMixerState::MIX_WRITE &&
3480 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3481 if (state->mCommand == FastMixerState::COLD_IDLE) {
3482 int32_t old = android_atomic_inc(&mFastMixerFutex);
3483 if (old == -1) {
3484 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3485 }
3486 #ifdef AUDIO_WATCHDOG
3487 if (mAudioWatchdog != 0) {
3488 mAudioWatchdog->resume();
3489 }
3490 #endif
3491 }
3492 state->mCommand = FastMixerState::MIX_WRITE;
3493 #ifdef FAST_THREAD_STATISTICS
3494 mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3495 FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3496 #endif
3497 sq->end();
3498 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3499 if (kUseFastMixer == FastMixer_Dynamic) {
3500 mNormalSink = mPipeSink;
3501 }
3502 } else {
3503 sq->end(false /*didModify*/);
3504 }
3505 }
3506 return PlaybackThread::threadLoop_write();
3507 }
3508
threadLoop_standby()3509 void AudioFlinger::MixerThread::threadLoop_standby()
3510 {
3511 // Idle the fast mixer if it's currently running
3512 if (mFastMixer != 0) {
3513 FastMixerStateQueue *sq = mFastMixer->sq();
3514 FastMixerState *state = sq->begin();
3515 if (!(state->mCommand & FastMixerState::IDLE)) {
3516 state->mCommand = FastMixerState::COLD_IDLE;
3517 state->mColdFutexAddr = &mFastMixerFutex;
3518 state->mColdGen++;
3519 mFastMixerFutex = 0;
3520 sq->end();
3521 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3522 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3523 if (kUseFastMixer == FastMixer_Dynamic) {
3524 mNormalSink = mOutputSink;
3525 }
3526 #ifdef AUDIO_WATCHDOG
3527 if (mAudioWatchdog != 0) {
3528 mAudioWatchdog->pause();
3529 }
3530 #endif
3531 } else {
3532 sq->end(false /*didModify*/);
3533 }
3534 }
3535 PlaybackThread::threadLoop_standby();
3536 }
3537
waitingAsyncCallback_l()3538 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3539 {
3540 return false;
3541 }
3542
shouldStandby_l()3543 bool AudioFlinger::PlaybackThread::shouldStandby_l()
3544 {
3545 return !mStandby;
3546 }
3547
waitingAsyncCallback()3548 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3549 {
3550 Mutex::Autolock _l(mLock);
3551 return waitingAsyncCallback_l();
3552 }
3553
3554 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_standby()3555 void AudioFlinger::PlaybackThread::threadLoop_standby()
3556 {
3557 ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3558 mOutput->standby();
3559 if (mUseAsyncWrite != 0) {
3560 // discard any pending drain or write ack by incrementing sequence
3561 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3562 mDrainSequence = (mDrainSequence + 2) & ~1;
3563 ALOG_ASSERT(mCallbackThread != 0);
3564 mCallbackThread->setWriteBlocked(mWriteAckSequence);
3565 mCallbackThread->setDraining(mDrainSequence);
3566 }
3567 mHwPaused = false;
3568 }
3569
onAddNewTrack_l()3570 void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3571 {
3572 ALOGV("signal playback thread");
3573 broadcast_l();
3574 }
3575
threadLoop_mix()3576 void AudioFlinger::MixerThread::threadLoop_mix()
3577 {
3578 // obtain the presentation timestamp of the next output buffer
3579 int64_t pts;
3580 status_t status = INVALID_OPERATION;
3581
3582 if (mNormalSink != 0) {
3583 status = mNormalSink->getNextWriteTimestamp(&pts);
3584 } else {
3585 status = mOutputSink->getNextWriteTimestamp(&pts);
3586 }
3587
3588 if (status != NO_ERROR) {
3589 pts = AudioBufferProvider::kInvalidPTS;
3590 }
3591
3592 // mix buffers...
3593 mAudioMixer->process(pts);
3594 mCurrentWriteLength = mSinkBufferSize;
3595 // increase sleep time progressively when application underrun condition clears.
3596 // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3597 // that a steady state of alternating ready/not ready conditions keeps the sleep time
3598 // such that we would underrun the audio HAL.
3599 if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3600 sleepTimeShift--;
3601 }
3602 mSleepTimeUs = 0;
3603 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3604 //TODO: delay standby when effects have a tail
3605
3606 }
3607
threadLoop_sleepTime()3608 void AudioFlinger::MixerThread::threadLoop_sleepTime()
3609 {
3610 // If no tracks are ready, sleep once for the duration of an output
3611 // buffer size, then write 0s to the output
3612 if (mSleepTimeUs == 0) {
3613 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3614 mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3615 if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3616 mSleepTimeUs = kMinThreadSleepTimeUs;
3617 }
3618 // reduce sleep time in case of consecutive application underruns to avoid
3619 // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3620 // duration we would end up writing less data than needed by the audio HAL if
3621 // the condition persists.
3622 if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3623 sleepTimeShift++;
3624 }
3625 } else {
3626 mSleepTimeUs = mIdleSleepTimeUs;
3627 }
3628 } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3629 // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3630 // before effects processing or output.
3631 if (mMixerBufferValid) {
3632 memset(mMixerBuffer, 0, mMixerBufferSize);
3633 } else {
3634 memset(mSinkBuffer, 0, mSinkBufferSize);
3635 }
3636 mSleepTimeUs = 0;
3637 ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3638 "anticipated start");
3639 }
3640 // TODO add standby time extension fct of effect tail
3641 }
3642
3643 // prepareTracks_l() must be called with ThreadBase::mLock held
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)3644 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3645 Vector< sp<Track> > *tracksToRemove)
3646 {
3647
3648 mixer_state mixerStatus = MIXER_IDLE;
3649 // find out which tracks need to be processed
3650 size_t count = mActiveTracks.size();
3651 size_t mixedTracks = 0;
3652 size_t tracksWithEffect = 0;
3653 // counts only _active_ fast tracks
3654 size_t fastTracks = 0;
3655 uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3656
3657 float masterVolume = mMasterVolume;
3658 bool masterMute = mMasterMute;
3659
3660 if (masterMute) {
3661 masterVolume = 0;
3662 }
3663 // Delegate master volume control to effect in output mix effect chain if needed
3664 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3665 if (chain != 0) {
3666 uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3667 chain->setVolume_l(&v, &v);
3668 masterVolume = (float)((v + (1 << 23)) >> 24);
3669 chain.clear();
3670 }
3671
3672 // prepare a new state to push
3673 FastMixerStateQueue *sq = NULL;
3674 FastMixerState *state = NULL;
3675 bool didModify = false;
3676 FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3677 if (mFastMixer != 0) {
3678 sq = mFastMixer->sq();
3679 state = sq->begin();
3680 }
3681
3682 mMixerBufferValid = false; // mMixerBuffer has no valid data until appropriate tracks found.
3683 mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3684
3685 for (size_t i=0 ; i<count ; i++) {
3686 const sp<Track> t = mActiveTracks[i].promote();
3687 if (t == 0) {
3688 continue;
3689 }
3690
3691 // this const just means the local variable doesn't change
3692 Track* const track = t.get();
3693
3694 // process fast tracks
3695 if (track->isFastTrack()) {
3696
3697 // It's theoretically possible (though unlikely) for a fast track to be created
3698 // and then removed within the same normal mix cycle. This is not a problem, as
3699 // the track never becomes active so it's fast mixer slot is never touched.
3700 // The converse, of removing an (active) track and then creating a new track
3701 // at the identical fast mixer slot within the same normal mix cycle,
3702 // is impossible because the slot isn't marked available until the end of each cycle.
3703 int j = track->mFastIndex;
3704 ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
3705 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3706 FastTrack *fastTrack = &state->mFastTracks[j];
3707
3708 // Determine whether the track is currently in underrun condition,
3709 // and whether it had a recent underrun.
3710 FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3711 FastTrackUnderruns underruns = ftDump->mUnderruns;
3712 uint32_t recentFull = (underruns.mBitFields.mFull -
3713 track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3714 uint32_t recentPartial = (underruns.mBitFields.mPartial -
3715 track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3716 uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3717 track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3718 uint32_t recentUnderruns = recentPartial + recentEmpty;
3719 track->mObservedUnderruns = underruns;
3720 // don't count underruns that occur while stopping or pausing
3721 // or stopped which can occur when flush() is called while active
3722 if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3723 recentUnderruns > 0) {
3724 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3725 track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3726 }
3727
3728 // This is similar to the state machine for normal tracks,
3729 // with a few modifications for fast tracks.
3730 bool isActive = true;
3731 switch (track->mState) {
3732 case TrackBase::STOPPING_1:
3733 // track stays active in STOPPING_1 state until first underrun
3734 if (recentUnderruns > 0 || track->isTerminated()) {
3735 track->mState = TrackBase::STOPPING_2;
3736 }
3737 break;
3738 case TrackBase::PAUSING:
3739 // ramp down is not yet implemented
3740 track->setPaused();
3741 break;
3742 case TrackBase::RESUMING:
3743 // ramp up is not yet implemented
3744 track->mState = TrackBase::ACTIVE;
3745 break;
3746 case TrackBase::ACTIVE:
3747 if (recentFull > 0 || recentPartial > 0) {
3748 // track has provided at least some frames recently: reset retry count
3749 track->mRetryCount = kMaxTrackRetries;
3750 }
3751 if (recentUnderruns == 0) {
3752 // no recent underruns: stay active
3753 break;
3754 }
3755 // there has recently been an underrun of some kind
3756 if (track->sharedBuffer() == 0) {
3757 // were any of the recent underruns "empty" (no frames available)?
3758 if (recentEmpty == 0) {
3759 // no, then ignore the partial underruns as they are allowed indefinitely
3760 break;
3761 }
3762 // there has recently been an "empty" underrun: decrement the retry counter
3763 if (--(track->mRetryCount) > 0) {
3764 break;
3765 }
3766 // indicate to client process that the track was disabled because of underrun;
3767 // it will then automatically call start() when data is available
3768 android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags);
3769 // remove from active list, but state remains ACTIVE [confusing but true]
3770 isActive = false;
3771 break;
3772 }
3773 // fall through
3774 case TrackBase::STOPPING_2:
3775 case TrackBase::PAUSED:
3776 case TrackBase::STOPPED:
3777 case TrackBase::FLUSHED: // flush() while active
3778 // Check for presentation complete if track is inactive
3779 // We have consumed all the buffers of this track.
3780 // This would be incomplete if we auto-paused on underrun
3781 {
3782 size_t audioHALFrames =
3783 (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3784 size_t framesWritten = mBytesWritten / mFrameSize;
3785 if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3786 // track stays in active list until presentation is complete
3787 break;
3788 }
3789 }
3790 if (track->isStopping_2()) {
3791 track->mState = TrackBase::STOPPED;
3792 }
3793 if (track->isStopped()) {
3794 // Can't reset directly, as fast mixer is still polling this track
3795 // track->reset();
3796 // So instead mark this track as needing to be reset after push with ack
3797 resetMask |= 1 << i;
3798 }
3799 isActive = false;
3800 break;
3801 case TrackBase::IDLE:
3802 default:
3803 LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
3804 }
3805
3806 if (isActive) {
3807 // was it previously inactive?
3808 if (!(state->mTrackMask & (1 << j))) {
3809 ExtendedAudioBufferProvider *eabp = track;
3810 VolumeProvider *vp = track;
3811 fastTrack->mBufferProvider = eabp;
3812 fastTrack->mVolumeProvider = vp;
3813 fastTrack->mChannelMask = track->mChannelMask;
3814 fastTrack->mFormat = track->mFormat;
3815 fastTrack->mGeneration++;
3816 state->mTrackMask |= 1 << j;
3817 didModify = true;
3818 // no acknowledgement required for newly active tracks
3819 }
3820 // cache the combined master volume and stream type volume for fast mixer; this
3821 // lacks any synchronization or barrier so VolumeProvider may read a stale value
3822 track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
3823 ++fastTracks;
3824 } else {
3825 // was it previously active?
3826 if (state->mTrackMask & (1 << j)) {
3827 fastTrack->mBufferProvider = NULL;
3828 fastTrack->mGeneration++;
3829 state->mTrackMask &= ~(1 << j);
3830 didModify = true;
3831 // If any fast tracks were removed, we must wait for acknowledgement
3832 // because we're about to decrement the last sp<> on those tracks.
3833 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3834 } else {
3835 LOG_ALWAYS_FATAL("fast track %d should have been active", j);
3836 }
3837 tracksToRemove->add(track);
3838 // Avoids a misleading display in dumpsys
3839 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
3840 }
3841 continue;
3842 }
3843
3844 { // local variable scope to avoid goto warning
3845
3846 audio_track_cblk_t* cblk = track->cblk();
3847
3848 // The first time a track is added we wait
3849 // for all its buffers to be filled before processing it
3850 int name = track->name();
3851 // make sure that we have enough frames to mix one full buffer.
3852 // enforce this condition only once to enable draining the buffer in case the client
3853 // app does not call stop() and relies on underrun to stop:
3854 // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
3855 // during last round
3856 size_t desiredFrames;
3857 const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
3858 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
3859
3860 desiredFrames = sourceFramesNeededWithTimestretch(
3861 sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
3862 // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
3863 // add frames already consumed but not yet released by the resampler
3864 // because mAudioTrackServerProxy->framesReady() will include these frames
3865 desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
3866
3867 uint32_t minFrames = 1;
3868 if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
3869 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
3870 minFrames = desiredFrames;
3871 }
3872
3873 size_t framesReady = track->framesReady();
3874 if (ATRACE_ENABLED()) {
3875 // I wish we had formatted trace names
3876 char traceName[16];
3877 strcpy(traceName, "nRdy");
3878 int name = track->name();
3879 if (AudioMixer::TRACK0 <= name &&
3880 name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
3881 name -= AudioMixer::TRACK0;
3882 traceName[4] = (name / 10) + '0';
3883 traceName[5] = (name % 10) + '0';
3884 } else {
3885 traceName[4] = '?';
3886 traceName[5] = '?';
3887 }
3888 traceName[6] = '\0';
3889 ATRACE_INT(traceName, framesReady);
3890 }
3891 if ((framesReady >= minFrames) && track->isReady() &&
3892 !track->isPaused() && !track->isTerminated())
3893 {
3894 ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
3895
3896 mixedTracks++;
3897
3898 // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
3899 // there is an effect chain connected to the track
3900 chain.clear();
3901 if (track->mainBuffer() != mSinkBuffer &&
3902 track->mainBuffer() != mMixerBuffer) {
3903 if (mEffectBufferEnabled) {
3904 mEffectBufferValid = true; // Later can set directly.
3905 }
3906 chain = getEffectChain_l(track->sessionId());
3907 // Delegate volume control to effect in track effect chain if needed
3908 if (chain != 0) {
3909 tracksWithEffect++;
3910 } else {
3911 ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
3912 "session %d",
3913 name, track->sessionId());
3914 }
3915 }
3916
3917
3918 int param = AudioMixer::VOLUME;
3919 if (track->mFillingUpStatus == Track::FS_FILLED) {
3920 // no ramp for the first volume setting
3921 track->mFillingUpStatus = Track::FS_ACTIVE;
3922 if (track->mState == TrackBase::RESUMING) {
3923 track->mState = TrackBase::ACTIVE;
3924 param = AudioMixer::RAMP_VOLUME;
3925 }
3926 mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
3927 // FIXME should not make a decision based on mServer
3928 } else if (cblk->mServer != 0) {
3929 // If the track is stopped before the first frame was mixed,
3930 // do not apply ramp
3931 param = AudioMixer::RAMP_VOLUME;
3932 }
3933
3934 // compute volume for this track
3935 uint32_t vl, vr; // in U8.24 integer format
3936 float vlf, vrf, vaf; // in [0.0, 1.0] float format
3937 if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
3938 vl = vr = 0;
3939 vlf = vrf = vaf = 0.;
3940 if (track->isPausing()) {
3941 track->setPaused();
3942 }
3943 } else {
3944
3945 // read original volumes with volume control
3946 float typeVolume = mStreamTypes[track->streamType()].volume;
3947 float v = masterVolume * typeVolume;
3948 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
3949 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
3950 vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
3951 vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
3952 // track volumes come from shared memory, so can't be trusted and must be clamped
3953 if (vlf > GAIN_FLOAT_UNITY) {
3954 ALOGV("Track left volume out of range: %.3g", vlf);
3955 vlf = GAIN_FLOAT_UNITY;
3956 }
3957 if (vrf > GAIN_FLOAT_UNITY) {
3958 ALOGV("Track right volume out of range: %.3g", vrf);
3959 vrf = GAIN_FLOAT_UNITY;
3960 }
3961 // now apply the master volume and stream type volume
3962 vlf *= v;
3963 vrf *= v;
3964 // assuming master volume and stream type volume each go up to 1.0,
3965 // then derive vl and vr as U8.24 versions for the effect chain
3966 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
3967 vl = (uint32_t) (scaleto8_24 * vlf);
3968 vr = (uint32_t) (scaleto8_24 * vrf);
3969 // vl and vr are now in U8.24 format
3970 uint16_t sendLevel = proxy->getSendLevel_U4_12();
3971 // send level comes from shared memory and so may be corrupt
3972 if (sendLevel > MAX_GAIN_INT) {
3973 ALOGV("Track send level out of range: %04X", sendLevel);
3974 sendLevel = MAX_GAIN_INT;
3975 }
3976 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
3977 vaf = v * sendLevel * (1. / MAX_GAIN_INT);
3978 }
3979
3980 // Delegate volume control to effect in track effect chain if needed
3981 if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
3982 // Do not ramp volume if volume is controlled by effect
3983 param = AudioMixer::VOLUME;
3984 // Update remaining floating point volume levels
3985 vlf = (float)vl / (1 << 24);
3986 vrf = (float)vr / (1 << 24);
3987 track->mHasVolumeController = true;
3988 } else {
3989 // force no volume ramp when volume controller was just disabled or removed
3990 // from effect chain to avoid volume spike
3991 if (track->mHasVolumeController) {
3992 param = AudioMixer::VOLUME;
3993 }
3994 track->mHasVolumeController = false;
3995 }
3996
3997 // XXX: these things DON'T need to be done each time
3998 mAudioMixer->setBufferProvider(name, track);
3999 mAudioMixer->enable(name);
4000
4001 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4002 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4003 mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4004 mAudioMixer->setParameter(
4005 name,
4006 AudioMixer::TRACK,
4007 AudioMixer::FORMAT, (void *)track->format());
4008 mAudioMixer->setParameter(
4009 name,
4010 AudioMixer::TRACK,
4011 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4012 mAudioMixer->setParameter(
4013 name,
4014 AudioMixer::TRACK,
4015 AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4016 // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4017 uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4018 uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4019 if (reqSampleRate == 0) {
4020 reqSampleRate = mSampleRate;
4021 } else if (reqSampleRate > maxSampleRate) {
4022 reqSampleRate = maxSampleRate;
4023 }
4024 mAudioMixer->setParameter(
4025 name,
4026 AudioMixer::RESAMPLE,
4027 AudioMixer::SAMPLE_RATE,
4028 (void *)(uintptr_t)reqSampleRate);
4029
4030 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4031 mAudioMixer->setParameter(
4032 name,
4033 AudioMixer::TIMESTRETCH,
4034 AudioMixer::PLAYBACK_RATE,
4035 &playbackRate);
4036
4037 /*
4038 * Select the appropriate output buffer for the track.
4039 *
4040 * Tracks with effects go into their own effects chain buffer
4041 * and from there into either mEffectBuffer or mSinkBuffer.
4042 *
4043 * Other tracks can use mMixerBuffer for higher precision
4044 * channel accumulation. If this buffer is enabled
4045 * (mMixerBufferEnabled true), then selected tracks will accumulate
4046 * into it.
4047 *
4048 */
4049 if (mMixerBufferEnabled
4050 && (track->mainBuffer() == mSinkBuffer
4051 || track->mainBuffer() == mMixerBuffer)) {
4052 mAudioMixer->setParameter(
4053 name,
4054 AudioMixer::TRACK,
4055 AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4056 mAudioMixer->setParameter(
4057 name,
4058 AudioMixer::TRACK,
4059 AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4060 // TODO: override track->mainBuffer()?
4061 mMixerBufferValid = true;
4062 } else {
4063 mAudioMixer->setParameter(
4064 name,
4065 AudioMixer::TRACK,
4066 AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4067 mAudioMixer->setParameter(
4068 name,
4069 AudioMixer::TRACK,
4070 AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4071 }
4072 mAudioMixer->setParameter(
4073 name,
4074 AudioMixer::TRACK,
4075 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4076
4077 // reset retry count
4078 track->mRetryCount = kMaxTrackRetries;
4079
4080 // If one track is ready, set the mixer ready if:
4081 // - the mixer was not ready during previous round OR
4082 // - no other track is not ready
4083 if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4084 mixerStatus != MIXER_TRACKS_ENABLED) {
4085 mixerStatus = MIXER_TRACKS_READY;
4086 }
4087 } else {
4088 if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4089 ALOGV("track(%p) underrun, framesReady(%zu) < framesDesired(%zd)",
4090 track, framesReady, desiredFrames);
4091 track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4092 }
4093 // clear effect chain input buffer if an active track underruns to avoid sending
4094 // previous audio buffer again to effects
4095 chain = getEffectChain_l(track->sessionId());
4096 if (chain != 0) {
4097 chain->clearInputBuffer();
4098 }
4099
4100 ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4101 if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4102 track->isStopped() || track->isPaused()) {
4103 // We have consumed all the buffers of this track.
4104 // Remove it from the list of active tracks.
4105 // TODO: use actual buffer filling status instead of latency when available from
4106 // audio HAL
4107 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4108 size_t framesWritten = mBytesWritten / mFrameSize;
4109 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4110 if (track->isStopped()) {
4111 track->reset();
4112 }
4113 tracksToRemove->add(track);
4114 }
4115 } else {
4116 // No buffers for this track. Give it a few chances to
4117 // fill a buffer, then remove it from active list.
4118 if (--(track->mRetryCount) <= 0) {
4119 ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4120 tracksToRemove->add(track);
4121 // indicate to client process that the track was disabled because of underrun;
4122 // it will then automatically call start() when data is available
4123 android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4124 // If one track is not ready, mark the mixer also not ready if:
4125 // - the mixer was ready during previous round OR
4126 // - no other track is ready
4127 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4128 mixerStatus != MIXER_TRACKS_READY) {
4129 mixerStatus = MIXER_TRACKS_ENABLED;
4130 }
4131 }
4132 mAudioMixer->disable(name);
4133 }
4134
4135 } // local variable scope to avoid goto warning
4136 track_is_ready: ;
4137
4138 }
4139
4140 // Push the new FastMixer state if necessary
4141 bool pauseAudioWatchdog = false;
4142 if (didModify) {
4143 state->mFastTracksGen++;
4144 // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4145 if (kUseFastMixer == FastMixer_Dynamic &&
4146 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4147 state->mCommand = FastMixerState::COLD_IDLE;
4148 state->mColdFutexAddr = &mFastMixerFutex;
4149 state->mColdGen++;
4150 mFastMixerFutex = 0;
4151 if (kUseFastMixer == FastMixer_Dynamic) {
4152 mNormalSink = mOutputSink;
4153 }
4154 // If we go into cold idle, need to wait for acknowledgement
4155 // so that fast mixer stops doing I/O.
4156 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4157 pauseAudioWatchdog = true;
4158 }
4159 }
4160 if (sq != NULL) {
4161 sq->end(didModify);
4162 sq->push(block);
4163 }
4164 #ifdef AUDIO_WATCHDOG
4165 if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4166 mAudioWatchdog->pause();
4167 }
4168 #endif
4169
4170 // Now perform the deferred reset on fast tracks that have stopped
4171 while (resetMask != 0) {
4172 size_t i = __builtin_ctz(resetMask);
4173 ALOG_ASSERT(i < count);
4174 resetMask &= ~(1 << i);
4175 sp<Track> t = mActiveTracks[i].promote();
4176 if (t == 0) {
4177 continue;
4178 }
4179 Track* track = t.get();
4180 ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4181 track->reset();
4182 }
4183
4184 // remove all the tracks that need to be...
4185 removeTracks_l(*tracksToRemove);
4186
4187 if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4188 mEffectBufferValid = true;
4189 }
4190
4191 if (mEffectBufferValid) {
4192 // as long as there are effects we should clear the effects buffer, to avoid
4193 // passing a non-clean buffer to the effect chain
4194 memset(mEffectBuffer, 0, mEffectBufferSize);
4195 }
4196 // sink or mix buffer must be cleared if all tracks are connected to an
4197 // effect chain as in this case the mixer will not write to the sink or mix buffer
4198 // and track effects will accumulate into it
4199 if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4200 (mixedTracks == 0 && fastTracks > 0))) {
4201 // FIXME as a performance optimization, should remember previous zero status
4202 if (mMixerBufferValid) {
4203 memset(mMixerBuffer, 0, mMixerBufferSize);
4204 // TODO: In testing, mSinkBuffer below need not be cleared because
4205 // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4206 // after mixing.
4207 //
4208 // To enforce this guarantee:
4209 // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4210 // (mixedTracks == 0 && fastTracks > 0))
4211 // must imply MIXER_TRACKS_READY.
4212 // Later, we may clear buffers regardless, and skip much of this logic.
4213 }
4214 // FIXME as a performance optimization, should remember previous zero status
4215 memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4216 }
4217
4218 // if any fast tracks, then status is ready
4219 mMixerStatusIgnoringFastTracks = mixerStatus;
4220 if (fastTracks > 0) {
4221 mixerStatus = MIXER_TRACKS_READY;
4222 }
4223 return mixerStatus;
4224 }
4225
4226 // getTrackName_l() must be called with ThreadBase::mLock held
getTrackName_l(audio_channel_mask_t channelMask,audio_format_t format,int sessionId)4227 int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4228 audio_format_t format, int sessionId)
4229 {
4230 return mAudioMixer->getTrackName(channelMask, format, sessionId);
4231 }
4232
4233 // deleteTrackName_l() must be called with ThreadBase::mLock held
deleteTrackName_l(int name)4234 void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4235 {
4236 ALOGV("remove track (%d) and delete from mixer", name);
4237 mAudioMixer->deleteTrackName(name);
4238 }
4239
4240 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)4241 bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4242 status_t& status)
4243 {
4244 bool reconfig = false;
4245
4246 status = NO_ERROR;
4247
4248 // if !&IDLE, holds the FastMixer state to restore after new parameters processed
4249 FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
4250 if (mFastMixer != 0) {
4251 FastMixerStateQueue *sq = mFastMixer->sq();
4252 FastMixerState *state = sq->begin();
4253 if (!(state->mCommand & FastMixerState::IDLE)) {
4254 previousCommand = state->mCommand;
4255 state->mCommand = FastMixerState::HOT_IDLE;
4256 sq->end();
4257 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4258 } else {
4259 sq->end(false /*didModify*/);
4260 }
4261 }
4262
4263 AudioParameter param = AudioParameter(keyValuePair);
4264 int value;
4265 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4266 reconfig = true;
4267 }
4268 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4269 if (!isValidPcmSinkFormat((audio_format_t) value)) {
4270 status = BAD_VALUE;
4271 } else {
4272 // no need to save value, since it's constant
4273 reconfig = true;
4274 }
4275 }
4276 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4277 if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4278 status = BAD_VALUE;
4279 } else {
4280 // no need to save value, since it's constant
4281 reconfig = true;
4282 }
4283 }
4284 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4285 // do not accept frame count changes if tracks are open as the track buffer
4286 // size depends on frame count and correct behavior would not be guaranteed
4287 // if frame count is changed after track creation
4288 if (!mTracks.isEmpty()) {
4289 status = INVALID_OPERATION;
4290 } else {
4291 reconfig = true;
4292 }
4293 }
4294 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4295 #ifdef ADD_BATTERY_DATA
4296 // when changing the audio output device, call addBatteryData to notify
4297 // the change
4298 if (mOutDevice != value) {
4299 uint32_t params = 0;
4300 // check whether speaker is on
4301 if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4302 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4303 }
4304
4305 audio_devices_t deviceWithoutSpeaker
4306 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4307 // check if any other device (except speaker) is on
4308 if (value & deviceWithoutSpeaker) {
4309 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4310 }
4311
4312 if (params != 0) {
4313 addBatteryData(params);
4314 }
4315 }
4316 #endif
4317
4318 // forward device change to effects that have requested to be
4319 // aware of attached audio device.
4320 if (value != AUDIO_DEVICE_NONE) {
4321 mOutDevice = value;
4322 for (size_t i = 0; i < mEffectChains.size(); i++) {
4323 mEffectChains[i]->setDevice_l(mOutDevice);
4324 }
4325 }
4326 }
4327
4328 if (status == NO_ERROR) {
4329 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4330 keyValuePair.string());
4331 if (!mStandby && status == INVALID_OPERATION) {
4332 mOutput->standby();
4333 mStandby = true;
4334 mBytesWritten = 0;
4335 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4336 keyValuePair.string());
4337 }
4338 if (status == NO_ERROR && reconfig) {
4339 readOutputParameters_l();
4340 delete mAudioMixer;
4341 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4342 for (size_t i = 0; i < mTracks.size() ; i++) {
4343 int name = getTrackName_l(mTracks[i]->mChannelMask,
4344 mTracks[i]->mFormat, mTracks[i]->mSessionId);
4345 if (name < 0) {
4346 break;
4347 }
4348 mTracks[i]->mName = name;
4349 }
4350 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4351 }
4352 }
4353
4354 if (!(previousCommand & FastMixerState::IDLE)) {
4355 ALOG_ASSERT(mFastMixer != 0);
4356 FastMixerStateQueue *sq = mFastMixer->sq();
4357 FastMixerState *state = sq->begin();
4358 ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
4359 state->mCommand = previousCommand;
4360 sq->end();
4361 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4362 }
4363
4364 return reconfig;
4365 }
4366
4367
dumpInternals(int fd,const Vector<String16> & args)4368 void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4369 {
4370 const size_t SIZE = 256;
4371 char buffer[SIZE];
4372 String8 result;
4373
4374 PlaybackThread::dumpInternals(fd, args);
4375 dprintf(fd, " Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4376 dprintf(fd, " AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4377
4378 // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4379 const FastMixerDumpState copy(mFastMixerDumpState);
4380 copy.dump(fd);
4381
4382 #ifdef STATE_QUEUE_DUMP
4383 // Similar for state queue
4384 StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4385 observerCopy.dump(fd);
4386 StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4387 mutatorCopy.dump(fd);
4388 #endif
4389
4390 #ifdef TEE_SINK
4391 // Write the tee output to a .wav file
4392 dumpTee(fd, mTeeSource, mId);
4393 #endif
4394
4395 #ifdef AUDIO_WATCHDOG
4396 if (mAudioWatchdog != 0) {
4397 // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4398 AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4399 wdCopy.dump(fd);
4400 }
4401 #endif
4402 }
4403
idleSleepTimeUs() const4404 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4405 {
4406 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4407 }
4408
suspendSleepTimeUs() const4409 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4410 {
4411 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4412 }
4413
cacheParameters_l()4414 void AudioFlinger::MixerThread::cacheParameters_l()
4415 {
4416 PlaybackThread::cacheParameters_l();
4417
4418 // FIXME: Relaxed timing because of a certain device that can't meet latency
4419 // Should be reduced to 2x after the vendor fixes the driver issue
4420 // increase threshold again due to low power audio mode. The way this warning
4421 // threshold is calculated and its usefulness should be reconsidered anyway.
4422 maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4423 }
4424
4425 // ----------------------------------------------------------------------------
4426
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,bool systemReady)4427 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4428 AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
4429 : PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
4430 // mLeftVolFloat, mRightVolFloat
4431 {
4432 }
4433
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device,ThreadBase::type_t type,bool systemReady)4434 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4435 AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4436 ThreadBase::type_t type, bool systemReady)
4437 : PlaybackThread(audioFlinger, output, id, device, type, systemReady)
4438 // mLeftVolFloat, mRightVolFloat
4439 {
4440 }
4441
~DirectOutputThread()4442 AudioFlinger::DirectOutputThread::~DirectOutputThread()
4443 {
4444 }
4445
processVolume_l(Track * track,bool lastTrack)4446 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4447 {
4448 audio_track_cblk_t* cblk = track->cblk();
4449 float left, right;
4450
4451 if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4452 left = right = 0;
4453 } else {
4454 float typeVolume = mStreamTypes[track->streamType()].volume;
4455 float v = mMasterVolume * typeVolume;
4456 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4457 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4458 left = float_from_gain(gain_minifloat_unpack_left(vlr));
4459 if (left > GAIN_FLOAT_UNITY) {
4460 left = GAIN_FLOAT_UNITY;
4461 }
4462 left *= v;
4463 right = float_from_gain(gain_minifloat_unpack_right(vlr));
4464 if (right > GAIN_FLOAT_UNITY) {
4465 right = GAIN_FLOAT_UNITY;
4466 }
4467 right *= v;
4468 }
4469
4470 if (lastTrack) {
4471 if (left != mLeftVolFloat || right != mRightVolFloat) {
4472 mLeftVolFloat = left;
4473 mRightVolFloat = right;
4474
4475 // Convert volumes from float to 8.24
4476 uint32_t vl = (uint32_t)(left * (1 << 24));
4477 uint32_t vr = (uint32_t)(right * (1 << 24));
4478
4479 // Delegate volume control to effect in track effect chain if needed
4480 // only one effect chain can be present on DirectOutputThread, so if
4481 // there is one, the track is connected to it
4482 if (!mEffectChains.isEmpty()) {
4483 mEffectChains[0]->setVolume_l(&vl, &vr);
4484 left = (float)vl / (1 << 24);
4485 right = (float)vr / (1 << 24);
4486 }
4487 if (mOutput->stream->set_volume) {
4488 mOutput->stream->set_volume(mOutput->stream, left, right);
4489 }
4490 }
4491 }
4492 }
4493
onAddNewTrack_l()4494 void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4495 {
4496 sp<Track> previousTrack = mPreviousTrack.promote();
4497 sp<Track> latestTrack = mLatestActiveTrack.promote();
4498
4499 if (previousTrack != 0 && latestTrack != 0) {
4500 if (mType == DIRECT) {
4501 if (previousTrack.get() != latestTrack.get()) {
4502 mFlushPending = true;
4503 }
4504 } else /* mType == OFFLOAD */ {
4505 if (previousTrack->sessionId() != latestTrack->sessionId()) {
4506 mFlushPending = true;
4507 }
4508 }
4509 }
4510 PlaybackThread::onAddNewTrack_l();
4511 }
4512
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)4513 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4514 Vector< sp<Track> > *tracksToRemove
4515 )
4516 {
4517 size_t count = mActiveTracks.size();
4518 mixer_state mixerStatus = MIXER_IDLE;
4519 bool doHwPause = false;
4520 bool doHwResume = false;
4521
4522 // find out which tracks need to be processed
4523 for (size_t i = 0; i < count; i++) {
4524 sp<Track> t = mActiveTracks[i].promote();
4525 // The track died recently
4526 if (t == 0) {
4527 continue;
4528 }
4529
4530 if (t->isInvalid()) {
4531 ALOGW("An invalidated track shouldn't be in active list");
4532 tracksToRemove->add(t);
4533 continue;
4534 }
4535
4536 Track* const track = t.get();
4537 audio_track_cblk_t* cblk = track->cblk();
4538 // Only consider last track started for volume and mixer state control.
4539 // In theory an older track could underrun and restart after the new one starts
4540 // but as we only care about the transition phase between two tracks on a
4541 // direct output, it is not a problem to ignore the underrun case.
4542 sp<Track> l = mLatestActiveTrack.promote();
4543 bool last = l.get() == track;
4544
4545 if (track->isPausing()) {
4546 track->setPaused();
4547 if (mHwSupportsPause && last && !mHwPaused) {
4548 doHwPause = true;
4549 mHwPaused = true;
4550 }
4551 tracksToRemove->add(track);
4552 } else if (track->isFlushPending()) {
4553 track->flushAck();
4554 if (last) {
4555 mFlushPending = true;
4556 }
4557 } else if (track->isResumePending()) {
4558 track->resumeAck();
4559 if (last && mHwPaused) {
4560 doHwResume = true;
4561 mHwPaused = false;
4562 }
4563 }
4564
4565 // The first time a track is added we wait
4566 // for all its buffers to be filled before processing it.
4567 // Allow draining the buffer in case the client
4568 // app does not call stop() and relies on underrun to stop:
4569 // hence the test on (track->mRetryCount > 1).
4570 // If retryCount<=1 then track is about to underrun and be removed.
4571 // Do not use a high threshold for compressed audio.
4572 uint32_t minFrames;
4573 if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4574 && (track->mRetryCount > 1) && audio_is_linear_pcm(mFormat)) {
4575 minFrames = mNormalFrameCount;
4576 } else {
4577 minFrames = 1;
4578 }
4579
4580 if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4581 !track->isStopping_2() && !track->isStopped())
4582 {
4583 ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4584
4585 if (track->mFillingUpStatus == Track::FS_FILLED) {
4586 track->mFillingUpStatus = Track::FS_ACTIVE;
4587 // make sure processVolume_l() will apply new volume even if 0
4588 mLeftVolFloat = mRightVolFloat = -1.0;
4589 if (!mHwSupportsPause) {
4590 track->resumeAck();
4591 }
4592 }
4593
4594 // compute volume for this track
4595 processVolume_l(track, last);
4596 if (last) {
4597 sp<Track> previousTrack = mPreviousTrack.promote();
4598 if (previousTrack != 0) {
4599 if (track != previousTrack.get()) {
4600 // Flush any data still being written from last track
4601 mBytesRemaining = 0;
4602 // Invalidate previous track to force a seek when resuming.
4603 previousTrack->invalidate();
4604 }
4605 }
4606 mPreviousTrack = track;
4607
4608 // reset retry count
4609 track->mRetryCount = kMaxTrackRetriesDirect;
4610 mActiveTrack = t;
4611 mixerStatus = MIXER_TRACKS_READY;
4612 if (mHwPaused) {
4613 doHwResume = true;
4614 mHwPaused = false;
4615 }
4616 }
4617 } else {
4618 // clear effect chain input buffer if the last active track started underruns
4619 // to avoid sending previous audio buffer again to effects
4620 if (!mEffectChains.isEmpty() && last) {
4621 mEffectChains[0]->clearInputBuffer();
4622 }
4623 if (track->isStopping_1()) {
4624 track->mState = TrackBase::STOPPING_2;
4625 if (last && mHwPaused) {
4626 doHwResume = true;
4627 mHwPaused = false;
4628 }
4629 }
4630 if ((track->sharedBuffer() != 0) || track->isStopped() ||
4631 track->isStopping_2() || track->isPaused()) {
4632 // We have consumed all the buffers of this track.
4633 // Remove it from the list of active tracks.
4634 size_t audioHALFrames;
4635 if (audio_is_linear_pcm(mFormat)) {
4636 audioHALFrames = (latency_l() * mSampleRate) / 1000;
4637 } else {
4638 audioHALFrames = 0;
4639 }
4640
4641 size_t framesWritten = mBytesWritten / mFrameSize;
4642 if (mStandby || !last ||
4643 track->presentationComplete(framesWritten, audioHALFrames)) {
4644 if (track->isStopping_2()) {
4645 track->mState = TrackBase::STOPPED;
4646 }
4647 if (track->isStopped()) {
4648 track->reset();
4649 }
4650 tracksToRemove->add(track);
4651 }
4652 } else {
4653 // No buffers for this track. Give it a few chances to
4654 // fill a buffer, then remove it from active list.
4655 // Only consider last track started for mixer state control
4656 if (--(track->mRetryCount) <= 0) {
4657 ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4658 tracksToRemove->add(track);
4659 // indicate to client process that the track was disabled because of underrun;
4660 // it will then automatically call start() when data is available
4661 android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4662 } else if (last) {
4663 ALOGW("pause because of UNDERRUN, framesReady = %zu,"
4664 "minFrames = %u, mFormat = %#x",
4665 track->framesReady(), minFrames, mFormat);
4666 mixerStatus = MIXER_TRACKS_ENABLED;
4667 if (mHwSupportsPause && !mHwPaused && !mStandby) {
4668 doHwPause = true;
4669 mHwPaused = true;
4670 }
4671 }
4672 }
4673 }
4674 }
4675
4676 // if an active track did not command a flush, check for pending flush on stopped tracks
4677 if (!mFlushPending) {
4678 for (size_t i = 0; i < mTracks.size(); i++) {
4679 if (mTracks[i]->isFlushPending()) {
4680 mTracks[i]->flushAck();
4681 mFlushPending = true;
4682 }
4683 }
4684 }
4685
4686 // make sure the pause/flush/resume sequence is executed in the right order.
4687 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4688 // before flush and then resume HW. This can happen in case of pause/flush/resume
4689 // if resume is received before pause is executed.
4690 if (mHwSupportsPause && !mStandby &&
4691 (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4692 mOutput->stream->pause(mOutput->stream);
4693 }
4694 if (mFlushPending) {
4695 flushHw_l();
4696 }
4697 if (mHwSupportsPause && !mStandby && doHwResume) {
4698 mOutput->stream->resume(mOutput->stream);
4699 }
4700 // remove all the tracks that need to be...
4701 removeTracks_l(*tracksToRemove);
4702
4703 return mixerStatus;
4704 }
4705
threadLoop_mix()4706 void AudioFlinger::DirectOutputThread::threadLoop_mix()
4707 {
4708 size_t frameCount = mFrameCount;
4709 int8_t *curBuf = (int8_t *)mSinkBuffer;
4710 // output audio to hardware
4711 while (frameCount) {
4712 AudioBufferProvider::Buffer buffer;
4713 buffer.frameCount = frameCount;
4714 status_t status = mActiveTrack->getNextBuffer(&buffer);
4715 if (status != NO_ERROR || buffer.raw == NULL) {
4716 memset(curBuf, 0, frameCount * mFrameSize);
4717 break;
4718 }
4719 memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4720 frameCount -= buffer.frameCount;
4721 curBuf += buffer.frameCount * mFrameSize;
4722 mActiveTrack->releaseBuffer(&buffer);
4723 }
4724 mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4725 mSleepTimeUs = 0;
4726 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4727 mActiveTrack.clear();
4728 }
4729
threadLoop_sleepTime()4730 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4731 {
4732 // do not write to HAL when paused
4733 if (mHwPaused || (usesHwAvSync() && mStandby)) {
4734 mSleepTimeUs = mIdleSleepTimeUs;
4735 return;
4736 }
4737 if (mSleepTimeUs == 0) {
4738 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4739 mSleepTimeUs = mActiveSleepTimeUs;
4740 } else {
4741 mSleepTimeUs = mIdleSleepTimeUs;
4742 }
4743 } else if (mBytesWritten != 0 && audio_is_linear_pcm(mFormat)) {
4744 memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4745 mSleepTimeUs = 0;
4746 }
4747 }
4748
threadLoop_exit()4749 void AudioFlinger::DirectOutputThread::threadLoop_exit()
4750 {
4751 {
4752 Mutex::Autolock _l(mLock);
4753 for (size_t i = 0; i < mTracks.size(); i++) {
4754 if (mTracks[i]->isFlushPending()) {
4755 mTracks[i]->flushAck();
4756 mFlushPending = true;
4757 }
4758 }
4759 if (mFlushPending) {
4760 flushHw_l();
4761 }
4762 }
4763 PlaybackThread::threadLoop_exit();
4764 }
4765
4766 // must be called with thread mutex locked
shouldStandby_l()4767 bool AudioFlinger::DirectOutputThread::shouldStandby_l()
4768 {
4769 bool trackPaused = false;
4770 bool trackStopped = false;
4771
4772 // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
4773 // after a timeout and we will enter standby then.
4774 if (mTracks.size() > 0) {
4775 trackPaused = mTracks[mTracks.size() - 1]->isPaused();
4776 trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
4777 mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
4778 }
4779
4780 return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
4781 }
4782
4783 // getTrackName_l() must be called with ThreadBase::mLock held
getTrackName_l(audio_channel_mask_t channelMask __unused,audio_format_t format __unused,int sessionId __unused)4784 int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
4785 audio_format_t format __unused, int sessionId __unused)
4786 {
4787 return 0;
4788 }
4789
4790 // deleteTrackName_l() must be called with ThreadBase::mLock held
deleteTrackName_l(int name __unused)4791 void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
4792 {
4793 }
4794
4795 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)4796 bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
4797 status_t& status)
4798 {
4799 bool reconfig = false;
4800
4801 status = NO_ERROR;
4802
4803 AudioParameter param = AudioParameter(keyValuePair);
4804 int value;
4805 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4806 // forward device change to effects that have requested to be
4807 // aware of attached audio device.
4808 if (value != AUDIO_DEVICE_NONE) {
4809 mOutDevice = value;
4810 for (size_t i = 0; i < mEffectChains.size(); i++) {
4811 mEffectChains[i]->setDevice_l(mOutDevice);
4812 }
4813 }
4814 }
4815 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4816 // do not accept frame count changes if tracks are open as the track buffer
4817 // size depends on frame count and correct behavior would not be garantied
4818 // if frame count is changed after track creation
4819 if (!mTracks.isEmpty()) {
4820 status = INVALID_OPERATION;
4821 } else {
4822 reconfig = true;
4823 }
4824 }
4825 if (status == NO_ERROR) {
4826 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4827 keyValuePair.string());
4828 if (!mStandby && status == INVALID_OPERATION) {
4829 mOutput->standby();
4830 mStandby = true;
4831 mBytesWritten = 0;
4832 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4833 keyValuePair.string());
4834 }
4835 if (status == NO_ERROR && reconfig) {
4836 readOutputParameters_l();
4837 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4838 }
4839 }
4840
4841 return reconfig;
4842 }
4843
activeSleepTimeUs() const4844 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
4845 {
4846 uint32_t time;
4847 if (audio_is_linear_pcm(mFormat)) {
4848 time = PlaybackThread::activeSleepTimeUs();
4849 } else {
4850 time = 10000;
4851 }
4852 return time;
4853 }
4854
idleSleepTimeUs() const4855 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
4856 {
4857 uint32_t time;
4858 if (audio_is_linear_pcm(mFormat)) {
4859 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
4860 } else {
4861 time = 10000;
4862 }
4863 return time;
4864 }
4865
suspendSleepTimeUs() const4866 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
4867 {
4868 uint32_t time;
4869 if (audio_is_linear_pcm(mFormat)) {
4870 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
4871 } else {
4872 time = 10000;
4873 }
4874 return time;
4875 }
4876
cacheParameters_l()4877 void AudioFlinger::DirectOutputThread::cacheParameters_l()
4878 {
4879 PlaybackThread::cacheParameters_l();
4880
4881 // use shorter standby delay as on normal output to release
4882 // hardware resources as soon as possible
4883 // no delay on outputs with HW A/V sync
4884 if (usesHwAvSync()) {
4885 mStandbyDelayNs = 0;
4886 } else if ((mType == OFFLOAD) && !audio_is_linear_pcm(mFormat)) {
4887 mStandbyDelayNs = kOffloadStandbyDelayNs;
4888 } else {
4889 mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
4890 }
4891 }
4892
flushHw_l()4893 void AudioFlinger::DirectOutputThread::flushHw_l()
4894 {
4895 mOutput->flush();
4896 mHwPaused = false;
4897 mFlushPending = false;
4898 }
4899
4900 // ----------------------------------------------------------------------------
4901
AsyncCallbackThread(const wp<AudioFlinger::PlaybackThread> & playbackThread)4902 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
4903 const wp<AudioFlinger::PlaybackThread>& playbackThread)
4904 : Thread(false /*canCallJava*/),
4905 mPlaybackThread(playbackThread),
4906 mWriteAckSequence(0),
4907 mDrainSequence(0)
4908 {
4909 }
4910
~AsyncCallbackThread()4911 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
4912 {
4913 }
4914
onFirstRef()4915 void AudioFlinger::AsyncCallbackThread::onFirstRef()
4916 {
4917 run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
4918 }
4919
threadLoop()4920 bool AudioFlinger::AsyncCallbackThread::threadLoop()
4921 {
4922 while (!exitPending()) {
4923 uint32_t writeAckSequence;
4924 uint32_t drainSequence;
4925
4926 {
4927 Mutex::Autolock _l(mLock);
4928 while (!((mWriteAckSequence & 1) ||
4929 (mDrainSequence & 1) ||
4930 exitPending())) {
4931 mWaitWorkCV.wait(mLock);
4932 }
4933
4934 if (exitPending()) {
4935 break;
4936 }
4937 ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
4938 mWriteAckSequence, mDrainSequence);
4939 writeAckSequence = mWriteAckSequence;
4940 mWriteAckSequence &= ~1;
4941 drainSequence = mDrainSequence;
4942 mDrainSequence &= ~1;
4943 }
4944 {
4945 sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
4946 if (playbackThread != 0) {
4947 if (writeAckSequence & 1) {
4948 playbackThread->resetWriteBlocked(writeAckSequence >> 1);
4949 }
4950 if (drainSequence & 1) {
4951 playbackThread->resetDraining(drainSequence >> 1);
4952 }
4953 }
4954 }
4955 }
4956 return false;
4957 }
4958
exit()4959 void AudioFlinger::AsyncCallbackThread::exit()
4960 {
4961 ALOGV("AsyncCallbackThread::exit");
4962 Mutex::Autolock _l(mLock);
4963 requestExit();
4964 mWaitWorkCV.broadcast();
4965 }
4966
setWriteBlocked(uint32_t sequence)4967 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
4968 {
4969 Mutex::Autolock _l(mLock);
4970 // bit 0 is cleared
4971 mWriteAckSequence = sequence << 1;
4972 }
4973
resetWriteBlocked()4974 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
4975 {
4976 Mutex::Autolock _l(mLock);
4977 // ignore unexpected callbacks
4978 if (mWriteAckSequence & 2) {
4979 mWriteAckSequence |= 1;
4980 mWaitWorkCV.signal();
4981 }
4982 }
4983
setDraining(uint32_t sequence)4984 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
4985 {
4986 Mutex::Autolock _l(mLock);
4987 // bit 0 is cleared
4988 mDrainSequence = sequence << 1;
4989 }
4990
resetDraining()4991 void AudioFlinger::AsyncCallbackThread::resetDraining()
4992 {
4993 Mutex::Autolock _l(mLock);
4994 // ignore unexpected callbacks
4995 if (mDrainSequence & 2) {
4996 mDrainSequence |= 1;
4997 mWaitWorkCV.signal();
4998 }
4999 }
5000
5001
5002 // ----------------------------------------------------------------------------
OffloadThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device,bool systemReady)5003 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5004 AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
5005 : DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
5006 mPausedBytesRemaining(0)
5007 {
5008 //FIXME: mStandby should be set to true by ThreadBase constructor
5009 mStandby = true;
5010 }
5011
threadLoop_exit()5012 void AudioFlinger::OffloadThread::threadLoop_exit()
5013 {
5014 if (mFlushPending || mHwPaused) {
5015 // If a flush is pending or track was paused, just discard buffered data
5016 flushHw_l();
5017 } else {
5018 mMixerStatus = MIXER_DRAIN_ALL;
5019 threadLoop_drain();
5020 }
5021 if (mUseAsyncWrite) {
5022 ALOG_ASSERT(mCallbackThread != 0);
5023 mCallbackThread->exit();
5024 }
5025 PlaybackThread::threadLoop_exit();
5026 }
5027
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)5028 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5029 Vector< sp<Track> > *tracksToRemove
5030 )
5031 {
5032 size_t count = mActiveTracks.size();
5033
5034 mixer_state mixerStatus = MIXER_IDLE;
5035 bool doHwPause = false;
5036 bool doHwResume = false;
5037
5038 ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
5039
5040 // find out which tracks need to be processed
5041 for (size_t i = 0; i < count; i++) {
5042 sp<Track> t = mActiveTracks[i].promote();
5043 // The track died recently
5044 if (t == 0) {
5045 continue;
5046 }
5047 Track* const track = t.get();
5048 audio_track_cblk_t* cblk = track->cblk();
5049 // Only consider last track started for volume and mixer state control.
5050 // In theory an older track could underrun and restart after the new one starts
5051 // but as we only care about the transition phase between two tracks on a
5052 // direct output, it is not a problem to ignore the underrun case.
5053 sp<Track> l = mLatestActiveTrack.promote();
5054 bool last = l.get() == track;
5055
5056 if (track->isInvalid()) {
5057 ALOGW("An invalidated track shouldn't be in active list");
5058 tracksToRemove->add(track);
5059 continue;
5060 }
5061
5062 if (track->mState == TrackBase::IDLE) {
5063 ALOGW("An idle track shouldn't be in active list");
5064 continue;
5065 }
5066
5067 if (track->isPausing()) {
5068 track->setPaused();
5069 if (last) {
5070 if (mHwSupportsPause && !mHwPaused) {
5071 doHwPause = true;
5072 mHwPaused = true;
5073 }
5074 // If we were part way through writing the mixbuffer to
5075 // the HAL we must save this until we resume
5076 // BUG - this will be wrong if a different track is made active,
5077 // in that case we want to discard the pending data in the
5078 // mixbuffer and tell the client to present it again when the
5079 // track is resumed
5080 mPausedWriteLength = mCurrentWriteLength;
5081 mPausedBytesRemaining = mBytesRemaining;
5082 mBytesRemaining = 0; // stop writing
5083 }
5084 tracksToRemove->add(track);
5085 } else if (track->isFlushPending()) {
5086 track->flushAck();
5087 if (last) {
5088 mFlushPending = true;
5089 }
5090 } else if (track->isResumePending()){
5091 track->resumeAck();
5092 if (last) {
5093 if (mPausedBytesRemaining) {
5094 // Need to continue write that was interrupted
5095 mCurrentWriteLength = mPausedWriteLength;
5096 mBytesRemaining = mPausedBytesRemaining;
5097 mPausedBytesRemaining = 0;
5098 }
5099 if (mHwPaused) {
5100 doHwResume = true;
5101 mHwPaused = false;
5102 // threadLoop_mix() will handle the case that we need to
5103 // resume an interrupted write
5104 }
5105 // enable write to audio HAL
5106 mSleepTimeUs = 0;
5107
5108 // Do not handle new data in this iteration even if track->framesReady()
5109 mixerStatus = MIXER_TRACKS_ENABLED;
5110 }
5111 } else if (track->framesReady() && track->isReady() &&
5112 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5113 ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5114 if (track->mFillingUpStatus == Track::FS_FILLED) {
5115 track->mFillingUpStatus = Track::FS_ACTIVE;
5116 // make sure processVolume_l() will apply new volume even if 0
5117 mLeftVolFloat = mRightVolFloat = -1.0;
5118 }
5119
5120 if (last) {
5121 sp<Track> previousTrack = mPreviousTrack.promote();
5122 if (previousTrack != 0) {
5123 if (track != previousTrack.get()) {
5124 // Flush any data still being written from last track
5125 mBytesRemaining = 0;
5126 if (mPausedBytesRemaining) {
5127 // Last track was paused so we also need to flush saved
5128 // mixbuffer state and invalidate track so that it will
5129 // re-submit that unwritten data when it is next resumed
5130 mPausedBytesRemaining = 0;
5131 // Invalidate is a bit drastic - would be more efficient
5132 // to have a flag to tell client that some of the
5133 // previously written data was lost
5134 previousTrack->invalidate();
5135 }
5136 // flush data already sent to the DSP if changing audio session as audio
5137 // comes from a different source. Also invalidate previous track to force a
5138 // seek when resuming.
5139 if (previousTrack->sessionId() != track->sessionId()) {
5140 previousTrack->invalidate();
5141 }
5142 }
5143 }
5144 mPreviousTrack = track;
5145 // reset retry count
5146 track->mRetryCount = kMaxTrackRetriesOffload;
5147 mActiveTrack = t;
5148 mixerStatus = MIXER_TRACKS_READY;
5149 }
5150 } else {
5151 ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5152 if (track->isStopping_1()) {
5153 // Hardware buffer can hold a large amount of audio so we must
5154 // wait for all current track's data to drain before we say
5155 // that the track is stopped.
5156 if (mBytesRemaining == 0) {
5157 // Only start draining when all data in mixbuffer
5158 // has been written
5159 ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5160 track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
5161 // do not drain if no data was ever sent to HAL (mStandby == true)
5162 if (last && !mStandby) {
5163 // do not modify drain sequence if we are already draining. This happens
5164 // when resuming from pause after drain.
5165 if ((mDrainSequence & 1) == 0) {
5166 mSleepTimeUs = 0;
5167 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5168 mixerStatus = MIXER_DRAIN_TRACK;
5169 mDrainSequence += 2;
5170 }
5171 if (mHwPaused) {
5172 // It is possible to move from PAUSED to STOPPING_1 without
5173 // a resume so we must ensure hardware is running
5174 doHwResume = true;
5175 mHwPaused = false;
5176 }
5177 }
5178 }
5179 } else if (track->isStopping_2()) {
5180 // Drain has completed or we are in standby, signal presentation complete
5181 if (!(mDrainSequence & 1) || !last || mStandby) {
5182 track->mState = TrackBase::STOPPED;
5183 size_t audioHALFrames =
5184 (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
5185 size_t framesWritten =
5186 mBytesWritten / mOutput->getFrameSize();
5187 track->presentationComplete(framesWritten, audioHALFrames);
5188 track->reset();
5189 tracksToRemove->add(track);
5190 }
5191 } else {
5192 // No buffers for this track. Give it a few chances to
5193 // fill a buffer, then remove it from active list.
5194 if (--(track->mRetryCount) <= 0) {
5195 ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5196 track->name());
5197 tracksToRemove->add(track);
5198 // indicate to client process that the track was disabled because of underrun;
5199 // it will then automatically call start() when data is available
5200 android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
5201 } else if (last){
5202 mixerStatus = MIXER_TRACKS_ENABLED;
5203 }
5204 }
5205 }
5206 // compute volume for this track
5207 processVolume_l(track, last);
5208 }
5209
5210 // make sure the pause/flush/resume sequence is executed in the right order.
5211 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5212 // before flush and then resume HW. This can happen in case of pause/flush/resume
5213 // if resume is received before pause is executed.
5214 if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5215 mOutput->stream->pause(mOutput->stream);
5216 }
5217 if (mFlushPending) {
5218 flushHw_l();
5219 }
5220 if (!mStandby && doHwResume) {
5221 mOutput->stream->resume(mOutput->stream);
5222 }
5223
5224 // remove all the tracks that need to be...
5225 removeTracks_l(*tracksToRemove);
5226
5227 return mixerStatus;
5228 }
5229
5230 // must be called with thread mutex locked
waitingAsyncCallback_l()5231 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5232 {
5233 ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5234 mWriteAckSequence, mDrainSequence);
5235 if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5236 return true;
5237 }
5238 return false;
5239 }
5240
waitingAsyncCallback()5241 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5242 {
5243 Mutex::Autolock _l(mLock);
5244 return waitingAsyncCallback_l();
5245 }
5246
flushHw_l()5247 void AudioFlinger::OffloadThread::flushHw_l()
5248 {
5249 DirectOutputThread::flushHw_l();
5250 // Flush anything still waiting in the mixbuffer
5251 mCurrentWriteLength = 0;
5252 mBytesRemaining = 0;
5253 mPausedWriteLength = 0;
5254 mPausedBytesRemaining = 0;
5255
5256 if (mUseAsyncWrite) {
5257 // discard any pending drain or write ack by incrementing sequence
5258 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5259 mDrainSequence = (mDrainSequence + 2) & ~1;
5260 ALOG_ASSERT(mCallbackThread != 0);
5261 mCallbackThread->setWriteBlocked(mWriteAckSequence);
5262 mCallbackThread->setDraining(mDrainSequence);
5263 }
5264 }
5265
5266 // ----------------------------------------------------------------------------
5267
DuplicatingThread(const sp<AudioFlinger> & audioFlinger,AudioFlinger::MixerThread * mainThread,audio_io_handle_t id,bool systemReady)5268 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5269 AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5270 : MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5271 systemReady, DUPLICATING),
5272 mWaitTimeMs(UINT_MAX)
5273 {
5274 addOutputTrack(mainThread);
5275 }
5276
~DuplicatingThread()5277 AudioFlinger::DuplicatingThread::~DuplicatingThread()
5278 {
5279 for (size_t i = 0; i < mOutputTracks.size(); i++) {
5280 mOutputTracks[i]->destroy();
5281 }
5282 }
5283
threadLoop_mix()5284 void AudioFlinger::DuplicatingThread::threadLoop_mix()
5285 {
5286 // mix buffers...
5287 if (outputsReady(outputTracks)) {
5288 mAudioMixer->process(AudioBufferProvider::kInvalidPTS);
5289 } else {
5290 if (mMixerBufferValid) {
5291 memset(mMixerBuffer, 0, mMixerBufferSize);
5292 } else {
5293 memset(mSinkBuffer, 0, mSinkBufferSize);
5294 }
5295 }
5296 mSleepTimeUs = 0;
5297 writeFrames = mNormalFrameCount;
5298 mCurrentWriteLength = mSinkBufferSize;
5299 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5300 }
5301
threadLoop_sleepTime()5302 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5303 {
5304 if (mSleepTimeUs == 0) {
5305 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5306 mSleepTimeUs = mActiveSleepTimeUs;
5307 } else {
5308 mSleepTimeUs = mIdleSleepTimeUs;
5309 }
5310 } else if (mBytesWritten != 0) {
5311 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5312 writeFrames = mNormalFrameCount;
5313 memset(mSinkBuffer, 0, mSinkBufferSize);
5314 } else {
5315 // flush remaining overflow buffers in output tracks
5316 writeFrames = 0;
5317 }
5318 mSleepTimeUs = 0;
5319 }
5320 }
5321
threadLoop_write()5322 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5323 {
5324 for (size_t i = 0; i < outputTracks.size(); i++) {
5325 outputTracks[i]->write(mSinkBuffer, writeFrames);
5326 }
5327 mStandby = false;
5328 return (ssize_t)mSinkBufferSize;
5329 }
5330
threadLoop_standby()5331 void AudioFlinger::DuplicatingThread::threadLoop_standby()
5332 {
5333 // DuplicatingThread implements standby by stopping all tracks
5334 for (size_t i = 0; i < outputTracks.size(); i++) {
5335 outputTracks[i]->stop();
5336 }
5337 }
5338
saveOutputTracks()5339 void AudioFlinger::DuplicatingThread::saveOutputTracks()
5340 {
5341 outputTracks = mOutputTracks;
5342 }
5343
clearOutputTracks()5344 void AudioFlinger::DuplicatingThread::clearOutputTracks()
5345 {
5346 outputTracks.clear();
5347 }
5348
addOutputTrack(MixerThread * thread)5349 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5350 {
5351 Mutex::Autolock _l(mLock);
5352 // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5353 // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5354 // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5355 const size_t frameCount =
5356 3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5357 // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5358 // from different OutputTracks and their associated MixerThreads (e.g. one may
5359 // nearly empty and the other may be dropping data).
5360
5361 sp<OutputTrack> outputTrack = new OutputTrack(thread,
5362 this,
5363 mSampleRate,
5364 mFormat,
5365 mChannelMask,
5366 frameCount,
5367 IPCThreadState::self()->getCallingUid());
5368 if (outputTrack->cblk() != NULL) {
5369 thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5370 mOutputTracks.add(outputTrack);
5371 ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5372 updateWaitTime_l();
5373 }
5374 }
5375
removeOutputTrack(MixerThread * thread)5376 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5377 {
5378 Mutex::Autolock _l(mLock);
5379 for (size_t i = 0; i < mOutputTracks.size(); i++) {
5380 if (mOutputTracks[i]->thread() == thread) {
5381 mOutputTracks[i]->destroy();
5382 mOutputTracks.removeAt(i);
5383 updateWaitTime_l();
5384 if (thread->getOutput() == mOutput) {
5385 mOutput = NULL;
5386 }
5387 return;
5388 }
5389 }
5390 ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5391 }
5392
5393 // caller must hold mLock
updateWaitTime_l()5394 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5395 {
5396 mWaitTimeMs = UINT_MAX;
5397 for (size_t i = 0; i < mOutputTracks.size(); i++) {
5398 sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5399 if (strong != 0) {
5400 uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5401 if (waitTimeMs < mWaitTimeMs) {
5402 mWaitTimeMs = waitTimeMs;
5403 }
5404 }
5405 }
5406 }
5407
5408
outputsReady(const SortedVector<sp<OutputTrack>> & outputTracks)5409 bool AudioFlinger::DuplicatingThread::outputsReady(
5410 const SortedVector< sp<OutputTrack> > &outputTracks)
5411 {
5412 for (size_t i = 0; i < outputTracks.size(); i++) {
5413 sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5414 if (thread == 0) {
5415 ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5416 outputTracks[i].get());
5417 return false;
5418 }
5419 PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5420 // see note at standby() declaration
5421 if (playbackThread->standby() && !playbackThread->isSuspended()) {
5422 ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5423 thread.get());
5424 return false;
5425 }
5426 }
5427 return true;
5428 }
5429
activeSleepTimeUs() const5430 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5431 {
5432 return (mWaitTimeMs * 1000) / 2;
5433 }
5434
cacheParameters_l()5435 void AudioFlinger::DuplicatingThread::cacheParameters_l()
5436 {
5437 // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5438 updateWaitTime_l();
5439
5440 MixerThread::cacheParameters_l();
5441 }
5442
5443 // ----------------------------------------------------------------------------
5444 // Record
5445 // ----------------------------------------------------------------------------
5446
RecordThread(const sp<AudioFlinger> & audioFlinger,AudioStreamIn * input,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady,const sp<NBAIO_Sink> & teeSink)5447 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5448 AudioStreamIn *input,
5449 audio_io_handle_t id,
5450 audio_devices_t outDevice,
5451 audio_devices_t inDevice,
5452 bool systemReady
5453 #ifdef TEE_SINK
5454 , const sp<NBAIO_Sink>& teeSink
5455 #endif
5456 ) :
5457 ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5458 mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5459 // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5460 mRsmpInRear(0)
5461 #ifdef TEE_SINK
5462 , mTeeSink(teeSink)
5463 #endif
5464 , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5465 "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5466 // mFastCapture below
5467 , mFastCaptureFutex(0)
5468 // mInputSource
5469 // mPipeSink
5470 // mPipeSource
5471 , mPipeFramesP2(0)
5472 // mPipeMemory
5473 // mFastCaptureNBLogWriter
5474 , mFastTrackAvail(false)
5475 {
5476 snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5477 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5478
5479 readInputParameters_l();
5480
5481 // create an NBAIO source for the HAL input stream, and negotiate
5482 mInputSource = new AudioStreamInSource(input->stream);
5483 size_t numCounterOffers = 0;
5484 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5485 ssize_t index = mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5486 ALOG_ASSERT(index == 0);
5487
5488 // initialize fast capture depending on configuration
5489 bool initFastCapture;
5490 switch (kUseFastCapture) {
5491 case FastCapture_Never:
5492 initFastCapture = false;
5493 break;
5494 case FastCapture_Always:
5495 initFastCapture = true;
5496 break;
5497 case FastCapture_Static:
5498 initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5499 break;
5500 // case FastCapture_Dynamic:
5501 }
5502
5503 if (initFastCapture) {
5504 // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5505 NBAIO_Format format = mInputSource->format();
5506 size_t pipeFramesP2 = roundup(mSampleRate / 25); // double-buffering of 20 ms each
5507 size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5508 void *pipeBuffer;
5509 const sp<MemoryDealer> roHeap(readOnlyHeap());
5510 sp<IMemory> pipeMemory;
5511 if ((roHeap == 0) ||
5512 (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5513 (pipeBuffer = pipeMemory->pointer()) == NULL) {
5514 ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5515 goto failed;
5516 }
5517 // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5518 memset(pipeBuffer, 0, pipeSize);
5519 Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5520 const NBAIO_Format offers[1] = {format};
5521 size_t numCounterOffers = 0;
5522 ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5523 ALOG_ASSERT(index == 0);
5524 mPipeSink = pipe;
5525 PipeReader *pipeReader = new PipeReader(*pipe);
5526 numCounterOffers = 0;
5527 index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5528 ALOG_ASSERT(index == 0);
5529 mPipeSource = pipeReader;
5530 mPipeFramesP2 = pipeFramesP2;
5531 mPipeMemory = pipeMemory;
5532
5533 // create fast capture
5534 mFastCapture = new FastCapture();
5535 FastCaptureStateQueue *sq = mFastCapture->sq();
5536 #ifdef STATE_QUEUE_DUMP
5537 // FIXME
5538 #endif
5539 FastCaptureState *state = sq->begin();
5540 state->mCblk = NULL;
5541 state->mInputSource = mInputSource.get();
5542 state->mInputSourceGen++;
5543 state->mPipeSink = pipe;
5544 state->mPipeSinkGen++;
5545 state->mFrameCount = mFrameCount;
5546 state->mCommand = FastCaptureState::COLD_IDLE;
5547 // already done in constructor initialization list
5548 //mFastCaptureFutex = 0;
5549 state->mColdFutexAddr = &mFastCaptureFutex;
5550 state->mColdGen++;
5551 state->mDumpState = &mFastCaptureDumpState;
5552 #ifdef TEE_SINK
5553 // FIXME
5554 #endif
5555 mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5556 state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5557 sq->end();
5558 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5559
5560 // start the fast capture
5561 mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5562 pid_t tid = mFastCapture->getTid();
5563 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
5564 #ifdef AUDIO_WATCHDOG
5565 // FIXME
5566 #endif
5567
5568 mFastTrackAvail = true;
5569 }
5570 failed: ;
5571
5572 // FIXME mNormalSource
5573 }
5574
~RecordThread()5575 AudioFlinger::RecordThread::~RecordThread()
5576 {
5577 if (mFastCapture != 0) {
5578 FastCaptureStateQueue *sq = mFastCapture->sq();
5579 FastCaptureState *state = sq->begin();
5580 if (state->mCommand == FastCaptureState::COLD_IDLE) {
5581 int32_t old = android_atomic_inc(&mFastCaptureFutex);
5582 if (old == -1) {
5583 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5584 }
5585 }
5586 state->mCommand = FastCaptureState::EXIT;
5587 sq->end();
5588 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5589 mFastCapture->join();
5590 mFastCapture.clear();
5591 }
5592 mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5593 mAudioFlinger->unregisterWriter(mNBLogWriter);
5594 free(mRsmpInBuffer);
5595 }
5596
onFirstRef()5597 void AudioFlinger::RecordThread::onFirstRef()
5598 {
5599 run(mThreadName, PRIORITY_URGENT_AUDIO);
5600 }
5601
threadLoop()5602 bool AudioFlinger::RecordThread::threadLoop()
5603 {
5604 nsecs_t lastWarning = 0;
5605
5606 inputStandBy();
5607
5608 reacquire_wakelock:
5609 sp<RecordTrack> activeTrack;
5610 int activeTracksGen;
5611 {
5612 Mutex::Autolock _l(mLock);
5613 size_t size = mActiveTracks.size();
5614 activeTracksGen = mActiveTracksGen;
5615 if (size > 0) {
5616 // FIXME an arbitrary choice
5617 activeTrack = mActiveTracks[0];
5618 acquireWakeLock_l(activeTrack->uid());
5619 if (size > 1) {
5620 SortedVector<int> tmp;
5621 for (size_t i = 0; i < size; i++) {
5622 tmp.add(mActiveTracks[i]->uid());
5623 }
5624 updateWakeLockUids_l(tmp);
5625 }
5626 } else {
5627 acquireWakeLock_l(-1);
5628 }
5629 }
5630
5631 // used to request a deferred sleep, to be executed later while mutex is unlocked
5632 uint32_t sleepUs = 0;
5633
5634 // loop while there is work to do
5635 for (;;) {
5636 Vector< sp<EffectChain> > effectChains;
5637
5638 // sleep with mutex unlocked
5639 if (sleepUs > 0) {
5640 ATRACE_BEGIN("sleep");
5641 usleep(sleepUs);
5642 ATRACE_END();
5643 sleepUs = 0;
5644 }
5645
5646 // activeTracks accumulates a copy of a subset of mActiveTracks
5647 Vector< sp<RecordTrack> > activeTracks;
5648
5649 // reference to the (first and only) active fast track
5650 sp<RecordTrack> fastTrack;
5651
5652 // reference to a fast track which is about to be removed
5653 sp<RecordTrack> fastTrackToRemove;
5654
5655 { // scope for mLock
5656 Mutex::Autolock _l(mLock);
5657
5658 processConfigEvents_l();
5659
5660 // check exitPending here because checkForNewParameters_l() and
5661 // checkForNewParameters_l() can temporarily release mLock
5662 if (exitPending()) {
5663 break;
5664 }
5665
5666 // if no active track(s), then standby and release wakelock
5667 size_t size = mActiveTracks.size();
5668 if (size == 0) {
5669 standbyIfNotAlreadyInStandby();
5670 // exitPending() can't become true here
5671 releaseWakeLock_l();
5672 ALOGV("RecordThread: loop stopping");
5673 // go to sleep
5674 mWaitWorkCV.wait(mLock);
5675 ALOGV("RecordThread: loop starting");
5676 goto reacquire_wakelock;
5677 }
5678
5679 if (mActiveTracksGen != activeTracksGen) {
5680 activeTracksGen = mActiveTracksGen;
5681 SortedVector<int> tmp;
5682 for (size_t i = 0; i < size; i++) {
5683 tmp.add(mActiveTracks[i]->uid());
5684 }
5685 updateWakeLockUids_l(tmp);
5686 }
5687
5688 bool doBroadcast = false;
5689 for (size_t i = 0; i < size; ) {
5690
5691 activeTrack = mActiveTracks[i];
5692 if (activeTrack->isTerminated()) {
5693 if (activeTrack->isFastTrack()) {
5694 ALOG_ASSERT(fastTrackToRemove == 0);
5695 fastTrackToRemove = activeTrack;
5696 }
5697 removeTrack_l(activeTrack);
5698 mActiveTracks.remove(activeTrack);
5699 mActiveTracksGen++;
5700 size--;
5701 continue;
5702 }
5703
5704 TrackBase::track_state activeTrackState = activeTrack->mState;
5705 switch (activeTrackState) {
5706
5707 case TrackBase::PAUSING:
5708 mActiveTracks.remove(activeTrack);
5709 mActiveTracksGen++;
5710 doBroadcast = true;
5711 size--;
5712 continue;
5713
5714 case TrackBase::STARTING_1:
5715 sleepUs = 10000;
5716 i++;
5717 continue;
5718
5719 case TrackBase::STARTING_2:
5720 doBroadcast = true;
5721 mStandby = false;
5722 activeTrack->mState = TrackBase::ACTIVE;
5723 break;
5724
5725 case TrackBase::ACTIVE:
5726 break;
5727
5728 case TrackBase::IDLE:
5729 i++;
5730 continue;
5731
5732 default:
5733 LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5734 }
5735
5736 activeTracks.add(activeTrack);
5737 i++;
5738
5739 if (activeTrack->isFastTrack()) {
5740 ALOG_ASSERT(!mFastTrackAvail);
5741 ALOG_ASSERT(fastTrack == 0);
5742 fastTrack = activeTrack;
5743 }
5744 }
5745 if (doBroadcast) {
5746 mStartStopCond.broadcast();
5747 }
5748
5749 // sleep if there are no active tracks to process
5750 if (activeTracks.size() == 0) {
5751 if (sleepUs == 0) {
5752 sleepUs = kRecordThreadSleepUs;
5753 }
5754 continue;
5755 }
5756 sleepUs = 0;
5757
5758 lockEffectChains_l(effectChains);
5759 }
5760
5761 // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
5762
5763 size_t size = effectChains.size();
5764 for (size_t i = 0; i < size; i++) {
5765 // thread mutex is not locked, but effect chain is locked
5766 effectChains[i]->process_l();
5767 }
5768
5769 // Push a new fast capture state if fast capture is not already running, or cblk change
5770 if (mFastCapture != 0) {
5771 FastCaptureStateQueue *sq = mFastCapture->sq();
5772 FastCaptureState *state = sq->begin();
5773 bool didModify = false;
5774 FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
5775 if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
5776 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
5777 if (state->mCommand == FastCaptureState::COLD_IDLE) {
5778 int32_t old = android_atomic_inc(&mFastCaptureFutex);
5779 if (old == -1) {
5780 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5781 }
5782 }
5783 state->mCommand = FastCaptureState::READ_WRITE;
5784 #if 0 // FIXME
5785 mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
5786 FastThreadDumpState::kSamplingNforLowRamDevice :
5787 FastThreadDumpState::kSamplingN);
5788 #endif
5789 didModify = true;
5790 }
5791 audio_track_cblk_t *cblkOld = state->mCblk;
5792 audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
5793 if (cblkNew != cblkOld) {
5794 state->mCblk = cblkNew;
5795 // block until acked if removing a fast track
5796 if (cblkOld != NULL) {
5797 block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
5798 }
5799 didModify = true;
5800 }
5801 sq->end(didModify);
5802 if (didModify) {
5803 sq->push(block);
5804 #if 0
5805 if (kUseFastCapture == FastCapture_Dynamic) {
5806 mNormalSource = mPipeSource;
5807 }
5808 #endif
5809 }
5810 }
5811
5812 // now run the fast track destructor with thread mutex unlocked
5813 fastTrackToRemove.clear();
5814
5815 // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
5816 // Only the client(s) that are too slow will overrun. But if even the fastest client is too
5817 // slow, then this RecordThread will overrun by not calling HAL read often enough.
5818 // If destination is non-contiguous, first read past the nominal end of buffer, then
5819 // copy to the right place. Permitted because mRsmpInBuffer was over-allocated.
5820
5821 int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
5822 ssize_t framesRead;
5823
5824 // If an NBAIO source is present, use it to read the normal capture's data
5825 if (mPipeSource != 0) {
5826 size_t framesToRead = mBufferSize / mFrameSize;
5827 framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
5828 framesToRead, AudioBufferProvider::kInvalidPTS);
5829 if (framesRead == 0) {
5830 // since pipe is non-blocking, simulate blocking input
5831 sleepUs = (framesToRead * 1000000LL) / mSampleRate;
5832 }
5833 // otherwise use the HAL / AudioStreamIn directly
5834 } else {
5835 ssize_t bytesRead = mInput->stream->read(mInput->stream,
5836 (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
5837 if (bytesRead < 0) {
5838 framesRead = bytesRead;
5839 } else {
5840 framesRead = bytesRead / mFrameSize;
5841 }
5842 }
5843
5844 if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
5845 ALOGE("read failed: framesRead=%d", framesRead);
5846 // Force input into standby so that it tries to recover at next read attempt
5847 inputStandBy();
5848 sleepUs = kRecordThreadSleepUs;
5849 }
5850 if (framesRead <= 0) {
5851 goto unlock;
5852 }
5853 ALOG_ASSERT(framesRead > 0);
5854
5855 if (mTeeSink != 0) {
5856 (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
5857 }
5858 // If destination is non-contiguous, we now correct for reading past end of buffer.
5859 {
5860 size_t part1 = mRsmpInFramesP2 - rear;
5861 if ((size_t) framesRead > part1) {
5862 memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
5863 (framesRead - part1) * mFrameSize);
5864 }
5865 }
5866 rear = mRsmpInRear += framesRead;
5867
5868 size = activeTracks.size();
5869 // loop over each active track
5870 for (size_t i = 0; i < size; i++) {
5871 activeTrack = activeTracks[i];
5872
5873 // skip fast tracks, as those are handled directly by FastCapture
5874 if (activeTrack->isFastTrack()) {
5875 continue;
5876 }
5877
5878 // TODO: This code probably should be moved to RecordTrack.
5879 // TODO: Update the activeTrack buffer converter in case of reconfigure.
5880
5881 enum {
5882 OVERRUN_UNKNOWN,
5883 OVERRUN_TRUE,
5884 OVERRUN_FALSE
5885 } overrun = OVERRUN_UNKNOWN;
5886
5887 // loop over getNextBuffer to handle circular sink
5888 for (;;) {
5889
5890 activeTrack->mSink.frameCount = ~0;
5891 status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
5892 size_t framesOut = activeTrack->mSink.frameCount;
5893 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
5894
5895 // check available frames and handle overrun conditions
5896 // if the record track isn't draining fast enough.
5897 bool hasOverrun;
5898 size_t framesIn;
5899 activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
5900 if (hasOverrun) {
5901 overrun = OVERRUN_TRUE;
5902 }
5903 if (framesOut == 0 || framesIn == 0) {
5904 break;
5905 }
5906
5907 // Don't allow framesOut to be larger than what is possible with resampling
5908 // from framesIn.
5909 // This isn't strictly necessary but helps limit buffer resizing in
5910 // RecordBufferConverter. TODO: remove when no longer needed.
5911 framesOut = min(framesOut,
5912 destinationFramesPossible(
5913 framesIn, mSampleRate, activeTrack->mSampleRate));
5914 // process frames from the RecordThread buffer provider to the RecordTrack buffer
5915 framesOut = activeTrack->mRecordBufferConverter->convert(
5916 activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
5917
5918 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
5919 overrun = OVERRUN_FALSE;
5920 }
5921
5922 if (activeTrack->mFramesToDrop == 0) {
5923 if (framesOut > 0) {
5924 activeTrack->mSink.frameCount = framesOut;
5925 activeTrack->releaseBuffer(&activeTrack->mSink);
5926 }
5927 } else {
5928 // FIXME could do a partial drop of framesOut
5929 if (activeTrack->mFramesToDrop > 0) {
5930 activeTrack->mFramesToDrop -= framesOut;
5931 if (activeTrack->mFramesToDrop <= 0) {
5932 activeTrack->clearSyncStartEvent();
5933 }
5934 } else {
5935 activeTrack->mFramesToDrop += framesOut;
5936 if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
5937 activeTrack->mSyncStartEvent->isCancelled()) {
5938 ALOGW("Synced record %s, session %d, trigger session %d",
5939 (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
5940 activeTrack->sessionId(),
5941 (activeTrack->mSyncStartEvent != 0) ?
5942 activeTrack->mSyncStartEvent->triggerSession() : 0);
5943 activeTrack->clearSyncStartEvent();
5944 }
5945 }
5946 }
5947
5948 if (framesOut == 0) {
5949 break;
5950 }
5951 }
5952
5953 switch (overrun) {
5954 case OVERRUN_TRUE:
5955 // client isn't retrieving buffers fast enough
5956 if (!activeTrack->setOverflow()) {
5957 nsecs_t now = systemTime();
5958 // FIXME should lastWarning per track?
5959 if ((now - lastWarning) > kWarningThrottleNs) {
5960 ALOGW("RecordThread: buffer overflow");
5961 lastWarning = now;
5962 }
5963 }
5964 break;
5965 case OVERRUN_FALSE:
5966 activeTrack->clearOverflow();
5967 break;
5968 case OVERRUN_UNKNOWN:
5969 break;
5970 }
5971
5972 }
5973
5974 unlock:
5975 // enable changes in effect chain
5976 unlockEffectChains(effectChains);
5977 // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
5978 }
5979
5980 standbyIfNotAlreadyInStandby();
5981
5982 {
5983 Mutex::Autolock _l(mLock);
5984 for (size_t i = 0; i < mTracks.size(); i++) {
5985 sp<RecordTrack> track = mTracks[i];
5986 track->invalidate();
5987 }
5988 mActiveTracks.clear();
5989 mActiveTracksGen++;
5990 mStartStopCond.broadcast();
5991 }
5992
5993 releaseWakeLock();
5994
5995 ALOGV("RecordThread %p exiting", this);
5996 return false;
5997 }
5998
standbyIfNotAlreadyInStandby()5999 void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6000 {
6001 if (!mStandby) {
6002 inputStandBy();
6003 mStandby = true;
6004 }
6005 }
6006
inputStandBy()6007 void AudioFlinger::RecordThread::inputStandBy()
6008 {
6009 // Idle the fast capture if it's currently running
6010 if (mFastCapture != 0) {
6011 FastCaptureStateQueue *sq = mFastCapture->sq();
6012 FastCaptureState *state = sq->begin();
6013 if (!(state->mCommand & FastCaptureState::IDLE)) {
6014 state->mCommand = FastCaptureState::COLD_IDLE;
6015 state->mColdFutexAddr = &mFastCaptureFutex;
6016 state->mColdGen++;
6017 mFastCaptureFutex = 0;
6018 sq->end();
6019 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6020 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6021 #if 0
6022 if (kUseFastCapture == FastCapture_Dynamic) {
6023 // FIXME
6024 }
6025 #endif
6026 #ifdef AUDIO_WATCHDOG
6027 // FIXME
6028 #endif
6029 } else {
6030 sq->end(false /*didModify*/);
6031 }
6032 }
6033 mInput->stream->common.standby(&mInput->stream->common);
6034 }
6035
6036 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
createRecordTrack_l(const sp<AudioFlinger::Client> & client,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,int sessionId,size_t * notificationFrames,int uid,IAudioFlinger::track_flags_t * flags,pid_t tid,status_t * status)6037 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6038 const sp<AudioFlinger::Client>& client,
6039 uint32_t sampleRate,
6040 audio_format_t format,
6041 audio_channel_mask_t channelMask,
6042 size_t *pFrameCount,
6043 int sessionId,
6044 size_t *notificationFrames,
6045 int uid,
6046 IAudioFlinger::track_flags_t *flags,
6047 pid_t tid,
6048 status_t *status)
6049 {
6050 size_t frameCount = *pFrameCount;
6051 sp<RecordTrack> track;
6052 status_t lStatus;
6053
6054 // client expresses a preference for FAST, but we get the final say
6055 if (*flags & IAudioFlinger::TRACK_FAST) {
6056 if (
6057 // we formerly checked for a callback handler (non-0 tid),
6058 // but that is no longer required for TRANSFER_OBTAIN mode
6059 //
6060 // frame count is not specified, or is exactly the pipe depth
6061 ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6062 // PCM data
6063 audio_is_linear_pcm(format) &&
6064 // native format
6065 (format == mFormat) &&
6066 // native channel mask
6067 (channelMask == mChannelMask) &&
6068 // native hardware sample rate
6069 (sampleRate == mSampleRate) &&
6070 // record thread has an associated fast capture
6071 hasFastCapture() &&
6072 // there are sufficient fast track slots available
6073 mFastTrackAvail
6074 ) {
6075 ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%u mFrameCount=%u",
6076 frameCount, mFrameCount);
6077 } else {
6078 ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%u mFrameCount=%u mPipeFramesP2=%u "
6079 "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6080 "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6081 frameCount, mFrameCount, mPipeFramesP2,
6082 format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6083 hasFastCapture(), tid, mFastTrackAvail);
6084 *flags &= ~IAudioFlinger::TRACK_FAST;
6085 }
6086 }
6087
6088 // compute track buffer size in frames, and suggest the notification frame count
6089 if (*flags & IAudioFlinger::TRACK_FAST) {
6090 // fast track: frame count is exactly the pipe depth
6091 frameCount = mPipeFramesP2;
6092 // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6093 *notificationFrames = mFrameCount;
6094 } else {
6095 // not fast track: max notification period is resampled equivalent of one HAL buffer time
6096 // or 20 ms if there is a fast capture
6097 // TODO This could be a roundupRatio inline, and const
6098 size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6099 * sampleRate + mSampleRate - 1) / mSampleRate;
6100 // minimum number of notification periods is at least kMinNotifications,
6101 // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6102 static const size_t kMinNotifications = 3;
6103 static const uint32_t kMinMs = 30;
6104 // TODO This could be a roundupRatio inline
6105 const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6106 // TODO This could be a roundupRatio inline
6107 const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6108 maxNotificationFrames;
6109 const size_t minFrameCount = maxNotificationFrames *
6110 max(kMinNotifications, minNotificationsByMs);
6111 frameCount = max(frameCount, minFrameCount);
6112 if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6113 *notificationFrames = maxNotificationFrames;
6114 }
6115 }
6116 *pFrameCount = frameCount;
6117
6118 lStatus = initCheck();
6119 if (lStatus != NO_ERROR) {
6120 ALOGE("createRecordTrack_l() audio driver not initialized");
6121 goto Exit;
6122 }
6123
6124 { // scope for mLock
6125 Mutex::Autolock _l(mLock);
6126
6127 track = new RecordTrack(this, client, sampleRate,
6128 format, channelMask, frameCount, NULL, sessionId, uid,
6129 *flags, TrackBase::TYPE_DEFAULT);
6130
6131 lStatus = track->initCheck();
6132 if (lStatus != NO_ERROR) {
6133 ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6134 // track must be cleared from the caller as the caller has the AF lock
6135 goto Exit;
6136 }
6137 mTracks.add(track);
6138
6139 // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6140 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6141 mAudioFlinger->btNrecIsOff();
6142 setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6143 setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6144
6145 if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
6146 pid_t callingPid = IPCThreadState::self()->getCallingPid();
6147 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6148 // so ask activity manager to do this on our behalf
6149 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6150 }
6151 }
6152
6153 lStatus = NO_ERROR;
6154
6155 Exit:
6156 *status = lStatus;
6157 return track;
6158 }
6159
start(RecordThread::RecordTrack * recordTrack,AudioSystem::sync_event_t event,int triggerSession)6160 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6161 AudioSystem::sync_event_t event,
6162 int triggerSession)
6163 {
6164 ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6165 sp<ThreadBase> strongMe = this;
6166 status_t status = NO_ERROR;
6167
6168 if (event == AudioSystem::SYNC_EVENT_NONE) {
6169 recordTrack->clearSyncStartEvent();
6170 } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6171 recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6172 triggerSession,
6173 recordTrack->sessionId(),
6174 syncStartEventCallback,
6175 recordTrack);
6176 // Sync event can be cancelled by the trigger session if the track is not in a
6177 // compatible state in which case we start record immediately
6178 if (recordTrack->mSyncStartEvent->isCancelled()) {
6179 recordTrack->clearSyncStartEvent();
6180 } else {
6181 // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6182 recordTrack->mFramesToDrop = -
6183 ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6184 }
6185 }
6186
6187 {
6188 // This section is a rendezvous between binder thread executing start() and RecordThread
6189 AutoMutex lock(mLock);
6190 if (mActiveTracks.indexOf(recordTrack) >= 0) {
6191 if (recordTrack->mState == TrackBase::PAUSING) {
6192 ALOGV("active record track PAUSING -> ACTIVE");
6193 recordTrack->mState = TrackBase::ACTIVE;
6194 } else {
6195 ALOGV("active record track state %d", recordTrack->mState);
6196 }
6197 return status;
6198 }
6199
6200 // TODO consider other ways of handling this, such as changing the state to :STARTING and
6201 // adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6202 // or using a separate command thread
6203 recordTrack->mState = TrackBase::STARTING_1;
6204 mActiveTracks.add(recordTrack);
6205 mActiveTracksGen++;
6206 status_t status = NO_ERROR;
6207 if (recordTrack->isExternalTrack()) {
6208 mLock.unlock();
6209 status = AudioSystem::startInput(mId, (audio_session_t)recordTrack->sessionId());
6210 mLock.lock();
6211 // FIXME should verify that recordTrack is still in mActiveTracks
6212 if (status != NO_ERROR) {
6213 mActiveTracks.remove(recordTrack);
6214 mActiveTracksGen++;
6215 recordTrack->clearSyncStartEvent();
6216 ALOGV("RecordThread::start error %d", status);
6217 return status;
6218 }
6219 }
6220 // Catch up with current buffer indices if thread is already running.
6221 // This is what makes a new client discard all buffered data. If the track's mRsmpInFront
6222 // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6223 // see previously buffered data before it called start(), but with greater risk of overrun.
6224
6225 recordTrack->mResamplerBufferProvider->reset();
6226 // clear any converter state as new data will be discontinuous
6227 recordTrack->mRecordBufferConverter->reset();
6228 recordTrack->mState = TrackBase::STARTING_2;
6229 // signal thread to start
6230 mWaitWorkCV.broadcast();
6231 if (mActiveTracks.indexOf(recordTrack) < 0) {
6232 ALOGV("Record failed to start");
6233 status = BAD_VALUE;
6234 goto startError;
6235 }
6236 return status;
6237 }
6238
6239 startError:
6240 if (recordTrack->isExternalTrack()) {
6241 AudioSystem::stopInput(mId, (audio_session_t)recordTrack->sessionId());
6242 }
6243 recordTrack->clearSyncStartEvent();
6244 // FIXME I wonder why we do not reset the state here?
6245 return status;
6246 }
6247
syncStartEventCallback(const wp<SyncEvent> & event)6248 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6249 {
6250 sp<SyncEvent> strongEvent = event.promote();
6251
6252 if (strongEvent != 0) {
6253 sp<RefBase> ptr = strongEvent->cookie().promote();
6254 if (ptr != 0) {
6255 RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6256 recordTrack->handleSyncStartEvent(strongEvent);
6257 }
6258 }
6259 }
6260
stop(RecordThread::RecordTrack * recordTrack)6261 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6262 ALOGV("RecordThread::stop");
6263 AutoMutex _l(mLock);
6264 if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6265 return false;
6266 }
6267 // note that threadLoop may still be processing the track at this point [without lock]
6268 recordTrack->mState = TrackBase::PAUSING;
6269 // do not wait for mStartStopCond if exiting
6270 if (exitPending()) {
6271 return true;
6272 }
6273 // FIXME incorrect usage of wait: no explicit predicate or loop
6274 mStartStopCond.wait(mLock);
6275 // if we have been restarted, recordTrack is in mActiveTracks here
6276 if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6277 ALOGV("Record stopped OK");
6278 return true;
6279 }
6280 return false;
6281 }
6282
isValidSyncEvent(const sp<SyncEvent> & event __unused) const6283 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6284 {
6285 return false;
6286 }
6287
setSyncEvent(const sp<SyncEvent> & event __unused)6288 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6289 {
6290 #if 0 // This branch is currently dead code, but is preserved in case it will be needed in future
6291 if (!isValidSyncEvent(event)) {
6292 return BAD_VALUE;
6293 }
6294
6295 int eventSession = event->triggerSession();
6296 status_t ret = NAME_NOT_FOUND;
6297
6298 Mutex::Autolock _l(mLock);
6299
6300 for (size_t i = 0; i < mTracks.size(); i++) {
6301 sp<RecordTrack> track = mTracks[i];
6302 if (eventSession == track->sessionId()) {
6303 (void) track->setSyncEvent(event);
6304 ret = NO_ERROR;
6305 }
6306 }
6307 return ret;
6308 #else
6309 return BAD_VALUE;
6310 #endif
6311 }
6312
6313 // destroyTrack_l() must be called with ThreadBase::mLock held
destroyTrack_l(const sp<RecordTrack> & track)6314 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6315 {
6316 track->terminate();
6317 track->mState = TrackBase::STOPPED;
6318 // active tracks are removed by threadLoop()
6319 if (mActiveTracks.indexOf(track) < 0) {
6320 removeTrack_l(track);
6321 }
6322 }
6323
removeTrack_l(const sp<RecordTrack> & track)6324 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6325 {
6326 mTracks.remove(track);
6327 // need anything related to effects here?
6328 if (track->isFastTrack()) {
6329 ALOG_ASSERT(!mFastTrackAvail);
6330 mFastTrackAvail = true;
6331 }
6332 }
6333
dump(int fd,const Vector<String16> & args)6334 void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6335 {
6336 dumpInternals(fd, args);
6337 dumpTracks(fd, args);
6338 dumpEffectChains(fd, args);
6339 }
6340
dumpInternals(int fd,const Vector<String16> & args)6341 void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6342 {
6343 dprintf(fd, "\nInput thread %p:\n", this);
6344
6345 dumpBase(fd, args);
6346
6347 if (mActiveTracks.size() == 0) {
6348 dprintf(fd, " No active record clients\n");
6349 }
6350 dprintf(fd, " Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6351 dprintf(fd, " Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6352
6353 // Make a non-atomic copy of fast capture dump state so it won't change underneath us
6354 const FastCaptureDumpState copy(mFastCaptureDumpState);
6355 copy.dump(fd);
6356 }
6357
dumpTracks(int fd,const Vector<String16> & args __unused)6358 void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6359 {
6360 const size_t SIZE = 256;
6361 char buffer[SIZE];
6362 String8 result;
6363
6364 size_t numtracks = mTracks.size();
6365 size_t numactive = mActiveTracks.size();
6366 size_t numactiveseen = 0;
6367 dprintf(fd, " %d Tracks", numtracks);
6368 if (numtracks) {
6369 dprintf(fd, " of which %d are active\n", numactive);
6370 RecordTrack::appendDumpHeader(result);
6371 for (size_t i = 0; i < numtracks ; ++i) {
6372 sp<RecordTrack> track = mTracks[i];
6373 if (track != 0) {
6374 bool active = mActiveTracks.indexOf(track) >= 0;
6375 if (active) {
6376 numactiveseen++;
6377 }
6378 track->dump(buffer, SIZE, active);
6379 result.append(buffer);
6380 }
6381 }
6382 } else {
6383 dprintf(fd, "\n");
6384 }
6385
6386 if (numactiveseen != numactive) {
6387 snprintf(buffer, SIZE, " The following tracks are in the active list but"
6388 " not in the track list\n");
6389 result.append(buffer);
6390 RecordTrack::appendDumpHeader(result);
6391 for (size_t i = 0; i < numactive; ++i) {
6392 sp<RecordTrack> track = mActiveTracks[i];
6393 if (mTracks.indexOf(track) < 0) {
6394 track->dump(buffer, SIZE, true);
6395 result.append(buffer);
6396 }
6397 }
6398
6399 }
6400 write(fd, result.string(), result.size());
6401 }
6402
6403
reset()6404 void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6405 {
6406 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6407 RecordThread *recordThread = (RecordThread *) threadBase.get();
6408 mRsmpInFront = recordThread->mRsmpInRear;
6409 mRsmpInUnrel = 0;
6410 }
6411
sync(size_t * framesAvailable,bool * hasOverrun)6412 void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6413 size_t *framesAvailable, bool *hasOverrun)
6414 {
6415 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6416 RecordThread *recordThread = (RecordThread *) threadBase.get();
6417 const int32_t rear = recordThread->mRsmpInRear;
6418 const int32_t front = mRsmpInFront;
6419 const ssize_t filled = rear - front;
6420
6421 size_t framesIn;
6422 bool overrun = false;
6423 if (filled < 0) {
6424 // should not happen, but treat like a massive overrun and re-sync
6425 framesIn = 0;
6426 mRsmpInFront = rear;
6427 overrun = true;
6428 } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6429 framesIn = (size_t) filled;
6430 } else {
6431 // client is not keeping up with server, but give it latest data
6432 framesIn = recordThread->mRsmpInFrames;
6433 mRsmpInFront = /* front = */ rear - framesIn;
6434 overrun = true;
6435 }
6436 if (framesAvailable != NULL) {
6437 *framesAvailable = framesIn;
6438 }
6439 if (hasOverrun != NULL) {
6440 *hasOverrun = overrun;
6441 }
6442 }
6443
6444 // AudioBufferProvider interface
getNextBuffer(AudioBufferProvider::Buffer * buffer,int64_t pts __unused)6445 status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6446 AudioBufferProvider::Buffer* buffer, int64_t pts __unused)
6447 {
6448 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6449 if (threadBase == 0) {
6450 buffer->frameCount = 0;
6451 buffer->raw = NULL;
6452 return NOT_ENOUGH_DATA;
6453 }
6454 RecordThread *recordThread = (RecordThread *) threadBase.get();
6455 int32_t rear = recordThread->mRsmpInRear;
6456 int32_t front = mRsmpInFront;
6457 ssize_t filled = rear - front;
6458 // FIXME should not be P2 (don't want to increase latency)
6459 // FIXME if client not keeping up, discard
6460 LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6461 // 'filled' may be non-contiguous, so return only the first contiguous chunk
6462 front &= recordThread->mRsmpInFramesP2 - 1;
6463 size_t part1 = recordThread->mRsmpInFramesP2 - front;
6464 if (part1 > (size_t) filled) {
6465 part1 = filled;
6466 }
6467 size_t ask = buffer->frameCount;
6468 ALOG_ASSERT(ask > 0);
6469 if (part1 > ask) {
6470 part1 = ask;
6471 }
6472 if (part1 == 0) {
6473 // out of data is fine since the resampler will return a short-count.
6474 buffer->raw = NULL;
6475 buffer->frameCount = 0;
6476 mRsmpInUnrel = 0;
6477 return NOT_ENOUGH_DATA;
6478 }
6479
6480 buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6481 buffer->frameCount = part1;
6482 mRsmpInUnrel = part1;
6483 return NO_ERROR;
6484 }
6485
6486 // AudioBufferProvider interface
releaseBuffer(AudioBufferProvider::Buffer * buffer)6487 void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6488 AudioBufferProvider::Buffer* buffer)
6489 {
6490 size_t stepCount = buffer->frameCount;
6491 if (stepCount == 0) {
6492 return;
6493 }
6494 ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6495 mRsmpInUnrel -= stepCount;
6496 mRsmpInFront += stepCount;
6497 buffer->raw = NULL;
6498 buffer->frameCount = 0;
6499 }
6500
RecordBufferConverter(audio_channel_mask_t srcChannelMask,audio_format_t srcFormat,uint32_t srcSampleRate,audio_channel_mask_t dstChannelMask,audio_format_t dstFormat,uint32_t dstSampleRate)6501 AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
6502 audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6503 uint32_t srcSampleRate,
6504 audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6505 uint32_t dstSampleRate) :
6506 mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
6507 // mSrcFormat
6508 // mSrcSampleRate
6509 // mDstChannelMask
6510 // mDstFormat
6511 // mDstSampleRate
6512 // mSrcChannelCount
6513 // mDstChannelCount
6514 // mDstFrameSize
6515 mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
6516 mResampler(NULL),
6517 mIsLegacyDownmix(false),
6518 mIsLegacyUpmix(false),
6519 mRequiresFloat(false),
6520 mInputConverterProvider(NULL)
6521 {
6522 (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
6523 dstChannelMask, dstFormat, dstSampleRate);
6524 }
6525
~RecordBufferConverter()6526 AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
6527 free(mBuf);
6528 delete mResampler;
6529 delete mInputConverterProvider;
6530 }
6531
convert(void * dst,AudioBufferProvider * provider,size_t frames)6532 size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
6533 AudioBufferProvider *provider, size_t frames)
6534 {
6535 if (mInputConverterProvider != NULL) {
6536 mInputConverterProvider->setBufferProvider(provider);
6537 provider = mInputConverterProvider;
6538 }
6539
6540 if (mResampler == NULL) {
6541 ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6542 mSrcSampleRate, mSrcFormat, mDstFormat);
6543
6544 AudioBufferProvider::Buffer buffer;
6545 for (size_t i = frames; i > 0; ) {
6546 buffer.frameCount = i;
6547 status_t status = provider->getNextBuffer(&buffer, 0);
6548 if (status != OK || buffer.frameCount == 0) {
6549 frames -= i; // cannot fill request.
6550 break;
6551 }
6552 // format convert to destination buffer
6553 convertNoResampler(dst, buffer.raw, buffer.frameCount);
6554
6555 dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
6556 i -= buffer.frameCount;
6557 provider->releaseBuffer(&buffer);
6558 }
6559 } else {
6560 ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6561 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
6562
6563 // reallocate buffer if needed
6564 if (mBufFrameSize != 0 && mBufFrames < frames) {
6565 free(mBuf);
6566 mBufFrames = frames;
6567 (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6568 }
6569 // resampler accumulates, but we only have one source track
6570 memset(mBuf, 0, frames * mBufFrameSize);
6571 frames = mResampler->resample((int32_t*)mBuf, frames, provider);
6572 // format convert to destination buffer
6573 convertResampler(dst, mBuf, frames);
6574 }
6575 return frames;
6576 }
6577
updateParameters(audio_channel_mask_t srcChannelMask,audio_format_t srcFormat,uint32_t srcSampleRate,audio_channel_mask_t dstChannelMask,audio_format_t dstFormat,uint32_t dstSampleRate)6578 status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
6579 audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6580 uint32_t srcSampleRate,
6581 audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6582 uint32_t dstSampleRate)
6583 {
6584 // quick evaluation if there is any change.
6585 if (mSrcFormat == srcFormat
6586 && mSrcChannelMask == srcChannelMask
6587 && mSrcSampleRate == srcSampleRate
6588 && mDstFormat == dstFormat
6589 && mDstChannelMask == dstChannelMask
6590 && mDstSampleRate == dstSampleRate) {
6591 return NO_ERROR;
6592 }
6593
6594 ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
6595 " srcFormat:%#x dstFormat:%#x srcRate:%u dstRate:%u",
6596 srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
6597 const bool valid =
6598 audio_is_input_channel(srcChannelMask)
6599 && audio_is_input_channel(dstChannelMask)
6600 && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
6601 && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
6602 && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
6603 ; // no upsampling checks for now
6604 if (!valid) {
6605 return BAD_VALUE;
6606 }
6607
6608 mSrcFormat = srcFormat;
6609 mSrcChannelMask = srcChannelMask;
6610 mSrcSampleRate = srcSampleRate;
6611 mDstFormat = dstFormat;
6612 mDstChannelMask = dstChannelMask;
6613 mDstSampleRate = dstSampleRate;
6614
6615 // compute derived parameters
6616 mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
6617 mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
6618 mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
6619
6620 // do we need to resample?
6621 delete mResampler;
6622 mResampler = NULL;
6623 if (mSrcSampleRate != mDstSampleRate) {
6624 mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
6625 mSrcChannelCount, mDstSampleRate);
6626 mResampler->setSampleRate(mSrcSampleRate);
6627 mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
6628 }
6629
6630 // are we running legacy channel conversion modes?
6631 mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
6632 || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
6633 && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
6634 mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
6635 && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
6636 || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
6637
6638 // do we need to process in float?
6639 mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
6640
6641 // do we need a staging buffer to convert for destination (we can still optimize this)?
6642 // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
6643 if (mResampler != NULL) {
6644 mBufFrameSize = max(mSrcChannelCount, FCC_2)
6645 * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6646 } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
6647 mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6648 } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
6649 mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
6650 } else {
6651 mBufFrameSize = 0;
6652 }
6653 mBufFrames = 0; // force the buffer to be resized.
6654
6655 // do we need an input converter buffer provider to give us float?
6656 delete mInputConverterProvider;
6657 mInputConverterProvider = NULL;
6658 if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
6659 mInputConverterProvider = new ReformatBufferProvider(
6660 audio_channel_count_from_in_mask(mSrcChannelMask),
6661 mSrcFormat,
6662 AUDIO_FORMAT_PCM_FLOAT,
6663 256 /* provider buffer frame count */);
6664 }
6665
6666 // do we need a remixer to do channel mask conversion
6667 if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
6668 (void) memcpy_by_index_array_initialization_from_channel_mask(
6669 mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
6670 }
6671 return NO_ERROR;
6672 }
6673
convertNoResampler(void * dst,const void * src,size_t frames)6674 void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
6675 void *dst, const void *src, size_t frames)
6676 {
6677 // src is native type unless there is legacy upmix or downmix, whereupon it is float.
6678 if (mBufFrameSize != 0 && mBufFrames < frames) {
6679 free(mBuf);
6680 mBufFrames = frames;
6681 (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6682 }
6683 // do we need to do legacy upmix and downmix?
6684 if (mIsLegacyUpmix || mIsLegacyDownmix) {
6685 void *dstBuf = mBuf != NULL ? mBuf : dst;
6686 if (mIsLegacyUpmix) {
6687 upmix_to_stereo_float_from_mono_float((float *)dstBuf,
6688 (const float *)src, frames);
6689 } else /*mIsLegacyDownmix */ {
6690 downmix_to_mono_float_from_stereo_float((float *)dstBuf,
6691 (const float *)src, frames);
6692 }
6693 if (mBuf != NULL) {
6694 memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
6695 frames * mDstChannelCount);
6696 }
6697 return;
6698 }
6699 // do we need to do channel mask conversion?
6700 if (mSrcChannelMask != mDstChannelMask) {
6701 void *dstBuf = mBuf != NULL ? mBuf : dst;
6702 memcpy_by_index_array(dstBuf, mDstChannelCount,
6703 src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
6704 if (dstBuf == dst) {
6705 return; // format is the same
6706 }
6707 }
6708 // convert to destination buffer
6709 const void *convertBuf = mBuf != NULL ? mBuf : src;
6710 memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
6711 frames * mDstChannelCount);
6712 }
6713
convertResampler(void * dst,void * src,size_t frames)6714 void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
6715 void *dst, /*not-a-const*/ void *src, size_t frames)
6716 {
6717 // src buffer format is ALWAYS float when entering this routine
6718 if (mIsLegacyUpmix) {
6719 ; // mono to stereo already handled by resampler
6720 } else if (mIsLegacyDownmix
6721 || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
6722 // the resampler outputs stereo for mono input channel (a feature?)
6723 // must convert to mono
6724 downmix_to_mono_float_from_stereo_float((float *)src,
6725 (const float *)src, frames);
6726 } else if (mSrcChannelMask != mDstChannelMask) {
6727 // convert to mono channel again for channel mask conversion (could be skipped
6728 // with further optimization).
6729 if (mSrcChannelCount == 1) {
6730 downmix_to_mono_float_from_stereo_float((float *)src,
6731 (const float *)src, frames);
6732 }
6733 // convert to destination format (in place, OK as float is larger than other types)
6734 if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
6735 memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6736 frames * mSrcChannelCount);
6737 }
6738 // channel convert and save to dst
6739 memcpy_by_index_array(dst, mDstChannelCount,
6740 src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
6741 return;
6742 }
6743 // convert to destination format and save to dst
6744 memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6745 frames * mDstChannelCount);
6746 }
6747
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)6748 bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
6749 status_t& status)
6750 {
6751 bool reconfig = false;
6752
6753 status = NO_ERROR;
6754
6755 audio_format_t reqFormat = mFormat;
6756 uint32_t samplingRate = mSampleRate;
6757 // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
6758 audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
6759
6760 AudioParameter param = AudioParameter(keyValuePair);
6761 int value;
6762 // TODO Investigate when this code runs. Check with audio policy when a sample rate and
6763 // channel count change can be requested. Do we mandate the first client defines the
6764 // HAL sampling rate and channel count or do we allow changes on the fly?
6765 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
6766 samplingRate = value;
6767 reconfig = true;
6768 }
6769 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
6770 if (!audio_is_linear_pcm((audio_format_t) value)) {
6771 status = BAD_VALUE;
6772 } else {
6773 reqFormat = (audio_format_t) value;
6774 reconfig = true;
6775 }
6776 }
6777 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
6778 audio_channel_mask_t mask = (audio_channel_mask_t) value;
6779 if (!audio_is_input_channel(mask) ||
6780 audio_channel_count_from_in_mask(mask) > FCC_8) {
6781 status = BAD_VALUE;
6782 } else {
6783 channelMask = mask;
6784 reconfig = true;
6785 }
6786 }
6787 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
6788 // do not accept frame count changes if tracks are open as the track buffer
6789 // size depends on frame count and correct behavior would not be guaranteed
6790 // if frame count is changed after track creation
6791 if (mActiveTracks.size() > 0) {
6792 status = INVALID_OPERATION;
6793 } else {
6794 reconfig = true;
6795 }
6796 }
6797 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6798 // forward device change to effects that have requested to be
6799 // aware of attached audio device.
6800 for (size_t i = 0; i < mEffectChains.size(); i++) {
6801 mEffectChains[i]->setDevice_l(value);
6802 }
6803
6804 // store input device and output device but do not forward output device to audio HAL.
6805 // Note that status is ignored by the caller for output device
6806 // (see AudioFlinger::setParameters()
6807 if (audio_is_output_devices(value)) {
6808 mOutDevice = value;
6809 status = BAD_VALUE;
6810 } else {
6811 mInDevice = value;
6812 if (value != AUDIO_DEVICE_NONE) {
6813 mPrevInDevice = value;
6814 }
6815 // disable AEC and NS if the device is a BT SCO headset supporting those
6816 // pre processings
6817 if (mTracks.size() > 0) {
6818 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6819 mAudioFlinger->btNrecIsOff();
6820 for (size_t i = 0; i < mTracks.size(); i++) {
6821 sp<RecordTrack> track = mTracks[i];
6822 setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
6823 setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
6824 }
6825 }
6826 }
6827 }
6828 if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
6829 mAudioSource != (audio_source_t)value) {
6830 // forward device change to effects that have requested to be
6831 // aware of attached audio device.
6832 for (size_t i = 0; i < mEffectChains.size(); i++) {
6833 mEffectChains[i]->setAudioSource_l((audio_source_t)value);
6834 }
6835 mAudioSource = (audio_source_t)value;
6836 }
6837
6838 if (status == NO_ERROR) {
6839 status = mInput->stream->common.set_parameters(&mInput->stream->common,
6840 keyValuePair.string());
6841 if (status == INVALID_OPERATION) {
6842 inputStandBy();
6843 status = mInput->stream->common.set_parameters(&mInput->stream->common,
6844 keyValuePair.string());
6845 }
6846 if (reconfig) {
6847 if (status == BAD_VALUE &&
6848 audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
6849 audio_is_linear_pcm(reqFormat) &&
6850 (mInput->stream->common.get_sample_rate(&mInput->stream->common)
6851 <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
6852 audio_channel_count_from_in_mask(
6853 mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
6854 status = NO_ERROR;
6855 }
6856 if (status == NO_ERROR) {
6857 readInputParameters_l();
6858 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
6859 }
6860 }
6861 }
6862
6863 return reconfig;
6864 }
6865
getParameters(const String8 & keys)6866 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
6867 {
6868 Mutex::Autolock _l(mLock);
6869 if (initCheck() != NO_ERROR) {
6870 return String8();
6871 }
6872
6873 char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
6874 const String8 out_s8(s);
6875 free(s);
6876 return out_s8;
6877 }
6878
ioConfigChanged(audio_io_config_event event,pid_t pid)6879 void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
6880 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
6881
6882 desc->mIoHandle = mId;
6883
6884 switch (event) {
6885 case AUDIO_INPUT_OPENED:
6886 case AUDIO_INPUT_CONFIG_CHANGED:
6887 desc->mPatch = mPatch;
6888 desc->mChannelMask = mChannelMask;
6889 desc->mSamplingRate = mSampleRate;
6890 desc->mFormat = mFormat;
6891 desc->mFrameCount = mFrameCount;
6892 desc->mLatency = 0;
6893 break;
6894
6895 case AUDIO_INPUT_CLOSED:
6896 default:
6897 break;
6898 }
6899 mAudioFlinger->ioConfigChanged(event, desc, pid);
6900 }
6901
readInputParameters_l()6902 void AudioFlinger::RecordThread::readInputParameters_l()
6903 {
6904 mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
6905 mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
6906 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
6907 if (mChannelCount > FCC_8) {
6908 ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
6909 }
6910 mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
6911 mFormat = mHALFormat;
6912 if (!audio_is_linear_pcm(mFormat)) {
6913 ALOGE("HAL format %#x is not linear pcm", mFormat);
6914 }
6915 mFrameSize = audio_stream_in_frame_size(mInput->stream);
6916 mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
6917 mFrameCount = mBufferSize / mFrameSize;
6918 // This is the formula for calculating the temporary buffer size.
6919 // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
6920 // 1 full output buffer, regardless of the alignment of the available input.
6921 // The value is somewhat arbitrary, and could probably be even larger.
6922 // A larger value should allow more old data to be read after a track calls start(),
6923 // without increasing latency.
6924 //
6925 // Note this is independent of the maximum downsampling ratio permitted for capture.
6926 mRsmpInFrames = mFrameCount * 7;
6927 mRsmpInFramesP2 = roundup(mRsmpInFrames);
6928 free(mRsmpInBuffer);
6929
6930 // TODO optimize audio capture buffer sizes ...
6931 // Here we calculate the size of the sliding buffer used as a source
6932 // for resampling. mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
6933 // For current HAL frame counts, this is usually 2048 = 40 ms. It would
6934 // be better to have it derived from the pipe depth in the long term.
6935 // The current value is higher than necessary. However it should not add to latency.
6936
6937 // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
6938 (void)posix_memalign(&mRsmpInBuffer, 32, (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize);
6939
6940 // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
6941 // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
6942 }
6943
getInputFramesLost()6944 uint32_t AudioFlinger::RecordThread::getInputFramesLost()
6945 {
6946 Mutex::Autolock _l(mLock);
6947 if (initCheck() != NO_ERROR) {
6948 return 0;
6949 }
6950
6951 return mInput->stream->get_input_frames_lost(mInput->stream);
6952 }
6953
hasAudioSession(int sessionId) const6954 uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
6955 {
6956 Mutex::Autolock _l(mLock);
6957 uint32_t result = 0;
6958 if (getEffectChain_l(sessionId) != 0) {
6959 result = EFFECT_SESSION;
6960 }
6961
6962 for (size_t i = 0; i < mTracks.size(); ++i) {
6963 if (sessionId == mTracks[i]->sessionId()) {
6964 result |= TRACK_SESSION;
6965 break;
6966 }
6967 }
6968
6969 return result;
6970 }
6971
sessionIds() const6972 KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
6973 {
6974 KeyedVector<int, bool> ids;
6975 Mutex::Autolock _l(mLock);
6976 for (size_t j = 0; j < mTracks.size(); ++j) {
6977 sp<RecordThread::RecordTrack> track = mTracks[j];
6978 int sessionId = track->sessionId();
6979 if (ids.indexOfKey(sessionId) < 0) {
6980 ids.add(sessionId, true);
6981 }
6982 }
6983 return ids;
6984 }
6985
clearInput()6986 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
6987 {
6988 Mutex::Autolock _l(mLock);
6989 AudioStreamIn *input = mInput;
6990 mInput = NULL;
6991 return input;
6992 }
6993
6994 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const6995 audio_stream_t* AudioFlinger::RecordThread::stream() const
6996 {
6997 if (mInput == NULL) {
6998 return NULL;
6999 }
7000 return &mInput->stream->common;
7001 }
7002
addEffectChain_l(const sp<EffectChain> & chain)7003 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7004 {
7005 // only one chain per input thread
7006 if (mEffectChains.size() != 0) {
7007 ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7008 return INVALID_OPERATION;
7009 }
7010 ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7011 chain->setThread(this);
7012 chain->setInBuffer(NULL);
7013 chain->setOutBuffer(NULL);
7014
7015 checkSuspendOnAddEffectChain_l(chain);
7016
7017 // make sure enabled pre processing effects state is communicated to the HAL as we
7018 // just moved them to a new input stream.
7019 chain->syncHalEffectsState();
7020
7021 mEffectChains.add(chain);
7022
7023 return NO_ERROR;
7024 }
7025
removeEffectChain_l(const sp<EffectChain> & chain)7026 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7027 {
7028 ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7029 ALOGW_IF(mEffectChains.size() != 1,
7030 "removeEffectChain_l() %p invalid chain size %d on thread %p",
7031 chain.get(), mEffectChains.size(), this);
7032 if (mEffectChains.size() == 1) {
7033 mEffectChains.removeAt(0);
7034 }
7035 return 0;
7036 }
7037
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)7038 status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7039 audio_patch_handle_t *handle)
7040 {
7041 status_t status = NO_ERROR;
7042
7043 // store new device and send to effects
7044 mInDevice = patch->sources[0].ext.device.type;
7045 mPatch = *patch;
7046 for (size_t i = 0; i < mEffectChains.size(); i++) {
7047 mEffectChains[i]->setDevice_l(mInDevice);
7048 }
7049
7050 // disable AEC and NS if the device is a BT SCO headset supporting those
7051 // pre processings
7052 if (mTracks.size() > 0) {
7053 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7054 mAudioFlinger->btNrecIsOff();
7055 for (size_t i = 0; i < mTracks.size(); i++) {
7056 sp<RecordTrack> track = mTracks[i];
7057 setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7058 setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7059 }
7060 }
7061
7062 // store new source and send to effects
7063 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7064 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7065 for (size_t i = 0; i < mEffectChains.size(); i++) {
7066 mEffectChains[i]->setAudioSource_l(mAudioSource);
7067 }
7068 }
7069
7070 if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7071 audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7072 status = hwDevice->create_audio_patch(hwDevice,
7073 patch->num_sources,
7074 patch->sources,
7075 patch->num_sinks,
7076 patch->sinks,
7077 handle);
7078 } else {
7079 char *address;
7080 if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7081 address = audio_device_address_to_parameter(
7082 patch->sources[0].ext.device.type,
7083 patch->sources[0].ext.device.address);
7084 } else {
7085 address = (char *)calloc(1, 1);
7086 }
7087 AudioParameter param = AudioParameter(String8(address));
7088 free(address);
7089 param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
7090 (int)patch->sources[0].ext.device.type);
7091 param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
7092 (int)patch->sinks[0].ext.mix.usecase.source);
7093 status = mInput->stream->common.set_parameters(&mInput->stream->common,
7094 param.toString().string());
7095 *handle = AUDIO_PATCH_HANDLE_NONE;
7096 }
7097
7098 if (mInDevice != mPrevInDevice) {
7099 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7100 mPrevInDevice = mInDevice;
7101 }
7102
7103 return status;
7104 }
7105
releaseAudioPatch_l(const audio_patch_handle_t handle)7106 status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7107 {
7108 status_t status = NO_ERROR;
7109
7110 mInDevice = AUDIO_DEVICE_NONE;
7111
7112 if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7113 audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7114 status = hwDevice->release_audio_patch(hwDevice, handle);
7115 } else {
7116 AudioParameter param;
7117 param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
7118 status = mInput->stream->common.set_parameters(&mInput->stream->common,
7119 param.toString().string());
7120 }
7121 return status;
7122 }
7123
addPatchRecord(const sp<PatchRecord> & record)7124 void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7125 {
7126 Mutex::Autolock _l(mLock);
7127 mTracks.add(record);
7128 }
7129
deletePatchRecord(const sp<PatchRecord> & record)7130 void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7131 {
7132 Mutex::Autolock _l(mLock);
7133 destroyTrack_l(record);
7134 }
7135
getAudioPortConfig(struct audio_port_config * config)7136 void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7137 {
7138 ThreadBase::getAudioPortConfig(config);
7139 config->role = AUDIO_PORT_ROLE_SINK;
7140 config->ext.mix.hw_module = mInput->audioHwDev->handle();
7141 config->ext.mix.usecase.source = mAudioSource;
7142 }
7143
7144 } // namespace android
7145