1 
2 /*
3  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
4  */
5 /*
6  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
7  *
8  *	Support for enhanced MLS infrastructure.
9  *
10  * Updated: Frank Mayer <mayerf@tresys.com>
11  *          and Karl MacMillan <kmacmillan@tresys.com>
12  *
13  * 	Added conditional policy language extensions
14  *
15  * Updated: Red Hat, Inc.  James Morris <jmorris@redhat.com>
16  *
17  *      Fine-grained netlink support
18  *      IPv6 support
19  *      Code cleanup
20  *
21  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23  * Copyright (C) 2003 - 2004 Red Hat, Inc.
24  *
25  *  This library is free software; you can redistribute it and/or
26  *  modify it under the terms of the GNU Lesser General Public
27  *  License as published by the Free Software Foundation; either
28  *  version 2.1 of the License, or (at your option) any later version.
29  *
30  *  This library is distributed in the hope that it will be useful,
31  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
32  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
33  *  Lesser General Public License for more details.
34  *
35  *  You should have received a copy of the GNU Lesser General Public
36  *  License along with this library; if not, write to the Free Software
37  *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
38  */
39 
40 /* FLASK */
41 
42 /*
43  * Implementation of the security services.
44  */
45 
46 /* Initial sizes malloc'd for sepol_compute_av_reason_buffer() support */
47 #define REASON_BUF_SIZE 2048
48 #define EXPR_BUF_SIZE 1024
49 #define STACK_LEN 32
50 
51 #include <stdlib.h>
52 #include <sys/types.h>
53 #include <sys/socket.h>
54 #include <netinet/in.h>
55 #include <arpa/inet.h>
56 
57 #include <sepol/policydb/policydb.h>
58 #include <sepol/policydb/sidtab.h>
59 #include <sepol/policydb/services.h>
60 #include <sepol/policydb/conditional.h>
61 #include <sepol/policydb/flask.h>
62 #include <sepol/policydb/util.h>
63 
64 #include "debug.h"
65 #include "private.h"
66 #include "context.h"
67 #include "av_permissions.h"
68 #include "dso.h"
69 #include "mls.h"
70 
71 #define BUG() do { ERR(NULL, "Badness at %s:%d", __FILE__, __LINE__); } while (0)
72 #define BUG_ON(x) do { if (x) ERR(NULL, "Badness at %s:%d", __FILE__, __LINE__); } while (0)
73 
74 static int selinux_enforcing = 1;
75 
76 static sidtab_t mysidtab, *sidtab = &mysidtab;
77 static policydb_t mypolicydb, *policydb = &mypolicydb;
78 
79 /* Used by sepol_compute_av_reason_buffer() to keep track of entries */
80 static int reason_buf_used;
81 static int reason_buf_len;
82 
83 /* Stack services for RPN to infix conversion. */
84 static char **stack;
85 static int stack_len;
86 static int next_stack_entry;
87 
push(char * expr_ptr)88 static void push(char *expr_ptr)
89 {
90 	if (next_stack_entry >= stack_len) {
91 		char **new_stack = stack;
92 		int new_stack_len;
93 
94 		if (stack_len == 0)
95 			new_stack_len = STACK_LEN;
96 		else
97 			new_stack_len = stack_len * 2;
98 
99 		new_stack = realloc(stack, new_stack_len * sizeof(*stack));
100 		if (!new_stack) {
101 			ERR(NULL, "unable to allocate stack space");
102 			return;
103 		}
104 		stack_len = new_stack_len;
105 		stack = new_stack;
106 	}
107 	stack[next_stack_entry] = expr_ptr;
108 	next_stack_entry++;
109 }
110 
pop(void)111 static char *pop(void)
112 {
113 	next_stack_entry--;
114 	if (next_stack_entry < 0) {
115 		next_stack_entry = 0;
116 		ERR(NULL, "pop called with no stack entries");
117 		return NULL;
118 	}
119 	return stack[next_stack_entry];
120 }
121 /* End Stack services */
122 
sepol_set_sidtab(sidtab_t * s)123 int hidden sepol_set_sidtab(sidtab_t * s)
124 {
125 	sidtab = s;
126 	return 0;
127 }
128 
sepol_set_policydb(policydb_t * p)129 int hidden sepol_set_policydb(policydb_t * p)
130 {
131 	policydb = p;
132 	return 0;
133 }
134 
sepol_set_policydb_from_file(FILE * fp)135 int sepol_set_policydb_from_file(FILE * fp)
136 {
137 	struct policy_file pf;
138 
139 	policy_file_init(&pf);
140 	pf.fp = fp;
141 	pf.type = PF_USE_STDIO;
142 	if (mypolicydb.policy_type)
143 		policydb_destroy(&mypolicydb);
144 	if (policydb_init(&mypolicydb)) {
145 		ERR(NULL, "Out of memory!");
146 		return -1;
147 	}
148 	if (policydb_read(&mypolicydb, &pf, 0)) {
149 		policydb_destroy(&mypolicydb);
150 		ERR(NULL, "can't read binary policy: %s", strerror(errno));
151 		return -1;
152 	}
153 	policydb = &mypolicydb;
154 	return sepol_sidtab_init(sidtab);
155 }
156 
157 /*
158  * The largest sequence number that has been used when
159  * providing an access decision to the access vector cache.
160  * The sequence number only changes when a policy change
161  * occurs.
162  */
163 static uint32_t latest_granting = 0;
164 
165 /*
166  * cat_expr_buf adds a string to an expression buffer and handles
167  * realloc's if buffer is too small. The array of expression text
168  * buffer pointers and its counter are globally defined here as
169  * constraint_expr_eval_reason() sets them up and cat_expr_buf
170  * updates the e_buf pointer.
171  */
172 static int expr_counter;
173 static char **expr_list;
174 static int expr_buf_used;
175 static int expr_buf_len;
176 
cat_expr_buf(char * e_buf,const char * string)177 static void cat_expr_buf(char *e_buf, const char *string)
178 {
179 	int len, new_buf_len;
180 	char *p, *new_buf = e_buf;
181 
182 	while (1) {
183 		p = e_buf + expr_buf_used;
184 		len = snprintf(p, expr_buf_len - expr_buf_used, "%s", string);
185 		if (len < 0 || len >= expr_buf_len - expr_buf_used) {
186 			new_buf_len = expr_buf_len + EXPR_BUF_SIZE;
187 			new_buf = realloc(e_buf, new_buf_len);
188 			if (!new_buf) {
189 				ERR(NULL, "failed to realloc expr buffer");
190 				return;
191 			}
192 			/* Update new ptr in expr list and locally + new len */
193 			expr_list[expr_counter] = new_buf;
194 			e_buf = new_buf;
195 			expr_buf_len = new_buf_len;
196 		} else {
197 			expr_buf_used += len;
198 			return;
199 		}
200 	}
201 }
202 
203 /*
204  * If the POLICY_KERN version is >= POLICYDB_VERSION_CONSTRAINT_NAMES,
205  * then for 'types' only, read the types_names->types list as it will
206  * contain a list of types and attributes that were defined in the
207  * policy source.
208  * For user and role plus types (for policy vers <
209  * POLICYDB_VERSION_CONSTRAINT_NAMES) just read the e->names list.
210  */
get_name_list(constraint_expr_t * e,int type,const char * src,const char * op,int failed)211 static void get_name_list(constraint_expr_t *e, int type,
212 							const char *src, const char *op, int failed)
213 {
214 	ebitmap_t *types;
215 	int rc = 0;
216 	unsigned int i;
217 	char tmp_buf[128];
218 	int counter = 0;
219 
220 	if (policydb->policy_type == POLICY_KERN &&
221 			policydb->policyvers >= POLICYDB_VERSION_CONSTRAINT_NAMES &&
222 			type == CEXPR_TYPE)
223 		types = &e->type_names->types;
224 	else
225 		types = &e->names;
226 
227 	/* Find out how many entries */
228 	for (i = ebitmap_startbit(types); i < ebitmap_length(types); i++) {
229 		rc = ebitmap_get_bit(types, i);
230 		if (rc == 0)
231 			continue;
232 		else
233 			counter++;
234 	}
235 	snprintf(tmp_buf, sizeof(tmp_buf), "(%s%s", src, op);
236 	cat_expr_buf(expr_list[expr_counter], tmp_buf);
237 
238 	if (counter == 0)
239 		cat_expr_buf(expr_list[expr_counter], "<empty_set> ");
240 	if (counter > 1)
241 		cat_expr_buf(expr_list[expr_counter], " {");
242 	if (counter >= 1) {
243 		for (i = ebitmap_startbit(types); i < ebitmap_length(types); i++) {
244 			rc = ebitmap_get_bit(types, i);
245 			if (rc == 0)
246 				continue;
247 
248 			/* Collect entries */
249 			switch (type) {
250 			case CEXPR_USER:
251 				snprintf(tmp_buf, sizeof(tmp_buf), " %s",
252 							policydb->p_user_val_to_name[i]);
253 				break;
254 			case CEXPR_ROLE:
255 				snprintf(tmp_buf, sizeof(tmp_buf), " %s",
256 							policydb->p_role_val_to_name[i]);
257 				break;
258 			case CEXPR_TYPE:
259 				snprintf(tmp_buf, sizeof(tmp_buf), " %s",
260 							policydb->p_type_val_to_name[i]);
261 				break;
262 			}
263 			cat_expr_buf(expr_list[expr_counter], tmp_buf);
264 		}
265 	}
266 	if (counter > 1)
267 		cat_expr_buf(expr_list[expr_counter], " }");
268 	if (failed)
269 		cat_expr_buf(expr_list[expr_counter], " -Fail-) ");
270 	else
271 		cat_expr_buf(expr_list[expr_counter], ") ");
272 
273 	return;
274 }
275 
msgcat(const char * src,const char * tgt,const char * op,int failed)276 static void msgcat(const char *src, const char *tgt, const char *op, int failed)
277 {
278 	char tmp_buf[128];
279 	if (failed)
280 		snprintf(tmp_buf, sizeof(tmp_buf), "(%s %s %s -Fail-) ",
281 				src, op, tgt);
282 	else
283 		snprintf(tmp_buf, sizeof(tmp_buf), "(%s %s %s) ",
284 				src, op, tgt);
285 	cat_expr_buf(expr_list[expr_counter], tmp_buf);
286 }
287 
288 /* Returns a buffer with class, statement type and permissions */
get_class_info(sepol_security_class_t tclass,constraint_node_t * constraint,context_struct_t * xcontext)289 static char *get_class_info(sepol_security_class_t tclass,
290 							constraint_node_t *constraint,
291 							context_struct_t *xcontext)
292 {
293 	constraint_expr_t *e;
294 	int mls, state_num;
295 
296 	/* Find if MLS statement or not */
297 	mls = 0;
298 	for (e = constraint->expr; e; e = e->next) {
299 		if (e->attr >= CEXPR_L1L2) {
300 			mls = 1;
301 			break;
302 		}
303 	}
304 
305 	/* Determine statement type */
306 	const char *statements[] = {
307 		"constrain ",			/* 0 */
308 		"mlsconstrain ",		/* 1 */
309 		"validatetrans ",		/* 2 */
310 		"mlsvalidatetrans ",	/* 3 */
311 		0 };
312 
313 	if (xcontext == NULL)
314 		state_num = mls + 0;
315 	else
316 		state_num = mls + 2;
317 
318 	int class_buf_len = 0;
319 	int new_class_buf_len;
320 	int len, buf_used;
321 	char *class_buf = NULL, *p;
322 	char *new_class_buf = NULL;
323 
324 	while (1) {
325 		new_class_buf_len = class_buf_len + EXPR_BUF_SIZE;
326 		new_class_buf = realloc(class_buf, new_class_buf_len);
327 			if (!new_class_buf)
328 				return NULL;
329 		class_buf_len = new_class_buf_len;
330 		class_buf = new_class_buf;
331 		buf_used = 0;
332 		p = class_buf;
333 
334 		/* Add statement type */
335 		len = snprintf(p, class_buf_len - buf_used, "%s", statements[state_num]);
336 		if (len < 0 || len >= class_buf_len - buf_used)
337 			continue;
338 
339 		/* Add class entry */
340 		p += len;
341 		buf_used += len;
342 		len = snprintf(p, class_buf_len - buf_used, "%s ",
343 				policydb->p_class_val_to_name[tclass - 1]);
344 		if (len < 0 || len >= class_buf_len - buf_used)
345 			continue;
346 
347 		/* Add permission entries (validatetrans does not have perms) */
348 		p += len;
349 		buf_used += len;
350 		if (state_num < 2) {
351 			len = snprintf(p, class_buf_len - buf_used, "{%s } (",
352 			sepol_av_to_string(policydb, tclass,
353 				constraint->permissions));
354 		} else {
355 			len = snprintf(p, class_buf_len - buf_used, "(");
356 		}
357 		if (len < 0 || len >= class_buf_len - buf_used)
358 			continue;
359 		break;
360 	}
361 	return class_buf;
362 }
363 
364 /*
365  * Modified version of constraint_expr_eval that will process each
366  * constraint as before but adds the information to text buffers that
367  * will hold various components. The expression will be in RPN format,
368  * therefore there is a stack based RPN to infix converter to produce
369  * the final readable constraint.
370  *
371  * Return the boolean value of a constraint expression
372  * when it is applied to the specified source and target
373  * security contexts.
374  *
375  * xcontext is a special beast...  It is used by the validatetrans rules
376  * only.  For these rules, scontext is the context before the transition,
377  * tcontext is the context after the transition, and xcontext is the
378  * context of the process performing the transition.  All other callers
379  * of constraint_expr_eval_reason should pass in NULL for xcontext.
380  *
381  * This function will also build a buffer as the constraint is processed
382  * for analysis. If this option is not required, then:
383  *      'tclass' should be '0' and r_buf MUST be NULL.
384  */
constraint_expr_eval_reason(context_struct_t * scontext,context_struct_t * tcontext,context_struct_t * xcontext,sepol_security_class_t tclass,constraint_node_t * constraint,char ** r_buf,unsigned int flags)385 static int constraint_expr_eval_reason(context_struct_t *scontext,
386 				context_struct_t *tcontext,
387 				context_struct_t *xcontext,
388 				sepol_security_class_t tclass,
389 				constraint_node_t *constraint,
390 				char **r_buf,
391 				unsigned int flags)
392 {
393 	uint32_t val1, val2;
394 	context_struct_t *c;
395 	role_datum_t *r1, *r2;
396 	mls_level_t *l1, *l2;
397 	constraint_expr_t *e;
398 	int s[CEXPR_MAXDEPTH];
399 	int sp = -1;
400 	char tmp_buf[128];
401 
402 /*
403  * Define the s_t_x_num values that make up r1, t2 etc. in text strings
404  * Set 1 = source, 2 = target, 3 = xcontext for validatetrans
405  */
406 #define SOURCE  1
407 #define TARGET  2
408 #define XTARGET 3
409 
410 	int s_t_x_num = SOURCE;
411 
412 	/* Set 0 = fail, u = CEXPR_USER, r = CEXPR_ROLE, t = CEXPR_TYPE */
413 	int u_r_t = 0;
414 
415 	char *src = NULL;
416 	char *tgt = NULL;
417 	int rc = 0, x;
418 	char *class_buf = NULL;
419 
420 	/*
421 	 * The array of expression answer buffer pointers and counter.
422 	 */
423 	char **answer_list = NULL;
424 	int answer_counter = 0;
425 
426 	class_buf = get_class_info(tclass, constraint, xcontext);
427 	if (!class_buf) {
428 		ERR(NULL, "failed to allocate class buffer");
429 		return -ENOMEM;
430 	}
431 
432 	/* Original function but with buffer support */
433 	int expr_list_len = 0;
434 	expr_counter = 0;
435 	expr_list = NULL;
436 	for (e = constraint->expr; e; e = e->next) {
437 		/* Allocate a stack to hold expression buffer entries */
438 		if (expr_counter >= expr_list_len) {
439 			char **new_expr_list = expr_list;
440 			int new_expr_list_len;
441 
442 			if (expr_list_len == 0)
443 				new_expr_list_len = STACK_LEN;
444 			else
445 				new_expr_list_len = expr_list_len * 2;
446 
447 			new_expr_list = realloc(expr_list,
448 					new_expr_list_len * sizeof(*expr_list));
449 			if (!new_expr_list) {
450 				ERR(NULL, "failed to allocate expr buffer stack");
451 				rc = -ENOMEM;
452 				goto out;
453 			}
454 			expr_list_len = new_expr_list_len;
455 			expr_list = new_expr_list;
456 		}
457 
458 		/*
459 		 * malloc a buffer to store each expression text component. If
460 		 * buffer is too small cat_expr_buf() will realloc extra space.
461 		 */
462 		expr_buf_len = EXPR_BUF_SIZE;
463 		expr_list[expr_counter] = malloc(expr_buf_len);
464 		if (!expr_list[expr_counter]) {
465 			ERR(NULL, "failed to allocate expr buffer");
466 			rc = -ENOMEM;
467 			goto out;
468 		}
469 		expr_buf_used = 0;
470 
471 		/* Now process each expression of the constraint */
472 		switch (e->expr_type) {
473 		case CEXPR_NOT:
474 			BUG_ON(sp < 0);
475 			s[sp] = !s[sp];
476 			cat_expr_buf(expr_list[expr_counter], "not");
477 			break;
478 		case CEXPR_AND:
479 			BUG_ON(sp < 1);
480 			sp--;
481 			s[sp] &= s[sp + 1];
482 			cat_expr_buf(expr_list[expr_counter], "and");
483 			break;
484 		case CEXPR_OR:
485 			BUG_ON(sp < 1);
486 			sp--;
487 			s[sp] |= s[sp + 1];
488 			cat_expr_buf(expr_list[expr_counter], "or");
489 			break;
490 		case CEXPR_ATTR:
491 			if (sp == (CEXPR_MAXDEPTH - 1))
492 				goto out;
493 
494 			switch (e->attr) {
495 			case CEXPR_USER:
496 				val1 = scontext->user;
497 				val2 = tcontext->user;
498 				free(src); src = strdup("u1");
499 				free(tgt); tgt = strdup("u2");
500 				break;
501 			case CEXPR_TYPE:
502 				val1 = scontext->type;
503 				val2 = tcontext->type;
504 				free(src); src = strdup("t1");
505 				free(tgt); tgt = strdup("t2");
506 				break;
507 			case CEXPR_ROLE:
508 				val1 = scontext->role;
509 				val2 = tcontext->role;
510 				r1 = policydb->role_val_to_struct[val1 - 1];
511 				r2 = policydb->role_val_to_struct[val2 - 1];
512 				free(src); src = strdup("r1");
513 				free(tgt); tgt = strdup("r2");
514 
515 				switch (e->op) {
516 				case CEXPR_DOM:
517 					s[++sp] = ebitmap_get_bit(&r1->dominates, val2 - 1);
518 					msgcat(src, tgt, "dom", s[sp] == 0);
519 					expr_counter++;
520 					continue;
521 				case CEXPR_DOMBY:
522 					s[++sp] = ebitmap_get_bit(&r2->dominates, val1 - 1);
523 					msgcat(src, tgt, "domby", s[sp] == 0);
524 					expr_counter++;
525 					continue;
526 				case CEXPR_INCOMP:
527 					s[++sp] = (!ebitmap_get_bit(&r1->dominates, val2 - 1)
528 						 && !ebitmap_get_bit(&r2->dominates, val1 - 1));
529 					msgcat(src, tgt, "incomp", s[sp] == 0);
530 					expr_counter++;
531 					continue;
532 				default:
533 					break;
534 				}
535 				break;
536 			case CEXPR_L1L2:
537 				l1 = &(scontext->range.level[0]);
538 				l2 = &(tcontext->range.level[0]);
539 				free(src); src = strdup("l1");
540 				free(tgt); tgt = strdup("l2");
541 				goto mls_ops;
542 			case CEXPR_L1H2:
543 				l1 = &(scontext->range.level[0]);
544 				l2 = &(tcontext->range.level[1]);
545 				free(src); src = strdup("l1");
546 				free(tgt); tgt = strdup("h2");
547 				goto mls_ops;
548 			case CEXPR_H1L2:
549 				l1 = &(scontext->range.level[1]);
550 				l2 = &(tcontext->range.level[0]);
551 				free(src); src = strdup("h1");
552 				free(tgt); tgt = strdup("l2");
553 				goto mls_ops;
554 			case CEXPR_H1H2:
555 				l1 = &(scontext->range.level[1]);
556 				l2 = &(tcontext->range.level[1]);
557 				free(src); src = strdup("h1");
558 				free(tgt); tgt = strdup("h2");
559 				goto mls_ops;
560 			case CEXPR_L1H1:
561 				l1 = &(scontext->range.level[0]);
562 				l2 = &(scontext->range.level[1]);
563 				free(src); src = strdup("l1");
564 				free(tgt); tgt = strdup("h1");
565 				goto mls_ops;
566 			case CEXPR_L2H2:
567 				l1 = &(tcontext->range.level[0]);
568 				l2 = &(tcontext->range.level[1]);
569 				free(src); src = strdup("l2");
570 				free(tgt); tgt = strdup("h2");
571 mls_ops:
572 				switch (e->op) {
573 				case CEXPR_EQ:
574 					s[++sp] = mls_level_eq(l1, l2);
575 					msgcat(src, tgt, "eq", s[sp] == 0);
576 					expr_counter++;
577 					continue;
578 				case CEXPR_NEQ:
579 					s[++sp] = !mls_level_eq(l1, l2);
580 					msgcat(src, tgt, "!=", s[sp] == 0);
581 					expr_counter++;
582 					continue;
583 				case CEXPR_DOM:
584 					s[++sp] = mls_level_dom(l1, l2);
585 					msgcat(src, tgt, "dom", s[sp] == 0);
586 					expr_counter++;
587 					continue;
588 				case CEXPR_DOMBY:
589 					s[++sp] = mls_level_dom(l2, l1);
590 					msgcat(src, tgt, "domby", s[sp] == 0);
591 					expr_counter++;
592 					continue;
593 				case CEXPR_INCOMP:
594 					s[++sp] = mls_level_incomp(l2, l1);
595 					msgcat(src, tgt, "incomp", s[sp] == 0);
596 					expr_counter++;
597 					continue;
598 				default:
599 					BUG();
600 					goto out;
601 				}
602 				break;
603 			default:
604 				BUG();
605 				goto out;
606 			}
607 
608 			switch (e->op) {
609 			case CEXPR_EQ:
610 				s[++sp] = (val1 == val2);
611 				msgcat(src, tgt, "==", s[sp] == 0);
612 				break;
613 			case CEXPR_NEQ:
614 				s[++sp] = (val1 != val2);
615 				msgcat(src, tgt, "!=", s[sp] == 0);
616 				break;
617 			default:
618 				BUG();
619 				goto out;
620 			}
621 			break;
622 		case CEXPR_NAMES:
623 			if (sp == (CEXPR_MAXDEPTH - 1))
624 				goto out;
625 			s_t_x_num = SOURCE;
626 			c = scontext;
627 			if (e->attr & CEXPR_TARGET) {
628 				s_t_x_num = TARGET;
629 				c = tcontext;
630 			} else if (e->attr & CEXPR_XTARGET) {
631 				s_t_x_num = XTARGET;
632 				c = xcontext;
633 			}
634 			if (!c) {
635 				BUG();
636 				goto out;
637 			}
638 			if (e->attr & CEXPR_USER) {
639 				u_r_t = CEXPR_USER;
640 				val1 = c->user;
641 				snprintf(tmp_buf, sizeof(tmp_buf), "u%d ", s_t_x_num);
642 				free(src); src = strdup(tmp_buf);
643 			} else if (e->attr & CEXPR_ROLE) {
644 				u_r_t = CEXPR_ROLE;
645 				val1 = c->role;
646 				snprintf(tmp_buf, sizeof(tmp_buf), "r%d ", s_t_x_num);
647 				free(src); src = strdup(tmp_buf);
648 			} else if (e->attr & CEXPR_TYPE) {
649 				u_r_t = CEXPR_TYPE;
650 				val1 = c->type;
651 				snprintf(tmp_buf, sizeof(tmp_buf), "t%d ", s_t_x_num);
652 				free(src); src = strdup(tmp_buf);
653 			} else {
654 				BUG();
655 				goto out;
656 			}
657 
658 			switch (e->op) {
659 			case CEXPR_EQ:
660 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
661 				get_name_list(e, u_r_t, src, "==", s[sp] == 0);
662 				break;
663 
664 			case CEXPR_NEQ:
665 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
666 				get_name_list(e, u_r_t, src, "!=", s[sp] == 0);
667 				break;
668 			default:
669 				BUG();
670 				goto out;
671 			}
672 			break;
673 		default:
674 			BUG();
675 			goto out;
676 		}
677 		expr_counter++;
678 	}
679 
680 	/*
681 	 * At this point each expression of the constraint is in
682 	 * expr_list[n+1] and in RPN format. Now convert to 'infix'
683 	 */
684 
685 	/*
686 	 * Save expr count but zero expr_counter to detect if
687 	 * 'BUG(); goto out;' was called as we need to release any used
688 	 * expr_list malloc's. Normally they are released by the RPN to
689 	 * infix code.
690 	 */
691 	int expr_count = expr_counter;
692 	expr_counter = 0;
693 
694 	/*
695 	 * Generate the same number of answer buffer entries as expression
696 	 * buffers (as there will never be more).
697 	 */
698 	answer_list = malloc(expr_count * sizeof(*answer_list));
699 	if (!answer_list) {
700 		ERR(NULL, "failed to allocate answer stack");
701 		rc = -ENOMEM;
702 		goto out;
703 	}
704 
705 	/* The pop operands */
706 	char *a;
707 	char *b;
708 	int a_len, b_len;
709 
710 	/* Convert constraint from RPN to infix notation. */
711 	for (x = 0; x != expr_count; x++) {
712 		if (strncmp(expr_list[x], "and", 3) == 0 || strncmp(expr_list[x],
713 					"or", 2) == 0) {
714 			b = pop();
715 			b_len = strlen(b);
716 			a = pop();
717 			a_len = strlen(a);
718 
719 			/* get a buffer to hold the answer */
720 			answer_list[answer_counter] = malloc(a_len + b_len + 8);
721 			if (!answer_list[answer_counter]) {
722 				ERR(NULL, "failed to allocate answer buffer");
723 				rc = -ENOMEM;
724 				goto out;
725 			}
726 			memset(answer_list[answer_counter], '\0', a_len + b_len + 8);
727 
728 			sprintf(answer_list[answer_counter], "%s %s %s", a,
729 					expr_list[x], b);
730 			push(answer_list[answer_counter++]);
731 			free(a);
732 			free(b);
733 			free(expr_list[x]);
734 		} else if (strncmp(expr_list[x], "not", 3) == 0) {
735 			b = pop();
736 			b_len = strlen(b);
737 
738 			answer_list[answer_counter] = malloc(b_len + 8);
739 			if (!answer_list[answer_counter]) {
740 				ERR(NULL, "failed to allocate answer buffer");
741 				rc = -ENOMEM;
742 				goto out;
743 			}
744 			memset(answer_list[answer_counter], '\0', b_len + 8);
745 
746 			if (strncmp(b, "not", 3) == 0)
747 				sprintf(answer_list[answer_counter], "%s (%s)",
748 						expr_list[x], b);
749 			else
750 				sprintf(answer_list[answer_counter], "%s%s",
751 						expr_list[x], b);
752 			push(answer_list[answer_counter++]);
753 			free(b);
754 			free(expr_list[x]);
755 		} else {
756 			push(expr_list[x]);
757 		}
758 	}
759 	/* Get the final answer from tos and build constraint text */
760 	a = pop();
761 
762 	/* validatetrans / constraint calculation:
763 				rc = 0 is denied, rc = 1 is granted */
764 	sprintf(tmp_buf, "%s %s\n",
765 			xcontext ? "Validatetrans" : "Constraint",
766 			s[0] ? "GRANTED" : "DENIED");
767 
768 	int len, new_buf_len;
769 	char *p, **new_buf = r_buf;
770 	/*
771 	 * These contain the constraint components that are added to the
772 	 * callers reason buffer.
773 	 */
774 	const char *buffers[] = { class_buf, a, "); ", tmp_buf, 0 };
775 
776 	/*
777 	 * This will add the constraints to the callers reason buffer (who is
778 	 * responsible for freeing the memory). It will handle any realloc's
779 	 * should the buffer be too short.
780 	 * The reason_buf_used and reason_buf_len counters are defined
781 	 * globally as multiple constraints can be in the buffer.
782 	 */
783 
784 	if (r_buf && ((s[0] == 0) || ((s[0] == 1 &&
785 				(flags & SHOW_GRANTED) == SHOW_GRANTED)))) {
786 		for (x = 0; buffers[x] != NULL; x++) {
787 			while (1) {
788 				p = *r_buf + reason_buf_used;
789 				len = snprintf(p, reason_buf_len - reason_buf_used,
790 						"%s", buffers[x]);
791 				if (len < 0 || len >= reason_buf_len - reason_buf_used) {
792 					new_buf_len = reason_buf_len + REASON_BUF_SIZE;
793 					*new_buf = realloc(*r_buf, new_buf_len);
794 					if (!new_buf) {
795 						ERR(NULL, "failed to realloc reason buffer");
796 						goto out1;
797 					}
798 					**r_buf = **new_buf;
799 					reason_buf_len = new_buf_len;
800 					continue;
801 				} else {
802 					reason_buf_used += len;
803 					break;
804 				}
805 			}
806 		}
807 	}
808 
809 out1:
810 	rc = s[0];
811 	free(a);
812 
813 out:
814 	free(class_buf);
815 	free(src);
816 	free(tgt);
817 
818 	if (expr_counter) {
819 		for (x = 0; expr_list[x] != NULL; x++)
820 			free(expr_list[x]);
821 	}
822 	free(answer_list);
823 	free(expr_list);
824 	return rc;
825 }
826 
827 /*
828  * Compute access vectors based on a context structure pair for
829  * the permissions in a particular class.
830  */
context_struct_compute_av(context_struct_t * scontext,context_struct_t * tcontext,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd,unsigned int * reason,char ** r_buf,unsigned int flags)831 static int context_struct_compute_av(context_struct_t * scontext,
832 				     context_struct_t * tcontext,
833 				     sepol_security_class_t tclass,
834 				     sepol_access_vector_t requested,
835 				     struct sepol_av_decision *avd,
836 				     unsigned int *reason,
837 				     char **r_buf,
838 					 unsigned int flags)
839 {
840 	constraint_node_t *constraint;
841 	struct role_allow *ra;
842 	avtab_key_t avkey;
843 	class_datum_t *tclass_datum;
844 	avtab_ptr_t node;
845 	ebitmap_t *sattr, *tattr;
846 	ebitmap_node_t *snode, *tnode;
847 	unsigned int i, j;
848 
849 	if (!tclass || tclass > policydb->p_classes.nprim) {
850 		ERR(NULL, "unrecognized class %d", tclass);
851 		return -EINVAL;
852 	}
853 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
854 
855 	/*
856 	 * Initialize the access vectors to the default values.
857 	 */
858 	avd->allowed = 0;
859 	avd->decided = 0xffffffff;
860 	avd->auditallow = 0;
861 	avd->auditdeny = 0xffffffff;
862 	avd->seqno = latest_granting;
863 	*reason = 0;
864 
865 	/*
866 	 * If a specific type enforcement rule was defined for
867 	 * this permission check, then use it.
868 	 */
869 	avkey.target_class = tclass;
870 	avkey.specified = AVTAB_AV;
871 	sattr = &policydb->type_attr_map[scontext->type - 1];
872 	tattr = &policydb->type_attr_map[tcontext->type - 1];
873 	ebitmap_for_each_bit(sattr, snode, i) {
874 		if (!ebitmap_node_get_bit(snode, i))
875 			continue;
876 		ebitmap_for_each_bit(tattr, tnode, j) {
877 			if (!ebitmap_node_get_bit(tnode, j))
878 				continue;
879 			avkey.source_type = i + 1;
880 			avkey.target_type = j + 1;
881 			for (node =
882 			     avtab_search_node(&policydb->te_avtab, &avkey);
883 			     node != NULL;
884 			     node =
885 			     avtab_search_node_next(node, avkey.specified)) {
886 				if (node->key.specified == AVTAB_ALLOWED)
887 					avd->allowed |= node->datum.data;
888 				else if (node->key.specified ==
889 					 AVTAB_AUDITALLOW)
890 					avd->auditallow |= node->datum.data;
891 				else if (node->key.specified == AVTAB_AUDITDENY)
892 					avd->auditdeny &= node->datum.data;
893 			}
894 
895 			/* Check conditional av table for additional permissions */
896 			cond_compute_av(&policydb->te_cond_avtab, &avkey, avd);
897 
898 		}
899 	}
900 
901 	if (requested & ~avd->allowed) {
902 		*reason |= SEPOL_COMPUTEAV_TE;
903 		requested &= avd->allowed;
904 	}
905 
906 	/*
907 	 * Remove any permissions prohibited by a constraint (this includes
908 	 * the MLS policy).
909 	 */
910 	constraint = tclass_datum->constraints;
911 	while (constraint) {
912 		if ((constraint->permissions & (avd->allowed)) &&
913 		    !constraint_expr_eval_reason(scontext, tcontext, NULL,
914 					  tclass, constraint, r_buf, flags)) {
915 			avd->allowed =
916 			    (avd->allowed) & ~(constraint->permissions);
917 		}
918 		constraint = constraint->next;
919 	}
920 
921 	if (requested & ~avd->allowed) {
922 		*reason |= SEPOL_COMPUTEAV_CONS;
923 		requested &= avd->allowed;
924 	}
925 
926 	/*
927 	 * If checking process transition permission and the
928 	 * role is changing, then check the (current_role, new_role)
929 	 * pair.
930 	 */
931 	if (tclass == SECCLASS_PROCESS &&
932 	    (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
933 	    scontext->role != tcontext->role) {
934 		for (ra = policydb->role_allow; ra; ra = ra->next) {
935 			if (scontext->role == ra->role &&
936 			    tcontext->role == ra->new_role)
937 				break;
938 		}
939 		if (!ra)
940 			avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
941 							  PROCESS__DYNTRANSITION);
942 	}
943 
944 	if (requested & ~avd->allowed) {
945 		*reason |= SEPOL_COMPUTEAV_RBAC;
946 		requested &= avd->allowed;
947 	}
948 
949 	return 0;
950 }
951 
sepol_validate_transition(sepol_security_id_t oldsid,sepol_security_id_t newsid,sepol_security_id_t tasksid,sepol_security_class_t tclass)952 int hidden sepol_validate_transition(sepol_security_id_t oldsid,
953 				     sepol_security_id_t newsid,
954 				     sepol_security_id_t tasksid,
955 				     sepol_security_class_t tclass)
956 {
957 	context_struct_t *ocontext;
958 	context_struct_t *ncontext;
959 	context_struct_t *tcontext;
960 	class_datum_t *tclass_datum;
961 	constraint_node_t *constraint;
962 
963 	if (!tclass || tclass > policydb->p_classes.nprim) {
964 		ERR(NULL, "unrecognized class %d", tclass);
965 		return -EINVAL;
966 	}
967 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
968 
969 	ocontext = sepol_sidtab_search(sidtab, oldsid);
970 	if (!ocontext) {
971 		ERR(NULL, "unrecognized SID %d", oldsid);
972 		return -EINVAL;
973 	}
974 
975 	ncontext = sepol_sidtab_search(sidtab, newsid);
976 	if (!ncontext) {
977 		ERR(NULL, "unrecognized SID %d", newsid);
978 		return -EINVAL;
979 	}
980 
981 	tcontext = sepol_sidtab_search(sidtab, tasksid);
982 	if (!tcontext) {
983 		ERR(NULL, "unrecognized SID %d", tasksid);
984 		return -EINVAL;
985 	}
986 
987 	constraint = tclass_datum->validatetrans;
988 	while (constraint) {
989 		if (!constraint_expr_eval_reason(ocontext, ncontext, tcontext,
990 					  0, constraint, NULL, 0)) {
991 			return -EPERM;
992 		}
993 		constraint = constraint->next;
994 	}
995 
996 	return 0;
997 }
998 
999 /*
1000  * sepol_validate_transition_reason_buffer - the reason buffer is realloc'd
1001  * in the constraint_expr_eval_reason() function.
1002  */
sepol_validate_transition_reason_buffer(sepol_security_id_t oldsid,sepol_security_id_t newsid,sepol_security_id_t tasksid,sepol_security_class_t tclass,char ** reason_buf,unsigned int flags)1003 int hidden sepol_validate_transition_reason_buffer(sepol_security_id_t oldsid,
1004 				     sepol_security_id_t newsid,
1005 				     sepol_security_id_t tasksid,
1006 				     sepol_security_class_t tclass,
1007 				     char **reason_buf,
1008 				     unsigned int flags)
1009 {
1010 	context_struct_t *ocontext;
1011 	context_struct_t *ncontext;
1012 	context_struct_t *tcontext;
1013 	class_datum_t *tclass_datum;
1014 	constraint_node_t *constraint;
1015 
1016 	if (!tclass || tclass > policydb->p_classes.nprim) {
1017 		ERR(NULL, "unrecognized class %d", tclass);
1018 		return -EINVAL;
1019 	}
1020 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
1021 
1022 	ocontext = sepol_sidtab_search(sidtab, oldsid);
1023 	if (!ocontext) {
1024 		ERR(NULL, "unrecognized SID %d", oldsid);
1025 		return -EINVAL;
1026 	}
1027 
1028 	ncontext = sepol_sidtab_search(sidtab, newsid);
1029 	if (!ncontext) {
1030 		ERR(NULL, "unrecognized SID %d", newsid);
1031 		return -EINVAL;
1032 	}
1033 
1034 	tcontext = sepol_sidtab_search(sidtab, tasksid);
1035 	if (!tcontext) {
1036 		ERR(NULL, "unrecognized SID %d", tasksid);
1037 		return -EINVAL;
1038 	}
1039 
1040 	/*
1041 	 * Set the buffer to NULL as mls/validatetrans may not be processed.
1042 	 * If a buffer is required, then the routines in
1043 	 * constraint_expr_eval_reason will realloc in REASON_BUF_SIZE
1044 	 * chunks (as it gets called for each mls/validatetrans processed).
1045 	 * We just make sure these start from zero.
1046 	 */
1047 	*reason_buf = NULL;
1048 	reason_buf_used = 0;
1049 	reason_buf_len = 0;
1050 	constraint = tclass_datum->validatetrans;
1051 	while (constraint) {
1052 		if (!constraint_expr_eval_reason(ocontext, ncontext, tcontext,
1053 				tclass, constraint, reason_buf, flags)) {
1054 			return -EPERM;
1055 		}
1056 		constraint = constraint->next;
1057 	}
1058 	return 0;
1059 }
1060 
sepol_compute_av_reason(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd,unsigned int * reason)1061 int hidden sepol_compute_av_reason(sepol_security_id_t ssid,
1062 				   sepol_security_id_t tsid,
1063 				   sepol_security_class_t tclass,
1064 				   sepol_access_vector_t requested,
1065 				   struct sepol_av_decision *avd,
1066 				   unsigned int *reason)
1067 {
1068 	context_struct_t *scontext = 0, *tcontext = 0;
1069 	int rc = 0;
1070 
1071 	scontext = sepol_sidtab_search(sidtab, ssid);
1072 	if (!scontext) {
1073 		ERR(NULL, "unrecognized SID %d", ssid);
1074 		rc = -EINVAL;
1075 		goto out;
1076 	}
1077 	tcontext = sepol_sidtab_search(sidtab, tsid);
1078 	if (!tcontext) {
1079 		ERR(NULL, "unrecognized SID %d", tsid);
1080 		rc = -EINVAL;
1081 		goto out;
1082 	}
1083 
1084 	rc = context_struct_compute_av(scontext, tcontext, tclass,
1085 					requested, avd, reason, NULL, 0);
1086       out:
1087 	return rc;
1088 }
1089 
1090 /*
1091  * sepol_compute_av_reason_buffer - the reason buffer is malloc'd to
1092  * REASON_BUF_SIZE. If the buffer size is exceeded, then it is realloc'd
1093  * in the constraint_expr_eval_reason() function.
1094  */
sepol_compute_av_reason_buffer(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd,unsigned int * reason,char ** reason_buf,unsigned int flags)1095 int hidden sepol_compute_av_reason_buffer(sepol_security_id_t ssid,
1096 				   sepol_security_id_t tsid,
1097 				   sepol_security_class_t tclass,
1098 				   sepol_access_vector_t requested,
1099 				   struct sepol_av_decision *avd,
1100 				   unsigned int *reason,
1101 				   char **reason_buf,
1102 				   unsigned int flags)
1103 {
1104 	context_struct_t *scontext = 0, *tcontext = 0;
1105 	int rc = 0;
1106 
1107 	scontext = sepol_sidtab_search(sidtab, ssid);
1108 	if (!scontext) {
1109 		ERR(NULL, "unrecognized SID %d", ssid);
1110 		rc = -EINVAL;
1111 		goto out;
1112 	}
1113 	tcontext = sepol_sidtab_search(sidtab, tsid);
1114 	if (!tcontext) {
1115 		ERR(NULL, "unrecognized SID %d", tsid);
1116 		rc = -EINVAL;
1117 		goto out;
1118 	}
1119 
1120 	/*
1121 	 * Set the buffer to NULL as constraints may not be processed.
1122 	 * If a buffer is required, then the routines in
1123 	 * constraint_expr_eval_reason will realloc in REASON_BUF_SIZE
1124 	 * chunks (as it gets called for each constraint processed).
1125 	 * We just make sure these start from zero.
1126 	 */
1127 	*reason_buf = NULL;
1128 	reason_buf_used = 0;
1129 	reason_buf_len = 0;
1130 
1131 	rc = context_struct_compute_av(scontext, tcontext, tclass,
1132 					   requested, avd, reason, reason_buf, flags);
1133 out:
1134 	return rc;
1135 }
1136 
sepol_compute_av(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd)1137 int hidden sepol_compute_av(sepol_security_id_t ssid,
1138 			    sepol_security_id_t tsid,
1139 			    sepol_security_class_t tclass,
1140 			    sepol_access_vector_t requested,
1141 			    struct sepol_av_decision *avd)
1142 {
1143 	unsigned int reason = 0;
1144 	return sepol_compute_av_reason(ssid, tsid, tclass, requested, avd,
1145 				       &reason);
1146 }
1147 
1148 /*
1149  * Return a class ID associated with the class string specified by
1150  * class_name.
1151  */
sepol_string_to_security_class(const char * class_name,sepol_security_class_t * tclass)1152 int hidden sepol_string_to_security_class(const char *class_name,
1153 			sepol_security_class_t *tclass)
1154 {
1155 	char *class = NULL;
1156 	sepol_security_class_t id;
1157 
1158 	for (id = 1;; id++) {
1159 		class = policydb->p_class_val_to_name[id - 1];
1160 		if (class == NULL) {
1161 			ERR(NULL, "could not convert %s to class id", class_name);
1162 			return STATUS_ERR;
1163 		}
1164 		if ((strcmp(class, class_name)) == 0) {
1165 			*tclass = id;
1166 			return STATUS_SUCCESS;
1167 		}
1168 	}
1169 }
1170 
1171 /*
1172  * Return access vector bit associated with the class ID and permission
1173  * string.
1174  */
sepol_string_to_av_perm(sepol_security_class_t tclass,const char * perm_name,sepol_access_vector_t * av)1175 int hidden sepol_string_to_av_perm(sepol_security_class_t tclass,
1176 					const char *perm_name,
1177 					sepol_access_vector_t *av)
1178 {
1179 	class_datum_t *tclass_datum;
1180 	perm_datum_t *perm_datum;
1181 
1182 	if (!tclass || tclass > policydb->p_classes.nprim) {
1183 		ERR(NULL, "unrecognized class %d", tclass);
1184 		return -EINVAL;
1185 	}
1186 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
1187 
1188 	/* Check for unique perms then the common ones (if any) */
1189 	perm_datum = (perm_datum_t *)
1190 			hashtab_search(tclass_datum->permissions.table,
1191 			(hashtab_key_t)perm_name);
1192 	if (perm_datum != NULL) {
1193 		*av = 0x1 << (perm_datum->s.value - 1);
1194 		return STATUS_SUCCESS;
1195 	}
1196 
1197 	if (tclass_datum->comdatum == NULL)
1198 		goto out;
1199 
1200 	perm_datum = (perm_datum_t *)
1201 			hashtab_search(tclass_datum->comdatum->permissions.table,
1202 			(hashtab_key_t)perm_name);
1203 
1204 	if (perm_datum != NULL) {
1205 		*av = 0x1 << (perm_datum->s.value - 1);
1206 		return STATUS_SUCCESS;
1207 	}
1208 out:
1209 	ERR(NULL, "could not convert %s to av bit", perm_name);
1210 	return STATUS_ERR;
1211 }
1212 
1213 /*
1214  * Write the security context string representation of
1215  * the context associated with `sid' into a dynamically
1216  * allocated string of the correct size.  Set `*scontext'
1217  * to point to this string and set `*scontext_len' to
1218  * the length of the string.
1219  */
sepol_sid_to_context(sepol_security_id_t sid,sepol_security_context_t * scontext,size_t * scontext_len)1220 int hidden sepol_sid_to_context(sepol_security_id_t sid,
1221 				sepol_security_context_t * scontext,
1222 				size_t * scontext_len)
1223 {
1224 	context_struct_t *context;
1225 	int rc = 0;
1226 
1227 	context = sepol_sidtab_search(sidtab, sid);
1228 	if (!context) {
1229 		ERR(NULL, "unrecognized SID %d", sid);
1230 		rc = -EINVAL;
1231 		goto out;
1232 	}
1233 	rc = context_to_string(NULL, policydb, context, scontext, scontext_len);
1234       out:
1235 	return rc;
1236 
1237 }
1238 
1239 /*
1240  * Return a SID associated with the security context that
1241  * has the string representation specified by `scontext'.
1242  */
sepol_context_to_sid(const sepol_security_context_t scontext,size_t scontext_len,sepol_security_id_t * sid)1243 int hidden sepol_context_to_sid(const sepol_security_context_t scontext,
1244 				size_t scontext_len, sepol_security_id_t * sid)
1245 {
1246 
1247 	context_struct_t *context = NULL;
1248 
1249 	/* First, create the context */
1250 	if (context_from_string(NULL, policydb, &context,
1251 				scontext, scontext_len) < 0)
1252 		goto err;
1253 
1254 	/* Obtain the new sid */
1255 	if (sid && (sepol_sidtab_context_to_sid(sidtab, context, sid) < 0))
1256 		goto err;
1257 
1258 	context_destroy(context);
1259 	free(context);
1260 	return STATUS_SUCCESS;
1261 
1262       err:
1263 	if (context) {
1264 		context_destroy(context);
1265 		free(context);
1266 	}
1267 	ERR(NULL, "could not convert %s to sid", scontext);
1268 	return STATUS_ERR;
1269 }
1270 
compute_sid_handle_invalid_context(context_struct_t * scontext,context_struct_t * tcontext,sepol_security_class_t tclass,context_struct_t * newcontext)1271 static inline int compute_sid_handle_invalid_context(context_struct_t *
1272 						     scontext,
1273 						     context_struct_t *
1274 						     tcontext,
1275 						     sepol_security_class_t
1276 						     tclass,
1277 						     context_struct_t *
1278 						     newcontext)
1279 {
1280 	if (selinux_enforcing) {
1281 		return -EACCES;
1282 	} else {
1283 		sepol_security_context_t s, t, n;
1284 		size_t slen, tlen, nlen;
1285 
1286 		context_to_string(NULL, policydb, scontext, &s, &slen);
1287 		context_to_string(NULL, policydb, tcontext, &t, &tlen);
1288 		context_to_string(NULL, policydb, newcontext, &n, &nlen);
1289 		ERR(NULL, "invalid context %s for "
1290 		    "scontext=%s tcontext=%s tclass=%s",
1291 		    n, s, t, policydb->p_class_val_to_name[tclass - 1]);
1292 		free(s);
1293 		free(t);
1294 		free(n);
1295 		return 0;
1296 	}
1297 }
1298 
sepol_compute_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,uint32_t specified,sepol_security_id_t * out_sid)1299 static int sepol_compute_sid(sepol_security_id_t ssid,
1300 			     sepol_security_id_t tsid,
1301 			     sepol_security_class_t tclass,
1302 			     uint32_t specified, sepol_security_id_t * out_sid)
1303 {
1304 	context_struct_t *scontext = 0, *tcontext = 0, newcontext;
1305 	struct role_trans *roletr = 0;
1306 	avtab_key_t avkey;
1307 	avtab_datum_t *avdatum;
1308 	avtab_ptr_t node;
1309 	int rc = 0;
1310 
1311 	scontext = sepol_sidtab_search(sidtab, ssid);
1312 	if (!scontext) {
1313 		ERR(NULL, "unrecognized SID %d", ssid);
1314 		rc = -EINVAL;
1315 		goto out;
1316 	}
1317 	tcontext = sepol_sidtab_search(sidtab, tsid);
1318 	if (!tcontext) {
1319 		ERR(NULL, "unrecognized SID %d", tsid);
1320 		rc = -EINVAL;
1321 		goto out;
1322 	}
1323 
1324 	context_init(&newcontext);
1325 
1326 	/* Set the user identity. */
1327 	switch (specified) {
1328 	case AVTAB_TRANSITION:
1329 	case AVTAB_CHANGE:
1330 		/* Use the process user identity. */
1331 		newcontext.user = scontext->user;
1332 		break;
1333 	case AVTAB_MEMBER:
1334 		/* Use the related object owner. */
1335 		newcontext.user = tcontext->user;
1336 		break;
1337 	}
1338 
1339 	/* Set the role and type to default values. */
1340 	switch (tclass) {
1341 	case SECCLASS_PROCESS:
1342 		/* Use the current role and type of process. */
1343 		newcontext.role = scontext->role;
1344 		newcontext.type = scontext->type;
1345 		break;
1346 	default:
1347 		/* Use the well-defined object role. */
1348 		newcontext.role = OBJECT_R_VAL;
1349 		/* Use the type of the related object. */
1350 		newcontext.type = tcontext->type;
1351 	}
1352 
1353 	/* Look for a type transition/member/change rule. */
1354 	avkey.source_type = scontext->type;
1355 	avkey.target_type = tcontext->type;
1356 	avkey.target_class = tclass;
1357 	avkey.specified = specified;
1358 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1359 
1360 	/* If no permanent rule, also check for enabled conditional rules */
1361 	if (!avdatum) {
1362 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1363 		for (; node != NULL;
1364 		     node = avtab_search_node_next(node, specified)) {
1365 			if (node->key.specified & AVTAB_ENABLED) {
1366 				avdatum = &node->datum;
1367 				break;
1368 			}
1369 		}
1370 	}
1371 
1372 	if (avdatum) {
1373 		/* Use the type from the type transition/member/change rule. */
1374 		newcontext.type = avdatum->data;
1375 	}
1376 
1377 	/* Check for class-specific changes. */
1378 	switch (tclass) {
1379 	case SECCLASS_PROCESS:
1380 		if (specified & AVTAB_TRANSITION) {
1381 			/* Look for a role transition rule. */
1382 			for (roletr = policydb->role_tr; roletr;
1383 			     roletr = roletr->next) {
1384 				if (roletr->role == scontext->role &&
1385 				    roletr->type == tcontext->type) {
1386 					/* Use the role transition rule. */
1387 					newcontext.role = roletr->new_role;
1388 					break;
1389 				}
1390 			}
1391 		}
1392 		break;
1393 	default:
1394 		break;
1395 	}
1396 
1397 	/* Set the MLS attributes.
1398 	   This is done last because it may allocate memory. */
1399 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1400 			     &newcontext);
1401 	if (rc)
1402 		goto out;
1403 
1404 	/* Check the validity of the context. */
1405 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1406 		rc = compute_sid_handle_invalid_context(scontext,
1407 							tcontext,
1408 							tclass, &newcontext);
1409 		if (rc)
1410 			goto out;
1411 	}
1412 	/* Obtain the sid for the context. */
1413 	rc = sepol_sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1414       out:
1415 	context_destroy(&newcontext);
1416 	return rc;
1417 }
1418 
1419 /*
1420  * Compute a SID to use for labeling a new object in the
1421  * class `tclass' based on a SID pair.
1422  */
sepol_transition_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_security_id_t * out_sid)1423 int hidden sepol_transition_sid(sepol_security_id_t ssid,
1424 				sepol_security_id_t tsid,
1425 				sepol_security_class_t tclass,
1426 				sepol_security_id_t * out_sid)
1427 {
1428 	return sepol_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
1429 }
1430 
1431 /*
1432  * Compute a SID to use when selecting a member of a
1433  * polyinstantiated object of class `tclass' based on
1434  * a SID pair.
1435  */
sepol_member_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_security_id_t * out_sid)1436 int hidden sepol_member_sid(sepol_security_id_t ssid,
1437 			    sepol_security_id_t tsid,
1438 			    sepol_security_class_t tclass,
1439 			    sepol_security_id_t * out_sid)
1440 {
1441 	return sepol_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1442 }
1443 
1444 /*
1445  * Compute a SID to use for relabeling an object in the
1446  * class `tclass' based on a SID pair.
1447  */
sepol_change_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_security_id_t * out_sid)1448 int hidden sepol_change_sid(sepol_security_id_t ssid,
1449 			    sepol_security_id_t tsid,
1450 			    sepol_security_class_t tclass,
1451 			    sepol_security_id_t * out_sid)
1452 {
1453 	return sepol_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1454 }
1455 
1456 /*
1457  * Verify that each permission that is defined under the
1458  * existing policy is still defined with the same value
1459  * in the new policy.
1460  */
validate_perm(hashtab_key_t key,hashtab_datum_t datum,void * p)1461 static int validate_perm(hashtab_key_t key, hashtab_datum_t datum, void *p)
1462 {
1463 	hashtab_t h;
1464 	perm_datum_t *perdatum, *perdatum2;
1465 
1466 	h = (hashtab_t) p;
1467 	perdatum = (perm_datum_t *) datum;
1468 
1469 	perdatum2 = (perm_datum_t *) hashtab_search(h, key);
1470 	if (!perdatum2) {
1471 		ERR(NULL, "permission %s disappeared", key);
1472 		return -1;
1473 	}
1474 	if (perdatum->s.value != perdatum2->s.value) {
1475 		ERR(NULL, "the value of permissions %s changed", key);
1476 		return -1;
1477 	}
1478 	return 0;
1479 }
1480 
1481 /*
1482  * Verify that each class that is defined under the
1483  * existing policy is still defined with the same
1484  * attributes in the new policy.
1485  */
validate_class(hashtab_key_t key,hashtab_datum_t datum,void * p)1486 static int validate_class(hashtab_key_t key, hashtab_datum_t datum, void *p)
1487 {
1488 	policydb_t *newp;
1489 	class_datum_t *cladatum, *cladatum2;
1490 
1491 	newp = (policydb_t *) p;
1492 	cladatum = (class_datum_t *) datum;
1493 
1494 	cladatum2 =
1495 	    (class_datum_t *) hashtab_search(newp->p_classes.table, key);
1496 	if (!cladatum2) {
1497 		ERR(NULL, "class %s disappeared", key);
1498 		return -1;
1499 	}
1500 	if (cladatum->s.value != cladatum2->s.value) {
1501 		ERR(NULL, "the value of class %s changed", key);
1502 		return -1;
1503 	}
1504 	if ((cladatum->comdatum && !cladatum2->comdatum) ||
1505 	    (!cladatum->comdatum && cladatum2->comdatum)) {
1506 		ERR(NULL, "the inherits clause for the access "
1507 		    "vector definition for class %s changed", key);
1508 		return -1;
1509 	}
1510 	if (cladatum->comdatum) {
1511 		if (hashtab_map
1512 		    (cladatum->comdatum->permissions.table, validate_perm,
1513 		     cladatum2->comdatum->permissions.table)) {
1514 			ERR(NULL,
1515 			    " in the access vector definition "
1516 			    "for class %s\n", key);
1517 			return -1;
1518 		}
1519 	}
1520 	if (hashtab_map(cladatum->permissions.table, validate_perm,
1521 			cladatum2->permissions.table)) {
1522 		ERR(NULL, " in access vector definition for class %s", key);
1523 		return -1;
1524 	}
1525 	return 0;
1526 }
1527 
1528 /* Clone the SID into the new SID table. */
clone_sid(sepol_security_id_t sid,context_struct_t * context,void * arg)1529 static int clone_sid(sepol_security_id_t sid,
1530 		     context_struct_t * context, void *arg)
1531 {
1532 	sidtab_t *s = arg;
1533 
1534 	return sepol_sidtab_insert(s, sid, context);
1535 }
1536 
convert_context_handle_invalid_context(context_struct_t * context)1537 static inline int convert_context_handle_invalid_context(context_struct_t *
1538 							 context)
1539 {
1540 	if (selinux_enforcing) {
1541 		return -EINVAL;
1542 	} else {
1543 		sepol_security_context_t s;
1544 		size_t len;
1545 
1546 		context_to_string(NULL, policydb, context, &s, &len);
1547 		ERR(NULL, "context %s is invalid", s);
1548 		free(s);
1549 		return 0;
1550 	}
1551 }
1552 
1553 typedef struct {
1554 	policydb_t *oldp;
1555 	policydb_t *newp;
1556 } convert_context_args_t;
1557 
1558 /*
1559  * Convert the values in the security context
1560  * structure `c' from the values specified
1561  * in the policy `p->oldp' to the values specified
1562  * in the policy `p->newp'.  Verify that the
1563  * context is valid under the new policy.
1564  */
convert_context(sepol_security_id_t key,context_struct_t * c,void * p)1565 static int convert_context(sepol_security_id_t key __attribute__ ((unused)),
1566 			   context_struct_t * c, void *p)
1567 {
1568 	convert_context_args_t *args;
1569 	context_struct_t oldc;
1570 	role_datum_t *role;
1571 	type_datum_t *typdatum;
1572 	user_datum_t *usrdatum;
1573 	sepol_security_context_t s;
1574 	size_t len;
1575 	int rc = -EINVAL;
1576 
1577 	args = (convert_context_args_t *) p;
1578 
1579 	if (context_cpy(&oldc, c))
1580 		return -ENOMEM;
1581 
1582 	/* Convert the user. */
1583 	usrdatum = (user_datum_t *) hashtab_search(args->newp->p_users.table,
1584 						   args->oldp->
1585 						   p_user_val_to_name[c->user -
1586 								      1]);
1587 
1588 	if (!usrdatum) {
1589 		goto bad;
1590 	}
1591 	c->user = usrdatum->s.value;
1592 
1593 	/* Convert the role. */
1594 	role = (role_datum_t *) hashtab_search(args->newp->p_roles.table,
1595 					       args->oldp->
1596 					       p_role_val_to_name[c->role - 1]);
1597 	if (!role) {
1598 		goto bad;
1599 	}
1600 	c->role = role->s.value;
1601 
1602 	/* Convert the type. */
1603 	typdatum = (type_datum_t *)
1604 	    hashtab_search(args->newp->p_types.table,
1605 			   args->oldp->p_type_val_to_name[c->type - 1]);
1606 	if (!typdatum) {
1607 		goto bad;
1608 	}
1609 	c->type = typdatum->s.value;
1610 
1611 	rc = mls_convert_context(args->oldp, args->newp, c);
1612 	if (rc)
1613 		goto bad;
1614 
1615 	/* Check the validity of the new context. */
1616 	if (!policydb_context_isvalid(args->newp, c)) {
1617 		rc = convert_context_handle_invalid_context(&oldc);
1618 		if (rc)
1619 			goto bad;
1620 	}
1621 
1622 	context_destroy(&oldc);
1623 	return 0;
1624 
1625       bad:
1626 	context_to_string(NULL, policydb, &oldc, &s, &len);
1627 	context_destroy(&oldc);
1628 	ERR(NULL, "invalidating context %s", s);
1629 	free(s);
1630 	return rc;
1631 }
1632 
1633 /* Reading from a policy "file". */
next_entry(void * buf,struct policy_file * fp,size_t bytes)1634 int hidden next_entry(void *buf, struct policy_file *fp, size_t bytes)
1635 {
1636 	size_t nread;
1637 
1638 	switch (fp->type) {
1639 	case PF_USE_STDIO:
1640 		nread = fread(buf, bytes, 1, fp->fp);
1641 
1642 		if (nread != 1)
1643 			return -1;
1644 		break;
1645 	case PF_USE_MEMORY:
1646 		if (bytes > fp->len)
1647 			return -1;
1648 		memcpy(buf, fp->data, bytes);
1649 		fp->data += bytes;
1650 		fp->len -= bytes;
1651 		break;
1652 	default:
1653 		return -1;
1654 	}
1655 	return 0;
1656 }
1657 
put_entry(const void * ptr,size_t size,size_t n,struct policy_file * fp)1658 size_t hidden put_entry(const void *ptr, size_t size, size_t n,
1659 			struct policy_file *fp)
1660 {
1661 	size_t bytes = size * n;
1662 
1663 	switch (fp->type) {
1664 	case PF_USE_STDIO:
1665 		return fwrite(ptr, size, n, fp->fp);
1666 	case PF_USE_MEMORY:
1667 		if (bytes > fp->len) {
1668 			errno = ENOSPC;
1669 			return 0;
1670 		}
1671 
1672 		memcpy(fp->data, ptr, bytes);
1673 		fp->data += bytes;
1674 		fp->len -= bytes;
1675 		return n;
1676 	case PF_LEN:
1677 		fp->len += bytes;
1678 		return n;
1679 	default:
1680 		return 0;
1681 	}
1682 	return 0;
1683 }
1684 
1685 /*
1686  * Read a new set of configuration data from
1687  * a policy database binary representation file.
1688  *
1689  * Verify that each class that is defined under the
1690  * existing policy is still defined with the same
1691  * attributes in the new policy.
1692  *
1693  * Convert the context structures in the SID table to the
1694  * new representation and verify that all entries
1695  * in the SID table are valid under the new policy.
1696  *
1697  * Change the active policy database to use the new
1698  * configuration data.
1699  *
1700  * Reset the access vector cache.
1701  */
sepol_load_policy(void * data,size_t len)1702 int hidden sepol_load_policy(void *data, size_t len)
1703 {
1704 	policydb_t oldpolicydb, newpolicydb;
1705 	sidtab_t oldsidtab, newsidtab;
1706 	convert_context_args_t args;
1707 	int rc = 0;
1708 	struct policy_file file, *fp;
1709 
1710 	policy_file_init(&file);
1711 	file.type = PF_USE_MEMORY;
1712 	file.data = data;
1713 	file.len = len;
1714 	fp = &file;
1715 
1716 	if (policydb_init(&newpolicydb))
1717 		return -ENOMEM;
1718 
1719 	if (policydb_read(&newpolicydb, fp, 1)) {
1720 		policydb_destroy(&mypolicydb);
1721 		return -EINVAL;
1722 	}
1723 
1724 	sepol_sidtab_init(&newsidtab);
1725 
1726 	/* Verify that the existing classes did not change. */
1727 	if (hashtab_map
1728 	    (policydb->p_classes.table, validate_class, &newpolicydb)) {
1729 		ERR(NULL, "the definition of an existing class changed");
1730 		rc = -EINVAL;
1731 		goto err;
1732 	}
1733 
1734 	/* Clone the SID table. */
1735 	sepol_sidtab_shutdown(sidtab);
1736 	if (sepol_sidtab_map(sidtab, clone_sid, &newsidtab)) {
1737 		rc = -ENOMEM;
1738 		goto err;
1739 	}
1740 
1741 	/* Convert the internal representations of contexts
1742 	   in the new SID table and remove invalid SIDs. */
1743 	args.oldp = policydb;
1744 	args.newp = &newpolicydb;
1745 	sepol_sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1746 
1747 	/* Save the old policydb and SID table to free later. */
1748 	memcpy(&oldpolicydb, policydb, sizeof *policydb);
1749 	sepol_sidtab_set(&oldsidtab, sidtab);
1750 
1751 	/* Install the new policydb and SID table. */
1752 	memcpy(policydb, &newpolicydb, sizeof *policydb);
1753 	sepol_sidtab_set(sidtab, &newsidtab);
1754 
1755 	/* Free the old policydb and SID table. */
1756 	policydb_destroy(&oldpolicydb);
1757 	sepol_sidtab_destroy(&oldsidtab);
1758 
1759 	return 0;
1760 
1761       err:
1762 	sepol_sidtab_destroy(&newsidtab);
1763 	policydb_destroy(&newpolicydb);
1764 	return rc;
1765 
1766 }
1767 
1768 /*
1769  * Return the SIDs to use for an unlabeled file system
1770  * that is being mounted from the device with the
1771  * the kdevname `name'.  The `fs_sid' SID is returned for
1772  * the file system and the `file_sid' SID is returned
1773  * for all files within that file system.
1774  */
sepol_fs_sid(char * name,sepol_security_id_t * fs_sid,sepol_security_id_t * file_sid)1775 int hidden sepol_fs_sid(char *name,
1776 			sepol_security_id_t * fs_sid,
1777 			sepol_security_id_t * file_sid)
1778 {
1779 	int rc = 0;
1780 	ocontext_t *c;
1781 
1782 	c = policydb->ocontexts[OCON_FS];
1783 	while (c) {
1784 		if (strcmp(c->u.name, name) == 0)
1785 			break;
1786 		c = c->next;
1787 	}
1788 
1789 	if (c) {
1790 		if (!c->sid[0] || !c->sid[1]) {
1791 			rc = sepol_sidtab_context_to_sid(sidtab,
1792 							 &c->context[0],
1793 							 &c->sid[0]);
1794 			if (rc)
1795 				goto out;
1796 			rc = sepol_sidtab_context_to_sid(sidtab,
1797 							 &c->context[1],
1798 							 &c->sid[1]);
1799 			if (rc)
1800 				goto out;
1801 		}
1802 		*fs_sid = c->sid[0];
1803 		*file_sid = c->sid[1];
1804 	} else {
1805 		*fs_sid = SECINITSID_FS;
1806 		*file_sid = SECINITSID_FILE;
1807 	}
1808 
1809       out:
1810 	return rc;
1811 }
1812 
1813 /*
1814  * Return the SID of the port specified by
1815  * `domain', `type', `protocol', and `port'.
1816  */
sepol_port_sid(uint16_t domain,uint16_t type,uint8_t protocol,uint16_t port,sepol_security_id_t * out_sid)1817 int hidden sepol_port_sid(uint16_t domain __attribute__ ((unused)),
1818 			  uint16_t type __attribute__ ((unused)),
1819 			  uint8_t protocol,
1820 			  uint16_t port, sepol_security_id_t * out_sid)
1821 {
1822 	ocontext_t *c;
1823 	int rc = 0;
1824 
1825 	c = policydb->ocontexts[OCON_PORT];
1826 	while (c) {
1827 		if (c->u.port.protocol == protocol &&
1828 		    c->u.port.low_port <= port && c->u.port.high_port >= port)
1829 			break;
1830 		c = c->next;
1831 	}
1832 
1833 	if (c) {
1834 		if (!c->sid[0]) {
1835 			rc = sepol_sidtab_context_to_sid(sidtab,
1836 							 &c->context[0],
1837 							 &c->sid[0]);
1838 			if (rc)
1839 				goto out;
1840 		}
1841 		*out_sid = c->sid[0];
1842 	} else {
1843 		*out_sid = SECINITSID_PORT;
1844 	}
1845 
1846       out:
1847 	return rc;
1848 }
1849 
1850 /*
1851  * Return the SIDs to use for a network interface
1852  * with the name `name'.  The `if_sid' SID is returned for
1853  * the interface and the `msg_sid' SID is returned as
1854  * the default SID for messages received on the
1855  * interface.
1856  */
sepol_netif_sid(char * name,sepol_security_id_t * if_sid,sepol_security_id_t * msg_sid)1857 int hidden sepol_netif_sid(char *name,
1858 			   sepol_security_id_t * if_sid,
1859 			   sepol_security_id_t * msg_sid)
1860 {
1861 	int rc = 0;
1862 	ocontext_t *c;
1863 
1864 	c = policydb->ocontexts[OCON_NETIF];
1865 	while (c) {
1866 		if (strcmp(name, c->u.name) == 0)
1867 			break;
1868 		c = c->next;
1869 	}
1870 
1871 	if (c) {
1872 		if (!c->sid[0] || !c->sid[1]) {
1873 			rc = sepol_sidtab_context_to_sid(sidtab,
1874 							 &c->context[0],
1875 							 &c->sid[0]);
1876 			if (rc)
1877 				goto out;
1878 			rc = sepol_sidtab_context_to_sid(sidtab,
1879 							 &c->context[1],
1880 							 &c->sid[1]);
1881 			if (rc)
1882 				goto out;
1883 		}
1884 		*if_sid = c->sid[0];
1885 		*msg_sid = c->sid[1];
1886 	} else {
1887 		*if_sid = SECINITSID_NETIF;
1888 		*msg_sid = SECINITSID_NETMSG;
1889 	}
1890 
1891       out:
1892 	return rc;
1893 }
1894 
match_ipv6_addrmask(uint32_t * input,uint32_t * addr,uint32_t * mask)1895 static int match_ipv6_addrmask(uint32_t * input, uint32_t * addr,
1896 			       uint32_t * mask)
1897 {
1898 	int i, fail = 0;
1899 
1900 	for (i = 0; i < 4; i++)
1901 		if (addr[i] != (input[i] & mask[i])) {
1902 			fail = 1;
1903 			break;
1904 		}
1905 
1906 	return !fail;
1907 }
1908 
1909 /*
1910  * Return the SID of the node specified by the address
1911  * `addrp' where `addrlen' is the length of the address
1912  * in bytes and `domain' is the communications domain or
1913  * address family in which the address should be interpreted.
1914  */
sepol_node_sid(uint16_t domain,void * addrp,size_t addrlen,sepol_security_id_t * out_sid)1915 int hidden sepol_node_sid(uint16_t domain,
1916 			  void *addrp,
1917 			  size_t addrlen, sepol_security_id_t * out_sid)
1918 {
1919 	int rc = 0;
1920 	ocontext_t *c;
1921 
1922 	switch (domain) {
1923 	case AF_INET:{
1924 			uint32_t addr;
1925 
1926 			if (addrlen != sizeof(uint32_t)) {
1927 				rc = -EINVAL;
1928 				goto out;
1929 			}
1930 
1931 			addr = *((uint32_t *) addrp);
1932 
1933 			c = policydb->ocontexts[OCON_NODE];
1934 			while (c) {
1935 				if (c->u.node.addr == (addr & c->u.node.mask))
1936 					break;
1937 				c = c->next;
1938 			}
1939 			break;
1940 		}
1941 
1942 	case AF_INET6:
1943 		if (addrlen != sizeof(uint64_t) * 2) {
1944 			rc = -EINVAL;
1945 			goto out;
1946 		}
1947 
1948 		c = policydb->ocontexts[OCON_NODE6];
1949 		while (c) {
1950 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1951 						c->u.node6.mask))
1952 				break;
1953 			c = c->next;
1954 		}
1955 		break;
1956 
1957 	default:
1958 		*out_sid = SECINITSID_NODE;
1959 		goto out;
1960 	}
1961 
1962 	if (c) {
1963 		if (!c->sid[0]) {
1964 			rc = sepol_sidtab_context_to_sid(sidtab,
1965 							 &c->context[0],
1966 							 &c->sid[0]);
1967 			if (rc)
1968 				goto out;
1969 		}
1970 		*out_sid = c->sid[0];
1971 	} else {
1972 		*out_sid = SECINITSID_NODE;
1973 	}
1974 
1975       out:
1976 	return rc;
1977 }
1978 
1979 /*
1980  * Generate the set of SIDs for legal security contexts
1981  * for a given user that can be reached by `fromsid'.
1982  * Set `*sids' to point to a dynamically allocated
1983  * array containing the set of SIDs.  Set `*nel' to the
1984  * number of elements in the array.
1985  */
1986 #define SIDS_NEL 25
1987 
sepol_get_user_sids(sepol_security_id_t fromsid,char * username,sepol_security_id_t ** sids,uint32_t * nel)1988 int hidden sepol_get_user_sids(sepol_security_id_t fromsid,
1989 			       char *username,
1990 			       sepol_security_id_t ** sids, uint32_t * nel)
1991 {
1992 	context_struct_t *fromcon, usercon;
1993 	sepol_security_id_t *mysids, *mysids2, sid;
1994 	uint32_t mynel = 0, maxnel = SIDS_NEL;
1995 	user_datum_t *user;
1996 	role_datum_t *role;
1997 	struct sepol_av_decision avd;
1998 	int rc = 0;
1999 	unsigned int i, j, reason;
2000 	ebitmap_node_t *rnode, *tnode;
2001 
2002 	fromcon = sepol_sidtab_search(sidtab, fromsid);
2003 	if (!fromcon) {
2004 		rc = -EINVAL;
2005 		goto out;
2006 	}
2007 
2008 	user = (user_datum_t *) hashtab_search(policydb->p_users.table,
2009 					       username);
2010 	if (!user) {
2011 		rc = -EINVAL;
2012 		goto out;
2013 	}
2014 	usercon.user = user->s.value;
2015 
2016 	mysids = malloc(maxnel * sizeof(sepol_security_id_t));
2017 	if (!mysids) {
2018 		rc = -ENOMEM;
2019 		goto out;
2020 	}
2021 	memset(mysids, 0, maxnel * sizeof(sepol_security_id_t));
2022 
2023 	ebitmap_for_each_bit(&user->roles.roles, rnode, i) {
2024 		if (!ebitmap_node_get_bit(rnode, i))
2025 			continue;
2026 		role = policydb->role_val_to_struct[i];
2027 		usercon.role = i + 1;
2028 		ebitmap_for_each_bit(&role->types.types, tnode, j) {
2029 			if (!ebitmap_node_get_bit(tnode, j))
2030 				continue;
2031 			usercon.type = j + 1;
2032 			if (usercon.type == fromcon->type)
2033 				continue;
2034 
2035 			if (mls_setup_user_range
2036 			    (fromcon, user, &usercon, policydb->mls))
2037 				continue;
2038 
2039 			rc = context_struct_compute_av(fromcon, &usercon,
2040 						       SECCLASS_PROCESS,
2041 						       PROCESS__TRANSITION,
2042 						       &avd, &reason, NULL, 0);
2043 			if (rc || !(avd.allowed & PROCESS__TRANSITION))
2044 				continue;
2045 			rc = sepol_sidtab_context_to_sid(sidtab, &usercon,
2046 							 &sid);
2047 			if (rc) {
2048 				free(mysids);
2049 				goto out;
2050 			}
2051 			if (mynel < maxnel) {
2052 				mysids[mynel++] = sid;
2053 			} else {
2054 				maxnel += SIDS_NEL;
2055 				mysids2 =
2056 				    malloc(maxnel *
2057 					   sizeof(sepol_security_id_t));
2058 
2059 				if (!mysids2) {
2060 					rc = -ENOMEM;
2061 					free(mysids);
2062 					goto out;
2063 				}
2064 				memset(mysids2, 0,
2065 				       maxnel * sizeof(sepol_security_id_t));
2066 				memcpy(mysids2, mysids,
2067 				       mynel * sizeof(sepol_security_id_t));
2068 				free(mysids);
2069 				mysids = mysids2;
2070 				mysids[mynel++] = sid;
2071 			}
2072 		}
2073 	}
2074 
2075 	*sids = mysids;
2076 	*nel = mynel;
2077 
2078       out:
2079 	return rc;
2080 }
2081 
2082 /*
2083  * Return the SID to use for a file in a filesystem
2084  * that cannot support a persistent label mapping or use another
2085  * fixed labeling behavior like transition SIDs or task SIDs.
2086  */
sepol_genfs_sid(const char * fstype,const char * path,sepol_security_class_t sclass,sepol_security_id_t * sid)2087 int hidden sepol_genfs_sid(const char *fstype,
2088 			   const char *path,
2089 			   sepol_security_class_t sclass,
2090 			   sepol_security_id_t * sid)
2091 {
2092 	size_t len;
2093 	genfs_t *genfs;
2094 	ocontext_t *c;
2095 	int rc = 0, cmp = 0;
2096 
2097 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2098 		cmp = strcmp(fstype, genfs->fstype);
2099 		if (cmp <= 0)
2100 			break;
2101 	}
2102 
2103 	if (!genfs || cmp) {
2104 		*sid = SECINITSID_UNLABELED;
2105 		rc = -ENOENT;
2106 		goto out;
2107 	}
2108 
2109 	for (c = genfs->head; c; c = c->next) {
2110 		len = strlen(c->u.name);
2111 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2112 		    (strncmp(c->u.name, path, len) == 0))
2113 			break;
2114 	}
2115 
2116 	if (!c) {
2117 		*sid = SECINITSID_UNLABELED;
2118 		rc = -ENOENT;
2119 		goto out;
2120 	}
2121 
2122 	if (!c->sid[0]) {
2123 		rc = sepol_sidtab_context_to_sid(sidtab,
2124 						 &c->context[0], &c->sid[0]);
2125 		if (rc)
2126 			goto out;
2127 	}
2128 
2129 	*sid = c->sid[0];
2130       out:
2131 	return rc;
2132 }
2133 
sepol_fs_use(const char * fstype,unsigned int * behavior,sepol_security_id_t * sid)2134 int hidden sepol_fs_use(const char *fstype,
2135 			unsigned int *behavior, sepol_security_id_t * sid)
2136 {
2137 	int rc = 0;
2138 	ocontext_t *c;
2139 
2140 	c = policydb->ocontexts[OCON_FSUSE];
2141 	while (c) {
2142 		if (strcmp(fstype, c->u.name) == 0)
2143 			break;
2144 		c = c->next;
2145 	}
2146 
2147 	if (c) {
2148 		*behavior = c->v.behavior;
2149 		if (!c->sid[0]) {
2150 			rc = sepol_sidtab_context_to_sid(sidtab,
2151 							 &c->context[0],
2152 							 &c->sid[0]);
2153 			if (rc)
2154 				goto out;
2155 		}
2156 		*sid = c->sid[0];
2157 	} else {
2158 		rc = sepol_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2159 		if (rc) {
2160 			*behavior = SECURITY_FS_USE_NONE;
2161 			rc = 0;
2162 		} else {
2163 			*behavior = SECURITY_FS_USE_GENFS;
2164 		}
2165 	}
2166 
2167       out:
2168 	return rc;
2169 }
2170 
2171 /* FLASK */
2172